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Abstract. In this paper we derive threshold conditions for eradication of dis-
eases that can be described by seasonally forced susceptible-exposed-infectious-
recovered (SEIR) models or their variants. For autonomous models, the basic
reproduction number R0 < 1 is usually both necessary and sufficient for the
extinction of diseases. For seasonally forced models, R0 is a function of time
t. We find that for models without recruitment of susceptible individuals (via
births or loss of immunity), maxt{R0(t)} < 1 is required to prevent outbreaks
no matter when and how the disease is introduced. For models with recruit-
ment, if the latent period can be neglected, the disease goes extinct if and
only if the basic reproduction number R̄ of the time-average systems (the
autonomous systems obtained by replacing the time-varying parameters with
their long-term time averages) is less than 1. Otherwise, R̄ < 1 is sufficient
but not necessary for extinction. Thus, reducing R̄ of the average system to
less than 1 is sufficient to prevent or curtail the spread of an endemic disease.

1. Introduction. To understand how to control and eradicate infectious diseases is
one of the main goals of mathematical epidemiology. From the study of autonomous
models, we know that a disease can cause an epidemic if and only if the basic
reproduction number R0 (the expected number of secondary cases caused by a
primary case in a fully susceptible population) is greater than 1 (van den Driessche
and Watmough, 2002). Thus to eradicate a disease we need to reduce R0 to less
than 1.

However, many diseases show seasonal behavior (London and Yorke, 1973; Dow-
ell, 2001; Bjornstad et al., 2002; Earn et al., 2002). Seasonality may come from
various sources. Seasonally varying transmission rates (Dowell, 2001; Finkenstädt
et al., 1998; Dushoff et al., 2004) and fluctuations in birth rates are two com-
mon ones. These two factors have been known to cause complex dynamics (Earn
et al., 2000; Bauch and Earn, 2003; Finkenstädt and Grenfell, 2000). The
mathematical models that describe these diseases are seasonally forced. For such
models, R0 depends on the time of invasion, and thus is a function of time t. To
control a disease, must we keep the maximum of R0(t) below 1?
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For periodic systems with small oscillation amplitudes, perturbation theory may
be used to show that when the amplitude of oscillation of parameters is small, the
stability of the disease-free equilibrium (DFE) of the periodic system is determined
by the basic reproduction number of the average system, that is, the autonomous
system where the time-varying parameters are replaced by their long term averages
(Schwartz, 1992). However, when the oscillation amplitude becomes large, it is
unclear whether this conclusion remains valid.

In this paper, we will look for extinction conditions for diseases modeled by
SEIR (susceptible-exposed-infectious-recovered) models and their variants (Diek-
mann and Heesterbeek, 2000) with seasonally forced transmission, birth, and death
rates.

2. Models without susceptible recruitment. An SEIR model without any
recruitment of susceptible individuals (from either births or loss of immunity) may
be used to describe the short-term spread of diseases with a short course of infection
and lifetime immunity (e.g., a specific strain of influenza). It may also be used
to study the control of an invading disease, such as the recent SARS epidemic
(W.H.O., 2003). In both cases, because of the short time scale, births and deaths
may be neglected. For a newly invading disease, loss of immunity can also be ignored
because we are interested in the starting phase of the epidemic, at which time the
number of infected individuals is small. In this section, we study such a model,
with a seasonally forced transmission rate β(t) as the only source of seasonality:

Ṡ =− β(t)SI , (1a)

Ė =β(t)SI − σE , (1b)

İ =σE − γI , (1c)

Ṙ =γI , (1d)

where S, E, I, R are the proportions of the susceptible, latent, infectious and
recovered individuals in the population; 1

σ is the mean latent period; and 1
γ is the

mean infectious period.
If σ

γ À 1, the latent period is small compared to the infectious period, so it can
be ignored. In this limit, we have an SIR model.

Basic assumptions: here, and throughout this paper, we assume that β(t) has
nonnegative upper and lower bounds, and the long-term average of β(t) exists.

Notation: we denote the long-term average of a function as 〈·〉; that is,

〈·〉 = lim
t→∞

1
t

∫ t

0

· dτ .

We can see that the positive octant is invariant because either the boundary
hyperplane is invariant (S = 0), or, the trajectories point to the inside on the
boundary (E = 0, I = 0 and R = 0). If we sum the equations (1), we get
S + E + I + R = 1 is invariant. Thus, 0 ≤ S, E, I, R ≤ 1.

Because there is no recruitment of S, this model cannot give a sustained epidemic;
that is, I(∞) = 0. This may be shown as follows: since d

dt (S + E + I) = −γI ≤
0, S + E + I is nonincreasing. Note that S + E + I is bounded below by 0.
Thus, S(∞) + E(∞) + I(∞) exists. Since S + E + I is a smooth function of t,
limt→∞ d

dt (S + E + I) = limt→∞−γI(t) = 0. Thus, I(∞) = 0.
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Hence, as for the autonomous model, the disease will disappear if we wait long
enough, though a large fraction of the population may have been infected. To
control the disease, we want E + I to decrease no matter when the disease is
introduced and how many infectious individuals are introduced.

If β(t) is a constant β, then we have an autonomous standard SEIR model. For
such a model, we know that when R0 = β

γ < 1, the number of infectious individuals
will decay exponentially; thus, there is no epidemic. On the other hand, if R0 > 1,
the number of infectious individuals will initially grow exponentially—thus, there
will be an epidemic.

For time-varying β(t), β(t)
γ can still be interpreted as the basic reproduction

number at time t. If there exists a time t0 such that β(t0) > γ, and the disease
invades around time t0, then E + I will increase around time t0 if S(t0) ≈ 1. This
can be shown as follows. We add up equations (1b) and (1c), and get

d

dt
(E + I) = β(t)SI − γI .

At any time t0,
d

dt
(E + I)|t=t0 = (β(t0)S(t0)− γ) I(t0) .

Thus, if β(t0) > γ and S(t0) ≈ 1, E + I increases with t. Because S ≤ 1, if
β(t0) < γ, E + I decreases with t for all S(t0).

Hence, if we want E + I to decrease with t for any initial condition, we need

Rmax = max
t

{
β(t)
γ

}
< 1 ,

where Rmax is in fact the maximum basic reproduction number.

3. SIR models with recruitment. If we want to control a disease with a rel-
atively long course of infection, or a disease with temporary immunity that has
already been endemic, the recruitment of susceptible individuals from either births
or loss of immunity cannot be neglected. From this section on, we study models
with recruitment, and look for conditions that prevent epidemics.

Diseases with very short latent period may be described by an SIR model. These
models resemble resource-consumer models where the susceptible individuals can
be seen as the resource, and the infectious individuals are analogous to the con-
sumer. Hallam and Ma (1986) and Ma and Wang (1997) introduced a method to
study the persistence of the consumer species in such models. In this section, we
adapt this method to study the eradication threshold condition for SIR models with
recruitment.

3.1. SIR models with births and deaths. First, we study the model with
recruitment from births only. We assume all the new-borns are susceptible, i.e.,
there is no vertical transmission.

Ṡ =µ(t)− µ(t)S − β(t)SI , (2a)

İ =β(t)SI − γI − µ(t)I , (2b)

Ṙ =γI − µ(t)R , (2c)

where µ(t) is the birth rate at time t; S, I and R are still proportions.
Assumption: µ(t) has nonnegative upper and lower bounds, and the long-term

average 〈µ(t)〉 exists.
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The positive octant is invariant for this model as well, because either the bound-
ary hyperplane is invariant (I = 0), or, the trajectories points to the inside (S = 0
and R = 0). Given I(t), R(t) is solvable. In fact,

R(t) = R(0)e−
∫ t
0 µ(τ)dτ +

∫ t

0

e−
∫ t

τ
µ(s)dsγI(τ)dτ .

Thus, we only need to study the first two equations of system (2). If we sum the
equations (2), we can see that S + I + R = 1 is also invariant. Thus, S(t), I(t) ≥ 0
and S + I ≤ 1.

When only a small number of infectious individuals is introduced, the disease
cannot invade if and only if the DFE (1, 0, 0) of equations (2) is stable. To study
the stability, we linearize system (2) about the DFE:

ṡ =− µ(t)s− β(t)i , (3a)

i̇ =β(t)i− µ(t)i− γi . (3b)

We can solve i(t) from equation (3b):

i(t) = i(0)e
∫ t
0 β(τ)−µ(τ)−γdτ .

The stability of i(t) depends on

R̄ =
〈β〉

γ + 〈µ〉 .

Specifically, if R̄ > 1, then i(t) is unstable; if R̄ < 1, then it is stable. To see this,
substitute i(t) into equation (3a), and solve for i(t):

s(t) = e−
∫ t
0 µ(τ)dτ

[
s(0) +

∫ t

0

e
∫ τ
0 µ(s)dsβ(τ)i(τ)dτ

]
.

Now note that

lim
t→∞

∫ t

0
e
∫ τ
0 µ(s)dsβ(τ)i(τ)dτ

e
∫ t
0 µ(τ)dτ

= lim
t→∞

d
dt

∫ t

0
e
∫ τ
0 µ(s)dsβ(τ)i(τ)dτ
d
dte

∫ t
0 µ(τ)dτ

= lim
t→∞

β(t)i(t) .

Thus, for the linear system (3), if R̄ < 1, then i(∞) = 0; thus, s(∞) = 0. If R̄ > 1,
then i(∞) = ∞, thus s(∞) = ∞.

Note that R̄ is indeed the basic reproduction number of the average system.
Hence we have the following.

Theorem 1. The stability of the DFE of the system (2) is the same as that of the
average system; that is,the DFE is unstable if the basic reproduction number of the
average system R̄ = 〈β〉

γ+〈µ〉 > 1, stable if R̄ < 1.

This theorem ensures that if R̄ < 1, then the disease cannot invade a population
when only a small number of infectious individuals are introduced. If a large number
of infected individuals are introduced, can the disease become endemic even if we
bring the R̄ below 1? The following theorem answers this question.

Theorem 2. When R̄ < 1, for all I(0) > 0, I(∞) = 0.
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Proof. We divide by I on both sides of (2b):

dI/dt

I
=

d

dt
ln I(t) = β(t)S − γ − µ(t) .

Since S ≤ 1, we have
d

dt
ln I(t) ≤ β(t)− γ − µ(t) .

We take long-term average with respect to t on both sides, and get, as t À 1,

ln I(t)− ln I(0)
t

≤ 〈β〉 − γ − 〈µ〉 .

Hence, we have

I(t) < I(0)e(〈β〉−γ−〈µ〉)t .

When R̄ < 1, 〈β〉 − γ − 〈µ〉 < 0. Thus, I(∞) = 0.

This theorem shows that as long as R̄ < 1, the disease will not become endemic
not matter how many infectious individuals are initially introduced.

Note that generally, R̄ is not the mean basic reproduction number of system
(1); that is, R̄ 6= 〈 β(t)

γ+µ(t) 〉, unless µ(t) is a constant function. R̄ is only the basic
reproduction number of the time-average system.

3.2. Disease-induced mortality. Without deaths caused by the disease, the pop-
ulation dynamics is always independent of the epidemic process. However, when
such “excess deaths” cannot be neglected, the population dynamics will be coupled
with the epidemic process. In this subsection, we explore the SIR model with excess
deaths.

Suppose b(t) and d(t) are the birth and natural death rates. Let N(t) be the pop-
ulation size at time t. Without the disease, the population dynamics are governed
by

Ṅ = b(t)N − d(t)N .

Let X, Y , and Z be the number of susceptible, infectious and recovered individuals
in the population. Thus

X + Y + Z = N . (4)

Let α be the disease-induced death rate. Then, under the influence of the disease,
the population dynamics become

Ṅ = b(t)N − d(t)N − αY . (5a)

In terms of X, Y , Z and N , the epidemic process becomes

Ẋ = b(t)N − d(t)S(t)− β(t)
N

XY , (5b)

Ẏ =
β(t)
N

XY − γY − αY − d(t)Y , (5c)

Ż = γY − d(t)Z , (5d)

Note that to make the units correct, the transmission term becomes β(t)
N XY . We

will show that this term is indeed equivalent to the β(t)SI term in the above models.



166 J. MA AND Z. MA

Naturally, we want to rewrite system (5) into a system of proportions S = X
N ,

I = Y
N , and R = Z

N :

Ṅ = N(t)[b(t)− d(t)− αI] , (6a)

Ṡ = b(t)− b(t)S − β(t)SI + αSI , (6b)

İ = β(t)SI − γI − αI − b(t)I + αI2 , (6c)

Ṙ = γI − b(t)R + αIR . (6d)

Note that there are nonlinear positive feedbacks induced by α. This is because
at any time individuals die from the disease, the population size decreases; thus,
the proportions of each class of individuals increase. However, we should see that
when α = 0, system (6) becomes system (2), if we denote µ(t) = b(t). We can also
see that the natural death rate d(t) does not affect the proportions S, I, and R.
Furthermore, the transmission term in equations (5) is indeed equivalent to those
in the models in previous sections.

From equation (4), we have S + I + R ≡ 1. Furthermore, as in the arguments
in section 3.1, we can show that the positive octant is invariant. Thus, S(t) < 1,
I(t) < 1, and S + I ≤ 1 for all t.

Equations (6b) and (6c) are independent of equations (6a) and (6d). If we know
the solutions to S and I, then we can solve for N and R. Thus we only consider
equations (6b) and (6c).

To find the invasion threshold, we again study the local stability of the system
at the DFE (S = 1, I = 0). We linearize system (6) about the DFE:

ṡ = −b(t)s− β(t)i + αi , (7a)

i̇ = β(t)i− γi− αi− b(t)i . (7b)

Although the linear system, (7), is slightly different from system (3), the arguments
leading to Theorem 1 are still valid. Hence, we have the following.

Theorem 3. The stability of the DFE of system (6) is the same as that of the
average system; that is,if the basic reproduction number of the average system R̄ =

〈β〉
γ+α+〈b〉 > 1, the DFE is unstable. If R̄ < 1, the DFE is stable.

Will the positive feedbacks induced by α change the global stability of the DFE?
Specifically, if I(0) is large, will the disease persist even if R̄ < 1? Because S+I ≤ 1,
from equation (6c) we have

İ ≤ β(t)I(1− I)− γI − µ(t)I − αI + αI2 .

Thus I(t) ≤ w(t), where w(t) is the solution of

ẇ = β(t)w(1− w)− γw − µ(t)w − αw + αw2 , (8)

with the initial condition w(0) = I(0). Luckily, equation(8) is a Bernoulli equation,
so we can solve it explicitly. We let u = 1

w , then

u̇ = −[β(t)− γ − µ(t)− α]u + [β(t)− α] .

This is a linear equation in u. Let f(t) = β(t)− γ − µ(t)− α,

u(t) =
[
u(0) +

∫ t

0

e
∫ τ
0 f(s)ds[β(τ)− α]dτ

]
e−

∫ t
0 f(s)dτ . (9)
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When R̄ < 1, limt→∞
∫ t

0
f(τ)dτ = −∞; thus,

∫ ∞

0

e
∫ t
0 f(τ)dτ [β(t)− α]dt =

∫ ∞

0

e
∫ t
0 f(τ)dτf(t)dt +

∫ ∞

0

e
∫ t
0 f(τ)dτ [µ(t) + γ]dt ,

= −1 +
∫ ∞

0

e
∫ t
0 f(τ)dτ [µ(t) + γ]dt .

Now substitute the above equation into equation (9), and note that u(0) = 1
w(0) =

1
I(0) > 1. Thus, for t À 1,

u(t) ≥ e−
∫ t
0 f(τ)dτ

∫ ∞

0

e
∫ t
0 f(τ)dτ [µ(t) + γ]dt .

Thus, when R̄ < 1, u(∞) = ∞, I(∞) = 1
u(∞) = 0. We have the following.

Theorem 4. For the system (6), when R̄ < 1, for all I(0) < 1, I(∞) = 0.

3.3. Loss of immunity: SIS and SIRS models. In this subsection we study
SIR models with the recruitment of the susceptibles from the loss of immunity. We
assume that recovered individuals lose immunity and reenter the susceptible class
S as a fixed rate ρ. For simplicity, we ignore births and deaths in this model:

Ṡ = −β(t)SI + ρR , (10a)

İ = β(t)SI − γI , (10b)

Ṙ = γI − ρR . (10c)

Summing the equations, we find that S + I + R = 1 is invariant.
When ρ = 0, we have an SIR model. When ρ

γ À 1, the immune stage R may be
ignored. In this limit, we have an SIS model. S and I are proportions; thus, for SIS
models, we have S+I = 1. Hence, the SIS models are intrinsically one-dimensional.
In fact, it can be written as

İ = β(t)(1− I)− γI .

This is a Bernoulli equation, which is solvable. In fact,

I(t) =
I(0)e

∫ t
0 β(τ)dτ−γt

1 + I(0)
∫ t

0
β(τ)e

∫ τ
0 β(s)ds−γτdτ

.

Thus I(∞) = 0 if and only if R̄ = 〈β〉
γ < 1.

Will ρ affect the result? Let us study the stability of the DFE of the system
(10). We linearize the system about the DFE:

ṡ = −ρs− β(t)i + ρr , (11a)

i̇ = [β(t)− γ]i , (11b)

ṙ = γi− ρr . (11c)

The linear system (11) is solvable. In fact, equation (11b) is independent. We can
solve for i(t):

i(t) = i(0)e−
∫ t
0 β(τ)dτ−γt .

Thus, for the liner system (11), I(∞) = 0 if R̄ = 〈β〉
γ < 1; I(∞) = ∞ if R̄ > 1. We

can then substitute i(t) into equations (11c) and (11a) and solve for r(t) and s(t).
We can show that r(∞) = s(∞) = 0 if i(∞) = 0; r(∞) = s(∞) = ∞ if i(∞) = ∞.
Thus, we have the following.
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Theorem 5. The DFE of the system (10) is unstable if R̄ = 〈β〉
γ > 1, stable if

R̄ < 1.

Furthermore, the arguments leading to Theorem 2 also apply to system (10).
Hence, we have the following.

Theorem 6. For system (10), I(∞) = 0 for all I(0) > 0 if R̄ < 1.

Note that R̄ is the basic reproduction number of their average system.
We can also consider the SIRS model with births, natural deaths, and disease-

induced deaths:

Ṡ = µ− µS − β(t)SI + ρR + αSI , (12a)

İ = β(t)SI − γI − µI − αI + αI2 , (12b)

Ṙ = γI − ρR− µR + αIR . (12c)

With the same arguments leading to Theorem 3 and 4, we have the following.

Theorem 7. The DFE of the system (12) is stable if R̄ = 〈β〉
γ+α+〈µ〉 < 1, unstable

if R̄ > 1. Furthermore, for all I(0) > 0, I(∞) = 0 if R̄ < 1.

Thus, for SIR models with recruitment of susceptible individuals, the disease
will be eradicated if and only if the basic reproduction number R̄ of their average
system is less than 1.

4. SEIR models with recruitment from loss of immunity. Diseases such as
HIV/AIDS and tuberculosis have latent stages that last for many years. For such
diseases, ignoring the latent period as we did in section 3 may be inappropriate. In
this section, we study an SEIR model with recruitment from the loss of immunity.
For simplicity, we ignore births and deaths:

Ṡ = −β(t)SI + ρR , (13a)

Ė = β(t)SI − σE , (13b)

İ = σE − γI , (13c)

Ṙ = γI − ρR . (13d)

Naturally, with the results of section 3, we would expect that the basic repro-
duction number R̄ = 〈β〉

γ of the average system gives the eradication threshold.
However, this is not true. For example, if β(t) = 1 + 0.8 sin(t), ρ = 1, γ = 0.99,
σ = 0.3, then R̄ = 1

0.99 > 1, but figure 1 shows that I(t) of the solution starting
from (0.99, 0, 0.01, 0) goes to 0.

But still, the eradication condition is related to the linear stability of the DFE
(1, 0, 0, 0). To study this stability, we linearize system (13) about the DFE:

ṡ = −β(t)i + ρr , (14a)

ė = β(t)i− σe , (14b)

i̇ = σe− γi , (14c)

ṙ = γi− ρr . (14d)

Thus, from equation (14d) we have r(∞) = 0 if and only if i(∞) = 0. Then from
equation (14a) we know s(∞) = 0 if and only if i(∞) = r(∞) = 0. Thus, the
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Figure 1. I(t) component of the solution to the SEIRS model
(13), where β(t) = 1 + 0.8 sin(t), γ = 0.98, σ = 0.3, ρ = 1. Even
though the basic reproduction number of the average system is
R̄ = 1

0.98 > 1, I(t) goes to 0.

stability of the linear system (14) is determined by the two equations (14b) and
(14c).

Let w = e
i . Then, equation (14c) becomes

i̇ = σwi− γi .

Thus, i(∞) = 0 if and only if σ〈w〉
γ < 1. Can we compute 〈w〉?

ẇ =
ė

i
− i̇

i

e

i
,

= β(t)− σ
e

i
− (σ

e

i
− γ)

e

i
.

Hence, we have
ẇ = β(t)− (σ − γ)w − σw2 . (15)

Unfortunately this is not solvable. But we know w is bounded, because when
w À 1, d

dtw < 0; when w = 0, d
dtw = β(t) ≥ 0. We take the long-term average on

both sides of equation (15):

lim
t→∞

w(t)− w(0)
t

= 0 ,

= 〈β〉 − (σ − γ)〈w〉 − σ〈w2〉 ,
≤ 〈β〉 − (σ − γ)〈w〉 − σ〈w〉2 .
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Hence,

〈w〉 ≤ γ − σ +
√

(σ − γ)2 + 4〈β〉σ
2σ

.

Thus, 〈β〉γ < 1 implies that 〈w〉 < γ
σ , i.e., σ〈w〉

γ < 1. Hence, we have the following.

Theorem 8. If the basic reproduction number R̄ = 〈β〉
γ of the average system is

less than 1, then the DFE of system (13) is locally asymptotically stable.

Will I(t) converge to 0 for all I(0) ≥ 0 when R̄ < 1? To answer this question, we
only need to show that the solutions to system (13) are bounded by the solutions
to linear system (14) with the same initial conditions. Let E′, I ′ be the solutions
to equations (14b) and (14c), and E′(0) = E(0), I ′(0) = I(0), ∆E = E − E′,
∆I = I − I ′. Thus, ∆E(0) = ∆I(0) = 0. Then we have

∆Ė = β(t)∆I − σ∆E + β(t)(S − 1)I , (16a)

∆İ = σ∆E − γ∆I . (16b)

This is a nonhomogeneous linear system, with the homogeneous part being equa-
tions (14b) and (14c). Let Φ(t) be the fundamental solution to equations (14b) and
(14c), then (

E′

I ′

)
= Φ(t)

(
E(0)
I(0)

)
.

Since the positive quadrant is invariant for system (14b, 14c), we have Φ(t) > 0 for
all t. We solve equations (16):

(
∆E
∆I

)
=

∫ t

0

Φ(t− τ)
(

β(t)(S − 1)I
0

)
dτ .

Since S ≤ 1, Φ(t) > 0, we have ∆E < 0, ∆I < 0. In other words, I(t) < I ′(t). But
I(t) ≥ 0. Thus, if I ′(∞) = 0, we have I(∞) = 0. Hence, we have the following.

Theorem 9. For equations (13), when R̄ = 〈β〉
γ < 1, for all I(0) > 0,we have

I(∞) = 0.

5. Conclusions and discussion. For seasonally forced epidemic models, the ba-
sic reproduction number R0 is a function of invasion time. The eradication thresh-
old condition maxt{R0(t)} < 1 is useful if we are attempting to eradicate an emerg-
ing disease. SEIR models without recruitment of susceptibles can usually be used
in such cases. This threshold condition ensures that E + I will always decrease, no
matter when and how the disease is introduced. Thus, there will be no outbreak, or
an outbreak that has begun will be curtailed. When a threatening disease appears,
we may wish to fight its spread at any cost, as in the recent SARS epidemic. How-
ever, it may be unrealistic or too costly to enforce this condition for a long time,
especially if the disease becomes endemic.

To model endemic diseases, we need to use models with recruitment. In this
case, we are usually interested in controlling the disease in the long term, rather
than preventing outbreaks altogether. We can instead make the outbreaks decrease
in size. If the latent period can be neglected, then this can be achieved by reducing
the basic reproduction number R̄ of the average system to less than 1. In fact,
this condition is necessary and sufficient for the extinction of the disease, no matter
what the initial conditions are.
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If the latent period cannot be neglected, then R̄ < 1 is not necessary for eradi-
cation, but it is still sufficient. We can always compute the sufficient and necessary
condition by solving equation (15) numerically. However, it is impossible to ob-
tain an analytical threshold condition, because it would be equivalent to solving
equation (15) analytically.

Our main conclusion is that whenever an endemic disease can be modeled by a
variant of an SEIR model, to eradicate the infection, it is sufficient to bring the
basic reproduction number of the average system below 1.
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