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Abstract. By using the theory of planar dynamical systems to the travelling
wave equation of a higher order nonlinear wave equations of KdV type, the
existence of smooth solitary wave, kink wave and anti-kink wave solutions and
uncountably infinite many smooth and non-smooth periodic wave solutions are
proved. In different regions of the parametric space, the sufficient conditions to
guarantee the existence of the above solutions are given. In some conditions,
exact explicit parametric representations of these waves are obtain.

1. Introduction. This paper is a sister article of our paper(I) and (II)(see [5,10]).
In 2002, E.Tzirtzilakis,etc [8] suggested studying a ”more physically realistic form
of water wave equations of the KdV type” as follows (also see Fokas [1]):

ut + ux + αuux + βuxxx + α2ρ1u
2ux + αβ(ρ2uuxxx + ρ3uxuxx) = 0, (1.1)

where ρi (i = 1, 2, 3) are free parameters and α, β are positive real constants, which
characterize, respectively, the long wavelength and short amplitude of the waves.
For the equation (1.1), J. Li, Y. Long et al.[4] have studied the dynamics of solitary
waves, kink waves and breaking waves for the case ρ3 = (p + 1)ρ2, p < −1, and
obtained some exact explicit parametric representations of solitary wave, kink and
anti-kink wave solutions. In our second paper [10], we have considered the dynamics
of reduced travelling wave equation of (1.1) for the case ρ3 = (p+1)ρ2, p > −1, ρ2 >
0. In this paper, we shall consider the case ρ2 < 0, p ≥ 1. As in [10], we consider
the travelling wave equation of (1.1),

β(1 + αρ2φ)φ′′ +
1
2
αβpρ2(φ′)2 +

1
3
α2ρ1φ

3 +
1
2
αφ2 + (1− c)φ = 0, (1.2)

and its equivalent two-dimensional system,

dφ

dξ
= y,

dy

dξ
= −3αβpρ2y

2 + 2α2ρ1φ
3 + 3αφ2 + 6(1− c)φ

6β(1 + αρ2φ)
. (1.3)

Now, system (1.3) has the following first integral,

y2 = h(1 + αρ2φ)−p − 1
Ω

(
A0 − αρ2pA0φ + C0φ

2 + D0φ
3
)
, (1.4)
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where h is arbitrary constant and
A0 = 6[ρ2

2(p+2)(p+3)(c−1)+ρ2(p+3)−2ρ1], C0 = 3p(p+1)α2ρ2
2[(p+3)ρ2−2ρ1],

D0 = 2p(p + 1)(p + 2)α3ρ1ρ
3
2, Ω = 3p(p + 1)(p + 2)(p + 3)α2βρ4

2. Suppose that
φ(x − ct) = φ(ξ) is a continuous solution of system (1.3) for ξ ∈ (−∞,∞) and
lim

ξ→∞
φ(ξ) = a, lim

ξ→−∞
φ(ξ) = b. Recall that (i) φ(x, t) is called a solitary wave

solution if a = b; (ii) φ(x, t) is called a kink or anti-kink solution if a 6= b. Usually,
a solitary wave solution of equation (1.1) corresponds to a homoclinic orbit of
system (1.3); a kink (or anti-kink) wave solution equation (1.1) corresponds to a
heteroclinic orbit (or the so-called connecting orbit) of system (1.3). Similarly, a
periodic orbit of system (1.3) corresponds to a periodically travelling wave solution
of equation (1.1). Thus, to investigate all possible bifurcations of solitary waves and
periodic waves of equation (1.1), we need to find all periodic annuli and homoclinic
orbits of system (1.3), which depend on the system parameters. We notice that the
right-hand side of the second equation in system (1.3) is generally not continuous
when φ = − 1

αρ2
. In other words, on such straight lines in the phase plane (φ, y), the

function φ′′ξ is not well-defined. It implies that the smooth system (1.1) sometimes
has non-smooth travelling wave solutions(see [2, 3, 5,6]).

2. Bifurcations of phase portraits of system (1.3). System (1.3) has the same
phase orbits as the following system,

dφ

dτ
= 6β(1 + αρ2φ)y,

dy

dτ
= −(3αβpρ2y

2 + 2α2ρ1φ
3 + 3αφ2 + 6(1− c)φ), (2.1)

except for the straight line φ = φs = − 1
αρ2

, where dτ = 6β(1 + αρ2φ)dξ for
φ 6= − 1

αρ2
. Throughout in this paper, we assume that ρ2 < 0, p ≥ 1. (1.4) can be

written as

H(φ, y) = (1 + αρ2φ)p

[
y2 +

1
Ω

(
A0 − αρ2pA0φ + C0φ

2 + D0φ
3
)]

= h. (2.2)

Write
f(φ) = 2α2ρ1φ

3 + 3αφ2 + 6(1− c)φ.

Denote that

φ1,2 =
−3±√∆1

4αρ1
, Y± = ± 1

αρ2
2

√
∆2

3pβ
, (2.3)

where ∆1 = 9+48ρ1(c−1), ∆2 = 6ρ2
2(1−c)+2ρ1−3ρ2. Then, when ρ1 6= 0, ∆1 > 0,

system (2.1) has three equilibrium points at O(0, 0), A1,2(φ1,2, 0). When ∆1 = 0,
system (2.1) has two equilibrium points at O(0, 0) and A12(φ12, 0), φ12 = − 3

4αρ1
.

When ∆2 > 0, there exist two equilibrium points of (2.1) in L: φ = − 1
αρ2

, at
S±(φs, Y±). It is easy to see that for ρ1 > 0, then when 0 < 1− 3

16ρ1
< c < 1, φ2 <

φ1 < 0. When c = 1, φ2 = − 3
2αρ1

< 0 = φ1. When c > 1, φ2 < 0 < φ1. For ρ1 < 0,
then when c = 1, φ1 = 0 < − 3

2αρ1
= φ2. when 1 < c < 1 − 3

16αρ1
, 0 < φ1 < φ2.

When c > 1, φ1 < 0 < φ2. For ρ1 = 0, (2.1) has two equilibrium points at
O(0, 0) and A0(φ0, 0), where φ0 = 2(c−1)

α . When 0 < c < 1, φ0 < 0. When
c > 1, φ0 > 0. Let M(φi, ye) be the coefficient matrix of the linearized system of
(2.1) at an equilibrium point (φi, ye). Then we have Trace (M(φ1,2, 0)) = 0 and

J(0, 0) = detM(0, 0) = 36β(1− c), J(φ1,2, 0) = 6β(1 + αρ2φ1,2)f ′(φ1,2),

J(φs, Y±) = detM(φs, Y±) = −36pα2β2ρ2
2Y

2
± < 0.
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By the theory of planar dynamical systems, we know that for an equilibrium point
of a planar integrable system, if J < 0, then the equilibrium point is a saddle
point. If J > 0 and Trace (M(φi, 0)) = 0, then it is a center point. If J > 0 and
(Trace (M(φi, 0)))2 − 4J(φi, 0) > 0, then it is a node. If J = 0 and the index of
the equilibrium point is 0, then it is a cusp.
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FIGURE 1. The phase portraits of system (2.1) for ρ1 > 0, ρ2 < 0. (1-1) c
= 1, φ2 <φ1 = 0< φs, ∆2 > 0. (1-2) c = 1− 3

16ρ1
, φ1 = φ2 < 0< φs, h1 >

0. (1-3) c = 1− 3
16ρ1

, φ1 = φ2 < 0 < φs, h1 = 0. (1-4) c = 1− 3
16ρ1

, φ1 =

φ2 < 0 < φs, h1 < 0. (1-5) 1− 3
16ρ1

< c < 1, φ2 < φ1 < 0 < φs, h1 > 0, ∆2

∆2 > 0. (1-6) 1− 3
16ρ1

< c < 1, φ2 < φ1 < 0 < φs, h1 = 0, ∆2 > 0. (1-7) 1

− 3
16ρ1

< c < 1, φ2 < φ1 < 0 < φs, h1 < 0, ∆2 > 0. (1-8) c > 1, φ2 < 0 < φs

< φ1, ∆2 < 0. (1-9) c > 1, φ2 < 0 < φ1 = φs, ∆2 = 0. (1-10) c > 1, φ2 < 0
< φ1 < φs, A0 > 0, ∆2 > 0. (1-11) c > 1, φ2 < 0 < φ1 < φs, A0 = 0, ∆2 > 0.
(1-12) c > 1, φ2 < 0 < φ1 < φs, A0 < 0, ∆2 > 0. (1-13) 0 < c <1− 3

16ρ1
, 0

< φs, ∆2 > 0.

For H(φ, y) defined by (2.2), we write

h0 = H(0, 0) =
A0

Ω
, hs = H(φs, Y±) = 0,

h1,2 = H(φ1,2, 0) =
1
Ω

(
A0 − αρ2pA0φ1,2 + C0φ

2
1,2 + D0φ

3
1,2

)
(1 + αρ2φ1,2)p,

h∗ = H(φ0, 0) =
1
Ω

(
A0 − αρ2pA0φ0 + C0φ

2
0 + D0φ3

0

)
(1 + αρ2φ0)p.

For a fixed h, the level curve H(φ, y) = h defined by (2.2) determines a set of (2.1),
which contains different branches of curves. By using the above fact, we have the
phase portraits of (2.1) shown in Figures 1-3 for p ≥ 1, ρ2 < 0.
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FIGURE 2. The phase portraits of system (2.1) for ρ1 = 0, ρ2 < 0.(2-1) 0
< c < 1, φ0 < 0 < φs, h∗ > 0, ∆2 > 0. (2-2) 0 < c < 1, φ0 < 0 < φs,
h∗ = 0, ∆2 > 0. (2-3) 0 < c < 1, φ0 < 0 < φs, h∗ < 0, ∆2 > 0. (2-4) c
= 1, φ0 = 0 < φs. (2-5) c > 1, 0 < φs < φ0, ∆2 < 0. (2-6) c > 1, 0 <
φs = φ0, ∆2 = 0. (2-7) c > 1, 0 < φ0 < φs, h0 > 0, ∆2 > 0. (2-8) c >
1, 0 < φ0 < φs, h0 = 0, ∆2 > 0. (2-9) c > 1, 0 < φ0 < φs, h0 < 0, ∆2

> 0.
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FIGURE 3. The phase portraits of (2.1) for ρ1 < 0, ρ2 < 0. (3-1) c
= 1, 0 = φ1 < φ2 < φs, < 0. (3-2) c = 1, 0 = φ1 < φ2 = φs, ∆2 =
0. (3-3) c = 1, 0 = φ1 < φs < φ2, ∆2 > 0. (3-4) c = 1− 3

16ρ1
, 0 <

φ12 < φs, ∆2 < 0. (3-5) c = 1− 3
16ρ1

, 0 < φ12 = φs, ∆2 = 0. (3-6)

c = 1− 3
16ρ1

, 0 < φs < φ12, ∆2 < 0. (3-7) 0 < c < 1, φ1 < 0 < φ2

< φs, ∆2 < 0. (3-8) 0 < c < 1, φ1 < 0 < φ2 = φs, h1 < 0, ∆2 < 0.
(3-9) 0 < c < 1, φ1 < 0 < φ2 = φs, h1 > 0, h2 = 0, ∆2 = 0. (3-10)
0 < c < 1, φ1 < 0 < φs < φ2, h1 < 0, ∆2 > 0. (3-11) 0 < c < 1, φ1

< 0 < φs < φ2, h1 = 0, ∆2 > 0. (3-12) 0 < c < 1, φ1 < 0 < φs < φ2,
h1 > 0, ∆2 > 0. (3-13) 1 < c < 1− 3

16ρ1
, 0 < φs < φ1 < φ2, ∆2 < 0.

(3-14) 1 < c < 1− 3
16ρ1

, 0 < φs = φ1 < φ2, h1 = 0, ∆2 = 0. (3-15) 1

< c < 1− 3
16ρ1

, 0 < φ1 < φs = φ2, ∆2 = 0. (3-16) 1 < c < 1− 3
16ρ1

,

0 < φ1 < φs < φ2, A0 < 0, ∆2 > 0. (3-17) 1 < c < 1− 3
16ρ1

, 0 < φ1

< φs < φ2, A0 = 0, ∆2 > 0. (3-18) 1 < c < 1− 3
16ρ1

, 0 < φ1 < φs <

φ2, A0 > 0, ∆2 > 0. (3-19) 1 < c < 1− 3
16ρ1

, 0 < φ1 < φ2 < φs, h0 >

h2, ∆2 < 0. (3-20) 1 < c < 1− 3
16ρ1

, 0 < φ1 < φ2 < φs, h0 = h2, ∆2

< 0. (3-21) 1 < c < 1− 3
16ρ1

, 0 < φ1 < φ2 < φs, h0 < h2, ∆2 < 0. (3-

22) c > 1− 3
16ρ1

, 0 < φs, ∆2 < 0.

We shall apply these phase portraits to discuss the travelling wave solutions of
Equation (1.1) in section 3.

3. Existence of smooth solitary wave solutions, periodic wave, kink wave
and anti-kink wave solutions of equation (1.1). In this section, we con-
sider the existence of smooth solitary wave and smooth and non-smooth periodic
wave solutions of equation (1.1). First, we discuss the existence of solitary wave
solutions. We see from Figures 1-3 that the following conclusion holds. Theo-
rem 3.1. (i.) Equation (1.1) has a smooth solitary wave solution of the valley
type, which corresponds to H(φ, y) = A0

Ω under the following two conditions: (1)
ρ1 > 0, c = 1, A0 < 0, ∆2 > 0 (see Fig. 1 (1-1)). (2) ρ1 > 0, c > 1 (see
Fig. 1 (1-8)-(1-12)). In addition, if A0 < 0, equation (1.1) also has a smooth soli-
tary wave solution of peak type (see Fig. 1 (1-12)). (ii.) Equation (1.1) has a
smooth solitary wave solution of valley type, under the following conditions: (1)
ρ1 > 0, 1 − 3

16ρ1
< c < 1, ∆2 > 0 (see Fig. 1 (1-5)-(1-7)), which corresponds to

H(φ, y) = h1. In addition, if h1 < 0, equation (1.1) also has a smooth solitary wave
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solution of peak type (see Fig. 1 (1-7)). (2) ρ1 < 0, 1 < c < 1− 3
16ρ1

, 0 < φ1 < φ2 <

φs, h0 > h2, ∆2 < 0 (see Fig. 3 (3-19)), which corresponds to H(φ, y) = h2. (iii.)
Equation (1.1) has a smooth solitary wave solution of peak type, which corresponds
to H(φ, y) = A0

Ω under the following conditions: (1) ρ1 = 0, c > 1, A0 < 0, ∆2 > 0
(see Fig. 2 (2-9)). (2) ρ1 < 0, 1 < c < 1 − 3

16ρ1
, A0 < 0, ∆2 ≥ 0 (see

Fig. 3 (3-15) and (3-16)). (3) ρ1 < 0, 1 < c < 1 − 3
16ρ1

, h0 < h2, ∆2 < 0
(see Fig. 3 (3-21). (iv.) Equation (1.1) has a smooth solitary wave solution of
peak type, which corresponds to H(φ, y) = h1 under the the following condi-
tions: (1) ρ1 > 0, c = 1 − 3

16ρ1
, h1 < 0, ∆2 > 0 (see Fig. 1 (1-4)). (2)

ρ1 = 0, 0 < c < 1, h∗ < 0, ∆2 > 0 (see Fig. 2 (2-3)). (3) ρ1 < 0, 0 < c < 1, h1 < 0
(see Fig. 3 (3-7), (3-8) and (3-10)). (4) ρ1 < 0, 1 < c < 1 − 3

16ρ1
, ∆2 < 0 (see

Fig. 3 (3-13)). Second, we consider the smooth periodic solutions of equation
(1.1). Theorem 3.2. (i.) Equation (1.1) has a family of smooth periodic wave
solutions, which corresponds to H(φ, y) = h, h ∈ (h2,

A0
Ω ) under the following con-

ditions: (1) ρ1 > 0, c = 1, φ2 < φ1 = 0 < φs, ∆2 > 0 (see Fig. 1 (1-1)). (2)
ρ1 > 0, c > 1, φ2 < 0 (see Fig. 1 (1-8)-(1-12)). In addition, if A0 < 0, ∆2 > 0,
(1.1) also has a family of smooth periodic wave solutions, which corresponds to
H(φ, y) = h, h ∈ (h1,

A0
Ω ) (see Fig. 1 (1-12)). (ii.) Equation (1.1) has a family of

smooth periodic wave solutions, which corresponds to H(φ, y) = h, h ∈ (A0
Ω , h1),

under the following conditions: (1) ρ1 > 0, c = 1− 3
16ρ1

, h1 < 0, ∆2 > 0 (see Fig.
1 (1-4)). (2) ρ1 < 0, 0 < c < 1, φ1 < 0 < φ2 ≤ φs, h1 < 0, ∆2 ≤ 0 (see Fig. 3
(3-7) and (3-8)). (3) ρ1 < 0, 0 < c < 1, φ1 < 0 < φs < φ2, h1 < 0, ∆2 > 0 (see
Fig. 3 (3-10)).

(iii.) Equation (1.1) has a family of smooth periodic wave solutions, which
corresponds to H(φ, y) = h, h ∈ (h1,

A0
Ω ) under the following conditions: (1)

ρ1 < 0, 1 < c < 1 − 3
16ρ1

, 0 < φ1 < φs ≤ φ2, A0 < 0, ∆2 ≥ 0 (see Fig. 3 (3-15)
and (3-16)). (2) ρ1 < 0, 1 < c < 1− 3

16ρ1
, 0 < φ1 < φ2 < φs, h0 ≤ h2, ∆2 < 0 (see

Fig. 3 (3-20) and (3-21)). (iv.) Equation (1.1) has a family of smooth periodic wave
solutions, under the following conditions: (1) ρ1 = 0, 0 < c < 1, φ0 < 0 < φs, h∗ <
0, ∆2 > 0 (see Fig. 2 (2-3)), which corresponds to H(φ, y) = h, h ∈ (A0

Ω , h∗). (2)
ρ1 = 0, c > 1, 0 < φ0 < φs, h0 < 0, ∆2 > 0 (see Fig. 2 (2-9)), which corre-
sponds to H(φ, y) = h, h ∈ (h∗, A0

Ω ). (v.) Equation (1.1) has a family of periodic
wave solutions, which corresponds to H(φ, y) = h, h ∈ (h2, h1) under the following
conditions: (1) ρ1 > 0, 1 − 3

16ρ1
< c < 1, φ2 < φ1 < 0 < φs, ∆2 > 0 (see Fig.

1 (1-5)-(1-7)). In addition, if h1 < 0, ∆2 > 0, equation (1.1) also has a family of
smooth periodic wave solutions which corresponds to H(φ, y) = h, h ∈ (A0

Ω , h1). (2)
ρ1 < 0, 1 < c < 1− 3

16ρ1
, 0 < φs < φ1 < φ2, ∆2 < 0 (see Fig. 3 (3-13)). (vi.) Equa-

tion (1.1) has a family of periodic wave solutions under the following conditions:
(1) ρ1 < 0, 0 < c < 1, φ1 < 0 < φ2 = φs, h1 > 0, ∆2 = 0, H(φ, y) = h, h ∈ (h0, 0]
(see Fig. 3 (3-9)). (2) ρ1 < 0, 1 < c < 1 − 3

16ρ1
, 0 < φs = φ1 < φ2, ∆2 =

0, H(φ, y) = h, h ∈ (h2, 0] (see Fig. 3 (3-14)). Finally, we notice that correspond-
ing to the phase orbits which close to a segment of the straight line φ = φs, there
exists a class of periodic cusp travelling wave solutions.

Theorem 3.3. It exists a class of uncountably infinite many-periodic travelling
wave solutions of Equation (1.1), which will gradually lose smoothness of wave
profiles when h is varied in H(φ, y) = h under the following conditions: (i.) When
h varies from h0 = A0

Ω to 0, the profile of periodic wave evolve from smooth periodic
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wave to periodic cusp wave, under the following conditions: (1) ρ1 > 0 c = 1, A0 <
0, ∆2 > 0, H(φ, y) = h, h ∈ (h0, 0) (see Fig. 1 (1-1)). (2) ρ1 > 0 c = 1− 3

16ρ1
, h1 >

0, ∆2 > 0, H(φ, y) = h, h ∈ (h0, 0) (see Fig. 1 (1-2)). (3) ρ1 > 0, 1− 3
16ρ1

< c <

1, h1 > 0, ∆2 > 0, H(φ, y) = h, h ∈ (h0, 0) (see Fig. 1 (1-5)). (4) ρ1 > 0, 0 <
c < 1 − 3

16ρ1
, 0 < φs, ∆2 > 0, H(φ, y) = h, h ∈ (h0, 0) (see Fig. 1 (1-13)). (5)

ρ1 > 0, c > 1, φ2 < 0 < φ1 < φs, A0 < 0, ∆2 > 0, H(φ, y) = h, h ∈ (h0, 0) (see
Fig. 1 (1-12)). (6) ρ1 = 0, 0 < c < 1, h∗ > 0, ∆2 > 0,H(φ, y) = h, h ∈ (h0, 0) (see
Fig. 2 (2-1)). (ii.) When h varies from h2 to 0, the profile of periodic wave evolve
from smooth periodic wave to periodic cusp waves, under the following conditions:
(1) ρ1 < 0, c = 1, 0 = φ1 < φs < φ2, ∆2 > 0, H(φ, y) = h, h ∈ (h2, 0) (see Fig.
3 (3-3)). (2) ρ1 < 0, 0 < c < 1, φ1 < 0 < φs < φ2, h1 ≤ 0, ∆2 > 0, H(φ, y) =
h, h ∈ (h2, 0) (see Fig. 3 (3-10)-(3-11)). (3) ρ1 < 0, 1 < c < 1 − 3

16ρ1
, 0 < φ1 <

φs < φ2, A0 ≤ 0, ∆2 > 0, H(φ, y) = h, h ∈ (h2, 0) (see Fig. 3 (3-16)-(3-17)). (iii.)
When ρ1 < 0, 0 < c < 1, φ1 < 0 < φs < φ2, h1 > 0, ∆2 > 0 corresponding to two
families of periodic orbits of system (1.3) given by H(φ, y) = h, h ∈ (h0, 0) and
h ∈ (h2, 0), (see Fig. 3 (3-12)), there are two families of periodic wave solutions.
As h varies from h0 to 0 and from h2 to 0, respectively, the profile of periodic waves
evolve from smooth periodic waves to periodic cusp waves. (iv.) When ρ1 < 0, 1 <
c < 1 − 3

16ρ1
, 0 < φ1 < φs < φ2, A0 > 0, ∆2 > 0, corresponding to two families

of periodic orbits of system (1.3) given by H(φ, y) = h, h ∈ (h1, 0) and h ∈ (h2, 0)
(see Fig. 3 (3-18)), there are two families of periodic wave solutions. When h
varies from h1 to 0 and from h2 to 0, respectively, the profiles of periodic waves
evolve from smooth periodic waves to periodic cusp waves. Theorem 3.4. Suppose
that ρ1 < 0, ρ2 < 0, 1 < c < 1 − 3

16ρ1
, 0 < φ1 < φ2 < φs, h0 = h2, ∆2 < 0.

Then, corresponding to h = h0 = h2 = A0
Ω in (2.2), equation (1.1) has a kink

wave and an anti-kink wave solution. For h ∈ (h1, h0), there exist uncountably
infinite many-smooth periodic travelling wave solutions of equation (1.1) (See Fig.
3 (3-20)).

4. Exact explicit parametric representations defined by H(φ, y) = 0 in
(2.2). In this section, we shall describe the types of non-smooth solitary wave and
periodic wave solutions that can appear for our system (1.1) which correspond
to some homoclinic or heteroclinic orbits of (2.1) connecting to the straight line
φ = − 1

αρ2
. To discuss the existence of cusp waves, we need to use the following

lemma relating to the singular straight line (see [3], Theorem 3.1 and Theorem
3.2). Lemma 4.1. The boundary curves of a periodic annulus are the limit curves of
closed orbits inside the annulus. If these boundary curves contain a segment of the
singular straight line φ = φs of system (1.3), then all along this segment and near
this segment, in a very short time interval, y = φ

ξ
rapidly jumps rapidly. By using

Lemma 4.1, corresponding to the homoclinic and heteroclinic orbits connecting to
φ = − 1

αρ2
in section 2, we now consider the level curves of H(φ, y) = 0 defined by

(2.2). We have the following different types of solitary cusp wave and periodic cusp
wave solutions.
4.1. Solitary cusp wave. 4.1.1. Suppose that ρ1 > 0, c = 1 − 3

16ρ1
, φ1 = φ2 <

0 < φs, h1 = 0 ,that is, ρ1 = −pρ2
4 , ∆2 > 0 (see Fig. 1 (1-3)). In this case,

H(φ, y) = 0 becomes (1 + αρ2φ)p = 0 or y2 = (αρ2pφ−3)3

6ρ3
2βα2p2(p+3)

. Thus, we obtain the
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following parametric representation of solitary cusp wave solution of equation (1.1):

u(x, t) = φ(x− ct) =
3

αρ2p
[1− p + 3

3(Ω1(x− ct) + 1)2
], 2

√
6β(−ρ2) < |x− ct| < ∞,

(4.1)
where Ω1 = 1

2
√

6β(−ρ2)
. 4.1.2. Suppose that ρ1 = 0, 0 < c < 1, φ0 < 0 < φs, h∗ =

0 , that is, c = 1 + 1
ρ2p , ∆2 > 0, (see Fig. 2 (2-2)). In this case, H(φ, y) = 0

becomes (1 + αρ2φ)p = 0 or y2 = − (2−αρ2pφ)2

ρ2βα2p2(p+2) . Thus, we obtain the following
parametric representation of solitary cusp wave solution of equation (1.1):

u(x, t) = φ(x− ct) =
1

α(−ρ2)p
[(p + 2) exp(−Ω2|x− ct|)− 2], (4.2)

where Ω2 = 1√
(−ρ2)β(p+2)

, 0 < |x−ct| < ∞. 4.1.3. Suppose that ρ1 = 0, c > 1, 0 <

φ0 < φs, h0 = 0 , that is, c = 1 − 1
ρ2(p+2) , ∆2 > 0 (see Fig. 2 (2-8)). In this

case, H(φ, y) = 0 becomes (1 + αρ2φ)p = 0 or y2 = − φ2

ρ2β(p+2) . Thus, we obtain
the following parametric representation of solitary cusp wave solution of equation
(1.1):

u(x, t) = φ(x− ct) =
1

α(−ρ2)
exp(−Ω3|x− ct|), (4.3)

where Ω3 = 1√
(−ρ2)β(p+2)

, 0 < |x− ct| < ∞.

4.2. Smooth periodic wave. 4.2.1. Suppose that ρ1 < 0, 0 < c < 1, φ1 <
0 < φ2 = φs, h1 > 0, h2 = 0, ∆2 = 0 (see Fig. 3 (3-9)). In this case, we
see that ρ1 = 3ρ2

2(c − 1) + 1.5ρ2. Now, H(φ, y) = 0 becomes (1 + αρ2φ)p = 0 or
y2 = − a1(φ2 + b1φ + c1)(φ + 1

αρ2
) = a1(− 1

αρ2
− φ)(φ− φM )(φ− φm), where a1 =

α(1+2ρ2(c−1))
β(p+3) , b1 = − 2β(p+3)(1+ρ2(p+5)(c−1))

ρ2(p+2)(1+2ρ2(c−1)) , c1 = 2β(p+3)(1+ρ2(p+5) (c−1))
αρ2

2(p+1)(p+2)(1+2ρ2(c−1))
, φM =

1
2 (

√
b2
1 − 4c1 − b1), φm = − 1

2 (
√

b2
1 − 4c1 + b1). Hence, we have the following para-

metric representation of a smooth periodic wave solution of (1.1):

u(x, t) = φ(x− ct) =
φM − φmk2sn2(Ω4(x− ct), k)

dn2(Ω4(x− ct), k)
, (4.4)

where Ω4 =
√

α(φs−φm)(1+2ρ2(c−1))
4β(p+3)ρ2

, k =
√

φs−φM

φs−φm
. 4.2.2. Suppose that ρ1 <

0, 1 < c < 1 − 3
16ρ1

, 0 < φs = φ1 < φ2, h1 = 0, ∆2 = 0, (see Fig. 3 (3-14)). In
this case, we see that ρ1 = 3ρ2

2(c − 1) + 1.5ρ2. Now, H(φ, y) = 0 becomes (1 +
αρ2φ)p = 0 or y2 = α(1+2ρ2(c−1))

β(p+3) (φ2+b2φ+c2) = α(1+2ρ2(c−1))
β(p+3) (φM−φ)(φ−φs)(φ−

φm), where b2 = − 2β(p+3)(1+ρ2(p+5)(c−1))
ρ2(p+2)(1+2ρ2(c−1)) , c2 = 2β(p+3)(1+ρ2(p+5)(c−1))

αρ2
2(p+1)(p+2)(1+2ρ2(c−1))

, φ
M

=
1
2 (

√
b2
2 − 4c2 − b2), φm = − 1

2 (
√

b2
2 − 4c2 + b2). Hence, we have the following

parametric representation of a smooth periodic wave solution of (1.1):

u(x, t) = φ(x− ct) = φM − (φM − φs)sn2(Ω5(x− ct), k), (4.5)

where Ω5 =
√

α(φM−φm)[1+2ρ2(c−1)]
4β(k+3) , k =

√
φM−φs

φM−φm
.

4.3. Coexistence of a smooth solitary wave and a solitary cusp wave.
4.3.1. Suppose that ρ1 > 0, 1− 3

16ρ1
< c < 1, φ2 < φ1 < 0 < φs, h1 = 0, that is,

A0−αρ2kA0φ1+C0φ
2
1+D0φ

3
1 = 0, ∆2 > 0 (see Fig. 1 (1-6)). There are a homoclinic

orbit and two heteroclinic orbits of (2.1) to the equilibrium point O(φ1, 0) with
the level curve y2 = D0

Ω

(
(−A0)

D0
− αρ2p(−A0)

D0
φ− C0

D0
φ2 − φ3

)
= 2αρ1

3β(p+3)(−ρ2)
(φ1 −
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φ)2(φ− φm), where φm = − 1
2 ( C0

D0
+ φ1 −

√
4αρ2kA0

D0
+ C2

0
D2

0
− 2C0

D0
φ1 − 3φ3

1) < 0 and
φ1 is given by (2.3). Thus, we have a smooth solitary wave solution of equation
(1.1) of valley form

u(x, t) = φ(x− ct) = φm + (φ1 − φm)tanh2(ω(x− ct)), (4.6)

where ω =
√

αρ1(φ1−φm)
−6βρ2(p+3) . On the other hand, for 1

ω tanh−1
√

φs−φm

φ1−φm
< |x−ct| < ∞,

u(x, t) = φ(x− ct) = −[φm + (φ1 − φm)tanh2(ω(x− ct))] (4.7)

describes the solitary cusp wave solution of peak type of (1.1), which corresponding
to two heteroclinic orbits and a segment of φ = φs. 4.3.2. Suppose that ρ1 > 0, c >
1, φ2 < 0 < φ1 < φs, A0 = 0, ∆2 > 0,, that is, h0 = hs = 0 (see Fig. 1
(1-11)). There are a homoclinic orbit and two heteroclinic orbits of (2.1) to the
equilibrium point O(0, 0) with the level curve y2 = 2αρ1

3βρ2(p+3)φ
2(φ − φm), where

φ
m

= 3(2ρ1−(p+3)ρ2)
2αρ1ρ2(p+2) < 0. Thus, we obtain a smooth solitary wave solution of valley

form
u(x− ct) = φ(x− ct) = φ

m
sech2(ω1(x− ct)), (4.8)

where ω1 =
√

αρ1φm

6βρ2(p+3) . On the other hand, when sech−1
(√

φs

φm

)
/ω1 < |x−ct| <

∞,
u(x− ct) = φ(x− ct) = −φmsech2(ω1(x− ct)), (4.9)

describes the solitary cusp wave solution of peak type of (1.1), which corresponding
to two heteroclinic orbits and a segment of φ = φs. 4.4. Periodic cusp wave.
4.4.1. Suppose that ρ1 > 0. We see 8 cases in Figure 1 (1-1), (1-2), (1-4), (1-5),
(1-7), (1-10), (1-12), (1-13). A branch of the level curve H(φ, y) = 0 is an arch of
heteroclinic orbit of (2.1), which defines a periodic cusp wave solution of peak type
of (1.1). In fact, in these cases we have y2 = −D0

Ω

(
A0
D0
− αρ2pA0

D0
φ + C0

D0
φ2 + φ3

)
=

2αρ1
3β(p+3)(−ρ2)

(φ−φm)[(φ−b1)2 +a2
1], where (φ

M
, 0) is the intersection point the arch

and φ−axis. Thus, we obtain the parametric representation of these wave solutions
as follows:

u(x, t) = φ(x− ct) =
(A + φm)− (A− φm)cn(Ω6(x− ct), k0)

1 + cn(Ω6(x− ct), k0)
, (4.10)

where 0 ≤ |x−ct| < 1
Ω6

cn−1(A+φm−φs

A+φm+φs
), A2 = (b1−φm)2+a2

1, k2
0 = A+b1−φm

2A , Ω6 =√
2ρ1A

3β(p+3)(−ρ2)
. 4.4.2. Suppose that ρ1 < 0. We see 3 cases in Figure 3 (3-3), (3-10),

(3-16). A branch of the level curve H(φ, y) = 0 is an arch of heteroclinic orbit of
(2.1), which defines a periodic cusp wave solution of the valley type of equation
(1.1). In fact, in these cases we have y2 = D0

Ω

(
−A0

D0
+ αρ2kA0

D0
φ− C0

D0
φ2 − φ3

)
=

− 2αρ1
3β(k+3)ρ2

(φ
M
− φ)[(φ − b2)2 + a2

2], where (φ
M

, 0) is the intersection point of the
arch and φ−axis. Thus, we obtain the parametric representation of these waves as
follows:

u(x, t) = φ(x− ct) =
(A1 + φM )cn(Ω7(x− ct), k̃0)− (A1 − φM )

1 + cn(Ω7(x− ct), k̃0)
, (4.11)

where 0 ≤ |x− ct| < 1
Ω7

cn−1(A1−φM+φs

A1+φM−φs
), A2

1 = (b2−φ
M

)2 +a2
2, k̃0

2
= A1−b2+φ

M

2φ
M

,

Ω7 =
√

2ρ1A1
3β(p+3)ρ2

. 4.4.3. Suppose that ρ1 = 0. We see two cases in Figure 2 (2-1)
and (2-7). A branch of the level curve H(φ, y) = 0 is an arch of heteroclinic orbit of
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(2.1), which defines a periodic cusp wave solution of peak type of equation (1.1). In
fact, in these cases we have y2 = −C0

Ω

(
A0
C0

+ α(−ρ2)pA0
C0

φ + φ2
)

= 1
β(p+2)(−ρ2)

(φ −
φM )(φ−φm). Thus, we have the following parametric representations of two periodic
cusp wave solutions of equation (1.1):

u(x, t) = φ(x− ct) =
1
2
[(φM + φm) + (φM − φm) cos ω2(x− ct)] (4.12)

where ω2 =
√

1
β(p+2)(−ρ2)

, φm = αρ2pA0+
√

α2ρ2
2p2A2

0−4A0C0

2C0
, φM = αρ2pA0

2C0
−

√
α2ρ2

2p2A2
0−4A0C0

2C0
.

5. Coexistence of a solitary cusp wave of the peak type and periodic
cusp waves of the valley type. 5.1. Suppose that ρ1 < 0, 0 < c < 1, φ1 <
0 < φs < φ2, h1 < 0, that is, A0 − αρ2kA0φ1 + C0φ

2
1 + D0φ

3
1 = 0, ∆2 > 0

(see Fig. 3 (3-11). In this case, H(φ, y) = 0 becomes (1 + αρ2φ)p = 0 or y2 =
D0
Ω

(
(−A0)

D0
− αρ2p(−A0)

D0
φ− C0

D0
φ2 − φ3

)
= 2α(−ρ1)

3β(p+3)(−ρ2)
(φM − φ)(φ − φ1)2. Hence,

we have the following parametric representations of a solitary cusp wave solution
for 1

ω3
tanh−1

√
φM−φs

φM−φ1
< |x − ct| < ∞ and a periodic cusp wave solution for 0 ≤

|x− ct| < 1
ω3

tanh−1
√

φM−φs

φM−φ1
of (1.1):

u(x, t) = φ(x− ct) = φM − (φM − φ1)tanh2(ω3(x− ct)), (4.13)

where ω3 =
√

α(−ρ1)(φM−φ1)
6β(p+3)(−ρ2)

and (φM , 0) is the intersection point of the arch and
φ-axis, φ1 is defined by (2.3).
5.2. Suppose that ρ1 < 0, 1 < c < 1 − 3

16ρ1
, 0 < φ1 < φs < φ2, A0 = 0, ∆2 >

0 (see Fig. 3 (3-17). In this case, H(φ, y) = 0 becomes (1 + αρ2φ)p = 0 or
y2 = D0

Ω φ2(φM − φ) = 2α(−ρ1)
3β(p+3)(−ρ2)

φ2(φM − φ), where φM = −C0
D0

. Thus, we
have the following parametric representations of a solitary cusp wave solution for
1

ω4
sech−1

√
φs

φM
< |x− ct| < ∞ and a periodic cusp wave solution for 0 ≤ |x− ct| <

1
ω4

sech−1
√

φs

φM
of equation (1.1):

u(x, t) = φ(x− ct) = φMsech2(ω4(x− ct)) (4.14)

where ω4 =
√

αρ1C0
6β(p+3)(−ρ2)D0

.

6. Coexistence of periodic cusp waves of the peak type and the val-
ley type. 6.1. Suppose that ρ1 < 0. We see two kinds of cases in Figure
3 (3-12) and (3-18). A branch of the level curve H(φ, y) = 0 are two arches
of heteroclinic orbits of (2.1), which defines a periodic cusp wave solutions of
peak and valley type of equation (1.1). In fact, in these cases we have y2 =
−D0

Ω

(
A0
D0
− αρ2pA0

D0
φ + C0

D0
φ2 + φ3

)
= 2α(−ρ1)

3β(p+3)(−ρ2)
(φM − φ)(φs − φ)(φ − φm). and

y2 = D0
Ω

(
(−A0)

D0
− αρ2p(−A0)

D0
φ− C0

D0
φ2 − φ3

)
= 2α(−ρ1)

3β(p+3)(−ρ2)
(φM − φ)(φ − φs)(φ −

φm). Corresponding to these two cases, respectively, we have the following para-
metric representations of a periodic cusp wave solution of the peak type for 0 ≤
|x− ct| < K(k0)

Ω8
:

u(x, t) = φ(x− ct) = φm + (φs − φm)sn2(Ω8(x− ct), k0) (4.15)
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and a periodic cusp wave solution of valley type for 0 ≤ |x− ct| < K(k10)
Ω8

:

u(x, t) = φ(x− ct) = φM − (φM − φs)sn2(Ω8(x− ct), k10), (4.16)

where Ω8 =
√

α(−ρ1)(φM−φm)
6β(p+3)(−ρ2)

, k0 =
√

φs−φm

φM−φm
, k10 =

√
φM−φs

φM−φm
and (φM , 0) and

(φm, 0) are two intersection points of two arch and φ-axis; K(k) is the first type of
complete elliptic integral.
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