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Abstract. In this paper, an SIR epidemic model for the spread of an in-
fectious disease transmitted by direct contact among humans and vectors
(mosquitoes ) which have an incubation time to become infectious is formu-
lated. It is shown that a disease-free equilibrium point is globally stable if no
endemic equilibrium point exists. Further, the endemic equilibrium point (if it
exists) is globally stable with respect to a “weak delay”. Some known results
are generalized.

1. Introduction. A model for the spread of an infectious disease transmitted by
a vector (e.g, mosquitoes) was proposed by Cooke [1]. Extensions of his model, were
considered by Busenberg and Cooke [2], Marcati and Pozio [3], Volz [4], and Beretta
etc [5,7-9]. They considered only the spread of an infectious disease transmitted
by a vector. In fact, the dynamics of some diseases (e.g, dengue fever, chagas
disease, malaria) are influenced by many factors involving humans, the vector and
the blood transfusion transmission, as well as the environment, which directly or
indirectly affects these elements and the interrelations among them [10]. In this
paper, we consider an SIR epidemic models for the spread of an infectious disease
transmitted by direct contact among humans and vectors (mosquitoes) which have
an incubation time to become infectious. The model still can be considered an
extension of Cooke’s model.

Let S(t) be the number of members of a population susceptible to the disease,
I(t) be the number of infective members, and R(t) be the number of members who
have been removed from the possibility of infection through full immunity. Then
the epidemic models for the spread of an infectious disease transmitted by vectors
and humans can be described by the following system:





S′(t) = b− β1S(t)
∫ h

0
f(s)I(t− s)ds− β2S(t)I(t)− µS(t),

I ′(t) = β1S(t)
∫ h

0
f(s)I(t− s)ds + β2S(t)I(t)− (µ + λ + c)I(t),

R′(t) = λI(t)− µR(t),
(1.1)
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where the constant coefficients are all positive. The f is usually nonnegative and
continuous, and

∫ h

0
f(τ)dτ = 1.

As usual, the initial condition of (1.1) is given as

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ), (−h ≤ θ ≤ 0), (1.2)

where ϕ = (ϕ1, ϕ2, ϕ3)T ∈ C such that ϕi(θ) = ϕi(0) ≥ 0 (−h ≤ θ ≤ 0 i = 1, 3),
ϕ2(θ) ≥ 0(−h ≤ θ ≤ 0), and C denotes the Banach space C = C([−h, 0], R3) of
continuous functions defined on [−h, 0].

From [6], the solution (S(t), I(t), R(t)) of (1.1) with the initial condition (1.2)
exists for all t ≥ 0 and is unique. Furthermore, we can easily show that S(t) >
0, I(t) > 0, R(t) > 0.

2. Preliminaries. We consider stability properties of system (1.1) with biologi-
cally reasonable initial values φ belonging to the Banach space C = C([−h, 0], R3)
of a continuum defined on [−h, 0]. Using the following result, we consider an au-
tonomous system of delay differential equations

x′(t) = F (xt) (2.1)

Such that F (0) = 0 and F : C([−h, 0], Rn) → Rn is Lipschitzian. The following
lemma is known.

Lemma 1 (see kuang [6]). Assume that ω1(·) and ω2(·) are nonnegative con-
tinuous scalar functions: R+0 → R+0 such that ω1(0) = ω2(0) = 0, limr→+∞ω1(r) =
+∞ and that V : C → R is a continuous differentiable scalar functional such that
for a special set S of solutions of (2.1) the following are satisfied:

V (φ) ≥ ω1(|φ(0)|), V ′(φ)|(2.1) ≤ −ω2(|φ(0)|). (2.2)

Then the solution x = 0 of (2.1) is uniformly stable and every solution is bounded.
If in addition, ω2(r) > 0 for r > 0, then x = 0 is globally asymptotically stable.

3. The stability analysis for the system (1.1). Let us consider model (1.1).
It is easy to show that n = S + I + R is bounded. In fact,

n′(t) = S′(t) + I ′(t) + R′(t) = b− µn(t)− cI(t) ≤ b− µn(t), (3.1)

and there exists T = T (ε, n(0)) > 0 for any sufficiently small ε > 0 such that

n(t) ≤ ε +
b

µ
for t > T. (3.2)

Let

Ωε = {(S, I, R) ∈ R3
+|n = S + I + R ≤ ε +

b

µ
}. (3.3)

For any sufficiently small ε > 0, the region Ωε is an attractive region of R3
+0 for

any trajectory of (1.1) with n(0) > ε+ b
µ . Accordingly, we will restrict the stability

analysis of the equilibria of (1.1) with respect to the compact subset Ωε of R3
+0.

By computation, it is easy to obtain the following two conclusions:
i. The endemic equilibrium is given by

E+ = (S∗, I∗, R∗) = (
µ + λ + c

β1 + β2
,

(b− µS∗)
(β1 + β2)S∗

,
λ(b− µS∗)

µ(β1 + β2)S∗
)

provided that
b

µ
>

µ + λ + c

β1 + β2
. (3.4)
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ii. The disease-free equilibrium point is given by E0 = (S∗, I∗, R∗) = ( b
µ , 0, 0),

which exists for all parameter values.

We can now prove the following theorem.
Theorem 3.1. (i) E0 of (2.18) is globally asymptotically stable with respect

to Ωε whenever
b

µ
<

µ + λ + c

β1 + β2
. (3.5)

(ii) When E+ of (1.1) exists (that is, (3.4) is true ), it is locally asymptotically
stable.

Proof. (i) We consider the following Lyapunov functional:

V (xt) = I(t) + w1R(t) + w2

∫ h

0

f(s)
∫ t

t−s

I(u)duds +
w3

2
(S(t)− S∗)2,

where wi > 0 (i = 1, 2, 3) and S∗ = b
µ . Then V (xt) ≥ min{1, w1,

w3
2 }(I(t) + R(t) +

(S(t) − S∗)2). The time derivative of V (xt) along the solution of system (1.1)
becomes

V̇ (xt)|(1.1) =β1S(t)
∫ h

0

f(s)I(t− s)ds + β2S(t)I(t)− (µ + λ + c)I(t)

+ w1(λI(t)− µR(t)) + w2I(t)− w2

∫ h

0

f(s)I(t− s)ds

+ w3(S − S∗)[−β1S(t)
∫ h

0

f(s)I(t− s)ds− β2S(t)I(t)

− µ(S(t)− S∗)]

=− w3µ(S − S∗)2 + [w1λ + w2 − (µ + c + λ)]I(t)− w1µR(t)
+ β2S(t)I(t)[1− w3(S − S∗)]

+ [β1S − w2 − w3β1S(S − S∗)]
∫ h

0

f(s)I(t− s)ds

=− w3µ(S − S∗)2 + [w1λ + w2 + σ − (µ + c + λ)]I(t)− w1µR(t)
+ I(t)[β2S(t)(1− w3(S − S∗))− σ]

+ [β1S − w2 − w3β1S(S − S∗)]
∫ h

0

f(s)I(t− s)ds

(3.6)
where σ > 0 is some positive constant chosen later. Let us choose σ > 0, wi >
0 (i = 1, 2, 3) satisfying

w1λ + w2 + σ < µ + c + λ, (3.7)
β1(1 + w3S

∗)2 < 4w2w3, (3.8)
β2(1 + w3S

∗)2 < 4w3σ. (3.9)

The choice of (3.8) is possible if w2 > β1S
∗. In fact, (3.8) is equivalent to

β1S
∗2w2

3 + 2(β1S
∗ − 2w2)w3 + β1 < 0,

which is true given that w3 = 1
S∗ if β1S

∗ − 2w2 < 0 and (β1S
∗ − 2w2)2 > (β1S

∗)2.
Similarly, the choice of (3.9) is possible if σ > β2S

∗. Together w2 > β1S
∗, σ > β2S

∗
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with (3.7), we can choose σ,wi > 0 (i = 1, 2, 3), satisfying (3.7), (3.8) and (3.9) if

µ + c + λ− w1λ > w2 + σ > (β1 + β2)S∗ =
b(β1 + β2)

µ
,

which is possible because of assumption (3.5). Further, (3.8 ) and (3.9) ensure that
the coefficients of the integral and I(t) in (3.6) are negative definite for all S > 0.
Hence from (3.6), V̇ (xt)|(1.1) is negative definite and is equal to zero if and only if
(S, I,R) = E0. This completes the proof of (i).

For(ii),we change the variables to u1 = S − S∗, u2 = I − I∗, u3 = R−R∗. From
equation (1.1), we obtain





u′1 =− β1(u1 + S∗)
∫ h

0

f(s)u2(t− s)ds− β1(u1 + S∗)I∗

− β2(u1 + S∗)(u2 + I∗)− µu1 − µS∗ + b,

u′2 =β1(u1 + S∗)
∫ h

0

f(s)u2(t− s)ds + β1(u1 + S∗)I∗

+ β2(u1 + S∗)(u2 + I∗)− (µ + λ + c)(u2 + I∗),
u′3 =λ(u2 + I∗)− µ(u3 + R∗).

(3.10)

The corresponding linear part becomes



u′1 = −[(β1 + β2)I∗ + µ]u1 − β1S
∗ ∫ h

0
f(s)u2(t− s)ds− β2S

∗u2,

u′2 = (β1 + β2)I∗u1 + β1S
∗ ∫ h

0
f(s)u2(t− s)ds + β2S

∗u2 − (µ + λ + c)u2,
u′3 = λu2 − µu3.

(3.11)
Consider the Lyapunov functional

V (ut) =
1
2
w1(u1 + u2)2 +

1
2
u2

2 +
1
2
w3u

2
3 +

1
2
β1S

∗
∫ h

0

f(s)
∫ t

t−s

u2
2(v)dvds,

where wi > 0(i = 1, 3). Note that

V (ut) ≥ 1
2
w1(u1 + u2)2 +

1
2
u2

2 +
1
2
w3u

2
3.

The time derivative of V (ut) along the solution of (3.11) is

V ′(ut) =w1(u1 + u2)[−µu1 − (λ + µ + c)u2] + (β1 + β2)I∗u1u2−
(λ + µ + c− β2S

∗)u2
2

+ β1S
∗u2

∫ h

0

f(s)u2(t− s)ds + w3u3u
′
3 +

1
2
β1S

∗u2
2

− 1
2
β1S

∗
∫ h

0

f(s)u2
2(t− s)ds

=− w1µu2
1 − [w1(λ + µ + c) + (λ + µ + c− β2S

∗)]u2
2

+ [−w1µ− w1(λ + µ + c) + (β1 + β2)I∗]u1u2 + w3λu2u3 − w3µu2
3

+ β1S
∗u2

∫ h

0

f(s)u2(t− s)ds +
1
2
β1S

∗u2
2 −

1
2
β1S

∗
∫ h

0

f(s)u2
2(t− s)ds.

(3.12)
Choose w1 > 0 satisfying

w1(λ + 2µ + c) = (β1 + β2)I∗. (3.13)
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Note that (β1 + β2)S∗ = λ + µ + c and for any u2,

β1S
∗u2

∫ h

0

f(s)u2(t− s)ds ≤ 1
2
β1S

∗u2
2 +

1
2
β1S

∗
∫ h

0

f(s)u2(t− s)ds.

Then (3.12) becomes

V ′(ut) ≤ −w1µu2
1 − w1(λ + µ + c)u2

2 − w3µu2
3 + w3λu2u3. (3.14)

Further if we choose w3 satisfying (λw3)2 − 4w3w1µ(λ + µ + c) < 0, then

0 < w3 <
4(λ + µ + c)µw1

λ2
=

4(λ + µ + c)µ(β1 + β2)I∗

λ2(λ + 2µ + c)
.

Form (3.14) we obtain that V ′(ut) is negative definite for any u2 and u3. This
completes the proof of (ii).

Theorem 3.2. The disease-free equilibrium E0 of (1.1) is globally attractive
with respect to Ωε whenever

b

µ
=

µ + λ + c

β1 + β2
.

Proof. for any solution (S(t), I(t), R(t)) of (1.1), let us first consider the case (a):
S(t) > S∗ for all t > t0. In this case, we see that for all t ≥ t0,

(S(t)− S∗)′ + I ′(t) + R′(t) = −µ(S(t)− S∗)− (µ + c)I(t)− µR(t)
≤ −µ[(S(t)− S∗) + I(t) + R(t)].

Thus,
lim

t→+∞
S(t) = S∗, lim

t→+∞
I(t) = lim

t→+∞
R(t) = 0.

Now let us consider the case (b): ϕ1 < S∗ and S(t) < S∗ for all t ≥ t0. Set

G = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ C|0 ≤ ϕ1 ≤ S∗, 0 ≤ ϕ2, 0 ≤ ϕ3}.
We define

V (ϕ) = ϕ2(0) + S∗β1

∫ h

0

f(s)
∫ 0

−s

ϕ2(u)duds.

Then

V ′(ϕ)|(1.1) = −(S∗ − S(t))β1

∫ h

0

f(s)ϕ2(−τ)dτ + β2S(t)I(t) + β1S
∗I(t)

− (λ + c + µ)I(t)

≤ −(S∗ − S(t))β1

∫ h

0

f(s)ϕ2(−τ)dτ ≤ 0.

(3.15)

Since S(t) ≤ n(t) ≤ b
µ = S∗, V (ϕ) is a Liapunov function on the subset G in C.

Let
Q = {ϕ ∈ G|V̇ (ϕ)|(1.1) = 0}

and M be the largest set in Q, which is invariant with respect to (1.1). Clearly, M
is not empty, since (S∗, 0, 0) ∈ M . From (3.15) we see that that V ′(ϕ)|(1.1) = 0 only
if S∗ − ϕ1(0) = 0 and ϕ2(0) = 0. Note that S∗ − ϕ1(0) = S∗ − S(t) = 0, and the
equations of (1.1) imply that ϕ2 = 0. Thus, we always have ϕ2 = 0 if V ′(ϕ)|(1.1) =
0. Observe that G is invariant with respect to (1.1) and that any solution of
(1.1) is bounded by (3.1). Thus, it follows from the Liapunov-LaSalle invariance
principle that limt→+∞ I(t) = 0. Hence, limt→+∞R(t) = 0 by limt→+∞ I(t) = 0
and the last equation of (1.1). Furthermore, note that boundedness of S(t) and
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∫ h

0
f(τ)I(t − τ)dτ → 0 as t → +∞ by limt→+∞ I(t) = 0, we can also easily have

that limt→+∞ S(t) = S∗ by the first equation of (1.1).
We now must consider case (c). There is τ̂ with 0 ≤ τ̂ < h such that ϕ1(−τ̂) ≥ S∗

and S(t) < S∗ for all t ≥ t0, or there is some t̂0 ≥ t0 such that S(t̂0) = S∗.
If S(t) < S∗ for all t ≥ t0, observe that system (1.1) is autonomous and the

solution of (1.1) with any initial function ϕ ∈ C is unique, and by the same argument
as that used in case (b) with t0 = t0 + 2h, we can show that limt→+∞ S(t) = S∗

and limt→+∞ I(t) = limt→+∞R(t) = 0.
If there is some t̂0 ≥ t0 such that S(t̂0) = S∗, by (1.1) we see that

(S − S∗)′(t̂0) = −β1S(t̂0)
∫ h

0
f(τ)I(t̂0 − τ)dτ − β2S(t̂0)I(t̂0)− µS(t̂0) + b

= −β1S(t̂0)
∫ h

0
f(τ)I(t̂0 − τ)dτ − β2S(t̂0)I(t̂0) < 0.

Thus, for all t > t̂0 , S(t)− S∗ < 0, i.e. S(t) < S∗, Again by the same argument as
used in case (b) with t0 replaced by t̂0 + 2h, we can show that limt→+∞ S(t) = S∗

and limt→+∞ I(t) = limt→+∞R(t) = 0.
This completes the proof of theorem 3.2.

4. The global asymptotic stability of the endemic equilibrium. In the fol-
lowing, we consider the global asymptotic stability of the endemic equilibrium E+

by applying the same techniques as that used in [5]. Let us define

T ≡
∫ h

0

τf(τ)dτ.

Theorem 4.1. If there is some S̃ satisfying S∗ < S̃ < b
µ+c+λ

def
= ∆ such that

the following conditions hold true:

i. h < min{(2β1S̃)−1,
S̃ − S∗

b− µS∗
};

ii. b ≤ S̃[(β1 + β2)(∆− S̃) + µ],

then the endemic equilibrium E+ of system (1.1) is globally asymptotically stable.
Proof. For any positive constant S̃ satisfying S∗ < S̃ < ∆, define

Ωε,S̃ ≡ {(S, I,R) ∈ Ωε|S < S̃}.
We can show that the following two assertions are true.

Assertion A: For any positive constant S̃ satisfying S∗ < S̃ < ∆, if h < (2βS̃)−1,
then any solution of (1.1) will not ultimately stay in Ωε\Ωε,S̃ .

Assertion B: If conditions (i) and (ii) hold, then any solution of (1.1) will even-
tually stay in Ωε,S̃ .

The proof of assertion A is similar to that show in [5]. Thus, we show the proof
of assertion B only.

In fact, if not, by assertion A, there is some solution (S(t), I(t), R(t)) of (1.1)
such that, for any positive constant S̃1 satisfying S∗ < S̃1 < S̃ < ∆, there are
two time sequences {tn} and {t′n} with tn < t′n < tn+1 < t′n+1, tn → +∞ and
t′n → +∞, such that

S(tn) = S̃1, S(t′n) = S̃, S̃1 ≤ S(t) ≤ S̃ for tn ≤ t ≤ t′n (4.1)
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and Ṡ(t′n) ≥ 0. From (1.1), we get

S̃ − S̃1 = S(t′n)− S(tn)
= −β1

∫ t′n
tn

S(v)
∫ h

0
f(τ)I(v − τ)dvdτ − β2

∫ t′n
tn

S(v)I(v)dvdτ

−µ
∫ t′n

tn
S(v)dv + b(t′n − tn),

(4.2)

which, together with (4.1), yields

b(t′n − tn) =S̃ − S̃1 + β1

∫ t′n

tn

S(v)
∫ h

0

f(τ)I(v − τ)dvdτ

+ β2

∫ t′n

tn

S(v)I(v)dvdτ + µ

∫ t′n

tn

S(v)dv

≥ S̃ − S̃1 + µS̃1(t′n − tn).

Thus,

t′n − tn ≥ S̃ − S̃1

b− µS̃1

(4.3)

and
S̃ − S̃1

b− µS̃1

→ S̃ − S̃1

b− µS̃1

> h as S̃1 → S∗. (4.4)

By condition (i), from (1.1), we also have

(S(t) + I(t))′ = −µS(t)− (µ + λ + c)I(t) + b
≥ −(µ + c + λ)(S(t) + I(t)) + b,

(4.5)

which, together with S̃ < ∆, implies that, for any sufficiently small positive constant
η, there is a large T1 > 0 such that for t ≥ T1,

S(t) + I(t) ≥ ∆− η
def
= H(η) > S̃. (4.6)

Thus, for large t′n and S̃1 that is sufficiently close to S∗, from (4.6), we get

I(t′n − τ) ≥ H(η)− S(t′n − τ). (4.7)

It follows from (4.3) and (4.4) that we have

tn ≤ t′n − τ ≤ t′n, for 0 ≤ τ ≤ h. (4.8)

Thus, it follows from (4.1) and (4.7) that

I(t′n − τ) ≥ H(η)− S̃ > 0, 0 ≤ τ ≤ h. (4.9)

From (4.1) and (4.6), we also have that

I(t′n − τ) ≥ H(η)− S̃ > 0, 0 ≤ τ ≤ h. (4.10)

Equations (4.9) and (4.10) and condition (ii) enable us to show that Ṡ(t′n) < 0,
which is a contradiction to Ṡ(t′n) ≥ 0 .

In fact, from (1.1), (4.9) and (4.10) , we have that

S′(t′n) = −β1S(t′n)
∫ h

0
f(τ)I(t′n − τ)dτ − β2S(t′n)I(t′n)− µS(t′n) + b

= −β1S̃
∫ h

0
f(τ)I(t′n − τ)dτ − β2S̃I(t′n)− µS̃ + b

≤ −(β1 + β2)S̃[H(η)− S̃]− µS̃ + b

≡ G(S̃, η).

(4.11)

By condition (ii), we see that

G(S̃, 0) = −S̃[(β1 + β2)(∆− S̃) + µ] + b < 0. (4.12)
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Thus, it follows from (4.11), (4.12) and the continuity of G(S̃, η) with respect to
η that S′(t′n) ≤ G(S̃, η) < 0 for sufficiently small η > 0. This proves our second
assertion.

Now, by assertions A and B, we can complete the proof of Theorem 4.1 by using
the following Liapunov functional:

V (t, S, It, R) = S − S∗ln S
S∗ + 1

2w1(S − S∗ + I − I∗)2

+ 1
2w2

∫ h

0
f(τ)

∫ t

t−τ
(I(u)− I∗)2dudτ,

where w1 and w2 are some positive constants chosen later. By assertion B, since
S∗ < S̃ < ∆, there is a sufficiently large time T2 > t0 such that for t > T2,

S(t) ≤ S̃. (4.13)

The derivative V̇ (t, S, It, R) of V (t, S, It, R) along the solution of (1.1) satisfies

V̇ (t, S, It, R) = −δ[(S − S∗)2 + (I − I∗)2]− 1
2

∫ h

0

f(τ)[Q(t, τ)B(t, S)QT (t, τ)]dτ

(4.14)
for all t ≥ T2, where δ is some positive constant chosen later:

B(t) =




2(w1µ− δ + (β1+β2)I
∗+µ

S ) w1[(β1 + β2)S∗ + µ] + β2 β1

w1[(β1 + β2)S∗ + µ] + β2 2[w1(β1 + β2)S∗ − w2 − δ] 0
β1 0 2w2


 ,

Q(t, τ) = (S(t)− S∗, I(t)− I∗, I(t− τ)).
We can easily see that the symmetric matrix B(S(t)) is positive dominant diag-

onal for every t ≥ T2 if

2[(β1 + β2)I∗ + µ]
S

− 4δ− (β1 +β2) > w1[(β1 +β2)S∗−µ]− 2δ > 2w2 > β1 (4.15)

Let us choose δ small enough such that

0 < δ <
(β1 + β2)

2S̃
(∆− S̃).

Then, for all t ≥ T2,

2[(β1 + β2)I∗ + µ]
S

− 4δ − (β1 + β2) > β1 + β2 > β1.

Note that (β1 + β2)S∗ − µ = λ + c > 0, thus, we can easily choose the positive
constants w1, w2 and δ satisfying (4.15). Hence, it follows from (4.14) that for all
t > T2,

V̇ (t, S, It, R) ≤ −δ[(S − S∗)2 + (I − I∗)2],
from which we have that for all t > T2,

V (t, S, It, R) ≤ V (T2, S(T2), IT2 , R(T2))− δ

∫ t

T2

[(S(u)− S∗)2 + (I(u)− I∗)2]du.

Thus, ∫ ∞

t0

(S(u)− S∗)2du < +∞,

∫ ∞

t0

(I(u)− I∗)2du < +∞.

By (1.1), we see that d/dt(S(t) − S∗)2 and d/dt(I(t) − I∗)2 are also uniformly
bounded for t ≥ t0. Thus, the well-known Barbalat’s lemma shows that

(S(t)− S∗)2 + (I(t)− I∗)2 → 0 as t → +∞. (4.16)
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That R(t) → R∗ as t → +∞ is an immediate result of (4.16) and the third equation
of (1.1).

The proof of Theorem 4.1 is completed.
Theorem 4.1 gives a sufficient condition for the endemic equilibrium of system

(1.1) to be globally asymptotically stable and also needs that the system with
sufficiently small delay h. Theorem 4.1 extends the results in [5].
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