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Abstract. A patchy model for the spatial spread of West Nile virus is for-
mulated and analyzed. The basic reproduction number is calculated and com-
pared for different long-range dispersal patterns of birds, and simulations are
carried out to demonstrate discontinuous or jump spatial spread of the virus
when the birds’ long-range dispersal dominates the nearest neighborhood in-
teraction and diffusion of mosquitoes and birds.

1. Introduction. Although West Nile virus (WNv) was isolated in the West Nile
district of Uganda in 1937 [18], and WNv in the Eastern Hemisphere has been
maintained in an enzootic cycle involving culicine mosquitoes and birds [9, 10],
WNv activities in North America were not recorded until August 1999, in the
borough of Queens, New York [3, 14]. Despite this long delay, the virus has spread
rapidly within the subsequent five years and evidence seems to indicate that WNv
has become a permanent fixture of the North American medical landscape [16].

There has been increasing interests in modelling the transmission dynamics of
WNv, and several models have been developed to address various aspects of the
disease transmission; see, for example, [4, 12, 13, 19, 20, 23]. Here, we focus on the
spatial spread patterns and speed of transmission, which are obviously of paramount
importance in terms of prevention and control. One of the goals of this research is to
understand the jump or discontinuous spatial spread patterns in the establishment
phase of WNv, as shown in the 2000-03 Health Canada map of dead birds sub-
mitted for WNv diagnosis by health region (Figure 1). This discontinuous spatial
spread seems to be the consequence of the combination of the local interaction and
spatial diffusion of birds and mosquitoes and long-range dispersal of birds, and this
motivates the use of patchy models instead of the reaction-diffusion model. Our
second goal is to see how the interaction of the ecology of birds and mosquitoes, the
epidemiology of bird-mosquito cycles, and the diffusion and immigration patterns
of birds affect the long-term and transient transmission of the diseases within the
whole region consisting of multiple patches. We will do so by calculating the basic
reproduction number of the region as a function of the basic reproduction number

2000 Mathematics Subject Classification. 92D30.
Key words and phrases. West Nile virus (WNv), transmission, mosquitoes and birds, patch

model, differential equations, reproduction number, spatial control.

145



146 RONGSONG LIU, JIANGPING SHUAI, JIANHONG WU AND HUAIPING ZHU

20032002

20012000

Figure 1. The maps of dead birds submitted for West Nile virus
diagnosis by health region in Canada 2000-03 [5].

of each patch, the spatial dispersal rates and patterns of birds, and the spatial scale
of the birds’ flying range in comparison with the mosquitoes’ flying range.

In section 2, we formulate a patchy model, based on the spatially homogeneous
single season ordinary differential equations model in [23] for the local interaction
of birds and mosquitoes within a patch, and we use linear dispersal among patches.
We use the the average distance a female mosquito can traverse during its lifetime
as a measure for the partition of the region under consideration, and hence the
number of patches that a bird can fly during the life span of a female mosquito
becomes a natural and important parameter in the modeling and for the analysis
and simulations. In section 3, we calculate the reproduction number R0 and study
how this number is affected by the direction-selective dispersal pattern of birds.
Our analysis in section 3 and the simulations carried out in section 4 show that
this direction-selective dispersal of birds decreases the reproduction number and
slows the spatial spread of WNv. Our simulations seem to indicate that the jump
spatial spread of WNv arises if the birds’ long-range dispersal dominates the nearest
neighborhood interaction and diffusion of mosquitoes and birds.

The current work focuses on the one-dimensional patch model, which can only be
regarded as a theoretical approximation of the West Nile virus landscape in Canada
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by connecting Ontario with British Columbia with a straight line and ignoring the
transmission heterogeneities along other directions. Better understanding of the
West Nile virus spread in the Canadian medical landscape can be achieved only
by extending this work to a two-dimensional model and by incorporating more
spatiotemporal heterogeneities.

2. The Model and Disease-free Equilibrium. To formulate the patchy model
for the spatial spread of the West Nile virus, we assume that there are N patches
under consideration where, depending on the purpose of modeling, availability of
data, and implementation of surveillance, control, and prevention measures, the
partition of the whole region into non-overlapping patches changes. In the modeling
and simulations below, we use the average distance a female mosquito can fly during
its lifetime as a measuring unit for the partition. Therefore, if we assume the region
is one-dimension and we use 1, . . . , N to denote the corresponding patches, then
mosquitoes belonging to the ith patch can fly only to their nearest neighboring
patches i − 1 and i + 1, while birds belonging to the i-th patch fly to their mth
neighbor patches i−m, . . . , i− 1, i + 1, . . . , i + m, with m ≥ 1 (see Figure 2).

We also make the following assumptions:
(H1) The virus does not have any adverse effect on mosquitoes, and vertical trans-

mission in mosquitoes can be ignored.
(H2) Most birds will recover from the virus and become immune to further infec-

tion, and new-born birds have no immunity.
(H3) Birds and mosquitoes have fixed recruitment rates in each patch.

(i+m)th patchith patch(i−1)th patch (i+1)th patch

.    .     .    . .    .     .    .

(i−m)ith patch

Figure 2. The mosquitoes can fly to their nearest neighboring
patches only, but birds can reach as far as the mth neighboring
patches. In other words, partition of the region into patches is
based on the flying range of mosquitoes. The pictures of birds and
mosquitoes are taken from http://westnilemaps.usgs.gov/.

We use the model set up in [4] for the dynamics between birds and mosquitoes
within a patch and linear spatial dispersal among patches. We denote the number
of individuals of birds and mosquitoes on the ith patch at time t respectively by

BSi : the susceptible birds in patch i;
BIi : the infectious birds in patch i;
MSi : the susceptible mosquitoes in patch i;
MIi : the infectious mosquitoes in patch i.

Following the flow chart in Figure 3, we have the following model equations
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Figure 3. Flow chart of the West Nile virus in a patchy environment.





dBSi

dt = bi − dbiBSi +
m+i∑

(j=−m+i
j 6=i )

DbjiBSj −
m+i∑

(j=−m+i
j 6=i )

DbijBSi − CmbiMIiBSi

NBi
,

dBIi

dt = −db2iBIi +
CmbiMIiBSi

NBi
+

m+i∑

(j=−m+i
j 6=i )

DbjiBIj −
m+i∑

(j=−m+i
j 6=i )

DbijBIi,

dMSi

dt = mi − dmiMSi +
∑

|k−i|=1

DmkiMSk −
∑

|k−i|=1

DmikMSi − CbmiMSiBIi

NBi
,

dMIi

dt = −dmiMIi +
∑

|k−i|=1

DmkiMIk −
∑

|k−i|=1

DmikMIi +
CbmiMSiBIi

NBi
,

(2.1)
with 1 ≤ i ≤ N , N being the number of patches. The total number of birds in patch
i is NBi = BSi+BIi. All parameters are defined in Table 2. Based on the biological
fact that the death rate of infected birds is greater than that of susceptible birds,
we assume db2i ≥ dbi for all i.

We assume the dispersion rates of birds depend on the distance from the starting
patch to their destination, but these rates may depend on the direction; namely,
we have {

Dbij = 0, Dbji = 0, if |i− j| > m,
Dbji = gb(i− j), if 0 < |i− j| ≤ m,

(2.2)

where gb : {−m, . . . ,−1, 1, . . . , m} −→ [0,∞) is the dispersion function. We assume
Neumann boundary conditions; namely, if j < 0 or j > N , then Dbji = Dbij = 0.

The dispersal rates of mosquitoes are given by
{

Dmik = 0, Dmki = 0, if |k − i| 6= 1,
Dmki = dm12, if |k − i| = 1,

(2.3)

where dm12 > 0 is a constant. Again, we assume that if k < 0 or k > N , then
Dmki = Dmik = 0.

We now calculate the disease-free equilibrium (DFE). Setting BIi = 0 and MIi =
0 for i = 1, . . . , N in (2.1), we get





bi − dbiBSi +
m+i∑

(j=−m+i
j 6=i )

DbjiBSj −
m+i∑

(j=−m+i
j 6=i )

DbijBSi = 0,

mi − dmiMSi +
∑

|k−i|=1

DmkiMSk −
∑

|k−i|=1

DmikMSi = 0,

(2.4)
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Table 1. Definitions for parameters in the model.

Parameter Meaning
bi Recruitment rate of birds in patch i

dbi Death rate of birds in patch i

Cmbi Effective contact rate between susceptible birds
and infectious mosquitoes in patch i

db2i Death rate of infectious birds in patch i

mi Recruitment rate of mosquitoes in patch i

Cbmi Contact rate between susceptible mosquitoes
and infectious birds in patch i

dmi Death rate of mosquitoes in patch i

Dbij Diffusion rate of birds from the ith patch to the jth patch
Dmij Diffusion rate of mosquitoes from the ith patch to the jth patch

with 1 ≤ i ≤ N . For convenience, we rewrite (2.4) in vector form as
{

Bb
−→
BS =

−→
b ,

Mm
−−→
MS = −→m,

(2.5)

where

• −→BS = (BS1, . . . , BSN )T ;
• −→b = (b1, . . . , bN )T ;
• Bb is a N ×N matrix with

Bbii = dbi +
m+i∑

j=−m+i,j 6=i

Dbij ,

and Bbij = −Dbji for 0 < |i− j| ≤ m and 1 ≤ j ≤ N , otherwise Bbij = 0;
• −−→MS = (MS1, . . . , MSN )T ;
• −→m = (m1, . . . , mN )T ;
• Mm is a tridiagonal matrix with

Mmii = dmi +
∑

|k−i|=1

Dmik,

and if |i− j| = 1 and 1 ≤ j ≤ N , Mmij = −Dmji, otherwise Mmij = 0.

Observing that the ith column of the matrix Bb satisfies Bbii >

N∑

j=1,j 6=i

|Bbji|,

we have, from the Gershgorin circle theorem [1], that all eigenvalues of Bb have
positive real parts. At the same time, Bb has the Z sign pattern. By [2], Bb is a
nonsingular M-matrix. Then B−1

b is a positive matrix (all elements of this matrix
are positive). Similarly, Mm is also a nonsingular M-matrix and the inverse matrix
of Mm is positive. Since

−→
b and −→m are nonnegative and nonzero vectors, (2.5) has
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exactly one positive solution, denoted by
−→
BS = (B∗

S1, . . . , B
∗
SN )T ,

−−→
MS = (M∗

S1, . . . , M
∗
SN )T .

(2.6)

3. Basic Reproduction Number and Impact of Directional Dispersal. We
now calculate the basic reproduction number, denoted by R0, that is “the expected
number of secondary cases produced, in a completely susceptible population, by one
typical infectious individual” [6]. If R0 < 1, then on average an infected individual
produces less than one new infected individual over the course of its infectious
period, and the infection cannot grow. Conversely, if R0 > 1, then each infected
individual produces, on average, more than one new infection, and the disease can
invade and spread in the population. Here, we use the formula in [7] to calculate
the reproduction number R0.

We use the vector notation to rewrite the equations in which the infectious ap-
pear in terms of the difference between fj , the rate of appearance of new infectious
in compartment j, and vj , the rate of transfer of individuals into and out of com-
partment j by all other processes:

d

dt

(
BIi

MIi

)
=

(
CmbiMIiBSi

NBi
CbmiMSiBIi

NBi

)

−




(
db2i +

m+i∑

( j=−m+i
j 6=i,1≤j≤N)

Dbij

)
BIi −

m+i∑

( j=−m+i
j 6=i,1≤j≤N)

DbjiBIj

−
∑

(|k−i|=1
1≤k≤N)

DmkiMIk +
(
dmi +

∑

(|k−i|=1
1≤k≤N)

Dmik

)
MIi




.

(3.1)

The corresponding Jacobian matrices, F and V, describing the linearization of
this reduced system about the DFE, are given by

F =
(

F1

F2

)
and V =

(
B

M

)
.

In this and in what follows, an empty element or block in a matrix means zero
(number or matrix), and

F1 = diag(Cmb1, . . . , CmbN ),
F2 = diag(Cbm1M

∗
S1/B∗

S1, . . . , CbmNM∗
SN/B∗

SN ),

B =




B11 . . . B1,m+1

. . .

Bm+1,1
. . . . . .

. . . BN,N−m

. . . . . .
BN−m,N BNN




,

with

Bii = db2i +
m+i∑

( j=−m+i
j 6=i,1≤j≤N)

Dbij ,

Bij = −Dbji, if 0 < |i− j| ≤ m and 1 ≤ j ≤ N,
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by the dispersal condition (2.2), and

M =




M11 M12

M21
. . . . . .
. . . . . . MN,N−1

MN−1,N MNN




,

with
M11 = dm1 + dm12,
Mii = dmi + 2dm12, i = 2, . . . , N − 1,
MNN = dmN + dm12,
Mik = −dm12, if |i− k| = 1 and1 ≤ i, k ≤ N,

by the dispersal condition of (2.3).

Theorem 3.1. For model (2.1)

R0 = ρ(FV−1).

Proof. Since the sum of the ith column of B is positive, by Gershgorin circle the-
orem, all eigenvalues of B have positive real parts. At the same time, B has the
Z sign pattern. By [2], B is a nonsingular M-matrix. Similarly, M is also a non-
singular M-matrix. According to the definition of V, it is a nonsingular M-matrix.
Then V−1 is nonnegative. Since F and V−1 are nonnegative, we have FV−1 is
nonnegative. Using the formula in [7], we have R0 = ρ(FV−1).

The basic reproduction number R0 is well defined, but it is a nontrivial task to
find the explicit form of R0 in the general case. In what follows, we consider two
special cases to illustrate the impact of symmetric spatial dispersal of birds.

3.1. Identical Patches and Symmetric Dispersal. Here, we consider the spe-
cial case where all patches are identical from the aspect of ecology and epidemiology.
In other words, we assume that

bi = b, dbi = db, db2i = db2, dmi = dm,
mi = m̃, Cmbi = Cmb, Cbmi = Cbm Dbij = Dbji.

In this case, a straightforward calculation gives the coordinates for the DFE as

−→
BS = (B∗

S1, . . . , B
∗
SN )T = (

b

db
, . . . ,

b

db
)T ,

−−→
MS = (M∗

S1, . . . , M
∗
SN )T = (

m̃

dm
, . . . ,

m̃

dm
)T .

(3.2)

We shall let B∗
S = b

db
and M∗

S = m̃
dm

.
In the following theorem, we give an explicit expression for the reproduction

number R0 under the above assumptions.

Theorem 3.2. If all patches are identical and the dispersal of birds is symmetric,
then the basic reproduction number is given by

R0 =

√
CbmCmbM∗

S

db2dmB∗
S

.

Before proving this theorem, we need the following lemma.
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Lemma 3.3. Let A1, A2 be two positive definite matrices, and γ be the spectrum

radius of the matrix
(

0 A1

A2 0

)
. Then

γ2 ≤ ||A1|| · ||A2||,
where || · || is the operator norm.

Proof. Let λ be an eigenvalue of
(

0 A1

A2 0

)
. We show that λ2 is an eigenvalue

of A1A2. Indeed, let ξ =
(

ξ1

ξ2

)
be the eigenvector of

(
0 A1

A2 0

)
corresponding

to λ. Then (
0 A1

A2 0

)(
ξ1

ξ2

)
= λ

(
ξ1

ξ2

)
.

We have {
A1ξ2 = λξ1,
A2ξ1 = λξ2.

(3.3)

By the second equation of (3.3), we have

A1A2ξ1 = λA1ξ2. (3.4)

Plugging the first equation of (3.3) into (3.4), we get

A1A2ξ1 = λ2ξ2.

Therefore, λ2 is an eigenvalue of A1A2.
It follows that

γ2 ≤ ρ(A1A2),

where ρ(A1A2) is the spectrum radius of A1A2. On the other hand, we have

ρ(A1A2) ≤ ||A1A2|| ≤ ||A1|| · ||A2||.
Therefore,

γ2 ≤ ||A1|| · ||A2||.

Remark 3.4. In the case where A is a positive definite matrix, ||A|| is the spectrum
radius of A.

Now we can assert the following.

Proof of Theorem 3.2. Under our assumptions, B and M are strictly positive-definite.
Now, we claim that λ1 = db2 is the smallest eigenvalue of B. In fact, all eigenvalues
of B satisfy det|B − λI| = 0. Adding all rows of B − λI to its first row, the new
first row becomes (db2 − λ)[1, . . . , 1]. That means, db2 is the eigenvalue of B. We
claim this is also the smallest eigenvalue. This is because, by the Gershgorin circle
theorem, we know all eigenvalues of B are greater than or equal to db2. Now we look
for the corresponding eigenvector of λ1. Solving the linear system (B − λ1I)ζ = 0,
where I is the identity, we obtain ζ = (1, . . . , 1)T

. Similarly, we know λ2 = dm is
the smallest eigenvalue of M with the same eigenvector ζ.
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Noting that F1 = CmbI and F2 = CbmM∗
S

B∗S
I in this case, we have the maxi-

mum eigenvalues µ1 = Cmb/λ1 and µ2 = CbmM∗
S/B∗

Sλ2 of F1M
−1 and F2B

−1,
respectively, sharing the same eigenvector ζ. Note that

FV−1

( √
µ1
µ2

ζ

ζ

)
=

(
F1M

−1ζ√
µ1
µ2

F2B
−1ζ

)

=
(

µ1ζ√
µ1µ2ζ

)

=
√

µ1µ2

( √
µ1
µ2

ζ

ζ

)
.

So, the vector

( √
µ1
µ2

ζ

ζ

)
is an eigenvector of FV−1 with the eigenvalue

√
µ1µ2.

Denoted by ρ(FV−1), the spectrum radius of FV−1, we have

ρ(FV−1) ≥ √
µ1µ2.

By Lemma 3.3 and Remark 3.4, we obtain

ρ(FV−1)2 ≤ ||F1M
−1|| · ||F2B

−1|| = µ1µ2.

Thus,

ρ(FV−1) =
√

µ1µ2 =

√
CbmCmbM∗

S

db2dmB∗
S

.

Finally, by the definition of R0, we have

R0 = ρ(FV−1)

=

√
CbmCmbM∗

S

db2dmB∗
S

,

as desired.

Note that if all patches are isolated from each other (or the whole region is
homogeneous), one can calculate the basic reproduction number R0H to obtain

R0H =

√
CbmCmbM∗

S

db2dmB∗
S

. (3.5)

In other words, a region consisting of identical patches coupled by symmetric dis-
persal of birds has the same reproduction number as if each patch is isolated from
the others. This conclusion is not true anymore, however, if the dispersal of birds
is not symmetric, as shown in next subsection.

3.2. Nonsymmetric Dispersal of Birds. We now consider the case where the
dispersal rates of birds depend on the direction. We shall use the perturbation
theory to calculate the basic reproduction number of model (2.1) in the special
case of three identical patches.

We denote the diffusion rate of birds to the left by Dbl and to the right by Dbr.
Other notations remain the same as above.
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After some straightforward calculations, we obtain the DFE as

B∗
S1 =

b(db + 3Dbl)
db(db + 2Dbr + Dbl)

,

B∗
S2 =

b(db + 3Dbl)(db + 3Dbr)
db(db + 2Dbr + Dbl)(db + Dbr + 2Dbl)

,

B∗
S3 =

b(db + 3Dbr)
db(db + Dbr + 2Dbl)

,

and M∗
S1 = M∗

S3 = M∗
S3 = M∗

S = m̃
dm

.
We denote the corresponding F and V matrices by F3 and V3. They are given

by

F3 =




Cmb 0 0
0 Cmb 0
0 0 Cmb

CbmM∗
S

B∗S1
0 0

0 CbmM∗
S

B∗S2
0

0 0 CbmM∗
S

B∗S3




,

and
V3 =


db + 2Dbr −Dbl −Dbl

−Dbr db + Dbr + Dbl −Dbl

−Dbr −Dbr db + 2Dbl

dm + dm12 −dm12 0
−dm12 dm + 2dm12 −dm12

0 −dm12 dm + dm12




.

To address the impact of the direction-selective dispersal of birds on R0, we
write Dbr = Dbl + ε, where ε is a small positive number. Note that ε = 0 implies
the symmetric dispersal of birds.

Let
Aε = V3F−1

3 .

As shown above, if diffusion rates of birds are symmetric; that is ε = 0, (Dbl = Dbr),
the smallest eigenvalue of Aε=0 = A0 is

p0 =

√
db2dmB∗

S

CbmCmbM∗
S

,

with a corresponding eigenvector −→v 0 = (1, 1, 1, 1, 1, 1)T ; that is

A0
−→v 0 = p0

−→v 0.

Let pε denote the eigenvalue of Aε with a corresponding eigenvector −→v ε so that

Aε
−→v ε = pε

−→v ε, (3.6)

where
Aε = A0 + εA1 + ε2A2 + h.o.t.,

pε = p0 + εp1 + ε2p2 + h.o.t.,
−→v ε = −→v 0 + ε−→v 1 + ε2−→v 2 + h.o.t..

(3.7)
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Here, after some straightforward calculations, we have that

A1 = B∗
S




2− 2(db2+2Dbl)
db+3Dbl

0 − 2Dbl

db+3Dbl

−1 + 2Dbl

db+3Dbl
1 − 2Dbl

db+3Dbl

−1 + 2Dbl

db+3Dbl
−1 2(db2+2Dbl)

db+3Dbl

0 0 0
0 0 0
0 0 0




,

and

A2 = B∗
S




4(db2+2Dbl)
(db+3Dbl)2

− 4
db+3Dbl

2Dbl

(db+3Dbl)2
2Dbl

(db+3Dbl)2

− 4Dbl

(db+3Dbl)2
+ 2

db+3Dbl
− 2(db2+2Dbl)

(db+3Dbl)2
2Dbl

(db+3Dbl)2

− 4Dbl

(db+3Dbl)2
+ 2

db+3Dbl

2Dbl

(db+3Dbl)2
− 2(db2+2Dbl)

(db+3Dbl)2

0 0 0
0 0 0
0 0 0




.

Substituting (3.7) to (3.6) and comparing the coefficients in ε and ε2 terms, we
have

(A0 − p0I)−→v 1 = (p1I −A1)−→v 0, (3.8)

and
(A0 − p0I)−→v 2 = (p1I −A1)−→v 1 + (p2I −A2)−→v 0, (3.9)

where I is the identity matrix.
Notice that det(A0 − p0I) = 0, we conclude that equation (3.8) in −→v 1 has

solutions if and only if the rank of coefficient matrix equals that of the augmented
matrix; that is

rank
(
A0 − p0I

)
= rank

(
A0 − p0I, (p1I −A1)−→v 0

)
. (3.10)

Since p0 is an eigenvalue of A with multiplicity 1 if both Dbl and dm are positive,
we must have

p1 = 0.

We now proceed to find p2. Substituting p1 = 0 to (3.8), we can solve for −→v 1.
Substituting −→v 1 into (3.9), we can solve (3.9) in the same manner as we did for
(3.8). Namely, (3.9) has solutions if and only if

rank
(
A0 − p0I

)
= rank

(
A0 − p0I, (p1I −A1)−→v 1 + (p2I −A2)−→v 0

)
. (3.11)

From (3.11), we get

p2 =
8db2B

∗
S(db2 − db + 2Dbl)

9(db + 3Dbl)2Dbl
. (3.12)

Then, we have

R0 =
1√

db2dmB∗S
CbmCmbM∗

S
+ ε2p2 + O(ε3)

. (3.13)

Note that if we fix Dbl > 0, p2 is always positive. Therefore the breaking of
symmetry in spatial dispersal of birds always decreases R0.
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4. Discontinuous Spread and Surveillance Data. In this section, we report
some numerical simulation results to demonstrate the effect of different dispersal
patterns of birds on the spatial spread of WNv, and to illustrate possible discrepancy
between surveillance data and the model-based simulations in different time scales.
Our focus is on the time when a particular patch has recorded WNv activities,
namely, when at least one bird has died of WNv infection. This allows us to
compare the simulation results with surveillance data, since Health Canada uses
dead birds with WNv as an indicator for determining whether a region has WNv
activities.

Table 2. Values of parameters in the simulations.

Parameter Value Sources
b 100 [4]
db 0.001 [11] [17] [21] [22]
Cmb 0.085 [12] [11] [17] [21] [22]
db2 0.143 [11] [17] [21] [22]
m̃ 3000 [4]
Cbm 0.016 [12] [11] [17] [21] [22]
dm 0.029 [11] [17] [21] [22]
dm12 0.00001 estimated∗

*Since most mosquitoes will stay where they are born, we take a small number for
mosquitoes’ diffusion rates.

We first discuss ranges of parameters involved. We assume all patches are iden-
tical from the aspect of ecology and epidemiology as discussed before, and we fix
all parameters as in Table 2. The dispersal rates of birds are a decreasing function
of the distance from the origin, but the spatial dispersal may be nonsymmetric in
terms of spatial direction (left vs. right, in the case of one-dimensional space). For
the sake of simplicity, we assume the dispersal rate of birds gb(k), with k = i − j,
from patch i to j, is a piecewise linear function, given below:

gb(k) =

{
h1
m (m− |k|), if 0 < k ≤ m,

h2
m (m− |k|), if −m ≤ k < 0,

(4.1)

where m± i are the furthest patches that a bird can fly during the average life span
of female mosquitoes and h1 measures the diffusivity rate of birds to the left, while
h2 measures the diffusivity rate of birds to the right. The net rate at which a bird
flies out of a given patch should be less than 1; therefore, 0 ≤ (h1 + h2)m/2 < 1.
Notice that h1 = h2 corresponds to the bidirectional dispersal symmetric with
respect to the spatial direction, while h1 6= h2 corresponds to the nonsymmetric
spatial direction selective dispersal that seems to be more closer to the ecological
reality of birds in Canada within the time scale under consideration.

On average, birds can fly 13.4km per day or 1000km per year [15]. During the
average life span of 30 days, most female mosquitoes remain within 1.6 km of their
breeding site. A few species may range up to 10 miles or more. Thus in the average
lifespan of female mosquitoes, the flying range of a bird is about 40 times than that
of mosquitoes. Hence, we shall assume m = 40.
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The distance from British Columbia Province to South Ontario is about 3000km,
and hence we assume, in what follows, the total number of patches is N = 300.
In the simulation, the time unit is one day. Since WNv is a seasonal disease, we
consider the period from late April to early October to be a total of about 180 days.
We assume each patch has 10,000 birds and 200,000 female mosquitoes initially and
only the first patch has 5 infected birds and 20 infected mosquitoes.

In Fig. 4, we use the continuous dispersal function (4.1) of birds with m = 40.
Figure 4a deals with the symmetric dispersal case with h1 = h2 = 0.005, In the
symmetric case, we can see the spread speed of WNv is about 1000 km/year, which
coincides with the observed spread rate in North American [13]. Increasing h2

slightly while keeping h1 unchanged will yield nonsymmetric dispersal of birds, but
this minor breaking of symmetry has limited impact on the number of infected birds
and their spatial spread as shown in Figure 4b. However, if we continue to increase
h2 to h2 = 0.01, we obtain the graph of Figure 4c. In this case the spread speed of
the disease is much faster and the magnitude of outbreaks is higher compared to
the cases shown in Figure 4(a, b). Naturally, we notice that the spatial spread is
continuous in the sense that there is no patch i escaping from WNv if patch j > i
has WNv activities (i.e., had infected birds). This is due to the continuous spread
of birds.

In reality, birds may skip some patches during their long-range dispersal. To
model this special dispersal pattern, we consider a dispersal function of the following
form

gb(k) =





h1
m (m− |k|), if |k|mod 4 = 0 and 0 < k ≤ 40,

h2
m (m− |k|), if |k|mod 4 = 0 and − 40 ≤ k < 0,

0, otherwise.

(4.2)

In other words, the birds in patch i jump to patches i ± 4, . . . , i ± 4J , where J is
the integer part of m/4.

We shall remark that the model (2.1) is still a continuous model even the dis-
persal function of birds is not continuous. Figure 5 provides simulation results
using the above jump dispersal function and in the case h1 = h2 = 0.01. We ob-
serve obvious jumps in the transmission of WNv and the disease spread speed is
about 1000km/year. In this case, some patches avoid the disease because of the
discontinuous dispersal of birds.

5. Discussion. In this paper, we use a mathematical model to understand the
spatial spread patterns in the establishment phase of WNv in a region consisting
of multiple patches. In the case where patches are identical (from the aspect of
ecology and epidemiology) and where the spatial dispersal of birds and mosquitoes
are symmetric with respect to all possible spatial directions, we show that the basic
reproduction number coincides with that when each patch is isolated from others.
This number changes when the spatial dispersal of birds depends on the spatial
direction, and our calculation based on a perturbation argument gives an analytic
formula to show how this number is changed by the spatial direction selective spatial
dispersal.

Figure 1, based on the surveillance date of Health Canada, indicates the jump or
discontinuous spread of WNv activities; namely, some patches were free of recorded
birds dead from the virus, while their neighboring patches do have recorded dead
birds. This phenomena cannot be explained via continuous (partial differential
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(a) h1 = h2 = 0.005

(b) h1 = 0.005 and h2 = 0.0051

(c) h1 = 0.005 and h2 = 0.01

Figure 4. The numbers of infected birds on each patch versus
time. To simulate the effects of different birds’ diffusion patterns,
h1, the diffusivity to left, is fixed at 0.005, while h2, the diffusivity
to right, is varied.
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Figure 5. The numbers of infected birds on each patch versus
time when birds skip some patches.

equations) models, and suggests that the spatial spread of WNv is largely deter-
mined by the long-range dispersal of birds. Here we use a special function (4.2)
to describe the spatial dispersal of birds, and our simulations illustrate that the
discontinuous spatial spread arises very naturally as the consequence of the local in-
teraction between birds and mosquitoes, the short distance diffusion of mosquitoes,
and the long-range jump dispersal of birds.

More biological realities need to be incorporated into the model to have a full
simulation and comparison with surveillance data. The geographic characters, such
as lake areas, or forest and bush areas, which have huge populations of mosquitoes
and birds compared to those of patches consisting of mainly cities, should be con-
sidered. Also important for model simulation is the dimensionality: more realistic
models should be at least two-dimensional. The biological characters of birds must
be taken into consideration: different birds have different dispersal patterns and
different epidemiological features for WNv. Seasonal factors must also be explored.
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