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Abstract. The permanence of the following Lotka-Volterra system with time
delays

ẋ1(t) = x1(t)[r1 − a1x1(t) + a11x1(t− τ11) + a12x2(t− τ12)],

ẋ2(t) = x2(t)[r2 − a2x2(t) + a21x1(t− τ21) + a22x2(t− τ22)],

is considered.With intraspecific competition, it is proved that in competitive
case, the system is permanent if and only if the interaction matrix of the system
satisfies condition (C1) and in cooperative case it is proved that condition (C2)
is sufficient for the permanence of the system.

1. Introduction. We consider the following Lotka-Volterra system with discrete
delays,

ẋ1(t) = x1(t)[r1 − a1x1(t) + a11x1(t− τ11) + a12x2(t− τ12)],

ẋ2(t) = x2(t)[r2 − a2x2(t) + a21x1(t− τ21) + a22x2(t− τ22)].
(1.1)

The initial condition of (1.1) is given as

xi(t) = φi(t) ≥ 0, t ∈ [−τ, 0], and φi(0) > 0 (i = 1, 2), (1.2)

where ri, ai, aij and τij are constants with ai > 0, τij ≥ 0 (i = 1, 2) and
τ = max{τij : i, j = 1, 2}. φi(t) (i = 1, 2) is continuous on [−τ, 0].

We assume that system (1.1) has a unique positive equilibrium x∗ = (x∗1, x∗2).
That is,

x∗1 =
r1(a2 − a22) + r2a12

(a1 − a11)(a2 − a22)− a12a21
, x∗2 =

r2(a1 − a11) + r1a21

(a1 − a11)(a2 − a22)− a12a21
. (1.3)

If a1 = a2 = 0, system (1.1) simplifies to the form

ẋ1(t) = x1(t)[r1 + a11x1(t− τ11) + a12x2(t− τ12)],

ẋ2(t) = x2(t)[r2 + a21x1(t− τ21) + a22x2(t− τ22)].
(1.4)
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Definition 1.1. System (1.1) is said to be permanent if there is a compact
set D in the interior of R2

+ such that for each positive initial position, the orbit of
system (1.1) through this initial position eventually enters and remains in D.

That is, there exist Mi > 0, Ni > 0 (i = 1, 2) such that

lim sup
t→+∞

xi(t) ≤ Mi, lim inf
t→+∞

xi(t) ≥ Ni.

The permanence of system (1.4) with aii < 0 (i = 1, 2) and τ11 + τ22 6= 0 has
been discussed under the following

Condition (C) : a11a22 − a12a21 > 0.

With the assumption that system (1.4) has a unique positive equilibrium, the
following results are known.

Theorem 1.1 [4, 6, 13]. In the competitive case (a12 < 0 and a21 < 0), system
(1.4) is permanent if and only if condition (C) holds.

Theorem 1.2 [14]. In the prey-predator case (a12a21 < 0), system (1.4) is
permanent.

Remark 1.1. Since for a prey-predator system, a12a21 < 0 implies that condi-
tion (C) holds, Theorem 1.2 means that the existence of a unique positive equilib-
rium guarantees the permanence of the system. In fact, if system (1.4) is permanent,
it can be shown that it must have a unique positive equilibrium [2]. Thus, we can
conclude that system (1.4) in the prey-predator case is permanent if and only if the
system has a unique positive equilibrium.

Remark 1.2. In both cases above, the delays are harmless for the permanence
of system (1.4). However, in cooperative case (a12 > 0 and a21 > 0), two coun-
terexamples given in [1] show that condition (C) can not ensure the permanence of
system (1.4).

If a11 = a22 = 0, Lu and Wang [7] obtained necessary and sufficient conditions
for the global stability of system (1.1) for all delays. This result was extended to
general n by Hofbauer and So [3] and Lu and Lu [5].

Recently, Saito et al. [11, 12] derived necessary and sufficient conditions for the
permanence and global stability of system (1.1) in some specific cases. Muroya
[8, 9] also established sufficient conditions for the permanence of system (1.1).

In the prey-predator case, Saito [10] obtained the following theorem.
Theorem 1.3 [10]. Suppose that system (1.1) has a unique positive equilibrium;

then it is permanent for all τij ≥ 0 if ai − aii > 0 (i, j = 1, 2).
In a competitive case, with the assumption of ai − aii > 0, we will show that

system (1.1) is permanent if and only if the following condition (C1) holds.

Condition(C1) : (a1 − a11)(a2 − a22) > a12a21.

In a cooperative case, Muroya [8] proved that system (1.1) is uniformly bounded
above if the following condition (C2) holds.

Condition(C2) : a1− a11 > 0, a2− a22 > 0 and (a1− a+
11)(a2− a+

22) > a12a21,

where a+
11 = max(a11, 0), a+

22 = max(a22, 0).
In fact, we find that condition (C2) can ensure the permanence of system (1.1).

Obviously, condition (C2) implies condition (C1). And it is known that condition
(C1) is enough to guarantee the global attrativity of system (1.1) when τij = 0.
However, we show by examples that the solutions of system (1.1) can be unbounded
under condition (C1) when condition (C2) fails.
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2. The Main Results. We need the following two lemmas for the proof of our
main results.

Lemma 2.1 [8]. Every solution x(t) of system (1.1) exists in the interval [T, +∞]
and remains positive for all t ≥ T .

Lemma 2.2. In competitive case (a12 < 0 and a21 < 0), if ai−aii > 0 (i = 1, 2),
then any solution of (1.1) with initial condition (1.2) is ultimately bounded. That
is, there exist M1 > 0, M2 > 0 such that

lim sup
t→+∞

x1(t) ≤ M1, lim sup
t→+∞

x2(t) ≤ M2,

where M1 = |r1|+1

a1−a+
11

, M2 = |r2|+1

a2−a+
22

(a+
11 = max(a11, 0), a+

22 = max(a22, 0)).

Further, if φi(t) ≤ Mi, t ∈ [−τ, 0] (i = 1, 2), then xi(t) ≤ Mi for all t ≥ 0.
Proof. The proof of the former part is similar to that in [12]. We show the latter

claim. Otherwise, there exists t > 0, such that

xi(t) =
|ri|+ 1
ai − a+

ii

and ẋi(t) > 0,

xi(t) <
|ri|+ 1
ai − a+

ii

, ∀ t ∈ [−τ, t).

But
ẋi(t) ≤ xi(t)[|ri| − aixi(t) + a+

iixi(t− τii)]

≤ xi(t)[|ri| − ai
|ri|+1

ai−a+
ii

+ a+
ii
|ri|+1

ai−a+
ii

]

= −xi(t) < 0,

which is contradictory to ẋi(t) > 0. Thus, the proof of Lemma 2.2 is completed.
Theorem 2.1. In competitive case (a12 < 0 and a21 < 0), if ai − aii > 0 (i =

1, 2), system (1.1) is permanent if and only if condition (C1) holds.
Proof. Sufficiency. Consider two continuous functionals

V1(t) = x1(t)a2−a22x2(t)a12 exp
[
a12

(
a21

∫ t

t−τ21

x1(s)ds + a22

∫ t

t−τ22

x2(s)ds

)

+(a2 − a22)
(

a11

∫ t

t−τ11

x1(s)ds + a12

∫ t

t−τ12

x2(s)ds

)]
,

(2.1)
and

V2(t) = x1(t)a21x2(t)a1−a11 exp
[
a21

(
a11

∫ t

t−τ11

x1(s)ds + a12

∫ t

t−τ12

x2(s)ds

)

+(a1 − a11)
(

a21

∫ t

t−τ21

x1(s)ds + a22

∫ t

t−τ22

x2(s)ds

)]
.

(2.2)
Then, we have

V̇i(t) = Vi(t)(∆i −∆xi(t)), i = 1, 2, (2.3)
where

∆1 = r1(a2 − a22) + r2a12,
∆2 = r2(a1 − a11) + r1a21,
∆ = (a1 − a11)(a2 − a22)− a12a21.

Note that ∆ > 0 by condition (C1) and hence ∆1 > 0, ∆2 > 0 by condition
(1.3).
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Let hi =
∆i

2∆
=

1
2
x∗i ; if xi(t) ≤ hi, then

V̇i(t) ≥ 1
2
Vi(t)∆i. (2.4)

Then it follows from Lemma 2.2 that there exists some sufficiently large t0 > T ,
such that for t ≥ t0.

0 < xi(t) ≤ M, i = 1, 2.

Here M=max{M1,M2}. Then for t ≥ t0 + τ , we have

m1x1(t)a2−a22x2(t)a12 ≤ V1(t) ≤ m1x1(t)a2−a22x2(t)a12 , (2.5)

m2x1(t)a21x2(t)a1−a11 ≤ V2(t) ≤ m2x1(t)a21x2(t)a1−a11 , (2.6)

where

m1 = exp [(−|a2 − a22||a11|+ |a2 − a22|a12 − a12a21 + a12|a22|)Mτ ] ,

m1 = exp [(|a2 − a22||a11| − |a2 − a22|a12 + a12a21 − a12|a22|)Mτ ] ,

m2 = exp [(a21|a11| − a21a12 + |a1 − a11|a21 − |a1 − a11||a22|)Mτ ] ,

m2 = exp [(−a21|a11|+ a21a12 − |a1 − a11|a21 + |a1 − a11||a22|)Mτ ] .

Then, the remaining parts are similar to [6]. Thus the proof of the sufficiency for
the theorem is completed.

Proof. Necessity. Assume the assertion is false. That is, let system (1.1) be
permanent but condition (C1) fails, implying that ∆ < 0 and furthermore that
∆1 < 0 and ∆2 < 0 by the existence of a unique positive equilibrium. Here

∆1 = r1(a2 − a22) + r2a12,
∆2 = r2(a1 − a11) + r1a21,
∆ = (a1 − a11)(a2 − a22)− a12a21.

By (2.3), we have
V̇1(t) = V1(t)(∆1 −∆x1(t)). (2.7)

Let
0 < φi(t) < min{Mi/2, x∗i /2}, ∀t ∈ [−τ, 0]. (2.8)

Then by Lemma 2.2,

0 < xi(t) ≤ M = max{M1, M2}, ∀ t ≥ 0, (i = 1, 2). (2.9)

Furthermore, let

x1(0) < (m1/m1)
1

a2−a22 (M/x2(0))
a12

a2−a22 (x∗1/2). (2.10)

Here

m1 = exp [(−|a2 − a22||a11|+ |a2 − a22|a12 − a12a21 + a12|a22|)Mτ ] ,

m1 = exp [(|a2 − a22||a11| − |a2 − a22|a12 + a12a21 − a12|a22|)Mτ ] .

Then, we have

m1x1(t)a2−a22x2(t)a12 ≤ V1(t) ≤ m1x1(t)a2−a22x2(t)a12 . (2.11)

By (2.8), we have

V̇1(0) < ∆V1(0)
x∗1
2

< 0. (2.12)
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Now, we show that V̇1(t) < 0, for t ≥ 0. Otherwise, there exists t1, such that
V̇1(t1) = 0, and V̇1(t) < 0, for t ∈ [0, t1). Thus, by (2.9), (2.11) and (2.12)

m1x1(t)a2−a22Ma12 ≤ V1(t) < V1(0) ≤ m1x1(0)a2−a22x2(0)a12 , ∀t ∈ [0, t1].
(2.13)

Since a2 − a22 > 0 , then by (2.10), we have for t ∈ [0, t1],

x1(t) < (m1/m1)
1

a2−a22

(
x2(0)

M

) a12
a2−a22

x1(0)

< (m1/m1)
1

a2−a22

(
x2(0)

M

) a12
a2−a22 (m1/m1)

1
a2−a22

(
M

x2(0)

) a12
a2−a22 · x∗1

2

=
x∗1
2

.

(2.14)
Thus,

V̇1(t) < ∆V1(t)
x∗1
2

< 0, for t ∈ [0, t1]. (2.15)

Especially, V̇1(t1) < 0, which contradicts the assumption that V̇1(t1) = 0.

So we have shown that for all t ≥ 0, V̇1(t) < 0. Then for all t ≥ 0, by using the
same procedure as in (2.13) — (2.15), we obtain that

V̇1(t) < ∆V1(t)
x∗1
2

< 0, for t ≥ 0, (2.16)

which implies
V1(t) → 0 as t → +∞, (2.17)

contradicting to the permanence of (1.1).
The necessity for the theorem has been proved and hence the proof of Theorem

2.1 is completed.
The sufficient part is similar to Lu and Takeuchi [6] and Wang and Ma [14]. The

necessary part is modified from Liu and Chen [4].
Note that the conditions for a competitive system to be permanent are indepen-

dent of the delays.
In [8], Muroya proves the following boundedness result for cooperative system

(1.1).
Lemma 2.3 [8]. In cooperative case (a12 > 0 and a21 > 0), condition (C2)

implies the upper boundedness of system (1.1).
In fact, we can obtain a stronger result as follows.
Theorem 2.2. In cooperative case (a12 > 0 and a21 > 0), if ri > 0 (i = 1, 2),

condition (C2) implies the permanence of system (1.1).
Proof. By Lemma 2.3, we know that there is a constant M ′

i > 0 such that for
sufficiently large t, any solution x(t) = (x1(t), x2(t)) to (1.1) satisfies 0 < xi(t) ≤
M ′

i .
In the following we show that each xi(t) is eventually bounded below by a positive

constant.
From (1.1), we have

ẋi(t) ≥ xi(t)[ri − aiM
′
i + a−iiM

′
i ], (i = 1, 2).

By integrating it from t− τii to t, we obtain

xi(t) ≥ xi(t− τii) exp[(ri − aiM
′
i + a−iiM

′
i)τii], (i = 1, 2);
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thus
xi(t− τii) ≤ xi(t) exp[−(ri − aiM

′
i + a−iiM

′
i)τii], (i = 1, 2).

Substituting it into (1.1), we have

ẋi(t) ≥ xi(t)[ri − (ai − a−ii exp[−(ri − aiM
′
i + a−iiM

′
i)τii])xi(t)], (i = 1, 2).

Denote ki = ai − a−ii exp[−(ri − aiM
′
i + a−iiM

′
i)τii]. Then a−ii = min{aii, 0} ≤ 0

implies ki > 0. Thus

ẋi(t) ≥ xi(t)[ri − kixi(t)], (i = 1, 2).

Hence, we have
lim inf
t→+∞

xi(t) ≥ ri

ki
> 0, (i = 1, 2).

The proof is completed.
Remark 2.1. Under the assumption of the existence of a unique positive equi-

librium, the sufficient conditions for the permanence of system (1.1) in [8] are given
as 




r1 +
a11r1

a1
+

a12r2

a2
> 0

r2 +
a21r1

a1
+

a22r2

a2
> 0

(2.18)

where aij < 0 (i 6= j), ai > 0, aii ≤ 0 (i, j = 1, 2). It is not difficult to show
that condition (2.18) is stronger than condition (C1). Moreover, the conditions
for the permanence of system (1.1) provided in [9] are under the assumption of
ai > 0 (i = 1, 2), which seems unnecessary by Theorems 2.1 and 2.2.

Remark 2.2. Suppose that system (1.1) has a unique positive equilibrium.
Condition (C1) implies the permanence for the system in the competitive case
if ai − aii > 0 (i, j = 1, 2). In fact, in the proof of theorem 2.1, it is positiveness
of the equilibrium and condition (C1) that give the permanence. Furthermore,
positiveness of the equilibrium can be ensured by condition (C1) and the following:

Condition(E) :

{
r1(a2 − a22) + r2a12 > 0,

r2(a1 − a11) + r1a21 > 0.

Thus, with the hypothesis of ai − aii > 0 (i = 1, 2), conditions (C1) and (E) are
sufficient for the permanence of system (1.1) in the competitive case. Conversely,
the permanence of the system, which implies the existence of a unique positive
equilibrium, guarantees that conditions (C1) and (E) hold. Therefore, without the
assumption of the existence, we have

Theorem 2.3. In competitive case (a12 < 0 and a21 < 0), if ai − aii > 0 (i =
1, 2), system (1.1) is permanent if and only if conditions (C1) and (E) hold.

Since condition (C2) implies condition (C1), by a similar analysis we can obtain
the following consequence for the cooperative system.

Theorem 2.4. In cooperative case (a12 > 0 and a21 > 0), if ri > 0 (i = 1, 2),
conditions (C2) and (E) imply the permanence of system (1.1).

Subsequently, we shall show by examples that condition (C1) can not ensure the
permanence for cooperative systems.

Example 2.1.

ẋ1(t) = x1(t)
[
1− 1

2
x1(t)− 1

2
e3x1(t− 3) + ex2(t− 1)

]
,

ẋ2(t) = x2(t)
[
1− 1

2
x2(t) + ex1(t− 1)− 1

2
e4x2(t− 4)

]
.

(2.19)
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Clearly, for system (2.19), condition (C1) is satisfied, but conditon (C2) fails.
There is an unbounded solution (x1(t), x2(t)) = (et, et) with initial condition φi(t) =
et (i = 1, 2) for the system. In this case, both delayed intraspecific competitions
are present. The following example shows that even if one of the species is delayed
intraspecific cooperative, the system can also have an unbounded solution.

Example 2.2.

ẋ1(t) = x1(t)
[
1− 1

2
x1(t)− 1

2
e7x1(t− 7) + ex2(t− 1)

]
,

ẋ2(t) = x2(t)
[
1− 5x2(t) +

9
2
ex1(t− 1) +

1
2
e2x2(t− 2)

]
.

(2.20)

Obviously, the unbounded solution given in Example 2.1 is also an unbounded one
for system (2.20).

We have known that condition (C1) ensures the global attractivity of system
(1.1) if the diagonal delays are small enough, which implies the permanence of the
system. However, the permanence for system (1.1) may be destroyed with large
diagonal delays even if condition (C1) is satisfied. Hence, we can deduce that
the sharp permanence conditions for system (1.1) in the cooperative case must be
associated with the diagonal delays.

3. Concluding Remarks. We have shown that the conditions for the permanence
of system (1.1) in competitive or prey-predator cases are similar to that for system
(1.1) without delays. But in the cooperative case, the conditions should be stronger
than that of other two cases.

In the prey-predator case, without the assumption of ai − aii > 0, the positive
equilibrium of system (1.1) may be globally attractive or unstable when τij =
0 (i, j = 1, 2). It can be inferred that conditions for the permanence of system
(1.1) are not easy to get in this case, and we leave this as a future research topic.
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