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Abstract. We consider the following Lotka-Volterra predator-prey system
with two delays: {

x′(t) = x(t) [r1 − ax(t− τ1)− by(t)]

y′(t) = y(t) [−r2 + cx(t)− dy(t− τ2)] .
(E)

We show that a positive equilibrium of system (E) is globally asymptotically
stable for small delays. Critical values of time delay through which system
(E) undergoes a Hopf bifurcation are analytically determined. Some numerical
simulations suggest an existence of subcritical Hopf bifurcation near the critical
values of time delay. Further system (E) exhibits some chaotic behavior when
τ2 becomes large.

1. Introduction. An extensive literature deals with various aspects of Lotka-
Volterra delay systems. Many studies concern permanence, persistence and the
stability of a positive equilibrium. Permanence and persistence for Lotka-Volterra
delay systems are extensively studied, for example, by Cao and Gard [2], Saito [22],
Wang and Ma [30], and Burton and Hutson [1] and Hale and Waltman [6]. In
studying the stability of a positive equilibrium, one often classifies systems under
consideration in two types. One type of systems contains undelayed (or instan-
taneous) intraspecific competitions which dominate both delayed intraspecific and
interspecific interactions. Another type of systems contains only delayed intraspe-
cific competitions. For the former class, Lu and Wang [16] obtained a necessary
and sufficient condition under which a positive equilibrium of a two-dimensional
Lotka-Volterra system without any intraspecific time delay is globally asymptot-
ically stable. Hofbauer and So [11] generalized the result in [16] to an arbitrary
n-dimensional system. In both cases, it was shown that delays incorporated in the
system are harmless under some appropriate condition, called a weakly diagonally
dominant condition (see Hofbauer and Sigmund [12] for the definition of WDD).
The other generalization of [16] was given by Saito [21], [23], in which a necessary
and sufficient condition for a global asymptotic stability of positive equilibrium for a
Lotka-Volterra system with intraspecific time delay is also given. It was pointed out
by Kuang [13] that more realistic models should consist of delay differential systems
without instantaneous intraspecific competitions, since instantaneous responses are
rare or weak relative to delayed response in real-life interactions. Lotka-Volterra
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systems without instantaneous intraspecific competitions are often called “pure-
delay-type” systems. Pure-delay-type systems have been extensively studied by He
[7], [9], [10], Lu and Takeuchi [15], Ma and Takeuchi [17], Zhen and Ma [31], etc.
Gopalsamy and He [4], He [8] and Kuang [13] improved existing results for the
global attractivity of various Lotka-Volterra systems by assuming that an interac-
tion matrix has the form of M -matrix. Recently 2/3-type criteria for the global
attractivity of pure-delay-type systems were obtained by Tang et al. [28] [29], and
similar types of criteria for the asymptotic stability of linear delay systems are given
by So et al [25], [26]. Each also assumes that an interaction matrix has the form of
M -matrix.

On the other hand, it is known that time delays destabilize the system. Shibata
and Saito [24] considered a pure-delay-type Lotka-Volterra competitive model with
two delays and showed that complicated chaotic dynamics appear when time delays
become large. Also, differential equations with two delays have been well studied
by Li et al. [14] and Ruan and Wei ([19], [20]), in which a Hopf bifurcation due to
the effect of time delay is observed.

In this paper, we consider the following Lotka-Volterra prey-predator system
with distributed delays:




x′(t) = x(t)
[
r1 − a

∫ 0

−τ1

x(t + s) dµ1(s)− by(t)
]

,

y′(t) = y(t)
[
−r2 + cx(t)− d

∫ 0

−τ2

y(t + s) dµ2(s)
] (1.1)

with the initial condition

x(s) = φ(s) > 0 and y(s) = ψ(s) > 0 for − max
i=1,2

τi ≤ s ≤ 0. (1.2)

Here, x(t) and y(t) denote the population densities of prey and predator, re-
spectively; τi is nonnegative and the rest of parameters are positive. Further,
µi : [−τi, 0] → R is nondecreasing on [−τi, 0], continuous to the left on (−τi, 0) and
satisfies

∫ 0

−τi
dµi(s) = 1, (i = 1, 2).

Throughout the remainder of this paper we assume that

cr1 − ar2 > 0. (1.3)

Then system (1.1) has a unique positive equilibrium (x∗, y∗):

x∗ =
dr1 + br2

ad + bc
, y∗ =

cr1 − ar2

ad + bc
.

As a special case, system (1.1) contains the following predator-prey system with
discrete delays: {

x′(t) = x(t)[r1 − ax(t− τ1)− by(t)],

y′(t) = y(t)[−r2 + cx(t)− dy(t− τ2)].
(E)

In the case τ2 = 0, system (E) was considered by May [18] and Song and Wei [27].
Some existing results show that a positive equilibrium of (E) is globally attractive
for sufficiently small delays (see [10] for example). On the other hand, in [27], the
existence of a local Hopf bifurcation for the positive equilibrium and the global
existence of periodic solutions on (E) are shown. It is expected that the dynamics
of sytem (E) possesses various interesting properties.

In this paper, we investigate the effect of time delays on the global dynamics of
system (1.1) and (E). The global asymptotic stability and local stability of (x∗, y∗)
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for system (1.1) are discussed in sections 2 and 3, respectively. In section 4, some
numerical simulations are given for the global dynamics of system (E). One of the
simulations demonstrates that chaotic behavior occurs.

2. Global asymptotic stability. In this section, we discuss a global asymptotic
stability for the positive equilibrium of system (1.1). It is shown that the positive
equilibrium is globally asymptotically stable for sufficiently small delays.

By using the transformation

x̄ = x− x∗, ȳ = y − y∗, φ̄ = φ− x∗, ψ̄ = ψ − y∗,

system (1.1) is reduced to




x′(t) = (x(t) + x∗)
[
−a

∫ 0

−τ1

x(t + s) dµ1(s)− by(t)
]

,

y′(t) = (y(t) + y∗)
[
cx(t)− d

∫ 0

−τ2

y(t + s) dµ2(s)
] (2.1)

with the initial condition

x(s) = φ(s) > −x∗ and y(s) = ψ(s) > −y∗ for − max
i=1,2

τi ≤ s ≤ 0. (2.2)

Here we used x(t), y(t), φ(t) and ψ(t) again, instead of x̄(t), ȳ(t), φ̄(t) and ψ̄(t),
respectively. Inequality (1.3) ensures that system (2.1) has the zero solution. For
our main theorem, we exploit a basic result for the upper-boundedness of solutions
of system (2.1). Note that we can apply a similar method developed in [7] and [30]
to Lemma 2.1 so that we omit the proof.

Lemma 2.1. Suppose that (1.3) holds. Let (x(t), y(t)) be an arbitrary solution of
system (2.1) with (2.2). Then there exists a positive value T such that for (t ≥ T )

x(t) + x∗ ≤ M1 :=
r1

a
er1τ1 , y(t) + y∗ ≤ M2 :=

−r2 + cM1

d
e(−r2+cM1)τ2 . (2.3)

Let us define c1 and c2 by

c1 = a2M1h1 +
b

2
(aM1h1 + dM2h2) , c2 = d2M2h2 +

c

2
(aM1h1 + dM2h2).

where M1 and M2 are defined in (2.3). Also, his are defined by hi :=
∫ 0

−τi
(−s)dµi(s)

(i = 1, 2), respectively.

Theorem 2.1. Assume that (1.3) holds. Then the zero solution of (2.1) is globally
asymptotically stable if a > c1 and d > c2.

Proof. Let us construct the following Liapunov functional:

V1(xt, yt) =c

{
x(t)− x∗ log

[
x(t) + x∗

x∗

]}
+ b

{
y(t)− y∗ log

[
y(t) + y∗

y∗

]}
. (2.4)

Then the derivative of V1(xt, yt) through (x(t), y(t)) is given by

V̇1(xt, yt) =cx(t)
[
−a

∫ 0

−τ1

x(t + s) dµ1(s)− by(t)
]

+ by(t)
[
cx(t)− d

∫ 0

−τ2

y(t + s) dµ2(s)
]

.

(2.5)
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We can calculate the first and the fourth terms in (2.5) as
∫ 0

−τ1
x(t + s) dµ1(s) =

x(t)−∫ 0

−τ1

∫ t

t+s
ẋ(u) du dµ1(s) and

∫ 0

−τ2
y(t+s) dµ2(s) = y(t)−∫ 0

−τ2

∫ t

t+s
ẏ(u) du dµ2(s).

Hence, we have

V̇1(xt, yt) =− acx2(t) + ac

∫ 0

−τ1

∫ t

t+s

x(t)ẋ(u) du dµ1(s)

− bdy2(t) + bd

∫ 0

−τ2

∫ t

t+s

y(t)ẏ(u) du dµ2(s).

Let us denote I1 and I2 by

I1 = ac

∫ 0

−τ1

∫ t

t+s

x(t)ẋ(u) du dµ1(s), I2 = bd

∫ 0

−τ2

∫ t

t+s

y(t)ẏ(u) du dµ2(s).

Taking the absolute value of I1 gives

|I1| ≤ ac

∫ 0

−τ1

∫ t

t+s

|x(t)| (x(u) + x∗)
∣∣∣∣−a

∫ 0

−τ1

x(u + v) dµ1(v)− by(u)
∣∣∣∣ du dµ1(s).

(2.6)

By Lemma 2.1, there exist M1 > 0 and T > 0 such that x(t) + x∗ ≤ M1 for all
t ≥ T . Then for t ≥ T1 := T + 2 max{τ1, τ2}, we have

|I1| ≤acM1

∫ 0

−τ1

∫ t

t+s

|x(t)|
{

a

∣∣∣∣
∫ 0

−τ1

x(u + v) dµ1(v)
∣∣∣∣ + b|y(u)|

}
du dµ1(s)

≤1
2
acM1

[
(a + b)h1x

2(t) +
∫ 0

−τ1

∫ t

t+s

{
aR1(u) + by2(u)

}
du dµ1(s)

]
,

where R1(u) =
∣∣∣
∫ 0

−τ1
x(u + v) dµ1(v)

∣∣∣
2

. We used the relation 2αβ ≤ α2 + β2 in
evaluating the first inequality.

In the same way, we can estimate the absolute value of I2 as follows:

|I2| ≤ 1
2
bdM2

[
(c + d)h2y

2(t) +
∫ 0

−τ2

∫ t

t+s

{
dR2(u) + cx2(u)

}
du dµ2(s)

]
,

where R2(u) =
∣∣∣
∫ 0

−τ2
y(u + v) dµ2(v)

∣∣∣
2

.
Additional Liapunov functionals V2 and V3 are defined by:

V2(xt, yt) =
1
2
acM1

∫ 0

−τ1

∫ t

t+s

[
ah1x

2(σ) +
∫ t

σ

{aR1(u) + by2(u)}du

]
dσ dµ1(s),

V3(xt, yt) =
1
2
bdM2

∫ 0

−τ2

∫ t

t+s

[
dh2y

2(σ) +
∫ t

σ

{dR2(u) + cx2(u)}du

]
dσdµ2(s).

Then the derivative of V2(xt, yt) through the solution (x(t), y(t)) is given by

V̇2(xt, yt) =
1
2
acM1

[
ah1x

2(t) + bh1y
2(t)−

∫ 0

−τ1

∫ t

t+s

{aR1(u) + by2(u)} dudµ1(s)

+ah1

{
R1(t)−

∫ 0

−τ1

x2(t + s)dµ1(s)
}]

.
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Note that R1(t) −
∫ 0

−τ1
x2(t + s) dµ1(s) =

[∫ 0

−τ1
x(t + s) dµ1(s)

]2

− ∫ 0

−τ1
x2(t +

s) dµ1(s) ≤ 0. Hence, we have

V̇2(xt, yt) ≤ 1
2
acM1

[
ah1x

2(t) + bh1y
2(t)−

∫ 0

−τ1

∫ t

t+s

{aR1(u) + by2(u)}dudµ1(s)
]

.

In the same way,

V̇3(xt, yt) ≤ 1
2
bdM2

[
ch2x

2 + dh2y
2(t)−

∫ 0

−τ2

∫ t

t+s

{dR2(u) + cx2(u)}dudµ2(s)
]

.

Consequently, an estimate of the derivative of V := V1 + V2 + V3 is

d

dt
V (xt, yt) ≤− c

[
a− 1

2
a(2a + b)M1h1 − 1

2
bdM2h2

]
x2(t)

− b

[
d− 1

2
d(2d + c)M2h2 − 1

2
acM1h1

]
y2(t)

= −c(a− c1)x2(t)− b(d− c2)y2(t).

If a > c1 and d > c2, the second method of Liapunov functional implies that the
zero solution of (2.1) is globally asymptotically stable for t ≥ T1 [5, p. 132, Theorem
2.1]. This completes the proof.

Finally let us compare Theorem 2.1 with the result obtained by X.-Z. He [10] on
system (E):

Corollary 2.1. [10, Corollary 2] Assume that (1.3) holds. Then the zero solution
of (E) is globally asymptotically stable if a > c1 and d > c2, where c1 and c2 are

c1 = a2M1τ1 +
b

2
(aM1τ1 + dM2τ2), c2 = d2M2τ2 +

c

2
(aM1τ1 + dM2τ2).

X.-Z. He [10] showed a sufficient condition for the positive equilibrium to be
globally attractive as a corollary of his main theorem:

Corollary 2.2. [10, Corollary 2]. Assume that (1.3) holds. Then the zero solution
of (E) is globally attractive if a > d1 and d > d2, where d1 and d2 are

d1 = a2M1τ1 +
by∗

2x∗
(aM1τ1 + dM2τ2), d2 = d2M2τ2 +

cx∗

2y∗
(aM1τ1 + dM2τ2).

It is easy to see that c1 > d1 and c2 < d2 if x∗ > y∗. While c1 < d1 and
c2 > d2 if x∗ < y∗. Conditions of global attractivity of system (E) are improved as
a > min{c1, d1} and d > min{c2, d2} by combining Corollary 2.1 and 2.2.

3. Instability. The characteristic equation of the linearized system of (E) is given
by

P (λ, τ1, τ2) = λ2 + (pe−λτ1 + qe−λτ2)λ + pqe−λ(τ1+τ2) + r = 0, (3.1)
where p = ax∗, q = dy∗ and r = bcx∗y∗. Note that λ = 0 is not a solution of (3.1).

Substituting λ = iω (ω > 0) into (3.1) gives

qω sin ωτ2 + pq cos ω(τ1 + τ2) = ω2 − r − pω sin ωτ1, (3.2)

qω cosωτ2 − pq sin ω(τ1 + τ2) = −pω cos ωτ1. (3.3)

Squaring and adding equations (3.2) and (3.3) gives

2pω(ω2 − r − q2) sin ωτ1 = (ω2 − r)2 + p2ω2 − q2ω2 − p2q2. (3.4)
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In the same manner, we have

2qω(ω2 − r − p2) sin ωτ2 = (ω2 − r)2 + q2ω2 − p2ω2 − p2q2. (3.5)

Note that p = q if ω2− r− q2 = 0. In fact, the right hand side of (3.4) is calculated
as (ω2 − r)2 + p2ω2 − q2ω2 − p2q2 = (p2 − q2)r = 0. In the same way, p = q if
ω2 − r − p2 = 0. By taking contraposition, we obtain that ω2 − r − p2 6= 0 and
ω2−r−q2 6= 0 if p 6= q. Note that the characteristic equation (3.1) does not change
its form by exchanging (p, τ1) and (q, τ2). Hence, throughout the remainder of this
section, we can assume that p < q without loss of generality. The particular case
p = q is out of consideration in this paper. Then we have

sin ωτ1 =
ω4 + (p2 − q2 − 2r)ω2 + r2 − p2q2

2pω(ω2 − r − q2)
, (3.6)

sin ωτ2 =
ω4 + (q2 − p2 − 2r)ω2 + r2 − p2q2

2qω(ω2 − r − p2)
. (3.7)

Let us substitute (3.6) and (3.7) into (3.2). Direct calculation gives

cos ω(τ1 + τ2) = −p2 + q2

2pq
+

(p2 − q2)2r
2pq(ω2 − r − p2)(ω2 − r − q2)

. (3.8)

Let us define f1 : (0, r + q2) ∪ (r + q2,∞) → R, f2 : (0, r + p2) ∪ (r + p2,∞) → R
and f3 : [0, r + p2) ∪ (r + p2, r + q2) ∪ (r + q2,∞) → R as

f1(u) =
u2 + (p2 − q2 − 2r)u + r2 − p2q2

2p
√

u(u− r − q2)
, (3.9)

f2(u) =
u2 + (q2 − p2 − 2r)u + r2 − p2q2

2q
√

u(u− r − p2)
, (3.10)

f3(u) = −p2 + q2

2pq
+

(p2 − q2)2r
2pq(u− r − p2)(u− r − q2)

. (3.11)

Intervals I1, I2 and I3 are defined by

I1 =
{
u ∈ (0, r + q2) ∪ (r + q2,∞) : −1 ≤ f1(u) ≤ 1

}
,

I2 =
{
u ∈ (0, r + p2) ∪ (r + p2,∞) : −1 ≤ f2(u) ≤ 1

}
,

I3 =
{
u ∈ [0, r + p2) ∪ (r + q2,∞) : −1 ≤ f3(u) ≤ 1

}
.

Note that it suffices to consider the interval I3 without (r + p2, r + q2), since for
u ∈ (r + p2, r + q2),

f3(u) = −p2 + q2

2pq
+

(p2 − q2)2r
2pq(u− r − p2)(u− r − q2)

< −1 +
(p2 − q2)2r

2pq(u− r − p2)(u− r − q2)
< −1.

On I := I1 ∩ I2 ∩ I3, inverse functions of sin ωτ1 and sin ωτ2 are well defined, and
hence we obtain the following relations:





τk
1 :=

θ1 + 2kπ

ω
,

π − θ1 + 2kπ

ω
, (k = 0, 1, 2, · · · ),

τ l
2 :=

θ2 + 2lπ

ω
,

π − θ2 + 2lπ

ω
, (l = 0, 1, 2, · · · ).

(3.12)

Here, θ1 = sin−1 f1(u) and θ2 = sin−1 f2(u).

Proposition 3.1. (3.2) and (3.3) are equivalent to (3.6)–(3.8).
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Proof. In the procedure of deriving (3.6)–(3.8) from (3.2) and (3.3), it is clear that
(3.2) and (3.3) imply (3.6)–(3.8). Conversely, suppose that (3.6)–(3.8) hold. Then
it is easy to see that (3.6)–(3.8) imply (3.2).

Let us check (3.3) by evaluating (pω cosωτ1 + qω cos ωτ2)2−{pq sinω(τ1 + τ2)}2
as follows:

(pω cosωτ1 + qω cosωτ2)2 − {pq sin ω(τ1 + τ2)}2
=p2ω2(1− sin2 ωτ1) + q2ω2(1− sin2 ωτ2)

+ 2pqω2{cos ω(τ1 + τ2) + sin ωτ1 sin ωτ2} − p2q2{1− cos2 ω(τ1 + τ2)}
=− ω4 + (p2 + q2)ω2 − p2q2 + {pq cosω(τ1 + τ2) + ω2 + pω sin ωτ1 − qω sin ωτ2}×
{pq cos ω(τ1 + τ2) + ω2 − pω sin ωτ1 + qω sin ωτ2}

=− ω4 + (p2 + q2)ω2 − p2q2 + (2ω2 − r − 2qω sin ωτ2)(2ω2 − r − 2pω sin ωτ1).

Here we used (3.2) in evaluating the last equality. By (3.6) and (3.7), 2pω sin ωτ1 =
ω2 − r + p2 + (p2−q2)r

ω2−r−q2 and 2qω sinωτ2 = ω2 − r + q2 + (q2−p2)r
ω2−r−p2 . Direct cal-

culation gives (pω cos ωτ1 + qω cosωτ2)2 − {pq sin ω(τ1 + τ2)}2 = 0. Hence, ei-
ther (3.3) or pω cosωτ1 + qω cosωτ2 + pq sin ω(τ1 + τ2) = 0 holds. If pω cos ωτ1 +
qω cosωτ2 +pq sin ω(τ1 + τ2) = 0, the same manner of deriving (3.4) and (3.5) gives
sin ω(τ1 + 2τ2) = sin ωτ1 and sin ω(2τ1 + τ2) = sin ωτ2. Consequently, sin ωτ1 =
sin ωτ2 = 0. Then it follows from (3.6) and (3.7) that p = q. This is a contradiction
and hence the proof is completed.

Proposition 3.2. Assume that r 6= pq. Then I1, I2, I3 are not empty and
I1 = I2 = I3. Moereover, there exists a set of critical values (ω, τk

1 , τ l
2) such that

(ω, τk
1 , τ l

2) satisfies (3.6)–(3.8).

Proof. First, let us show I3 is not an empty set. Direct calculation gives

f3(0) + 1 =
−(p− q)2(r − pq)2

/2pq(r + p2)(r + q2)
< 0.

Hence f3(0) < −1. The derivative of f3(u) on [0, r + p2) ∪ (r + q2,∞) is

− (p2 − q2)2r
{
(u− r − p2) + (u− r − q2)

}

2pq(u− r − p2)2(u− r − q2)2
.

This implies that f ′3(u) is positive on [0, r+p2) and negative on (r+q2,∞). Hence,
f3(u) is strictly monotonically increasing on [0, r + p2), and strictly monotonically
decreasing on (r + q2,∞). It is easy to see that f3(u) → +∞ as u → r + p2 − 0
and f3(u) → +∞ as u → r + q2 +0. Moreover, f3(u) → −p2+q2

2pq < −1 as u → +∞.
Therefore, I3 = [ū−L, ū+L]∪ [ū−R, ū+R], where ū−L and ū+L are roots of equations
f3(u) = −1 and f3(u) = 1 on [0, r + p2), respectively, while ū−R and ū+R are
respective roots of equations f3(u) = 1 and f3(u) = −1 on (r + q2,∞) (see Fig. 3).
It follows that

f3(u) = 1 ⇐⇒ u2 − (p2 + q2 + 2r)u + (r + pq)2 = 0, (3.13)

f3(u) = −1 ⇐⇒ u2 − (p2 + q2 + 2r)u + (r − pq)2 = 0. (3.14)

Hence, explicit values of ū−L, ū+L, ū−R and ū+R can be obtained by solving (3.13)
and (3.14).

Second, let us show the following statement:

f1(u) = −1 or 1 ⇐⇒ f2(u) = −1 or 1 ⇐⇒ f3(u) = −1 or 1. (3.15)
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Suppose that f1(u) = 1. By (3.6), sin ωτ1 = f1(u) = 1. Hence, cos ωτ1 = 0. Then
in (3.3), q(ω − p) cos ωτ2 = 0. Assume that ω = p. Then r = 0 in (3.2). This is a
contradiction. Hence, cos ωτ2 = 0 and f2(u) = −1 or 1. In the same manner, we
can show that f1(u) = −1 ⇐⇒ f2(u) = −1 or 1. Next, suppose that f3(u) = 1.
By (3.8), cos ω(τ1 + τ2) = f3(u) = 1. Hence, sin ω(τ1 + τ2) = 0, or equivalently,
sin ωτ1 cos ωτ2+cos ωτ1 sin ωτ2 = 0. It follows from (3.3) that p cos ωτ1+q cosωτ2 =
0. Hence cos ωτ2(p sin ωτ1 − q sin ωτ2) = 0. If p sin ωτ1 − q sin ωτ2 = 0, it follows
that

(p cosωτ1 + q cosωτ2)2 + (p sin ωτ1 − q sin ωτ2)2

= p2 + q2 + 2pq cosω(τ1 + τ2) = (p + q)2 = 0.

This is a contradiction, and hence cos ωτ2 = cos ωτ1 = 0. The other cases can be
proved similarly.

Third, let us show I1 and I2 are not an empty set and I1 = I2 = I3. Here, g1(u)
denotes the numerator of f1(u). Then g1(0) = r2−p2q2 and g1(r+q2) = −(q2−p2)r.
If r > pq, g1(0) > 0 and g1(r + q2) < 0, because p < q. Hence, for u ∈ (0, r + q2),
we have f1(u) → −∞ as u → 0+, and f1(u) → +∞ as u → r + q2 − 0. For
u ∈ (r + q2,∞), f1(u) → −∞ as u → r + q2 + 0 and f1(u) → +∞ as u → +∞.
By (3.15), I1 exists. Moreover, f1(ū−L) = −1, f1(ū+L) = 1, f1(ū−R) = −1 and
f1(ū+R) = 1. Hence, I1 = I3 (see Fig. 1). Now, g2(u) denotes the numerator of
f2(u). Then g2(0) = r2− p2q2 and g2(r + p2) = (q2− p2)r. Since r > pq and p < q,
g2(0) > 0 and g2(r + p2) > 0. Hence, for u ∈ (0, r + p2), we have f2(u) → −∞ as
u → 0+, and f2(u) → −∞ as u → r + p2 − 0. For u ∈ (r + p2,∞), f2(u) → +∞
as u → r + p2 + 0 and f2(u) → +∞ as u → +∞. Since f2(u) is continuous
on (0, r + p2) ∪ (r + p2,∞), I2 exists. Moreover, f2(ū−L) = −1, f2(ū+L) = −1,
f2(ū−R) = 1, and f2(ū+R) = 1. Hence, I2 = I3 (see Fig. 2). In r < pq, the
same approach can be used, and hence it is shown that I1, I2 are not empty and
I1 = I2 = I3.

By substituting (3.12) into (3.8), we have the following equations with respect
to u : {

cos
[
sin−1 f1(u) + sin−1 f2(u)

]
= f3(u),

cos
[
sin−1 f1(u)− sin−1 f2(u)

]
= −f3(u).

(3.16)

Note that f3(u) is a monotone function on I and f3(I) = [−1, 1]. Hence, the
intermediate theorem implies that there exists at least one root of (3.16) on I.
This completes the proof.

Hereafter, let us suppose that there exists at least one positive root ω of (3.2)
and (3.3). Let τ2 be arbitrary fixed. Derivatives of P (λ, τ1, τ2) with respect to λ
and τ1 at λ = iω, τ1 = τk

1 and τ2 = τ l
2 are

∂P (iω, τk
1 , τ l

2)
∂λ

=2λ + pe−λτ1 + qe−λτ2 − (pτ1e
−λτ1 + qτ2e

−λτ2)λ

− pq(τ1 + τ2)e−λ(τ1+τ2)|λ=iω
τ1=τk

1 ,τ2=τ l
2

∂P (iω, τk
1 , τ l

2)
∂τ1

=− pe−λτ1(λ + qe−λτ2)λ
∣∣
λ=iω
τ1=τk

1 ,τ2=τ l
2

,

respectively. If λ + pe−λτ1 = 0, then it follows from (3.1) that r = 0, since (3.1) is
written as (λ + pe−λτ1)(λ + qe−λτ2) + r = 0. Consequently, λ + pe−λτ1 6= 0. In the



LOTKA-VOLTERRA PREDATOR-PREY SYSTEM 181

2.5 5 7.5 10 12.5 15 17.5 20
u

-10

-7.5

-5

-2.5

2.5

5

7.5

10
f1HuL

Figure 1. f1(u)
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Figure 2. f2(u)
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Figure 3. f3(u)

same way, λ + qe−λτ2 6= 0. Hence, the implicit function theorem gives

∂τ1

∂λ
= −τ1 + τ2

λ
+

λ2 − r − pqe−λ(τ1+τ2) + τ2(pe−λτ1 − qe−λτ2)λ2

pe−λτ1(λ + qe−λτ2)λ2

:= −τ1 + τ2

λ
+

F1(λ, τ1, τ2)
G1(λ, τ1, τ2)

.

Define δ1 as

δ1 := (ω2 − r){ω2 + r + pq cosω(τk
1 + τ l

2)} − qω{(ω2 + r) sin ωτ l
2 − pq sin ωτk

1 }
+ ω2τ l

2

[
pqω sin ω(τk

1 − τ l
2) + (ω2 − r)(p cos ωτk

1 − q cos ωτ l
2)

]
.

Let us show

sgnRe


−

∂P (λ,τ1,τ2)
∂λ

∂P (λ,τ1,τ2)
∂τ1

∣∣∣∣∣λ=iω
τ1=τk

1 ,τ2=τ l
2


 = sgnδ1. (3.17)
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In fact,

sgnRe


 ∂τ1

∂λ

∣∣∣∣λ=iω
τ1=τk

1 ,τ2=τ l
2


 = sgn [F1RG1R + F1IG1I ] ,

where F1R = Re[F1(iω, τk
1 , τ l

2)], F1I = Im[F1(iω, τk
1 , τ l

2)], G1R = Re[G1(iω, τk
1 , τ l

2)]
and G1I = Im[G1(iω, τk

1 , τ l
2)]. By (3.2), we have

G1R = −ω2(ω2 − r − qω sin ωτ l
2),

G1I = qω3 cos ωτ l
2.

Direct calculation gives

(F1RG1R + F1IG1I)/ω2 =

(ω2 − r − qω sinωτ l
2)

{
ω2 + r + pq cos ω(τk

1 + τ l
2) + τ l

2ω
2(p cos ωτk

1 − q cos ωτ l
2)

}

− qω cos ωτ l
2

{−pq sin ω(τk
1 + τ l

2) + τ l
2ω

2(−p sin ωτk
1 + q sin ωτ l

2)
}

= δ1.

Hence, (3.17) holds. By (3.17), ∂P (iω, τk
1 , τ l

2)/∂λ 6= 0 if and only if δ1 6= 0. If
δ1 6= 0, again using the implicit function theorem gives

sgnRe


 ∂λ

∂τ1

∣∣∣∣λ=iω
τ1=τk

1 ,τ2=τ l
2


 = sgnRe





−

∂P (λ,τk
1 ,τ l

2)
∂λ

∂P (λ,τk
1 ,τ l

2)
∂τ1



−1


 = sgnδ1.

Define δ2 as

δ2 := (ω2 − r){ω2 + r + pq cos ω(τk
1 + τ l

2)} − pω{(ω2 + r) sin ωτk
1 − pq sin ωτ l

2}
+ ω2τk

1

[
pqω sin ω(τ l

2 − τk
1 ) + (ω2 − r)(q cos ωτ l

2 − p cos ωτk
1 )

]
.

In the same way, we can show that sgnRe

[
∂λ
∂τ2

∣∣∣λ=iω
τ1=τk

1 ,τ2=τ l
2

]
= sgnδ2. Hence, we

obtain the following result:

Theorem 3.1. Assume that ω∗ is a positive real root of (3.2) and (3.3). Then a
pair of simple conjugate pure imaginary roots λ+ = iω∗ and λ− = −iω∗ of (3.1)
exists at τ1 = τk

1 and τ2 = τ l
2, which crosses the imaginary axis as τ1 (τ2) increases

for fixed τ2 (τ1) from left to right if δ1 > 0 (δ2 > 0) and right to left if δ1 < 0
(δ2 < 0).

If τ2 = 0, the same result obtained by Song and Wei [27] is obtained.

Corollary 3.1. [27, Theorem 2.1.] Assume that τ2 = 0. Let
(H1) either r > pq and q2 − p2 − 2r > 0 or (q2 − p2 − 2r)2 − 4(r2 − p2q2) < 0,
(H2) either r < pq or q2 − p2 − 2r < 0 and (q2 − p2 − 2r)2 − 4(r2 − p2q2) = 0,
(H3) r > pq, q2 − p2 − 2r < 0 and (q2 − p2 − 2r)2 − 4(r2 − p2q2) > 0.

i. If (H1) holds, then the positive equilibrium of (E) is (locally) asymptotically
stable for all τ1 ≥ 0.

ii. If (H2) holds, then the positive equilibrium of (E) is (locally) asymptotically
stable for τ1 ∈ [0, τ+

10) and unstable for τ1 > τ+
10. System (E) undergoes a Hopf

bifurcation at the positive equilibrium for τ1 = τ+
10.

iii. If (H3) holds, a finite number of stability switches occurs. Finally system (E)
becomes unstable.
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Here ω = ω± are real roots of the polynomial equation

ω4 + (q2 − p2 − 2r)ω2 + r2 − p2q2 = 0 (3.18)

satisfying ω− < ω+; τ±10 is defined by 1
ω±

cos−1
[

−qr
p(ω±+q2)

]
.

Proof. Note that (3.18) is derived from (3.7). If (H1) holds, (3.18) has no real roots.
Since all roots of the characteristic equation (3.1) have negative real parts when
τ1 = τ2 = 0, (i) holds. It follows that (3.18) has at least one positive root if and
only if either (H2) or (H3) holds. Then, δ1 is calculated as follows:

δ1 = (ω2 − r)(2ω2 − pω sin ωτ1) + pq2ω sin ωτ1

= ω4 − (r2 − p2q2). (3.19)

Here we used (3.2) with τ2 = 0 and (3.6). If (H2) holds, then it immediately
follows from (3.19) that δ1 > 0. If (H3) holds, then ω2

− < −(q2 − p2 − 2r)/2 < ω2
+.

Moreover, δ1 > 0 for ω = ω2
+ and δ1 < 0 for ω = ω2

−. The remainder of the
proof proceeds as the same manner used by Cooke and van den Driessche [3]. This
completes the proof.

Finally let us show the existence of a Hopf bifurcation. By Proposition 3.2,
there exists at least one set of critical values (ω, τk

1 , τ l
2) which satisfies (3.6)–(3.8)

if r 6= pq. Since a number of ω which satisfies (3.6)–(3.8) is finite, there exists a
set of minimum values (τ∗1 , τ∗2 ). Since all roots of the characteristic equation (3.1)
have negative real parts when τ1 = τ2 = 0, The Hopf bifurcation theorem [5, p.
332, Theorem 1.1.] is applicable to system (E).

Corollary 3.2. Assume that ax∗ 6= dy∗ and ad − bc 6= 0. Let ω∗ be a positive
real root of (3.2) and (3.3). If either δ1 > 0 or δ2 > 0, a family of periodic
solutions of (E) bifurcates from the positive equilibrium for τ1 near τ∗1 or τ2 near
τ∗2 . Furthermore, the period of periodic solution is approximately 2π/ω∗.

4. Numerical simulations. In this section, let us apply the results obtained in
section 3 and give some numerical simulation results. Hereafter, parameters are
fixed at the following values:

r1 = 2.4, r2 = 2.1, a = 1.4, b = 2.2, c = 5.5, d = 3.3. (P)

Then p = 1.05, q = 2.025 and r = 5.56875. Note that if τ2 = 0, Corollary 3.1-(i)
holds. Hence the positive equilibrium is locally asymptotically stable for all τ1 ≥ 0
with τ2 = 0. Since r 6= pq, Proposition 3.2 implies that I1, I2, I3 are not empty
and I = I1 = I2 = I3. The interval I becomes [0.760643, 5.42423]∪ [10.9164, 15.58].
By (3.12) and (3.16), (ω∗, τ∗1 , τ∗2 ) is approximately calculated as ω∗ = 3.63978,
τ∗1 = 0.706884 and τ∗2 = 0.365617.

In the remainder of this section, some numerical simulation results of (E) are
given. The positive equilibrium is numerically calculated as (x∗, y∗) = (0.75, 0.6136).
First, let us fix τ1 and τ2 as τ1 = 0.7 and τ2 = 0.35. Hence all roots of (3.1) have
negative real parts. Figures 4 and 5 illustrate the time series and the projection
into xy plane of the trajectory of the solution of (E) with initial functions φ = 0.75
and ψ = 0.1, respectively. It is observed that the solution tends to the positive
equilibrium (see Figs. 4 and 5). Next, let us show figures on which only the ini-
tial function ψ is changed from 0.1 to 0.05. Then it is observed in Figures 6 and
7 that the solution evolves to some periodic solution; δ1 and δ2 are numerically
calculated as δ1(τ∗2 ) = −0.673553 < 0 and δ2(τ∗1 ) = 20.2818 > 0. Corollary 3.2
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implies that a family of periodic solution bifurcates from the positive equilibrium
for τ2 near τ∗2 . Figures 8 and 9 illustrate the trajectory of the solution with (P),
τ1 = 0.71 and τ2 = 0.37. The initial functions are taken near the equilibrium point,
(φ, ψ) = (0.75, 0.6). Then it is observed that the solution evolves to some periodic
solution (see Figs. 8 and 9). In Figures 4–9, it seems that an unstable closed curve
appears around the positive equilibrium. Further, the solution starting at the in-
side of the closed curve tends to the positive equilibrium (Figs. 4 and 5), while
the solution starting at the outside of the curve evolves to some robust periodic
solution (Figures 6 and 7). Since the positive equilibirum is locally asymptotically
stable and system (E) undergoes a Hopf bifurcation by Corollary 3.2, exsitence of a
subcritical Hopf bifurcation is suggested from these figures. Finally, let us change
the values of τ2 from 0.37 to 1.73. Then, a complicated dynamics is observed in
Figure 10. The trajectory of the solution of (E) with φ = 0.75 and ψ = 0.6 is
attracted in a shark-head shaped region. In other words, shark-head chaos occurs
on system (E) as the time delay in an intraspecific competition of predator becomes
large. We observe that shark-head chaos is formed by repeating the following three
steps:
Step 1. The low density of the predator makes the density of the prey increase.
Step 2. The growth of the predator follows the growth of the prey with delay.
Step 3. The exhaustion of the prey results in the decrease of the predator.
Chaotic behavior occurs markably in Step 2 : it seems that the trajectory forms
the upper lip of the shark with the high growth of predator y, while the trajectory
forms the lower lip of the shark with the relatively low growth of predator y. The
predator repeats such high and low growth alternatively. The solution never moves
on the same path and finally the shark-head region is filled densely.
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Figure 4. τ1 =
0.7, τ2 = 0.35
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Figure 5. φ =
0.75, ψ = 0.1

5. Conclusions. In section 2, we obtained Theorem 2.1 for global asymptotic
stability of the positive equilibrium of (1.1). The theorem for global attractivity of
system (E) is improved by combining with the result obtained by He [10]. It was
also shown that Liapnov functionals used in the proof of global attractivity are also
applicable to prove the uniform stability for the zero solution of linearized system.
In section 3, critical values of time delay through which system (E) undergoes a
Hopf bifurcation were analytically determined. Furthermore, for the existence of
local Hopf bifurcation, the result by Song and Wei [27] is obtained as a special case.
In section 4, some numerical simulations were carried out and it was suggested that
subcritical Hopf bifurcation occurs on system (E). Moreover chaotic behavior was
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Figure 9. φ =
0.75, ψ = 0.6

observed when the time delay in an intraspecific competition of predator τ2 becomes
large. The chaotic behavior was not discussed in He [10]. We believe this is the first
time such chaotic behavior has been observed. Compared to results of May [18]
and Song and Wei [27], our model brings new aspects of the effect of time delay,
since τ2 = 0 in their model. Other values of τ2 may generate other type of chaotic
behavior, which is an interesting problem. Further analyses and considerations for
the global dynamics of (E) are left for future work.
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