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Abstract. The SARS epidemic of 2002–3 led to the study of epidemic mod-
els including management measures and other generalizations of the original
1927 epidemic model of Kermack and McKendrick. We consider some natural
extensions of the Kermack-McKendrick model and show that they share the
main properties of the original model.

In honor of Professor Zhien Ma’s 70th birthday

1. Introduction. Almost since the beginning of recorded history there have been
epidemics. An epidemic may be described as a sudden outbreak of a disease that
infects a substantial portion of the population in a region before it disappears. In
the nineteenth century, recurrent waves of cholera killed millions in India. The
influenza epidemic of 1918–1919 killed at least 20 million people overall, more than
half a million in the United States. One of the questions that first attracted the
attention of scientists interested in the study of the spread of communicable diseases
was why diseases would suddenly develop in a community and then disappear just
as suddenly without infecting the entire community.

One of the early triumphs of mathematical epidemiology was the formulation of
a simple model that predicted just such behavior. Kermack and McKendrick [18]
formulated a model with the population under study being divided into compart-
ments, namely a susceptible class S, an infective class I, and a removed class R. A
special case of their model has become known as the Kermack-McKendrick model.
In this model R is determined once S and I are known, and thus we can drop the
R equation from the model, leaving the system of two equations:

S′ = −βSI (1)
I ′ = (βS − α)I.

The system (1) has been used successfully to fit data from many epidemics, and
it is very easily analyzed qualitatively. This analysis has been described in many
references, including [6].

The model is based on the following assumptions:
i. An average member of the population makes contact sufficient to transmit

infection with βN others per unit time, where N represents total population
size.

ii. A fraction α of infectives leave the infective class per unit time.
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iii. There is no entry into or departure from the population, except possibly
through death from the disease.

Since the fraction of contacts made by an infective that are with a susceptible and
may therefore produce a new infective is S/N , the rate of new infections is

βN
S

N
I = βSI.

If there are disease deaths, N is a function of t. Let us think of a population of
size K into which a small number of infectives is introduced, so that S(0) ≈ K,
I(0) ≈ 0, N(0) = K.

The model (1) has the following two basic properties shared by more complicated
epidemic models.

I. There is a basic reproduction number R0 = βK/α such that if R0 < 1 there
is no epidemic, while if R0 > 1 there is an epidemic.

II. An epidemic eventually dies out, leaving part of the population untouched.
By an epidemic we mean a situation in which I first increases to a maximum

and then decreases to zero. The other possibility is that I decreases monotonically
to zero (no epidemic). The definition of the basic reproduction number R0 is that
the basic reproduction number is the number of secondary infections caused by a
single infective introduced into a wholly susceptible population of size K over the
course of the infection of this single infective. In this situation, an infective makes
βK contacts in unit time, all with susceptibles and producing new infections, and
the mean infective period is 1/α; thus, the basic reproduction number is βK/α.

To establish the first property, we find orbits of the system (1) in the (S, I) plane
by integrating

dI

dS
=

I ′

S′
=

(βS − α)I
−βSI

= −1 +
α

βS
.

Every orbit is a curve in the (S, I) plane, terminating at a point (S∞, 0), with
S∞ > 0 and satisfying

K − α

β
log S0 = S∞ − α

β
log S∞, (2)

the final size equation. From this we deduce that limt→∞ S(t) = S∞ > 0. To show
that I(t) → 0, we observe that S + I is a non-negative monotone nonincreasing
function, which has a limit as t → ∞. Since (S + I) is a smooth function, its
derivative must approach zero, and this shows that limt→∞ I(t) = 0.

Initially, the number of infectives grows exponentially if and only if R0 > 1,
because the equation for I may be approximated for t → 0 by

I ′ = (βK − α)I,

and the initial exponential growth rate is

r = βK − α = α(R0 − 1).

This initial growth rate r may be determined experimentally when an epidemic
begins. Then, since K and α may be measured, β may be calculated as

β =
r + α

K

However, because of incomplete data and underreporting of cases, this estimate may
not be very accurate. This inaccuracy is even more pronounced for an outbreak of
a previously unknown disease, where early cases are likely to be misdiagnosed.
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Until the SARS epidemic of 2002–3, most of the work in mathematical epi-
demiology concentrated on studies of specific diseases or on the interplay between
epidemiological and demographic effects. There were studies of epidemic models,
including [4, 5, 6, 13, 14, 15, 16, 22, 24], which concentrated on analysis of the
course of an epidemic but did not examine the effects of control measures. Studies
of the SARS epidemic, such as the dynamic models in [2, 9], began with the original
so-called Kermack-McKendrick model (1) but included control measures to make
the models more realistic. The purpose of this work is to show that a large vari-
ety of general epidemic models, including those which have come out of the SARS
epidemic, have the basic properties I and II.

2. General contact rates. The assumption in the model (1) of a rate of contacts
per infective proportional to population size N , called mass action incidence, was
used in all the early epidemic models. It is more realistic to assume a contact rate
that is a nonincreasing function of total population size. For example, a situation in
which the number of contacts per infective in unit time is constant, called standard
incidence, is probably a more accurate description for sexually transmitted diseases.

We generalize the model (1) by replacing assumption (i) with the assumption
that an average infective makes C(N) contacts in unit time with C ′(N) ≥ 0, [1, 7],
and we define

β(N) =
C(N)

N
.

It is reasonable to assume β′(N) ≤ 0 to express the idea of saturation in the number
of contacts. Then bilinear incidence corresponds to the choice C(N) = βN, β(N) =
β, and standard incidence corresponds to the choice C(N) = λ, β(N) = λ/N . The
assumptions C(N) = Nβ(N), C ′(N) ≥ 0 imply that

β(N) + Nβ′(N) ≥ 0. (3)

Some disease transmission models have used a Michaelis-Menten type of inter-
action of the form

C(N) =
aN

1 + bN
[7]. Another form based on a mechanistic derivation for pair formation [12] leads
to an expression of the form

C(N) =
aN

1 + bN +
√

1 + 2bN
.

Data for diseases transmitted by contact in cities of moderate size [21] suggests a
good fit is obtained using the form

C(N) = λNa,

with a = 0.05. All of these forms satisfy the conditions C ′(N) ≥ 0, β′(N) ≤ 0.
Additional remarks on contact modeling may be found in [19]. If there are no disease
deaths, so that the total population size is constant, all incidence assumptions
involving total population size are equivalent, but if there are disease deaths the
behavior of a model might depend on the form of the incidence.

An epidemic model in which the incidence is assumed to depend on total pop-
ulation size must include an equation for total population size. This forces us to
distinguish between members of the population who die of the disease and members
of the population who recover with immunity against reinfection. Such a distinc-
tion was not needed in the original Kermack-McKendrick model, even in its general
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form. We assume that a fraction f of the members leaving the infective class at
time t recover and the remaining fraction (1− f) die of disease.

To generalize (1) to include a general contact rate, we use S, I, and N as variables,
with R = N−S−I. It will be convenient to use N as a model variable in place of R
because the rate of new infections is now β(N)SI. We obtain a three-dimensional
model:

S′ = −β(N)SI

I ′ = β(N)SI − αI (4)
N ′ = −(1− f)αI.

We wish to show that model (4) has the same qualitative behavior as model (1),
namely that it has the properties I and II.

For model (4), the basic reproduction number is given by

R0 =
Kβ(K)

α

because a single infective introduced into a wholly susceptible population makes
C(K) = Kβ(K) contacts in unit time, all of which are with susceptibles and thus
produce new infections, and the mean infective period is 1/α. In addition to the
basic reproduction number R0, there is also a time-dependent running reproduction
number, that we call R∗, representing the number of secondary infections caused
by a single individual in the population who becomes infective at time t. In this
situation, an infective makes C(N) = Nβ(N) contacts in unit time, of which a
fraction S/N are with susceptibles and thus produce new infections. Then it is
easy to see that for model (4) the running reproduction number is given by

R∗ =
Sβ(N)

α
.

If R∗ < 1 for all large t, the epidemic will die out. We may calculate the rate of
change of the running reproduction number with respect to time, using (3) and (4)
to find that

d

dt
R∗ =

S′(t)β(N) + S(t)β′(N)N ′(t)
α

=
(−β(N))2SI − Sα(1− f)β′(N)

α

≤ β(N)SI

α
·
[
β(N)− (1− f)α

N
.

]

Thus, d
dtR

∗ < 0 if Nβ(N) > α(1 − f), or R∗ > (1 − f)S/N. This means that R∗

decreases whenever R∗ > 1. Thus, if R∗ < 1 for t = T , then R∗ < 1 for t > T .
If R0 > 1, then I ′(0) = α(R0 − 1)I(0) > 0, and an epidemic begins. However, R∗

decreases until it is less than 1 and then remains less than 1. Thus, the epidemic
will die out. If R0 < 1, then I ′(0) = α(R0 − 1)I(0) < 0, R∗ < 1 for all t, and there
is no epidemic.

If we use the same approach as was used for (1) to show that S∞ > 0, we obtain

dI

dS
= −1 +

α

Sβ(N)
,

and we are unable to proceed because of the dependence on N . However, since

β(N) ≤ β(0),
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we have
dI

dS
≥ −1 +

α

Sβ(0)
,

We may now use the following comparison theorem established by R. Conti [3].

Theorem 1. Let y(x), z(x) be the respective solutions of the initial value problems

y′ = f(x, y), y(x0) = y0

z′ = g(x, y), z(x0) = y0

and suppose that g(x, y) ≤ f(x, y) for all x, y. Then

z(x) ≤ y(x), x ≥ x0

z(x) ≥ y(x), x ≤ x0.

If we apply this comparison theorem to the solutions I(S) of
dI

dS
= −1 +

α

Sβ(N)
and I0(S) of

dI

dS
= −1 +

α

Sβ(0)
,

we see that for S ≤ K we have I(S) ≤ I0(S). Since we have seen in our study of
(1) that the the graph of I0(S) does not reach S = 0, it follows that the same is
true for the graph of I(S), and this shows that S∞ > 0. We should note that we
are assuming here that β(0) is finite.

If β(N) →∞ as N → 0, we must use a different approach to analyze the limiting
behavior. If f = 1, the total population size remains equal to the constant K, and
model (4) reduces to the simpler model (1) with β replaced by the constant β(K).
If f < 1, then N is a decreasing function of t, which may be inverted to give t as
a decreasing function of N , and then we may consider S as a function of N . This
function satisfies the separable differential equation

dS

dN
=

S′

N ′ =
β(N)S

α(1− f)
. (5)

We may solve (5) with initial condition S = N = K corresponding to t = 0 by
separation of variables, obtaining

S(t) = K exp


−

∫ K

N(t)
β(N)dN

α(1− f)


 (6)

We deduce from (6) that S∞ = 0 is possible only if N → 0 and
∫ K

0
β(N)dN diverges.

If f > 0, it is clear that it is not possible to have N → 0, since N(t) ≥ R(t) and
R(t) takes positive values. Thus S∞ = 0 is possible only if f = 0.

Our conclusion is that for model (4), some susceptibles escape the epidemic,
as with the simpler model (1), unless all infectives die of disease and

∫ K

0
β(N)dN

diverges. This divergence condition means that β(N) must be unbounded as N → 0,
a condition that is biologically unreasonable. In particular, standard incidence is
not realistic for small population sizes. A more realistic assumption would be that
the number of contacts per infective in unit time is linear for small population size
and saturates for larger population sizes, which rules out the possibility that the
epidemic could sweep through the entire population [19].
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In many infectious diseases, there is an exposed period after the transmission of
infection from susceptibles to potentially infective members but before these poten-
tial infectives can transmit infection. A generalization of the epidemic model (4)
that incorporates an exponentially distributed exposed period with compartments
S, E, I,R, and total population size N = S + E + I + R is

S′ = −β(N)SI

E′ = β(N)SI − κE (7)
I ′ = κE − αI

N ′ = −(1− f)αI.

We obtain, much as in the analysis of (1),

d(E + I)
dS

= −1 +
α

Sβ(N)
,

and we may deduce from this that S∞ > 0, as with (4). It follows that (7) and (4)
have the same asymptotic behavior.

Some diseases have an asymptomatic stage in which there is some infectivity
rather than an exposed period. This may be modeled by assuming infectivity
reduced by a factor εA during an exposed stage. The analogue of model (7) with
infectivity during the exposed stage and a density-dependent contact rate is

S′ = −β(N)S(I + εAA)
A′ = β(N)S(I + εAA)− κA (8)
I ′ = κA− αI

N ′ = −(1− f)αI.

Here, we have used A, for asymptomatic, in place of E as one of the compartments.
For this model

R0 =
Kβ(K)

α
+ εA

Kβ(K)
κ

.

If we attempt to use the approach used when there is no infectivity during the
exposed stage, we obtain

d

dI
(A + I) = −1 +

αI

β(N)(I + εAA)S
,

which we are unable to integrate. However, we can use an alternate approach which
actually comes from the original Kermack-McKendrick analysis.

We begin by writing

I ′ = −S′ −A′ − αI, I(0) = 0

and solving this linear first order differential equation to give

I(t) = −
∫ t

0

[S′(s) + A′(s)]e−α(t−s)ds.

A similar integration of the initial value problem

A′ = −κA− S′, E(0) = 0

gives

A(t) = −
∫ t

0

S′(s)e−κ(t−s)ds.
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Then we have

−S′(t)
S(t)

= −β(N(t))
∫ t

0

[S′(s) + A′(s)]e−α(t−s)ds + βεA

∫ t

0

[−S′(s)]e−κ(t−s)ds,

which we integrate with respect to t from 0 to ∞, obtaining

log
K

S∞
=

∫ ∞

0

β(N(t))
∫ t

0

[−S′(s)][e−α(t−s) + εAe−κ(t−s)]dsdt

−β(N(t))
∫ ∞

0

∫ t

0

A′(s)e−α(t−s)dsdt

≤ β(0)
∫ ∞

0

∫ ∞

t

[−S′(s)][e−α(t−s) + εAe−κ(t−s)]dtds

−β(K)
∫ ∞

0

∫ ∞

t

A′(s)e−α(t−s)dtds

= β(0)
∫ ∞

0

∫ ∞

0

[−S′(s)][e−α(u) + εAe−κu]duds

−β(K)
∫ ∞

0

∫ ∞

0

A′(s)e−αududs.

Since
∫∞
0

A′(s)ds = 0, this reduces to

log
K

S∞
≤ β(0)(K − S∞)

κ + εAα

κα
. (9)

This is the analogue of the limit equation, (2), for the simple model, (1), with mass
action incidence, and shows that S∞ > 0.

3. Models incorporating public-health responses. An actual epidemic differs
considerably from the idealized models, (1) or (4), as was shown by the SARS
epidemic of 2002–3. Some notable differences include the following:

1. Diagnosed infectives may be hospitalized, both for treatment and to isolate
them from the rest of the population.

2. Contact tracing of diagnosed infectives may identify people at risk of becoming
infective, who may be quarantined (instructed to remain at home and avoid
contacts) and monitored so that they may be isolated immediately if and
when they become infective.

3. Isolation may be imperfect; in-hospital transmission of infection was a major
problem in the SARS epidemic.

In the SARS epidemic of 2002–3 in-hospital transmission of disease from patients
to healthcare workers or visitors because of imperfect isolation accounted for many
of the cases. This points to an essential heterogeneity in disease transmission that
must be included whenever there is any risk of such transmission.

All these generalizations have been considered in studies of the SARS epidemic
of 2002–3. While the ideas were suggested in SARS modelling, they are in fact
relevant to any epidemic. One beneficial effect of the SARS epidemic has been to
draw attention to epidemic modeling which may be of great value in coping with
future epidemics.

When no vaccine is available, isolation and quarantine are the main measures
available for attempting to manage an outbreak of a new disease. We assume that
an epidemic has started, but that the number of infectives is small and almost
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all members of the population are still susceptible, and we formulate a model to
describe the course of an epidemic when management measures are begun under
the following assumptions:

1. Asymptomatic members may be infective with infectivity reduced by a factor
εA, 0 ≤ εA < 1.

2. Asymptomatic members who are not isolated become infective at rate κ1.
3. We introduce a class Q of quarantined members and a class J of isolated

members.
4. Asymptomatic members are quarantined at a rate γ1A (in practice, a quar-

antine will also be applied to many susceptibles, but we ignore this in the
model). The effect of this assumption is that some susceptibles make fewer
contacts than the model assumes. Quarantine is not perfect, but reduces the
contact rate by a factor εQ.

5. There may be transmission of disease by isolated members, with an infectivity
factor of εJ .

6. Infectives are diagnosed and isolated at a rate γ2I. In addition, quarantined
members are monitored and isolated immediately when they develop symp-
toms, at a rate κ2Q.

7. Infectives leave the infective class at rate α1I, and a fraction f1 of these
recover, and isolated members leave the isolated class at rate α2J , with a
fraction f2 recovering.

These assumptions lead to the SAQIJR model

S′ = −β(N)S[εAA + εAεQQ + I + εJJ ]
A′ = β(N)S[εAA + εAεQQ + I + εJJ ]− (κ1 + γ1)A
Q′ = γ1A− κ2Q (10)
I ′ = κ1A− (α1 + γ2)I
J ′ = κ2Q + γ2I − α2J

N ′ = −(1− f1)α1I − (1− f2)α2J.

The model before management measures are begun is (8), the special case

γ1 = γ2 = κ2 = α2 = f2 = 0, κ1 = κ, α1 = α

of (10). The model (10) is equivalent to the SARS model of [9] except for the
extension to a general contact rate in place of standard incidence and the omission
of immigration and natural death rate terms. The model of [2] is closely related to
model (10), having isolation but not quarantine, but also distinguishing two classes
of susceptibles with different susceptibilities.

We define the control reproduction number Rc to be the number of secondary
infections caused by a single infective in a population consisting essentially only
of susceptibles with the control measures in place. It is analogous to the basic
reproduction number, but instead of describing the very beginning of the disease
outbreak, it describes the beginning of the recognition of the epidemic. We assume
that this occurs soon enough so that the total population size is still approximately
K. The basic reproduction number is the value of the control reproduction number
before management measures are implemented.

In addition, there is a time-dependent effective reproduction number R∗ that con-
tinues to track the number of secondary infections caused by a single infective as the
epidemic continues with management measures (quarantine of asymptomatics and
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isolation of symptomatics) in place. It is not difficult to show that if the inflow into
the population from travellers and new births is small (i.e., if the epidemiological
time scale is much faster than the demographic time scale), our model implies that
R∗ will become and remain less than unity, so that the epidemic will always die out.
Even if Rc > 1, the epidemic will abate eventually when the effective reproduction
number becomes less than unity. However, it should be remembered that if the
epidemic takes so long to die out that there are enough new births and immigrants
to keep R∗ > 1, there will be an endemic equilibrium, meaning that the disease will
establish itself and remain in the population.

We may calculate Rc in the same way as we calculate R0 but using the full model
with quarantined and isolated classes. We obtain

R0 =
εAKβ(K)

κ1
+

Kβ(K)
α1

Rc =
εQεAKβ(K)

D1
+

Kβ(K)κ1

D1D2
+

εQKβ(K)γ1

D1κ2
+

εJKβ(K)κ1γ2

α2D1D2
+

εJKβ(K)γ1

α2D1
,

where D1 = γ1 + κ1, D2 = γ2 + α1.
The running reproduction number R∗ is the control reproduction number with

K replaced by N to reflect the change in total population size and multiplied by
S/N to reflect the fact that the fraction of contacts by an infected member which
are with a susceptible and thus can produce a new infection is S/N . Thus

R∗ =
[
εQεANβ(N)

D1
+

Nβ(N)κ1

D1D2
+

εQNβ(N)γ1

D1κ2
+

εJNβ(N)
α2D1D2

(κ1γ2 + γ1D2)
]

S

N

= Sβ(N)[
εQεA

D1
+

κ1

D1D2
+

εQγ1

D1κ2
+

εJκ1γ2

α2D1D2
+

εJγ1

α2D1
].

Each term of Rc has an epidemiological interpretation. The mean duration in A is
1/D1 with contact rate εAβ, giving a contribution to Rc of εEKβ(K)/D1. A frac-
tion κ1/D1 goes from A to I, with contact rate β and mean duration 1/D2, giving a
contribution of Kβ(K)κ1/D1D2. A fraction γ1/D1 goes from A to Q, with contact
rate εQεQβ and mean duration 1/κ2, giving a contribution of εQKβ(K)γ1/D1κ2.
A fraction κ1γ2/D1D2 goes from A to I to J , with a contact rate of εJβ and a
mean duration of 1/α2, giving a contribution of εJKβ(K)κ1γ2/α2D1D2. Finally,
a fraction γ1/D1 goes from E to Q to J with a contact rate of εJβ and a mean
duration of 1/α2, giving a contribution of εJKβ(K)γ1/D1α2. The sum of these
individual contributions gives Rc.

The linearization of (10) at the disease-free equilibrium (K, 0, 0, 0, 0, K) has the
4× 4 matrix



εAKβ(K)− (κ1 + γ1) εAεQKβ(K) Kβ(K) εJKβ(K)
γ1 −κ2 0 0
κ1 0 −(α1 + γ2) 0
0 κ2 γ2 −α2


 ,

obtained by dropping the zero rows and columns corresponding to S and N . The
corresponding characteristic equation is a fourth-degree polynomial equation whose
constant term is positive if Rc < 1 and negative if Rc > 1. Thus, if Rc > 1, there is a
positive eigenvalue, corresponding to an initial exponential growth rate of solutions
of (10). If Rc < 1, it is possible to show that all eigenvalues of the coefficient matrix
have negative real part, and thus solutions of (10) die out exponentially [23].
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An argument similar to the one used for (4) but technically more complicated
may be used to show that S∞ > 0 for the treatment model (10). If εA = 0—that
is, if there is no infectivity in the exposed or asymptomatic stage,—we can give a
simpler argument, as follows.

Let U = A + Q + I + J . Then we may consider U as a function of S, and
dU

dS
= −1 +

α1I + α2J

β(N)S(I + εJJ)
.

If we take c1 = min(α1, α2/εJ ) we obtain
dU

dS
≥ −1 +

α

β(N)S
,

and we obtain S∞ > 0 by the same analysis as was used for (4), provided β(0) is
finite. If β(N) →∞ as N → 0, we may also use the analysis of (4) since

dS

dN
≤ Sβ(N)

c2

if c2 ≤ min(α1(1− f1), α2(1− f2)/εJ).
Our conclusion is that the asymptotic behavior of the treatment model (10) is

the same as that of the simpler model (4). If the control reproduction number Rc

is less than 1, the disease dies out and if Rc > 1, there is an epidemic that will die
out leaving some members of the population untouched.

To relate S∞ and N∞, we begin by integrating the equations for S + A,Q, I, J,
and N of (10) with respect to t from t = 0 to t = ∞, using the initial conditions

S(0) + A(0) = N(0) = K, Q(0) = I(0) = J(0) = 0.

We obtain

K − S∞ = (κ1 + γ1)
∫ ∞

0

A(s)ds

γ1

∫ ∞

0

A(s)ds = κ2

∫ ∞

0

Q(s)ds

κ1

∫ ∞

0

A(s)ds = (α1 + γ2)
∫ ∞

0

I(s)ds

κ2

∫ ∞

0

Q(s)ds = α2

∫ ∞

0

J(s)ds− γ2

∫ ∞

0

I(s)ds

K −N∞ = (1− f1)α1

∫ ∞

0

I(s)ds + (1− f2)α2

∫ ∞

0

J(s)ds.

Now we need to express
∫∞
0

I(s)ds and
∫∞
0

J(s)ds in terms of
∫∞
0

A(s)ds. From
the above relations for integrals we obtain

(α1 + γ2)
∫ ∞

0

I(s)ds = κ1

∫ ∞

0

A(s)ds

α2

∫ ∞

0

J(s)ds =
γ1α1 + γ1γ2 + κ1γ2

α1 + γ2

∫ ∞

0

A(s)ds.

Thus we have

K −N∞ =
(1− f1)α1κ1 + (1− f2)(γ1α1 + γ1γ2 + κ1γ2)

α1 + γ2

∫ ∞

0

A(s)ds

=
(1− f1)α1κ1 + (1− f2)(γ1α1 + γ1γ2 + κ1γ2)

(κ1 + γ1)(α1 + γ2)
[K − S∞]. (11)
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This has the form
K −N∞ = c[K − S∞] (12)

with c, the disease death rate, given by

c =
(1− f1)α1κ1 + (1− f2)(γ1α1 + γ1γ2 + κ1γ2)

(κ1 + γ1)(α1 + γ2)
.

The mean disease death rate may be measured, and this expression gives informa-
tion about some of the parameters in the model that cannot be measured directly.
It is easy to see that 0 ≤ c ≤ 1 with c = 0 if and only if f1 = f2 = 1, that is, if
and only if there are no disease deaths, and c = 1 if and only if f1 = f2 = 0, that
is, if and only if the disease is universally fatal. The argument used to establish
(11) becomes considerably simpler when applied to model (4) and gives (12) with
c = 1− f

The computations in this section show that the asymptotic behavior of the treat-
ment model (10) is the same as that of the simpler model (4). If the control repro-
duction number Rc is less than 1, the disease dies out, and if Rc > 1, there is an
epidemic that will die out, leaving some members of the population untouched.

4. A vaccination model. If a vaccine is available for a disease that threatens an
epidemic outbreak, a vaccinated class that is protected at least partially against
infection should be included in a model. While this is probably not relevant for an
outbreak of a new disease, it would be an important aspect for modeling influenza
outbreaks or a bioterrorist outbreak of smallpox.

If there is an outbreak of a disease for which a vaccine is available, then it
is natural to include the effect of vaccination in an epidemic model. To model
(4), we add the assumption that in unit time a fraction φ of the susceptible class is
vaccinated. The vaccination may reduce but not completely eliminate susceptibility
to infection. We model this by including a factor σ, 0 ≤ σ ≤ 1, in the infection
rate of vaccinated members, with σ = 0 meaning that the vaccine is perfectly
effective and σ = 1 meaning that the vaccine has no effect. We assume also that
the vaccination loses effect at a proportional rate θ. We describe the new model by
including a vaccinated class V , with

S′ = −β(N)SI − φS + θV

V ′ = φS − σβ(N)V I − θV (13)
I ′ = β(N)(S + σV )I − αI

N ′ = −(1− f)αI.

We may view model (13) as a management model for an epidemic modeled ini-
tially by (4) that is different from model (10). We think of introducing a single
infective into a population of total size K consisting of S susceptibles and V vac-
cinated members. This infective makes β(K)(S + σV ) contacts in unit time, and
the mean infective period is 1/α. Thus the corresponding reproduction number is

β

α
· (S(0) + σV (0)). (14)

There are two essentially different scenarios. The first is an outbreak of a new
disease for which a vaccine (presumably developed originally for some other dis-
ease) is available. Then the population would not have been vaccinated before the
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beginning of the disease outbreak and we would take S(0) ≈ K,V (0) = 0. Then
the reproduction number given by (14) would be

R0 =
Kβ(K)

α
.

The second scenario is a disease against which the population has been prevac-
cinated; in this scenario we would assume the population size has reached the
disease-free equilibrium of (13); namely,

S =
θ

θ + φ
K, V =

φ

θ + φ
K.

Then the control reproduction number given by (13) is

Rφ =
Kβ(K)

α
· θ + σφ

θ + φ
.

From the equation for I in (13), we see that initially I grows exponentially, and
there is an epidemic if and only if

β(K)(S(0) + σV (0)) > α,

that is, if and only if the reproduction number is greater than 1.
The next step in the analysis of model (13) is to integrate the equations

(S + V + I)′ = −αI

and
N ′ = −(1− f)αI

to obtain
K −N∞ = (1− f)[K − S∞ − V∞].

Next we introduce a new variable T = S +V and then, using S +σV ≤ T , we have
dI

dT
= −1 +

α

β(N)(S + σV )

≥ −1 +
α

β(0)T
.

The comparison theorem used previously shows that T is less than the solution
of

dI

dT
= −1 +

α

β(0)T
,

and thus we have T∞ > 0 if β(0) is finite.
If β(N) → ∞ as N → 0, we may follow the analysis of (7) with T in place of

S to conclude that the quantity T = S + V , representing the number of members
of the population not touched by the disease, remains positive unless f = 0 and∫ K

0
β(N)dN diverges. Thus the vaccination model (13) retains the basic properties

(i) and (ii) of the simple epidemic model (1). In particular, in an epidemic model
with vaccination, it is not possible to have a backward bifurcation. This contrasts
with the situation in models with births and deaths in which vaccination may lead
to endemic equilibria when R0 < 1 and backward bifurcations (multiple endemic
equilibria or endemic equilibria) when R0 < 1 [8, 10, 11, 20].

If a vaccine is available for a particular disease, it would be straightforward
to formulate a model incorporating both a quarantine and isolation program and
vaccination. The same approach may be used to establish the basic properties (i)
and (ii). A natural question, which could be answered using such a model, would be
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whether vaccination, quarantine and isolation, or a combination of both measures
would be the most effective management strategy. Presumably, the answer would
depend on the parameters for the specific disease.

5. Models incorporating responses by individuals to an epidemic. An
aspect of epidemics not addressed in any of the models in earlier sections is the
possibility that some members may reduce the number of contacts they make with
other members of the population. One way this may occur is if infectives are sick
enough to be unable to continue their normal activities, even if they do not require
hospitalization. Another possibility is that if it is known that there is a disease
outbreak, some susceptibles will voluntarily reduce their contacts and take hygienic
measures to decrease the danger of becoming infected. In fact, there is reason to
believe that educational initiatives to encourage safer behavior may be a useful
public health measure for coping with a disease outbreak [17].

We will formulate a model that generalizes (4) and (7) by incorporating both
a decrease in the number of contacts made by infectives because of a reduced
level of activity and a decrease in the number of contacts made by susceptibles in
response to their awareness of infection. We begin with the reduction of contacts
by infectives. We replace the assumption that all members of the population make
C(N) contacts in unit time by the assumption that infectives make qC(N) contacts
in unit time while other members of the population make C(N) contacts in unit
time, where 0 ≤ q ≤ 1. Then the total number of contacts in unit time is (N −
I)C(N) + qIC(N), of which a fraction

qI

N − (1− q)I
is with an infective. This implies that the number of new infectives in unit time is

qSIC(N)
N − (1− q)I

.

To model the reduction of contacts by susceptibles we replace the contact rate
C(N) by a function C(N, I), satisfying the condition

∂

∂I
C(N, I) ≤ 0

in addition to the analogues of the conditions imposed earlier on C(N), namely,

∂

∂N
C(N, I) ≥ 0,

∂

∂N

C(N, I)
N

≤ 0, lim
N→0

C(N, 0)
N

= β(0) < ∞.

The resulting generalization of model (7) is

S′ = −θ(N, I)SI

E′ = θ(N, I)SI − κE (15)
I ′ = κE − αI

N ′ = −(1− f)αI

with

θ(N, I) =
qC(N, I)

N − (1− q)I
.

System (15) is identical to the system (7), with β(N) replaced by θ(N, I), and has

R0 =
qC(K, 0)

α
.



14 F. BRAUER

To show that S∞ > 0 for model (15), we note that θ(N, I) is a nondecreasing
function of q for all N, I and thus takes its maximum value C(N, I)/N when q = 1.
Since C(N, I) ≤ C(N, 0) we have

θ(N, I) ≤ C(N, I)
N

≤ C(N, 0)
N

≤ β(0) < ∞,

and now we may apply the comparison theorem as with (7) to show that S∞ > 0.
Thus the qualitative behavior of model (15) is the same as that of (7), and model
(15) has the basic properties I and II.

6. Discussion. We have established that general epidemic models behave in the
same way asymptotically in the sense that there is a basic reproduction number
which determines whether there will be an epidemic and that an epidemic will
pass through a population leaving some members untouched. We conjecture that
this would remain true for more complicated models with more compartments and
more stages, including models with heterogeneity of mixing. Of course, our models
assume that the course of the epidemic is rapid enough that demographic effects
may be ignored. If this is not true, then it would be possible for a disease to become
endemic.

The underlying assumptions in all the models we have described are that the sizes
of the compartments are large enough that deterministic models are appropriate
and that the mixing of members is homogeneous. While these assumptions are
probably reasonable once an epidemic is well underway, events at the beginning
of an epidemic may be quite different. To model events with a small number
of infectives in a population of susceptibles, we should use a branching process
stochastic model.

We have been considering an epidemic in a single location, ignoring travel of
individuals who may be infective between locations. Modern transportation has
permitted the rapid transfer of infectious diseases over great distances, and an
aspect of epidemic management that has become important is the screening of
travellers who may be infective. Epidemic models which include some movement
into and out of populations are a natural extension of the models considered here.
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