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Abstract. Empirical data for several ecological systems suggest that how
resource availability scales with patch geometry may influence the outcome of
species interactions. To study this process, we assume a pseudoequilibrium
to reduce the dimensionality of a two-consumer–two-resource model in which
different resources are available in the interior of a patch versus at the edge.
We analyze the resulting two species competition model to understand how the
outcome of competition between consumers changes as the size of the patch
changes, paying particular attention to the differential scaling of interior and
edge-linked allochthonous resources as a function of patch size. We characterize
conditions on patch size and parameters under which competitive exclusion,
coexistence, and a reversal in competitive dominance occur. We find that
the degree of exclusivity in the use of edge versus interior habitats influences
the potential for transitions in competitive outcomes, but that differences in
resource quality between interior and edge habitats can, depending on the
scenario, have either qualitative or quantitative influences on the transitions.
The work highlights the importance of patch size to understanding species
interactions and demonstrates that competitive dominance can be a scale-
dependent trait.

1. Introduction. Issues of scale are increasingly seen as critical to our under-
standing of ecological phenomena. Though much attention has been given to the
problem of “scaling up” across levels of observation or complexity ([32, 39], [56]),
the term scaling is also used in a geometric sense, referring to situations where the
physical size of a patch or system changes (e.g., [20, 29, 30]). Well-known examples
include the species-area relations of island biogeography (see [9]) and the “critical
patch size” phenomenon, where populations can only persist on patches that are
sufficiently large [10, 11, 28, 33, 52] . Typically the models used to study the effects
of spatial scale on ecological processes are based on reaction-diffusion equations
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[8, 10, 11, 28, 35, 52] . Those models are spatially explicit in that they track the
spatial distribution of populations over time. They have the advantage that they
can be derived by viewing the movements of individuals as random walks which
can be scaled-up to diffusion equations at the population level [8, 35, 55], and thus
they can incorporate mechanistic and empirical data about dispersal. They have
the disadvantage that their analysis often requires relatively sophisticated mathe-
matical methods. Our approach to scaling in this paper is conceptually simpler but
can yield conclusions at the population level that are similar in their general nature
and level of detail to those derived from reaction-diffusion models. Specifically, we
describe the dynamics and interactions of populations in terms of a system of or-
dinary differential equations with coefficients that depend on the size of the patch
inhabited by the populations.

Habitat geometry can influence ecological processes. For example, studies of
the metapopulation capacity of landscapes [22, 38] and edge-density in forests [49]
demonstrate the dynamic consequences of habitat geometry for cases involving mul-
tiple habitat patches, whose size and juxtaposition within a landscape matrix can
determine species persistence or outbreak dynamics. Other researchers have stud-
ied the ecological consequences of habitat geometry in the context of single-patch
problems, focusing on cases in which patterns or dynamics of a system depend upon
the physical dimensions of the patch. For example, Post et al. [46] demonstrated
that the size of lakes determines the complexity of foodwebs they can support.
Likewise, Laurance et al. [31] found that biomass loss from tropical forest frag-
ments was patch-size-dependent, driven in part by disturbance-mediated loss of
canopy trees from patch edges. At a theoretical level, a classical example involves
the “critical patch size” problem, in which persistence of a species is possible only
in patches large enough that local recruitment exceeds loss of dispersers across the
patch boundary [11, 28, 33, 52].

One reason the geometry of individual patches may influence ecological processes
or patterns is that geometric traits of habitat patches (and hence components of
heterogeneity associated with those traits) do not scale uniformly with patch size.
Perhaps the most obvious such example involves the differential scaling of perimeter
and area in two-dimensional patches. Holding patch shape constant, as the area
of a patch increases, the length of the perimeter also increases, but does so more
slowly, resulting in a net decrease in perimeter-to-area ratio. Likewise, the core
area of a patch (i.e., the portion of a patch buffered from factors external to the
patch; see [19], [21]) tends to scale more slowly than total area when patch size is
increased. This basic relationship has been pointed out many times in ecological
contexts, including discussions of ecosystem-level landscape flows [58] and species
persistence in fragmented forests [48].

Because patch edges and interiors may constitute distinctly different habitats (see
[7] and [19]), ecologists have explored a variety of issues relating to patch geometry,
emphasizing perimeter-to-area ratio in particular. For example, in a comprehensive
series of studies, Polis and colleagues examined how marine biomass washing up on
the shores of desert islands influenced food web dynamics for islands of different
sizes and perimeter-to-area ratios [43-45]. In agricultural systems, Bommarco [4]
and Ostman et al. [37] demonstrated that the perimeter-to-area ratio of cultivated
fields was an important determinant of fat reserves and body condition in carabid
beetles, which are generalist predators that can make important contributions to
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pest suppression. Under laboratory conditions, Pearman [40, 41] studied interspe-
cific competition between two tadpole species in mesocosms where edge habitat
corresponded to enclosure surface area near the air-water interface. He found that
high edge-to-interior ratios favored the growth and survivorship of the tadpole
species that more effectively fed on periphyton growing on enclosure surfaces. The
preceding examples suggest that features of habitat geometry, such as the differen-
tial scaling of perimeter and area with patch size, may influence species interactions
in diverse ecological systems. However, just how important habitat geometry per
se is to species interactions remains unclear. Is it the case that habitat geometry
plays a minor role that can always be ignored? Or might the effects of geometry
be so substantial as to alter the outcomes of species interactions? Additional ques-
tions arise when one considers that differences in amount of habitat (e.g., edge vs.
core) may also coincide with changes in habitat quality. For example, how does the
interplay between habitat quality and size influence species interactions when edge
and interior resources are of different values to consumers?

We seek a broader understanding of the consequences of geometric scaling for
species interactions. Toward this goal, we examine here a case involving two com-
peting consumer species, one of which predominantly uses patch interiors while the
other prefers habitat at the patch edge. Although we do not attempt to model a
specific natural system, the scenario we investigate captures important ecological
and geometric features of studies of habitat size-dependence in interspecific com-
petition between tadpoles [40, 41] and those investigating allochthonous input into
desert ecosystems [43-45]. We ask how the competitive interaction between these
hypothetical species changes when patch interior habitat scales quadratically, but
edge habitat scales only linearly with patch size. We also explore how the degree
of exclusivity in the use of edge versus interior habitats and differences in the qual-
ity of resources from those habitats may influence how the competitive dynamics
depend upon patch size.

Our approach to modeling is to start with a system of equations describing two
consumers and two resources, then to use a pseudoequilibrium hypothesis to reduce
it to a pair of equations describing the competition between the consumers. This is
the approach to modeling resource competition that was used by MacArthur [34]
to develop niche theory; see also [60]. A potential difficulty with this approach is
that in the original consumer-resource model one of the resources may be driven to
zero, which typically invalidates the pseudoequilibrium hypothesis. This point is
discussed in detail by Abrams [1]. To address it, we analyze the original consumer-
resource system to determine when one of the resources is driven to zero versus when
that does not occur so that the pseudoequilibrium hypothesis is valid. To capture
scale effects we assume that, when no consumers are present, the equilibrium level
of one of the resources in the original consumer-resource model scales linearly with
patch size, while the other resource equilibrium scales quadratically. It turns out
that this simple scaling can induce complex effects of patch size on population inter-
actions, including multiple reversals in competitive dominance. This is somewhat
surprising, because the models are quite elementary in the sense that they involve
only some ordinary differential equations rather than reaction-diffusion equations,
integral equations, interacting particle systems, or other more sophisticated spatial
models. Although the analysis uses only undergraduate- level mathematics, it is
fairly complicated and delicate, reflecting the complexity the models are capable
of capturing. A similar type of modeling approach has been used by Chase et al.
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[15] to study the effects of habitat patchiness on the coexistence of competing con-
sumers, but the focus of that work is on the degree of fragmentation of the habitat
rather than on spatial scale per se.

2. Model Formulation. A Consumer-Resource Model. We start with the
two-consumer–two-resource model

.
u= (A1R1 + A2qR2 − d1)u

.
v= (A3R1 + A4qR2 − d2)v

.

R1= ρ`− d3R1 −B1uR1 −B2vR1

.

R2= r

(
1− R2

K`2

)
R2 − C1uR2 − C2vR2.

(2.1)

Here R1 is the available amount of a resource found at the patch edge, R2 is the
available amount of a resource found on the patch interior, and u and v are the
populations of two generalist consumer species. The parameters in (2.1) are all pos-
itive. The parameter ` represents a linear dimension of the habitat such as length
or perimeter. We envision R1 as representing a resource which arrives at the patch
boundary from the outside at a fixed rate per unit length of boundary. We envision
R2 as a biotic resource that grows on the patch interior.

2.1 A Note on Scaling. We have formulated the model in terms of the amounts
of resources available rather than their densities so that we could scale the system
with `. However, that formulation requires the implicit assumption that the size of
the patch is small enough that an individual can search the entire patch. As long
as the entire patch is within the foraging range of each individual, the amount of
resource available to each individual will increase as the total amount of resources
increases. Once the size of the patch exceeds the foraging range of an individual,
that generally will no longer be the case, and a different modeling approach will
be required. However, the model is motivated by consideration of systems where
the patches are small, and the spatial effects it is supposed to capture are typically
associated with small patches. As an example, we will use the model to deduce the
presence of a minimal patch size that can support a population of each consumer.

The parameters di represent mortality rates (or the rate of degradation of R1

if R1 represents a nonliving resource such as detritus.) The coefficients Bi and Ci

represent resource consumption rates, while the coefficients Ai represent the rates
of resource consumption modified by the efficiency of the consumers in converting
resources into new consumers. The coefficient ρ represents the rate at which the
resource R1 arrives per unit length of patch boundary. The parameter K represents
the carrying capacity of the resource R2 on a patch of unit area, and r represents
the intrinsic growth rate of R2. Finally, the parameter q describes the relative
quality of the resource R2 compared to R1. In the systems studied by Polis et al.
[44] and Polis and Hurd [45], which motivated the present work, q is typically fairly
small. Some other systems where that is the case are discussed in [18] and [57].

Equation (2.1) specifies that resource 1 has chemostat-type growth dynamics,
whereas resource 2 has density-dependent, logistic-type dynamics. This distinction
is critical to our attempt to capture, via resource 1, the effects of an allochthonous
resource arriving along a patch edge as in Polis and Hurd [45] and Polis et al.
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[44]. Allochthonous resource inputs are important in a variety of ecological systems
(reviewed in [43]), constituting a major resource subsidy that enhances consumer
densities and generates donor-control of foodwebs [50, 51]. Mathematically, such
allochthonous inputs should usually be treated differently from a resource originat-
ing within a model’s domain (e.g., [26]). For simplicity, we assume that resource
1 arrives at a rate that is constant per unit edge distance and is independent of
the density of that resource already present locally. For resource 2, we assume
that the overall carrying capacity of the patch is the product of patch area and a
constant carrying capacity per unit area. The mathematical analysis we describe
below would proceed analogously if we instead used logistic-type growth dynamics
for both resource species. However, in contrast to many researchers’ first impres-
sions of that alternative model, the use of logistic dynamics throughout would not
result in a sizeable reduction in algebraic difficulty.

Without loss of generality in (2.1) we may identify u as the consumer which is
more efficient at utilizing the resource R1; that is,

A1/d1 > A3/d2. (2.2)

We shall see that if (2.2) is imposed, then certain other relations between the coef-
ficients of (2.1) must hold for u and v to coexist; specifically, v must in some sense
be a more efficient consumer of resource R2 than u.

2.2 Scaling, Apparent Competition, and a Pseudoequilibrium Model.
To obtain a competition model from (2.1) we will follow the approach used by
MacArthur [34] and Yodzis [60] and assume that the resources quickly reach a
pseudoequilibrium that tracks the populations of the consumers. However, Abrams
[1] has pointed out that in models such as (2.1) or those used by MacArthur [34]
and Yodzis [60] there is a possibility that one of the resources will be driven to
zero by a mechanism analogous to apparent competition, which would invalidate
the pseudoequilibrium hypothesis. It turns out that such an effect is possible in
(2.1), but only for relatively large values of `. To make this precise, we will derive
some results about (2.1). In the course of doing so we will obtain some necessary
conditions for the possible coexistence of u and v.

It is clear from the structure of (2.1) that the set u ≥ 0, v ≥ 0,
R1 ≥ 0, R2 ≥ 0 is invariant. We will consider only nonnegative solutions.

Lemma 1. All (nonnegative) solutions of (2.1) are bounded above as t →∞, with
bounds that do not depend on the initial data.

Proof (sketch). See appendix.

It turns out that R2 may be driven to zero by apparent competition but R1

cannot be:

Lemma 2. There is a constant R1 > 0 such that if R1(0) > 0, then for t sufficiently
large R1(t) > R1.

Proof. See appendix.
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Lemma 3. If ` is sufficiently large, R1(0) > 0, and either u(0) > 0 or v(0) > 0
then R2(t) → 0 as t →∞. In particular, if v(0) = 0 but u(0) > 0, then R2(t) → 0
as t →∞ if

` >
d1d3C1 + B1d1r

A1C1ρ
. (2.3)

and if u(0) = 0, v(0) > 0 then R2(t) → 0 as t →∞ if

` >
d2d3C2 + B2d2r

A3C2ρ
. (2.4)

Proof. See appendix.

For the main parts of this paper, which will be based on the model derived from
(2.1) by using the pseudoequilibrium hypothesis, we will assume the reverse inequal-
ities to (2.3) and (2.4). The presence of apparent competition in (2.1) has some
counterintuitive implications. It might be expected that the consumer v, which we
will assume to be a more efficient consumer of resource R2, would dominate the
competing consumer u when ` is large because the equilibrium K`2 for R2 in the
absence of u and v scales as `2, while the corresponding equilibrium ρ`/d3 for R1

only scales as `. However, as suggested by Lemma 3, increasing ` may actually
decrease the level of R2 through apparent competition, and it turns out that the
result can be exclusion of v.

Lemma 4. If (2.2) holds, u(0) > 0, R1(0) > 0, and R2(t) → 0 as t → ∞ then
v(t) → 0 as t →∞.

Proof. See appendix.

The proof of Lemma 4 has an additional implication.

Lemma 5. If (2.2) holds, u(0) > 0, R1(0) > 0, and

A2/d1 > A4/d2, (2.5)

then v(t) → 0 as t →∞.

2.2.1 Biological Implications. Lemmas 3 and 4 imply that in the model (2.1) under
the hypothesis (2.2) the consumer which uses R1 more efficiently (which by (2.2)
will be u) will exclude the other consumer for large `, even though the relative
abundance of R2 compared to R1 in the absence of consumers increases with `.
The mechanism behind this phenomenon is apparent competition. However, the
assumptions underlying (2.1) are valid only for relatively small values of `, so what
the model can reveal of biological interest is how the interaction between u and v
is affected by ` when ` is small. The condition (2.5) implies that u is more efficient
than v in utilizing the resource R2, just as (2.2) implies that u is more efficient at
using R1. It is not surprising that if u is more efficient at using both resources,
then u will exclude v for all values of ` which allow either consumer to persist. An
examination of (2.1) when only u is present or only v is present reveals that if (2.2)
and (2.5) hold, then the minimum value for ` which allows u to persist is smaller
than the corresponding value for v. In particular, if v is not present, then u can
increase from a small value (i.e., the consumer u can invade the patch) provided

A1(ρ`)/d3 + A2q(K`2)− d1 > 0. (2.6)
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The corresponding condition for invasibility by v is

A3(ρ`)/d3 + A4q(K`2)− d2 > 0. (2.7)

If (2.2) and (2.5) hold, then (2.7) implies (2.6); so, whenever v can invade the patch,
so can u. If one prefers to think in terms of the existence of a positive equilibrium
(u∗, 0, R∗1, R

∗
2) rather than invasibility of the equilibrium (0, 0, ρ`/d3,K`2) by u,

this analysis is still valid, because (2.6) is a necessary and sufficient condition for
such an equilibrium to exist, and (2.7) plays a similar role relative to v. In fact,
(2.6) and (2.7) will play important roles in the formulation and analysis of the
pseudoequilibrium model we will derive from (2.1).

If (2.2) and (2.5) hold, then v → 0 in (2.1) if u and R1 are present, so that u
is always the dominant competitor if R1 is present. If (2.2) holds the case which
might admit interesting scaling effects is thus the one where (2.5) is reversed:

A2/d1 < A4/d2. (2.8)

Condition (2.8) implies that v is the consumer that is more efficient at utilizing the
resourse R2. Note that (2.2) and (2.8) together imply A2/A4 < d1/d2 < A1/A3, so
that

A1A4 −A2A3 > 0. (2.9)
Throughout the rest of this paper we will assume that (2.2), (2.8), and hence (2.9)
hold.

We still need to determine when it is reasonable to expect (2.1) to have solutions
with R2 > 0. If (2.1) has an equilibrium (u∗∗, v∗∗, R∗∗1 , R∗∗2 ) with u∗∗ and v∗∗ both
positive, then R∗∗1 and R∗∗2 must satisfy

A1R
∗∗
1 + A2qR

∗∗
2 = d1

A3R
∗∗
1 + A4qR

∗∗
2 = d2,

(2.10)

so

R∗∗2 =

∣∣∣∣∣∣

A1 d1

A3 d2

∣∣∣∣∣∣
∣∣∣∣∣∣

A1 A2q

A3 A4q

∣∣∣∣∣∣

> 0 (2.11)

by (2.2) and (2.9). If (2.1) has an equilibrium with all components positive, then
the pseudoequilibrium model we shall derive from it also has (u∗∗, v∗∗) as an equi-
librium. We shall see that the pseudoequilibrium model may or may not admit such
an equilibrium. In cases where u → 0 and v → 0 as t →∞, we have R2 → K`2 as
t →∞. If (2.1) has an equilibrium (u∗, 0, R∗1, R

∗
2) (which requires that (2.6) holds)

then the first equation in (2.10) holds with R∗∗1 , R∗∗2 replaced by R∗1, R∗2; also, we
have

ρ`− d3R
∗
1 −B1u

∗R∗1 = 0

r

(
1− R∗2

K`2

)
− C1u

∗ = 0.
(2.12)

Eliminating u∗ from (2.12) leads to the relation

r

C1

(
1− R∗2

K`2

)
=

ρ`− d3R
∗
1

B1R∗1
. (2.13)
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Solving for R∗1 in (2.13), substituting into the first equation from (2.10) and moving
the second and third terms in that equation yields the relation

A1ρ`

B1r

C1

(
1− R∗2

K`2

)
+ d3

= d1 −A2qR
∗
2. (2.14)

The left side of (2.14), viewed as a function of R∗2, is positive and increasing for

0 ≤ R∗2 < K`2
[
1 +

C1d3

B1r

]
and is negative for R∗2 > K`2

[
1 +

C1d3

B1r

]
. The right

side is positive and decreasing for 0 ≤ R∗2 < d1/A2q and is nonpositive for larger
values of R∗2. Thus, (2.14) has a positive solution if and only if the left side is
smaller than the right at R∗2 = 0; that is,

C1A1ρ`

B1r + d3C1
< d1. (2.15)

Solving (2.5) for ` yields the reverse inequality to (2.3). Similarly, (2.1) cannot have
an equilibrium with u = 0, v > 0, R2 > 0 unless the reverse inequality to (2.4)
holds. For our pseudoequilibrium analysis we will always assume that the reverse
inequalities to (2.3) and (2.4) hold. We will want to refer to the critical values of `
in (2.3) and (2.4), so we will label them as `u and `v respectively. To state this in
terms of symbols, we will assume

` < `u =
d1d3C1 + B1d1r

A1C1ρ
(2.16)

and

` < `v =
d2d3C2 + B2d2r

A3C2ρ
. (2.17)

These restrictions on the size of ` are compatible with the hypothesis that ` must be
small enough for the entire patch to be within the foraging range of an individual.

Under hypotheses (2.16) and (2.17) it is reasonable to consider a pseudoequilib-
rium model based on (2.1) subject to the additional hypothesis that the timescales
for the dynamics of the resources are significantly faster than those for the con-
sumers. To obtain the pseudoequilibrium model, we set the right sides of the
equations for R1 and R2 in (2.1) equal to zero, solve for R1 and R2 in terms of u
and v, then substitute into the equations for u and v. We obtain

R1 =
ρ`

d3 + B1u + B2v
(2.18)

R2 = K`2
(

1− C1

r
u− C2

r
v

)
(2.19)

so that u and v should satisfy

u̇ =
[(

A1ρ

d3 + B1u + B2v

)
` + K

(
1− C1u

r
− C2v

r

)
A2q`

2 − d1

]
u

v̇ =
[(

A3ρ

d3 + B1u + B2v

)
` + K

(
1− C1u

r
− C2v

r

)
A4q`

2 − d2

]
v.

(2.20)
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It is convenient to relabel some of the parameters in (2.20) as follows:

a1 = A1ρ/d3

a2 = A2K
a3 = A3ρ/d3

a4 = A4K
b1 = B1/d3

b2 = B2/d3

c1 = C1/r
c2 = C2/r.

(2.21)

In terms of the new variables, (2.20) becomes

u̇ =
[(

a1

1 + b1u + b2v

)
` + (1− c1u− c2v)a2q`

2 − d1

]
u

v̇ =
[(

a3

1 + b1u + b2v

)
` + (1− c1u− c2v)a4q`

2 − d2

]
v.

(2.22)

The system (2.22) is the pseudoequilibrium model which will be the subject of
the remainder of this paper. Note that the model incorporates both chemostat-
type resource competition terms scaled by ` and Lotka-Volterra terms scaled by `2.
This reflects the differences in the growth dynamics and spatial distribution of the
resources.

3. General Analysis of the Pseudoequilibrium Model. . Our analysis of the
model (2.22) will focus on how the dynamics depend on `. For any fixed ` the
dynamics of (2.22) are fairly simple, and are typical of those found in many models
for two competitors, as discussed in [14], [35], and [53]. It turns out that there is at
most one equilibrium with u and v both present and that the dynamics of (2.22) are
essentially determined by the equilibria and their stability properties. We will first
identify conditions on ` relative to the other parameters under which each consumer
can persist in the absence of the other, and then study how changing ` affects the
possible dynamics of the system when both species are present. In particular we will
consider when the system admits an equilibrium with both species present, when
it is possible for each species to invade the system if introduced at a low density
while the other is at equilibrium, and when one species can exclude the other.

It will be convenient to formulate some of the hypotheses of the previous sec-
tion in terms of the variables occurring in (2.22). Certain combinations of those
parameters turn out to arise frequently in the analysis. Those are

α = a2a3 − a1a4

β = a2d2 − a4d1

γ = a1d2 − a3d1.
(3.1)

In terms of these quantities, the hypotheses (2.2), (2.8), and (2.9) become (respec-
tively)

γ > 0, β < 0, α < 0. (3.2)
Also, the maximum size for ` for which the model makes sense is the minimum of
`u and `v. In terms of the parameters in (2.22), the definitions (2.16) and (2.17) of
`u and `v become

`u =
d1(b1 + c1)

a1c1
, `v =

d2(b2 + c2)
a3c2

. (3.3)
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In what follows we will always assume 0 ≤ ` ≤ min{`u, `v}.

3.1 Single-species Equilibria (Minimal Patch Size). In the absence of the
other consumer species, each of the species described by u and v will satisfy an
equation of the form ẏ = h(y)y where h(y) is decreasing and is negative for suffi-
ciently large y. Such equations behave essentially like the logistic equation in that
they will have a unique positive equilibrium provided h(0) > 0, and in that case the
positive equilibrium will be globally stable among positive solutions; alternatively,
the equation will not admit a positive equilibrium at all if h(0) ≤ 0, and in that
case all positive solutions will approach zero as t → ∞. Thus, the equation for u
will have the positive equilibrium u∗ if and only if

a2q`
2 + a1`− d1 > 0, (3.4)

and in that case u∗ is determined by the equation
a1`

1 + b1u∗
+ a2q`

2(1− c1u
∗)− d1 = 0. (3.5)

The equation a2q`
2 + a1` − d1 = 0 has one positive root, which we will denote as

`1. For ` ≥ 0, (3.4) will hold precisely when ` > `1. Thus, a patch will sustain a
population of the first consumer only if its size as measured by ` is larger than the
critical patch size given by `1. Similarly, the second consumer can persist in the
absence of the first at a positive equilibrium v∗ if and only if

a4q`
2 + a3`− d2 > 0, (3.6)

and then v∗ must satisfy
a3`

1 + b2v∗
+ a4q`

2(1− c2v
∗)− d2 = 0. (3.7)

Note that the left side of (3.5) is decreasing in u∗ but increasing in ` as long as
1− c1u

∗ > 0. Thus, if ` increases then u∗ must also increase or the equation will be
broken. Also, (3.5) implies that 1− c1u

∗ = 0 exactly when ` = d1[1+ (b1/c1)]/a1 =
`u. It follows that the system will admit a unique single-species equilibrium of the
form (u∗, 0) with u∗ positive when `1 < ` < `u, and u∗ will decrease toward zero as
` decreases toward `1.

Similarly, the system admits a single species equilibrium (0, v∗) when `2 < ` < `v,
and v∗ ↓ 0 as ` ↓ `2. We can solve explicitly for `1 and `2:

`1 =
2d1

a1 +
√

a2
1 + 4a2qd1

=
2

a1

d1
+

√(
a1

d1

)2

+
(

4a2q

d1

)

while
`2 =

2d2

a3 +
√

a2
3 + 4a4qd1

=
2

a3

d2
+

√(
a3

d2

)2

+
(

4a4q

d2

) .

By hypothesis (3.2) we have a1/d1 > a3/d2 so that `1 < `2 for q sufficiently small.
This reflects the assumption that the first consumer is more efficient at using the
first resource which is built into the hypothesis γ > 0 in (3.2), since having q small
means that the quality of the second resource is low, so that it contributes less
than the first to sustaining either consumer. As q increases we must eventually
have `2 < `1, because the hypothesis β < 0 in (3.2) implies a2/d1 < a4/d2. (This
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reflects the assumption that the second consumer uses the second resource more
efficiently than the first consumer.) It turns out that the analysis of the system is
facilitated by considering what happens near the value of q where `1 = `2.

Lemma 6. We have `1 = `2 if and only if

q = −αγ

β2
, (3.8)

and in that case
`1 = `2 = β/α. (3.9)

If q < −αγ/β2 then `2 > `1 > β/α while if q > −αγ/β2 then `2 < `1 < β/α.

Proof. See appendix.

3.1.1 Biological Implications. The presence of the threshold values `1 and `2 such
that the first consumer cannot persist by itself unless ` > `1 and the second cannot
persist by itself unless ` > `2 is a version of the notion of a minimal patch size
needed to sustain a population. The mechanism is simply that too small a patch
will not support enough resources to sustain a population of consumers. This is
a different mechanism than the one on which the traditional models for minimal
patch size of Skellam [52] and Kierstead and Slobodkin [28] are based. In those
models the population is modeled as growing inside the patch but diffusing out of
the patch across the patch boundary. The minimal patch size that will sustain a
population is then determined by the patch size needed for the growth rate on the
inside to balance the loss rate across the boundary. More general versions of this
diffusion-based mechanism can arise from spatial heterogeneity and often can be
described in terms of the principal eigenvalues of elliptic operators; see [8, 9].

Which consumer can persist on a smaller patch depends on the relative quality
of the resource growing on the patch and the resource entering the patch across the
boundary. When the quality of the interior resource is low, the consumer which is
more efficient at using the resource that enters through the boundary will be able
to exist on smaller patches than the consumer which is more efficient at using the
interior resource. If the quality of the interior resource is high that relationship is
reversed.

3.2 Coexistence Equilibria - General Considerations. In general the system
(2.22) may or may not admit equilibria with both consumers present. For any
solution (u, v) of the full system with v ≥ 0, u will be a subsolution of the single-
species model obtained when v = 0. Thus, if the patch cannot sustain the first
consumer by itself it cannot sustain an equilibrium with both consumers present.
The situation relative to the second consumer is analogous. Thus, the model cannot
have an equilibrium with both consumers present unless ` > max{`1, `2}. However,
even if ` is larger than `1 and `2, there still may not be an equilibrium with both
populations positive. The equations for a componentwise-positive equilibrium are

0 =
a1`

1 + b1u + b2v
+ a2q`

2(1− c1u− c2v)− d1

0 =
a3`

1 + b1u + b2v
+ a4q`

2(1− c1u− c2v)− d2.

(3.10)
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Multiplying the first by a4, the second by a2, subtracting, and simplifying yields

b1u + b2v =
α`

β
− 1. (3.11)

Similarly, multiplying the first equation of (3.10) by a3, multiplying the second by
a1, subtracting, and simplifying yields

c1u + c2v = 1 +
γ

αq`2
. (3.12)

In what follows we will assume the nondegeneracy hypothesis

b1

c1
6= b2

c2
. (3.13)

Under that hypothesis, (3.11) and (3.12) will always have a unique solution, but it
need not be positive. Clearly the right sides of (3.11) and (3.12) must be positive
if (3.11) and (3.12) are to admit positive solutions. From (3.11) we must have
` > β/α. From (3.12) we must have `2 > −γ/αq. We can solve (3.11) and (3.12)
explicitly for an equilibrium (u∗∗, v∗∗):

u∗∗ =

∣∣∣∣∣∣∣∣∣

α`

β
− 1 b2

1 +
γ

αq`2
c2

∣∣∣∣∣∣∣∣∣
b1c2 − b2c1

=

[
c2

(
α`

β
− 1

)
− b2

(
1 +

γ

αq`2

)]

b1c2 − b2c1

(3.14)

and

v∗∗ =

∣∣∣∣∣∣∣∣∣

b1
α`

β
− 1

c1 1 +
γ

αq`2

∣∣∣∣∣∣∣∣∣
b1c2 − b2c1

=
b1

(
1 +

γ

αq`2

)
− c1

(
α`

β
− 1

)

b1c2 − b2c1
.

(3.15)

Combining the above observations, we obtain

Lemma 7. The model (2.22) can have a positive coexistence equilibrium (u∗∗, v∗∗)
only if ` > β/α and 1 + (γ/αq`2) > 0. In that case:

i. If b1/c1 > b2/c2, then (2.22) has a positive equilibrium (u∗∗, v∗∗) if and only if

α2`3 − αβ`2
[
1 +

(
b2

c2

)]
−

(
βγ

q

)(
b2

c2

)
> 0 (3.16)
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and

α2`3 − αβ`2
[
1 +

(
b1

c1

)]
−

(
βγ

q

)(
b1

c1

)
< 0. (3.17)

ii. If b1/c1 < b2/c2, then (2.22) has a positive equilibrium (u∗∗, v∗∗) if and only if
(3.16) and (3.17) are reversed.

Remark. Inequalities (3.16) and (3.17) are obtained by simplifying the sign con-
ditions that must be imposed on the numerators in (3.14) and (3.15) for u∗∗ and
v∗∗ to be positive. It turns out that the details of how (3.16) and (3.17) depend on
` are strongly influenced by the sizes of q, b1/c1, and b2/c2. We will analyze some
particular cases in detail later in the paper.

3.3 Linearized Stability. The local stability or instability of equilibria is deter-
mined by the signs of the real parts of the eigenvalues of the Jacobian matrix for
the system evaluated at those equilibria. The stability analysis is essentially a cal-
culation. The following lemmas describe the results of the calculation; the details
are given in the Appendix.

Lemma 8. Suppose the equilibrium (u∗∗, v∗∗) exists. If b1/c1 > b2/c2 then
(u∗∗, v∗∗) is locally stable (as a stable node). If b2/c2 > b1/c1 then (u∗∗, v∗∗) is
unstable (as a saddle point).

3.3.1 Biological Interpretation. The quotient bi/ci describes the relative rates of
consumption of the two resources by the ith consumer, so that in effect it describes
the consumer’s preferences. The assumption α < 0 implies that the first consumer
is relatively more efficient at using the first resource than the second compared
to the second consumer. Thus, if b1/c1 > b2/c2, each consumer prefers the re-
source which it is relatively more efficient at utilizing. Thus, each consumer has
a stronger impact on the availability of the resource it can use best, so the effects
of intraspecific competition (i.e. self-limitation) are stronger than those of inter-
specific competition. That has a tendency to promote coexistence. (See Cantrell
et. al. [13] for a different but related discussion of how intraspecific competition
can promote coexistence of competing consumers.) In the case b2/c2 > b1/c1, each
consumer has a stronger impact on the resource which can be used more efficiently
by the other consumer, so interspecific competition has a stronger effect than in-
traspecific competition. That has a tendency to destabilize the system and make
coexistence less likely.

Lemma 9. Suppose the equilibrium (u∗, 0) exists. If 1+
γ

αq`2
≤ 0, then it is locally

stable (as a node). If 1+
γ

αq`2
> 0 and (3.17) holds, then (u∗, 0) is locally unstable

(as a saddle point.) If 1+
γ

αq`2
> 0 and (3.17) is reversed, then (u∗, 0) is locally sta-

ble (as a node.) When (u∗, 0) is unstable the linearization of (2.22) at (u∗, 0) admits
an eigenvector of the form (p, 1) with p < 0 corresponding to the positive eigenvalue.
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Lemma 10. Suppose (0, v∗) exists. If
α`

β
− 1 ≤ 0, then (0, v∗) is locally stable (as

a node.) If
α`

β
− 1 > 0 and (3.16) holds, then (0, v∗) is locally unstable (as a saddle

point.) If
α`

β
− 1 > 0 and (3.16) is reversed, then (0, v∗) is locally stable (as a

node). When (0, v∗) is locally unstable, the linearization of (2.22) at (0, v∗) admits
an eigenvector of the form (1, q) with q < 0 corresponding to the positive eigenvalue.

Remarks. When (u∗, 0) is unstable, the system is said to be invasible by v, which
means that if a small population of the second consumer is introduced when the
first consumer is present at equilibrium, the population of the second consumer will
increase. Similarly, when (0, v∗) is unstable, the system is said to be invasible by
u. Note that in the case b1/c1 > b2/c2 the conditions for the existence of (u∗∗, v∗∗)
given by (3.16) and (3.17) are the same as those for both (u∗, 0) and (0, v∗) to be
invasible. That is no accident, but a consequence of the monotonicity properties of
2×2 competition systems. Those monotonicity properties have other consequences.
Some of them are described in the next subsection.

3.4 Two-species Competition, Monotonicity, and Invasibility. The model
(2.22) is a 2 × 2 competition system. Thus, it is order-preserving with respect to
the ordering where (u1, v1) < (u2, v2) means u1 > u2, v1 < v2. This is a feature
of all 2× 2 competitive systems, not just the Lotka-Volterra system; see ([53], Ch.
3, §5). It follows from the general properties of such autonomous order preserv-
ing systems that trajectories which start at a strict subsolution of the equilibrium
problem must increase (with respect to the ordering specified for the system) and
if bounded will approach an equilibrium as t → ∞. This idea was used in the
context of reaction-diffusion equations by Aronson and Weinberger [3]; see [8, 24,
53] for additional discussion and references. It can be used to show that a system
is uniformly persistent via the notion of compressivity (see [24]) or to show that
one competitor excludes the other (see [12]). The analogous results hold for super-
solutions. A more abstract formulation of this idea is given by Smith ([53], Ch. 2,
§5). In the present context we have

Lemma 11. Suppose that (ū, v̄) is an equilibrium of (2.22) with ū ≥ 0 and v̄ > 0,
and that the Jacobian matrix J for the linearization of (2.22) about (ū, v̄) has a
positive eigenvalue with an eigenvector (φ, ψ) which is positive in the sense of the
ordering preserved by (2.22); that is, φ > 0 and ψ < 0. If (u, v) is a solution
to (2.22) with u(0) > ū, v(0) < v̄, and |u(0) − ū|, |v(0) − v̄| sufficiently small,
then u(t) ≥ ũ1(t) and v(t) ≤ ṽ1(t) where ũ1(t) will increase with t and ṽ1(t) will
decrease, and as t →∞, and (ũ1, ṽ1) → (û1, v̂1) where (û1, v̂1) is an equilibrium of
(2.22) with û1 > ū and v̂1 < v̄. Similarly, if ū > 0, v̄ ≥ 0, φ < 0 and ψ > 0 then,
for a solution with u(0) < ū, v(0) > v̄, and |u(0)− ū|, |v(0)− v̄| small, there will
be a solution (ũ2, ṽ2) with ũ2(t) > u(t), ṽ2(t) < v(t) where ũ(t) is decreasing in t,
ṽ(t) is increasing in t, and ũ2(t) → û2, ṽ2(t) → v̂2 as t → ∞, where (û2, v̂2) is an
equilibrium of (2.22) with û2 < ū and v̂2 > v̄.

Lemma 11 has a number of important consequences. If (ū, v̄) = (0, v∗) and the
linearized model at (ū, v̄) has a positive eigenvalue λ with eigenvector (φ, ψ) such
that φ > 0, ψ < 0, then solutions to (2.22) starting near (0, v∗) with u > 0, v < v∗
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will have u > ũ1, v < ṽ1, where (ũ1, ṽ1) converges to an equilibrium of (2.22). In
the case (u∗∗, v∗∗) exists we know it is unique, so in that case the convergence of
(ũ1, ṽ1) to (u∗∗, v∗∗) implies a type of stability from one side for (u∗∗, v∗∗). If in
addition (u∗, 0) is unstable, with an eigenvector (φ, ψ) corresponding to a positive
eigenvalue of the linearization at (u∗, 0) such that φ < 0, ψ > 0, then (u∗∗, v∗∗)
is stable from the other side, and since the rectangle [0, u∗] × [0, v∗] is attracting,
that implies global stability for (u∗∗, v∗∗). In fact, having both (u∗, 0) and (0, v∗)
unstable would imply that (u∗∗, v∗∗) exists, because in that case trajectories leav-
ing (0, v∗) could not approach (u∗, 0) and hence would necessarily converge to an
equilibrium with u∗∗ < u∗, v∗∗ < v∗. On the other hand, if there is no coexistence
equilibrium but (0, v∗) is unstable in the sense described above, then we would
necessarily have (ũ1, ṽ1) → (u∗, 0) so that u would exclude v. In view of these
observations and Lemmas 9 and 10 we have

Corollary 12. If (u∗, 0) and (0, v∗) are unstable, then (u∗∗, v∗∗) exists and is glob-
ally stable among positive solutions. If (0, v∗) is unstable and (u∗∗, v∗∗) does not
exist, then positive solutions of (2.22) approach (u∗, 0) as t → ∞; that is, u ex-
cludes v. If (u∗, 0) is unstable and (u∗∗, v∗∗) does not exist, then positive solutions
to (2.22) approach (0, v∗) so that v excludes u.

Remarks. The case where (u∗, 0) and (0, v∗) are both unstable is an example of
the principle that mutual invasibility implies coexistence.

The conditions for stability or instability of (u∗, 0) and (0, v∗) are related to each
other and the conditions for existence of (u∗∗, v∗∗) in such a way that no contradic-
tions can arise in Corollary 12. For example, if (u∗, 0) is unstable and (u∗∗, v∗∗) fails
to exist, then (0, v∗) must be stable so the predictions of the model are consistent.
(In such a case v would exclude u.)

3.5 Summary of the General Analysis. The general analysis of the model (2.22)
provides conditions for the existence and stability or instability of the equilibria
(u∗, 0), (0, v∗), and (u∗∗, v∗∗) in terms of the parameters of the system. Since
(2.22) is a two-species competition model, it has order-preserving properties which
imply that the equilibria and their stabilities essentially determine the dynamics.
The details of how the dynamics of the model vary with ` depend on the remaining
parameters and can be divided into a number of cases. In the next section we
will analyze some of those cases in detail. That analysis will involve a careful
examination of the conditions (3.4), (3.6), (3.16), and (3.17) which determine the
existence and stability of equilibria.

4. Detailed Scaling Analysis for the Pseudoequilibrium Model. . In this
section we will examine how the predictions of the pseudoequilibrium model (2.22)
depend on `. Recall that we always assume 0 ≤ ` ≤ min{`u, `v} where `u and `v

are as in (3.3). Also, recall that (2.22) admits an equilibrium (u∗, 0) with u∗ > 0 if
and only if ` > `1, where `1 is the positive root of

a2q`
2 + a1`− d1 = 0. (4.1)

Similarly, (2.22) admits the equilibrium (0, v∗) if and only if ` > `2, where `2 is the
positive root of

a4q`
2 + a3`− d2 = 0. (4.2)
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Recall that by Lemma 7 we have `1 = `2 = β/α if q = −αγ/β2, with β/α < `1 < `2
if q < −αγ/β2 and `2 < `1 < β/α if q > −αγ/β2. The existence of an equilib-
rium (u∗∗, v∗∗) and the stability of the equilibria (u∗, 0) and (0, v∗) depend on the
inequalities (3.16) and (3.17). Note that the system (3.10) determining (u∗∗, v∗∗)
can only have a positive solution if ` > max(`1, `2). Much of the scaling analysis
of (2.22) depends on how the roots of the cubics in (3.16) and (3.17) change with
`. That in turn depends on the parameters, specifically q, b1/c1, and b2/c2. To
perform the analysis, we first consider what happens when q = −αγ/β2 and then
determine the effects of increasing or decreasing q. The cubics in (3.16) and (3.17)
play a central role in the analysis, so we will examine them in some detail first.

4.1 Cubic Equations Related to Equilibria. The expressions in (3.16) and
(3.17) are cubics of the form α2`3−αβ(1 + Qi)`2− (βγ/q)Qi, where Qi = bi/ci for
i = 1, 2. We assume the nondegeneracy condition Q1 6= Q2.

Lemma 13. If Q1 6= Q2, then the cubic equations

α2`3 − αβ(1 + Qi)`2 −
(

βγ

q

)
Qi = 0 (4.3)

with i = 1, 2 have a common root if and only if q = −αγ/β2, and in that case
the common root is β/α. The other positive root corresponding to Qi is then
(β/2α)[Qi +

√
Q2

i + 4Qi].

Proof. See appendix.

Recall that `1 = `2 if and only if q = −αγ/β2, and then `1 = `2 = β/α. Thus,
several significant changes in the predictions of the model occur at ` = β/α when
q = −αγ/β2.

The constant term in (4.3) is always positive. Calculating the first and second
derivatives with respect to ` of the cubic in (4.3) shows that it has a local maximum
at ` = 0 and a local minimum when

` = (β/α)(2/3)(1 + Qi). (4.4)

The cubic is increasing for ` < 0. Thus, (4.3) has 0, 1, or 2 positive roots. (The
value of the cubic at the local minimum is (β3/α)[(−4/27)(1+Qi)3− (αγ/β2q)Qi],
which is positive for q small but negative for q large for any fixed value of Qi. In
the interesting special case where q = −αγ/β2 the value of the cubic at the local
minimum is β3/α[−4/27)(1 + Qi)3 + Qi], which is zero for Qi = 1/2 but negative
for all other Qi > 0. (The expression is clearly negative for Qi = 0 or Qi → ∞,
increasing for 0 < Qi < 1/2 and decreasing for 1/2 < Qi.) The local minimum
occurs when ` = β/α when q = −αγ/β2 and Qi = 1/2; for Qi < 1/2 the local
minimum occurs for ` < β/α; and for Qi > 1/2, it occurs for ` > β/α.

Definition. If (4.3) has at least one positive root, denote the smallest positive root
by `∗i . If (4.3) has two positive roots denote the second by `∗∗i . (Thus `∗∗i ≥ `∗i with
equality only if the local minimum of the cubic in (4.3) also occurs at `∗i .)

As q → 0, the constant term in the cubic in (4.3) increases and eventually the cu-
bic becomes positive for all ` > 0. As q →∞ the constant term goes to zero and the
roots of the cubic approach 0 and (β/α)(1 + Qi). Note that a1β − d1α = a2γ > 0
so (β/α) < d1/a1 and hence (β/α)(1 + Q1) < (d1/a1)(1 + Q1) = `u. Similarly,
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a3β − d2α = a4γ > 0, and so (β/α)(1 + Q2) < (d2/a3)(1 + Q2) = `v. Thus, the
roots of the cubics in (4.3) occur within the intervals (0, `u) for i = 1 and (0, `v)
for i = 2.

4.2 Perturbation Analysis:General Aspects. If the roots of a polynomial occur
at points where the derivative is nonzero then by the implicit function theorem they
are differentiable functions of the coefficients. We will proceed by analyzing the
behavior of the system when q = −αγ/β2 and then perturbing the system relative
to q. Since the value ` = β/α corresponds to a local minimum of the cubic in
(4.3) when Qi = 1/2, we will assume that Qi 6= 1/2 for i = 1, 2 so that `∗i and `∗∗i
will depend smoothly on the coefficients of (4.3), specifically q, if those roots exist.
Suppose `(q) is a root of (4.3) with `(−αγ/β2) = β/α. Differentiating (4.3) and
solving for d`/dq yields

d`

dq
(−αγ/β2) =

(−β3

α2γ

) (
Qi

1− 2Qi

)
. (4.5)

The coefficient −β3/α2γ is positive, so d`/dq is increasing in Qi with d`/dq > 0 if
Qi < 1/2 but d`/dq < 0 for Qi > 1/2.

4.3 Perturbation Analysis: Case by Case. In view of our previous discussion
of how the roots of (4.3) and the stability of (u∗∗, v∗∗) depend on Qi = bi/ci, it
seems natural to classify the various possible cases by the relationships between
1/2, b1/c1, and b2/c2. We will give the details of the analysis in two cases and
describe the others more briefly. Certain features occur in all cases. Specifically,
if q, the quality of the logistically scale resource, is larger than −αγ/β2 then by
Lemma 6 we have `2 < `1 < β/α, which means that the second consumer can
persist on a smaller patch than the first. If q = −αγ/β2 the critical patch size is
`1 = `2 = β/α for both consumers. If q < −αγ/β2, then β/α < `1 < `2; so, the
first consumer can persist on a smaller patch. Also, for q sufficiently small, (3.16)
holds for all ` > 0 while, (3.17) never holds for ` > 0; so, (u∗, 0) is always stable,
(0, v∗) is always unstable (when these equilibria exist) and (u∗∗, v∗∗) does not exist.
Hence, in such situations, the first consumer always excludes the second if it can
persist on its own. What is happening is that the first consumer is more efficient
than the second at using the first resource, so as the relative quality of the second
resource is reduced, the first consumer gains an advantage relative to the second
consumer.

Another universal feature of the system is that if `1 < `2 and ` ≈ `2, ` > `2,
then (0, v∗) is unstable; similarly, if `2 < `1 and ` ≈ `1, ` > `1 then (u∗, 0) is
unstable. To understand this feature, suppose `1 < `2, recall that v∗ ↓ 0 as ` ↓ `2,
and consider (3.4) and (A.18). At ` = `2 the inequality in (3.4) is strict because
`2 > `1. On the other hand, as ` ↓ `2, we have v∗ ↓ 0, so (A.18) must hold for
` > `2, ` ≈ `2 since the expression on the left in (A.18) approaches the one in
(3.4) as v∗ → 0. Since (A.18) holds, (0, v∗) is unstable and in fact (3.16) holds.
Note also that at ` = `2 we have equality in (3.6) but u∗ > 0 so, (A.8) is reversed.
By continuity (A.8) will remain reversed for ` ≈ `2, so for ` ≈ `2 the equilibrium
(u∗, 0) is stable. The analysis for ` ≈ `1 in the case `2 < `1 is similar but with the
roles of u and v reversed. We now turn to the cases.
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4.3.1 Case 1 (detailed analysis). 1/2 < b2/c2 < b1/c1.

i. First consider the case q = −αγ/β2. In that case `1 = `2 = `∗1 = `∗2 = β/α, with
`∗∗1 > `∗∗2 > β/α. (This follows from Lemmas 6 and 13.) Thus, for ` < β/α neither
consumer can persist. If ` > β/α then both single-species equilibria (u∗, 0) and
(0, v∗) exist. For β/α < ` < `∗∗2 inequality (3.16) does not hold but (3.17) does, so
there is no coexistence equilibrium by Lemma 7. If ` > β/α then 1 + γ/(αq`2) > 0
for q = −αγ/β2 so by Lemma 9 the equilibrium (u∗, 0) is locally unstable for
β/α < ` < `∗∗2 . By Lemma 10, (0, v∗) is locally stable for β/α < ` < `∗∗2 . By
Corollary 12 we may conclude that v excludes u if v(0) > 0 when β/α < ` < `∗∗2 .
For `∗∗2 < ` < `∗∗1 , (3.16) and (3.17) both hold, so (u∗∗, v∗∗) exists. By Lemma 8
it is stable. The equilibrium (u∗, 0) remains unstable, but the equilibrium (0, v∗)
becomes unstable. Thus for `∗∗2 < ` < `∗∗1 the model predicts coexistence. Finally,
if `∗∗1 < ` but ` < min{`u, `v}, then (3.16) holds but (3.17) fails; so, (u∗∗, v∗∗) no
longer exists, (u∗, 0) is stable, (0, v∗) is unstable, and thus by Lemma 11 u excludes
v.

4.3.1 (i) Biological Discussion. The fact that the system does not support either
consumer when ` is small is not suprising. The fact that v is competitively domi-
nant for ` just larger than β/α while u is dominant for still larger values of ` seems
somewhat counter-intuitive, because one might expect the consumer (u) that does
best on the linearly scaled resource to dominate for moderate values of ` and the
consumer (v) which does best on the quadratically scaled resource to dominate for
large values. What is happening in this case is that q, the quality of the quadrati-
cally scaled resource, is high enough to compensate for the slower rate of increase
of `2 compared to ` when ` is small. For large `, the dominance of u arises from
the differing effects of apparent competition on the resources. (Recall that in the
original consumer-resource model u is always predicted to exclude v for ` large via
apparent competition.)

ii. Further insight can be gained by considering how the model behaves if q is
perturbed from −αγ/β2. Suppose that we reduce q from −αγ/β2. By Lemma 6
we have `2 > `1 > β/α. By (4.5) we have d`∗2/dq < d`∗1/dq < 0 at q = −αγ/β2. So,
as q is decreased from −αγ/β2 we initially have β/α < `∗1 < `∗2, and this arrange-
ment persists as long as `∗1 and `∗2 exist, because roots of (4.3) corresponding to
distinct values of Qi can coincide only if q = −αγ/β2. Reducing q has the effect
of raising the graphs of the cubics occurring in (4.3), so it reduces `∗∗1 and `∗∗2
but does not change the relation β/α < `∗∗2 < `∗∗1 . Thus, when q is reduced from
−αγ/β2, but not reduced enough to eliminate any of the roots `∗i , `∗∗i , then we
have β/α < `1 < `2. Also, (u∗, 0) is unstable relative to v (that is, it is invasible by
v) only if (0, 0) is invasible by v, so we must have `∗1 > `2. Thus, for q < −αγ/β2

but not too small we have β/α < `1 < `2 < `∗1 < `∗2 < `∗∗2 < `∗∗1 . For ` < `1
neither consumer persists. For `1 < ` < `2 the equilibrium (u∗, 0) exists but (0, v∗)
and (u∗∗, v∗∗) do not, so u can persist but not v. For `2 < ` < `∗1, (u∗, 0) and
(0, v∗) both exist, (3.16) holds, but (3.17) does not, so (u∗, 0) is stable, (0, v∗) is
unstable, and (u∗∗, v∗∗) does not exist, so u excludes v. For `∗1 < ` < `∗2, (3.16)
and (3.17) both hold, so (u∗, 0), (0, v∗), and (u∗∗, v∗∗) all exist. Also, (u∗, 0) and
(0, v∗) are both unstable and (u∗∗, v∗∗) is stable, so the model predicts coexistence.
For `∗2 < ` < `∗∗2 (3.17) holds but (3.16) does not, so (u∗, 0) is unstable, (0, v∗) is
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stable, and (u∗∗, v∗∗) does not exist, so v excludes u. If `∗∗2 < ` < `∗∗1 , then (3.16)
and (3.17) both hold, so (u∗∗, v∗∗) exists and is stable; and (u∗, 0) and (0, v∗) are
unstable, so again the model predicts coexistence. Finally, if ` > `∗∗1 , then (3.16)
holds but (3.17) does not, so (u∗, 0) is stable, (0, v∗) is unstable, and (u∗∗, v∗∗) does
not exist, so u excludes v.

4.3.1 (ii) Biological Discussion. In this situation the predictions of the model for
` < `∗∗2 are essentially what one would expect. The consumer u that does best
on the linearly scaled resource can persist on a smaller patch (`1 < `2) and is
competitively dominant for ` < `∗1. For `∗1 < ` < `∗2 the quadratically scaled
resource becomes sufficiently abundant for the consumer v which does best on it to
coexist with u, and then for `∗2 < ` < `∗∗2 to exclude u. For ` > `∗∗2 things again seem
counterintuitive because the advantage shifts back toward u, giving coexistence for
`∗∗2 < ` < `∗∗1 and finally a prediction that u excludes v when ` > `∗∗1 . Again, the
mechanism underlying this counterintuitive result is the asymmetry in the nature
of the resource equations, which allows R2 (the quadratically scaled resource) to be
forced toward zero by apparent competition but does not allow that for R1.
iii. The arrangement described above persists until q is small enough that one of
the cubics in (3.16) and (3.17) becomes positive for all ` > 0. By (4.4) the minimum
value of the cubic in (4.3) for ` > 0 occurs at ` = (β/α)(2/3)(1 + Qi). (Recall that
Qi = bi/ci). The minimum is positive if

q <
27
4

(
−αγ

β2

)
Qi

(1 + Qi)3
. (4.6)

For Qi > 1/2 the expression on the right side of (4.6) is decreasing in Qi. In this
scenario we are assuming that 1/2 < b2/c2 < b1/c1. Thus, for q satisfying

27
4

(
−αγ

β2

)
(b1/c1)

[1 + (b1/c1)]3
< q <

27
4

(
−αγ

β2

)
(b2/c2)

[1 + (b2/c2)3]
(4.7)

condition (3.16) holds for all ` > 0, so `∗2 and `∗∗2 do not exist, but `∗1 and `∗∗1 still
exist. In that case we have β/α < `1 < `2 < `∗1 < `∗∗1 . As before, for ` < `1 neither
consumer persists. For `1 < ` < `2 the equilibrium (u∗, 0) exists and is attracting
for all solutions of (2.22) with u(0) > 0, but there is no positive equilibrium (0, v∗).
For `2 < ` < `∗1 both (u∗, 0) and (0, v∗) exist but (0, v∗) is unstable by Lemma 10
because (3.16) holds, (u∗, 0) is stable by Lemma 9 because (3.17) is reversed, and
(u∗∗, v∗∗) does not exist by Lemma 7; hence by Corollary 12, u excludes v if both
are present. For `∗1 < ` < `∗∗1 (3.17) holds, so (u∗, 0) and (0, v∗) are both unstable
and (u∗∗, v∗∗) exists, so there is coexistence. For ` > `∗∗1 (3.17) is again reversed,
so u excludes v.

4.3.1 (iii) Biological Discussion. For q in the range shown in (4.7), the quality of
the second resource, which is scaled quadratically, is low enough that the consumer
v which is more efficient at using it never gains competitive dominance but high
enough that the two consumers can coexist for some values of `. In the interval
(`∗1, `

∗∗
1 ), where coexistence is possible, ` is large enough for the quadratic scaling

to increase the relative abundance of the second resource but not so large that the
effects of apparent competition as mediated by u reduce the second resource to the
point that v cannot persist. For ` > `∗∗1 the effect of apparent competition reduces
the level of the second resource to the point that v cannot persist.
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If q is reduced still further so that

q <
27
4

(
−αγ

β2

)
(b1/c1)

[1 + (b1/c1)]3
, (4.8)

then (3.16) always holds and (3.17) never holds. We have ` < `1 < `2 but `∗1, `
∗
2, `

∗∗
1 ,

and `∗∗2 do not exist. In that case there is never coexistence and u excludes v if
` > `1 and both species are present. When (4.8) holds the quality of the second
resource is so low that v cannot compete effectively with u for any value of `.

iv. Suppose that instead of decreasing q we increase q, so q > −αγ/β2. By
Lemma 6, `2 < `1 < β/α. We still have d`∗2/dq < d`∗1/dq < 0 at q = −αγ/β2 by
(4.5), so `∗2 < `∗1 < β/α. As ` ↓ `1, we have u∗ ↓ 0. Also, since `2 < `1, (3.6) will
hold for ` ≈ `1, and in fact we must have a4q`

2 + a3` − d2 ≥ δ for some δ > 0 if
` ≥ `1. Thus, for ` > `1 but ` ≈ `1 the condition (A.8) in the appendix must hold,
so by the proof of Lemma 9 it follows that we must have 1 + (γ/αq`2) > 0 and
(3.17) must hold. Hence, we must have `∗1 < `1. By Lemma 10 (0, v∗) is stable
for ` ∈ (`2, β/α). Since `∗2 < `∗1, (3.16) is reversed for `1 < ` < `∗∗2 . (Note that
we must still have `∗∗1 6= `∗∗2 , so the relation `∗∗2 < `∗∗1 remains valid.) Thus, there
is no coexistence equilibrium (u∗∗, v∗∗) for `1 < ` < `∗∗2 by Lemma 7, and (0, v∗)
is stable for `1 < ` < `∗∗2 by Lemma 10, while (u∗, 0) is unstable by Lemma 9.
It follows that for `1 < ` < `∗∗2 , v excludes u when both consumers are present.
When `∗∗2 < ` < `∗∗1 , (3.16) and (3.17) both hold, so (u∗∗, v∗∗) exists and (u∗, 0)
and (0, v∗) are both unstable, so the model predicts coexistence. For ` > `∗∗1 but
` < min{`u, `v}, (3.16) is reversed but (3.17) still holds so (u∗∗, v∗∗) does not exist,
(u∗, 0) is stable, and (0, v∗) is unstable, so u excludes v if both are present. This
arrangement persists as q is increased further.

4.3.1 (iv) Biological Discussion. When q is larger than −αγ

β2
, the quality of the

second resource is high enough that v has an advantage over u until ` is so large
that u reduces the second resource enough first to coexist with and then exclude v.

4.3.2 Case 2 (brief description). 1/2 < b1/c1 < b2/c2. The quantities that
depend on b1/c1 and b2/c2 are `∗1, `

∗∗
1 , `∗2, and `∗∗2 . Reversing the relation between

b1/c1 and b2/c2 from Case 1 has the effect of reversing the relative positions of `∗1
and `∗2 and of `∗∗1 and `∗∗2 , but does not affect `1 or `2. The only other effect of
reversing the relation between b1/c1 and b2/c2 is that by Lemma 8, (u∗∗, v∗∗) is
unstable when it exists if b2/c2 > b1/c1. The net effect is that the pattern of spatial
dependence in this case is the same as in Case 1, except that when Case 1 predicts
stable coexistence, Case 2 predicts bistability. (Bistability means (u∗, 0) and (0, v∗)
are both stable, but (u∗∗, v∗∗) is not, so the outcome of competition depends on
the initial conditions.) Since the patterns and analysis are similar to those of Case
1, we merely summarize them.

If q = −αβ/γ2, then `1 = `2 = `∗1 = `∗2 = β/α, and `∗∗1 < `∗∗2 . For 0 < ` < β/α
neither u nor v can persist. For ` > β/α both (u∗, 0) and (0, v∗) exist, so by itself
each competitor can persist. For β/α < ` < `∗∗1 (3.17) holds but (3.16) does not, so
(u∗∗, v∗∗) does not exist, (u∗, 0) is unstable, (0, v∗) is stable, and hence v excludes
u if both are present. For `∗∗1 < ` < `∗∗2 neither (3.16) nor (3.17) holds; so, since
b2/c2 > b1/c1 the state (u∗∗, v∗∗) exists but is unstable. However, (u∗, 0) and (0, v∗)
are both stable, so the system is bistable and the outcome of competition is contin-
gent on the initial data. For ` > `∗∗2 (but ` < min{`u, `v}), (3.16) holds but (3.17)
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does not, so (u∗∗, v∗∗) does not exist; (u∗, 0) is stable; and (0, v∗) is unstable. Thus,
u excludes v. This is essentially the pattern in Case 1, except that for intermediate
values of ` where neither species necessarily excludes the other the prediction is
bistability (so that either species may win the competition, depending on initial
data) rather than stable coexistence. (See the discussion following Lemma 8 for
some additional biological interpretation.)

4.3.3 Case 3 (detailed analysis). b2/c2 < 1/2 < b1/c1. i. Again, consider
the case where q = −αγ/β2, so that `1 = `2 = β/α. Since b2/c2 < 1/2 < b1/c1,
it follows from (4.4) that the local minimum for the cubic in (3.17) occurs for
` > β/α and the local minimum for the cubic in (3.16) occurs for ` < β/α. When
q = −αγ/β2 both cubics have roots at ` = β/α; thus, we have β/α = `∗1 = `∗∗2 so
that (3.16) always holds for ` > β/α while (3.17) holds for β/α < ` < `∗∗1 but not for
`∗∗1 < ` < min{`u, `v}. It follows that neither competitor can persist for ` < β/α,
but both (u∗, 0) and (0, v∗) exist for ` > β/α. Since (3.16) holds for ` > β/α,
(0, v∗) is always unstable by Lemma 10. Since (3.17) holds for β/α < ` < `∗∗1 , it
follows from Lemma 9 that (u∗, 0) is unstable and from Lemma 7 that (u∗∗, v∗∗) ex-
ists for β/α < ` < `∗∗1 . Also, by Lemma 8, (u∗∗, v∗∗) is stable when it exists, so for
β/α < ` < `∗∗1 the model predicts coexistence. For ` > `∗∗1 (but ` < min{`u, `v}),
(3.17) is reversed so (u∗, 0) is stable and (u∗∗, v∗∗) does not exist. Thus, for ` > `∗∗1 ,
u excludes v.

4.3.3 (i) Biological Discussion. This case differs from Case 1 in that there is no
longer an interval in ` where v can exclude u. The reason is that b2/c2, which
measures the relative preference of consumer v for the resource which is used more
effectively by consumer u, is so small that v never consumes enough of it to exclude
u. In other words, the niche occupied by v does not overlap a large enough fraction
of the niche occupied by u for v to exclude u when q = −αγ/β2.

ii. If we decrease q, then as always we have β/α < `1 < `2. Calculating d`∗∗2 /dq
and d`∗1/dq via (4.5) (or noting that decreasing q raises the graphs of the cubics in
(3.16) and (3.17) and observing how this affects their roots) yields `∗∗2 < β/α and
`∗1 > β/α. Also, when ` ≈ `2, ` > `2, we have v∗ ≈ 0 but u∗ will be somewhat larger
than zero for ` ≈ `2 since `1 < `2. Thus, for ` ≈ `2, ` > `2, the inequality (A.18)
will hold (because (3.4) holds and v∗ is small), but (A.8) will fail because (3.6) just
barely holds and u∗ is fairly large. Thus, (u∗, 0) will be stable while (0, v∗) will be
unstable, so we must have `∗1 > `2. In this situation neither competitor persists
for ` ≤ `1; there is an equilibrium (u∗, 0) but v does not persist for `1 < ` ≤ `2,
and both (u∗, 0) and (0, v∗) exist for ` > `2. The equilibrium (0, v∗) is always
unstable because `∗∗2 < β/α < `2 so that (3.16) holds whenever v∗ > 0 exists. For
`2 < ` < `∗1 the equilibrium (u∗, 0) is stable and (u∗∗, v∗∗) does not exist because
(3.17) is reversed, so u excludes v if both are present. For `∗1 < ` < `∗∗1 both (3.16)
and (3.17) hold, so (u∗, 0) and (0, v∗) are both unstable; (u∗∗, v∗∗) exists, and thus
the model predicts coexistence. For ` > `∗∗1 (3.17) is again reversed, so (u∗∗, v∗∗)
does not exist and (u∗, 0) is stable, so that the model predicts u will exclude v. If
q is reduced further the situation described above persists until the graph of the
cubic in (3.17) is raised enough that (3.17) always holds. Once that happens, then
whenever (u∗, 0) and (0, v∗) exist we have (u∗, 0) stable and (0, v∗) unstable. Also,
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(u∗∗, v∗∗) fails to exist, so u excludes v.

4.3.3 (ii) Biological Discussion. Again, the situation is similar to Case 1, except
that for q < −αγ/β2 with q ≈ −αγ/β2 there is no longer any range of ` where v
can exclude u. (This situation again is due to the relatively small impact of v on
the resource preferred and used most effectively by u.

iii. If q is increased from −αγ/β2 then (as always) we have `2 < `1 < β/α. In this
situation we have `∗∗2 > β/α and `∗1 < β/α. Thus, for `2 < ` < `1, (0, v∗) exists but
(u∗, 0) does not. At ` = `1 we have v∗ > 0 but u∗ still does not exist; and u∗ → 0
as ` ↓ `1. It follows that (u∗, 0) is unstable for ` ≈ `1, ` > `1 (since `2 < `1 and
thus (0, 0) is unstable with respect to v), so we must have `∗1 < `1. Thus, in this sit-
uation, (0, v∗) exists and is stable for `2 < ` < `∗∗2 . For `1 < ` < `∗∗2 , (u∗, 0) exists
but is unstable, (0, v∗) exists and is stable, and (u∗∗, v∗∗) does not exist (because
(3.16) fails but (3.17) holds) so v excludes u if both are present. For `∗∗2 < ` < `∗∗1
both (u∗, 0) and (0, v∗) are unstable and (u∗∗, v∗∗) exists, so the species coexist,
because (3.16) and (3.17) both hold. For ` > `∗∗1 (3.17) fails so (u∗, 0) is stable
while (0, v∗) is still unstable and (u∗∗, v∗∗) does not exist, so u excludes v.

4.3.3 (iii) Biological Discussion. The pattern of how the outcome of competition
depends on ` in this case with q > −αγ/β2 is qualitatively the same as in Case
1, so that v excludes u on relatively small patches, they coexist on patches of in-
termediate size, and u excludes v on larger patches. As in Case 1, the mechanism
is that when the quality q of the resource used most effectively by v is sufficiently
high, v will have an advantage until the patch is large enough for u to reduce that
resource enough to impact v via apparent competition.

4.3.4 Case 4 (brief description). b1/c1 < 1/2 < b2/c2.

i. If q = −αγ/β2 in this case then `1 = `2 = `∗∗1 = `∗2 = β/α with `∗1 < β/α < `∗∗2 .
For β/α < ` < `∗∗2 both (u∗, 0) and (0, v∗) will exist, but neither (3.16) nor (3.17)
will hold, so (u∗, 0) and (0, v∗) will both be stable and (u∗∗, v∗∗) will exist but will
be unstable. Thus, the system will be bistable for that range of `. For ` > `∗∗2 ,
(3.16) will hold but (3.17) will not, and so (0, v∗) will be unstable, (u∗, 0) will be
stable, and (u∗∗, v∗∗) will not exist. Thus, for `∗∗2 < ` < min{`u, `v}, u will exclude
v if both are present.

4.3.4 (i) Biological Discussion. This pattern of dependence on ` is similar to that
of Case 2, but without the interval with ` > β/α, ` ≈ β/α in Case 2 where
v excludes u. The state (u∗, 0) is always stable when it exists. The hypothesis
b1/c1 < 1/2 means that u has a very strong preference for the second resource,
which is the resource used more effectively by v. Thus, u has a strong impact on v
through apparent competition over a wide range of `.

ii. If q is decreased from −αγ/β2, in this case we get β/α < `1 < `2 (as always),
`∗∗1 < β/α, and `∗2 > β/α. Again, we have v∗ ≈ 0 for ` ≈ `2, ` > `2, and since
`2 > `1, we must have strict inequality in (3.4) for ` = `2; so, (A.18) holds for
` ≈ `2, ` > `2 and thus (0, v∗) is unstable (and (3.16) holds) for such values of
`. For (3.16) to hold we must have either ` < `∗2 or ` > `∗∗2 . When q = −αγ/β2,
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we have `2 = β/α < `∗∗2 , so if q < −αγ/β2, q ≈ −αγ/β2 we still have `2 < `∗∗2
by continuity in q, so since (3.16) holds for ` = `2 we must have `2 < `∗2. Using
continuity in q again, we observe that if `∗2 < `∗∗2 ; then `2 cannot become larger
than `∗2 without (3.16) being violated for ` > `2, ` ≈ `2. However, `∗2 < `∗∗2 for
q = −αγ/β2 and the only value of q for which it is ever possible to have `∗2 = `∗∗2
is q = −αγ/β2; so, for q < −αγ/β2 we must have `∗2 < `∗∗2 and hence the relation
`2 < `∗2 must remain valid as q is decreased. For `1 < ` < `2, (u∗, 0) exists
but (0, v∗) does not, nor does (u∗∗, v∗∗). For `2 < ` < `∗2 both (u∗, 0) and (0, v∗)
exist, (3.16) holds, but (3.17) does not; so, (u∗, 0) is stable, (0, v∗) is unstable and
(u∗∗, v∗∗) does not exist. Hence for `2 < ` < `∗2, u excludes v. For `∗2 < ` < `∗∗2
neither (3.16) nor (3.17) holds; so, both (u∗, 0) and (0, v∗) are stable, and (u∗∗, v∗∗)
exists. The system is thus bistable for this range of `. For `∗∗2 < ` < min{`u, `v}
(3.16) again is satisfied, but (3.17) is not; so (u∗∗, v∗∗) does not exist, (0, v∗) is
unstable, and (u∗, 0) is stable, so u excludes v.

If q is decreased further, eventually (3.16) will hold for all ` > 0 so that u will
always exclude v if both can persist by themselves.

4.3.4 (ii) Biological Discussion. This case is similar to Case 3 except that when
(u∗∗, v∗∗) exists (for q < −αγ/β2, but q not too small, and for intermediate values
of `) it is unstable, so the prediction in that range of ` is bistablity rather than co-
existence. This pattern is also similar to Case 2 when q << −αγ/β2, but does not
admit any range of ` where v excludes u for values of q < −αγ/β2. The assumption
b1/c1 < 1/2 apparently makes u too good at reducing the resource which is used
most efficiently by v to allow exclusion of u by v when the quality of that resource
is low.

iii. If q is increased from −αγ/β2 then we have `2 < `1 < β/α, `∗∗1 > β/α, and
`∗2 < β/α. For `2 < ` ≤ β/α, (0, v∗) is stable by Lemma 10. Since `∗2 < β/α,
(3.16) does not hold for β/α < ` < `∗∗2 , so we have (0, v∗) stable for `2 < ` < `∗∗2 .
For ` > `∗∗2 , (3.16) holds, so (0, v∗) is unstable. For `1 < ` < `∗∗1 , (3.17) holds, so
(u∗, 0) is unstable. For ` > `∗∗1 , (3.17) is reversed so (u∗, 0) is stable. Thus, for
`2 < ` < `1, (0, v∗) exists but (u∗, 0) does not; for `1 < ` < `∗∗1 both (u∗, 0) and
(0, v∗) exist, (u∗, 0) is unstable and (0, v∗) is stable, and (u∗∗, v∗∗) does not exist,
so v excludes u. For `∗∗1 < ` < `∗∗2 both (u∗, 0) and (0, v∗) are stable and (u∗∗, v∗∗)
exists but is unstable, so the system is bistable. For `∗∗2 < ` < min{`u, `v}, (u∗, 0)
is stable, (0, v∗) is unstable, and (u∗∗, v∗∗) does not exist; so, u excludes v.

4.3.4 (iii) Biological Discussion. The pattern of scale dependence is similar to that
seen in Case 3 for large q, except that for intermediate values of ` the predic-
tion of coexistence is replaced with bistability. As noted before, this occurs when
b2/c2 > b1/c1, because that relationship among parameters means that each con-
sumer prefers the resource which is used most effectively by the other consumer,
which results in strong competition and thus in some cases leads to bistability in-
stead of coexistence.

4.3.5 Case 5 (brief description). b2/c2 < b1/c1 < 1/2. For q = −αγ/β2

in this case we have `∗2 < `∗1 < `1 = `2 = `∗∗1 = `∗∗2 = β/α. For ` > β/α
(3.16) holds and (3.17) is reversed, so u excludes v. If q is reduced, we have
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β/α < `1 < `2 but `∗∗1 < `∗∗2 < β/α so that situation is maintained. If q is in-
creased then `2 < `1 < β/α < `∗∗2 < `∗∗1 so for `1 < ` < `∗∗2 (3.17) holds but (3.16)
does not, so (u∗, 0) is unstable, (0, v∗) is stable, and (u∗∗, v∗∗) does not exist, so
v excludes u. For `∗∗2 < ` < `∗∗1 , both (3.16) and (3.17) hold, so both (u∗, 0) and
(0, v∗) are unstable, (u∗∗, v∗∗) exists, and hence the model predicts coexistence. For
` > `∗∗1 (3.16) holds but (3.17) does not, so (u∗, 0) is stable, (0, v∗) is unstable, and
(u∗∗, v∗∗) does not exist, so u excludes v.

4.3.5 Biological Discussion . When q is large, this case shows the same pattern of
dependence on ` as does Case 1 with q large, for the same reasons as in Case 1.
For q ≤ −αγ/β2, this case always predicts exclusion of v by u, which is similar
to other cases when q is sufficiently small. Since we have b2/c2 < b1/c1 < 1/2,
the coefficients c1 and c2 are relatively large compared to b1 and b2, so the second
resource and specifically its quality q have a strong effect on the competition. Thus,
it is not too surprising that the behavior of this case when q < −αγ/β2 is similar
to others when q is very small.

4.3.6 Case 6 (brief description). b1/c1 < b2/c2 < 1/2. If q = −αγ/β2 we have
`∗1 < `∗2 < β/α = `1 = `2 = `∗∗1 = `∗∗2 ; so, the system has the same behavior as
in Case 5, namely that u excludes v for β/α < ` < min{`u, `v}. If q is decreased,
then `∗∗2 < `∗∗1 < β/α < `1 < `2 so that situation is maintained. If q is increased,
then `2 < `1 < β/α < `∗∗1 < `∗∗2 . For `1 < ` < `∗∗1 , (3.17) holds, but (3.16) does
not, so (u∗, 0) is unstable, (0, v∗) is stable, and v excludes u. For `∗∗1 < ` < `∗∗2
neither (3.16) nor (3.17) holds, so (u∗, 0) and (0, v∗) are both stable, while (u∗∗, v∗∗)
exists but is unstable, so the system is bistable. For ` > `∗∗2 (3.16) holds but (3.17)
does not; so, (u∗, 0) is stable, (0, v∗) is unstable, and (u∗∗, v∗∗) does not exist, so u
excludes v.

4.3.6 Biological Discussion . This situation is analogous to Case 5 with q large, but
with bistability replacing coexistence for an intermediate range of values of `. That
occurs because b2/c2 > b1/c1, which means each consumer prefers the resource
that the other can use most effectively, resulting in strong competition and hence
a tendency toward bistability instead of coexistence.

5. Summary of Mathematical Conclusions. The predictions of the original
consumer-resource model (2.1) and the corresponding competition model (2.22)
obtained from (2.1) by the pseudoequilibrium hypothesis can depend on the scale
factor ` in a number of complicated ways. In particular, changes in ` can cause
changes in competitive dominance. There are a few patterns which emerge from
the analysis. When ` is too small, neither consumer can survive, because there
are not enough resources available to sustain populations of consumers. Recall
that the models envision two resources, one (R1) that is supplied across the patch
boundary at a fixed rate per unit length to boundary, and another (R2) that grows
logistically on the patch interior. Also, one of the consumers (u) is assumed to
be more efficient than the other (v) in using R1. It turns out that because of the
different processes that act to increase R1 and R2, it is possible for the consumers to
drive R2 to extinction if the level of R1 is sufficiently high, but R1 cannot be driven
to extinction. (This phenomenon could be viewed as a type of asymmetric apparent
competition between R1 and R2; see Abrams [1] for a discussion of this and related
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topics.) The significance of this observation is that while the equilibrium value of
R1 in the absence of consumers scales as ` while the equilibrium value of R2 in
the absence of consumers scales as `2, it is the consumer (u) that can use R1 most
effectively that is dominant when ` is large. The mechanism is that as ` becomes
large, u can sustain itself at a high enough level on R1 that it reduces R2 sufficiently
as to exclude v. For intermediate values of `, the full model (2.1) admits positive
equilibria for both R1 and R2, so the pseudoequilibrium hypothesis is reasonable.

In the pseudoequilibrium competition model (2.22), the effects of changing `
can be complicated; for example, there may be multiple reversals of competitive
dominance. There are a few patterns that emerge from that analysis as well. If
the quality q of the logistic resource R2 is sufficiently low, then u will exclude v
whenever both could exist on their own. In cases where either b1/c1 > 1/2 or
b2/c2 > 1/2, values of q that are less than the critical value −αγ/β2 but not too
small typically lead to a pattern where u excludes v for ` relatively small (but
large enough that each consumer can exist by itself), there is either coexistence or
bistability for intermediate sizes of `1 and u again excludes v if ` is large. This
pattern reflects the fact that increasing ` from a small value to a moderate one
tends to benefit the competitor (v) which can use the quadratically scaled resource
most effectively, as observed by Pearman [40, 41]. It also reflects the results of
apparent competition on the resources, because that is the mechanism by which
u excludes v for large values of `. (See [1] for a general discussion of apparent
competition and resource depletion, especially as it relates to pseudoequilibrium
models.) On the other hand, if q is larger than the critical value q = −αγ/β2 for
which the minimal patch sizes needed to support the two consumers by themselves
are the same, the pattern of competitive dominance is that for relatively small
values of `, v excludes u; for intermediate values either u and v coexist or the
system is bistable (i.e., the outcome of competition depends on the initial data);
and for large `, u excludes v. Whether the model displays coexistence or bistability
depends on whether b1/c1 > b2/c2 or b1/c1 < b2/c2. In the case b1/c1 > b2/c2,
any equilibrium with both u and v present is stable, but for b1/c1 < b2/c2 such
equilibria are always unstable. The mechanism is that when b1/c1 > b2/c2, each
consumer prefers the resource it can use most effectively, which causes separation
of their niches, which favors coexistence; but if b2/c2 > b1/c1 then each consumer
prefers the resource which can be used most effectively by the other consumer,
which increases niche overlap and makes coexistence less likely. If the values of
b1/c1 and b2/c2 are switched, the only change in the way the predictions of the
model (2.22) depend on ` is that coexistence is switched with bistability. In other
words, if for a given set of parameters the model predicts v excludes u for ` small,
coexistence for ` moderate, and u excludes v for ` large, then switching b1/c1 and
b2/c2 would change the pattern only by replacing coexistence with bistability for
moderate sizes of `.

6. Discussion. This work explores how the spatial scaling of habitats can change
species interactions. It formalizes a mechanism through which a change in habi-
tat size can fundamentally alter the outcome of a competitive interaction, making
competitive dominance a scale-dependent trait. The keys to the reversals of compet-
itive dominance we found were differential use of patch interior and edge habitats
by competing species and differential scaling of the relative availability of those
habitats as patch size increased. In some parameter cases we considered in depth,
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differences in quality between patch interior and patch edge habitats determined
the range of patch sizes over which competitive dominance occurred. In other cases,
habitat quality can qualitatively affect the existence of those outcomes, and allow
for more complex patterns of scale-dependence in competitive dominance.

Though apparently unique from the perspective of mathematical ecology, the
modeling scenario we discussed is not without meaningful parallels in the real world.
We identified several such examples in the introduction. Additional cases include
studies of birds, fish, and insects. Forest-dwelling birds provide probably the best-
studied examples of core- versus edge- dependent species (e.g., [48]), with interior
species often being replaced by edge-tolerant species in small forest patches. How-
ever, that phenomenon has more to do with predator incursions and nest parasitism
in edge habitats (e.g., [5, 11, 59]) than interspecific competition as we modeled
here. In another example, the competitive ranking of two fish species (perch and
loach) switch as one moves from shallow, macrophyte-dominated habitats to open-
water habitats [42]. This reversal in competitive advantage, which is mediated by
foraging efficiencies that change differentially as a function of habitat structural
complexity, suggests that the relative success of these two fish species may be as-
sociated with the geometric scaling of structurally complex habitats within a lake.
Because one has to consider vagaries of lake depth variation in differentiating shal-
low and openwater habitats, such scaling may not depend on something as simple
as perimeter-to-area ratio, but nevertheless a similarity exists to the hypothetical
cases we modeled. As a final example, Hurd [25] discusses the niche relationships
of praying mantis species that lay their egg cases at different heights in vegetation,
one species (Tenodera angustipennis) preferring trees as oviposition substrates while
the other (Tenodera sinensis) uses forbs or stalks of pasture grass. Both species
feed on insects from the pasture habitats and engage in size-dependent intraguild
predation. In most pastures studied, the grass-dependent species dominates, but
this may simply reflect the differential availability of oviposition substrates in core
versus edge habitats. Small pastures may feature enhanced opportunities for the
otherwise disadvantaged T. angustipennis. Ordinarily the grass-dependent species
dominates, but the asymmetry of the interaction between these mantis species may
lessen as pasture size decreases, increasing the relative availability of trees along
the field margins.

Having reemphasized the biological realities underlying our choice of model, we
briefly return to the issue of model structure. If we had not been interested in
the specific effects of allochthonous resource inputs, we could have rewritten (2.1)
using logistic-type growth dynamics for both edge and interior resource species.
This alternative model would have been entirely appropriate if instead of consider-
ing sea-wrack that washed ashore and subsidized the food webs of desert islands,
Polis and colleagues had focused on populations of shore-living species that might
reasonably be expected to exhibit strong connections between local densities and
local recruitment. However, even this “simpler” model would lead to interesting
scale-dependence in competitive interactions. In particular, note that if one were
to apply the pseudoequilibrium assumption to the alternative, logistic-based four
species model, one would still obtain expressions for the consumer dynamics involv-
ing some terms scaled by ` and other terms scaled by `2. Consequently, analysis
of that alternative model would still require some tedious algebra and would still
generate interesting dependence of competitive success on aspects of habitat geom-
etry. In some ways, the dynamics of that alternative model are actually richer, and
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hence more interesting from a purely theoretical perspective, than those issues we
discussed here. However, we save elaboration on this issue for future work.

The interplay between patch size, resource quality, and species interactions we
modeled here has ramifications for several topics in community ecology. We briefly
discuss two of these contact areas here: (1) immigration dynamics and community
assembly, and (2) metapopulation dynamics of competing species.

First, we elaborate on the issue of immigration dynamics because of our analyti-
cal emphasis on invasibility and patch colonization. We have characterized thresh-
old patch sizes below which a particular species cannot successfully colonize in the
absence of competitors as well as patch sizes below which a particular species can-
not successfully colonize when the competitors are at their carrying capacity. In the
real world of course, other factors, such as the availability of potential dispersers (or
dispersal propagules) would interact with patch size to determine species’ coloniza-
tion abilities. For some parameter combinations and patch sizes, initial densities
of the competing species determine competitive dominance. In nature, this would
give the advantage to species with a higher likelihood of early colonization. Prior-
ity effects, stochasticity in arrival sequence, opportunities for multiple colonization
events, and other aspects of community assembly dynamics (e.g., [6, 17, 47]) would
be major factors influencing species success at the regional level. However, because
competitive outcomes are scale-dependent in this model, the same assembly process
played out in larger or smaller patch sizes could yield very different results. For
example, in some cases, competitive success would switch from being dependent on
initial conditions to being a deterministic result.

Second, and arguably of broader importance, our finding that competitive dom-
inance can be a scale-dependent trait bears directly on the subject of multi-species
metapopulation dynamics. Under our modeling framework, competing species
should be able to succeed within a multi-patch landscape by virtue of differential
success in patches of different sizes (see also [2]). No among-patch heterogeneity
(other than size) and no competition-colonization tradeoff would seem necessary to
promote regional coexistence. In competitive metapopulation dynamics like those
of Nee and May [36] or Tilman et al. [54], the competitive hierarchies are fixed
and independent of underlying patch characteristics. In contrast, in the current
modeling framework, if competitors consistently exhibited different preferences for
core and edge resources, then competitive hierarchies would be locally reshuffled
merely as a function of patch size. Add in predator success that is also patch-size
dependent (e.g., [27, 33, 46]) and the potential for complex relationships between
local and regional diversity quickly expands, remaining very strongly determined
by the size distribution of patches within a landscape.

The differential scaling of interior and edge-linked resources and consequent
scale-dependent opportunities for competitive exclusion may effectively exclude
whole suites of patches from meaningful membership in a species’ metapopula-
tion. In such cases, the true number of patches available for colonization by the
species (and hence available to offset the effects of local extinctions of occupied
patches) may be far lower than the amount of available habitat would indicate.
Consequently, human activities or landscape processes (e.g., fire) that change the
distribution of patch sizes in a landscape could shift the competitive advantage in
such systems by altering the “metapopulation capacity” of a landscape [22, 38].
Interestingly, addressing the related issues of scaling and patch size in the “one
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patch problem” has yielded some direct, and novel, implications for multipatch,
landscape-level issues that deserve further investigation.

In conclusion, this paper highlights that species interactions understood at one
spatial scale may exhibit very different outcomes at larger or smaller scales. Con-
sequently, it adds to a growing group of papers that document the importance of
domain size to the understanding of ecological phenomena, including population
persistence [8, 10, 11, 16, 28, 52] and species interactions [23, 25, 46, 49]. Although
we focused on two species competitive interactions, we suspect that models featur-
ing apparent competition, intraguild predation or omnivory would exhibit similar
opportunities for scale-dependent outcomes when edge-linked and patch-interior
resources scale differentially.
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Appendix

Sketch of Proof of Lemma 1. The quantities R1 and R2 are subsolutions to the
equations

Ṙ1 = ρ`− d3R1

and

Ṙ2 = r

(
1− R2

K`2

)
R2

respectively, so they are asymptotically bounded by (ρ`/d3) + ε and K`2 + ε, re-
spectively, for any ε > 0. For constants P, Q > 0 we have

(Pu + Qv + R1 + R2)• = (PA1 −B1)R1u

+(PA2q − C1)R2u + (QA3 −B2)R1v

+(QA4q − C2)R2v − Pd1u−Qd2v

+M(R1, R2)

(A.1)

where M is independent of u and v. If P and Q are chosen small enough that the
coefficients of the first four terms on the right side of (A.1) are negative, then the
asymptotic bounds on R1 and R2 together with (A.1) imply that for large t,

(Pu + Qv + R1 + R2)• ≤ M1 − δ(Pu + Qv + R1 + R2) (A.2)
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where δ = min{d1, d2} and M1 depends only on the asymptotic bounds on R1 and
R2 and the coefficients of (2.1). The asymptotic boundedness of u and v then fol-
lows from (A.2).

Proof of Lemma 2. By Lemma 1, there is a constant M2 (independent of the ini-
tial conditions on u, v, R1, R2) such that for t sufficiently large B1u+B2v+d3 ≤ M2,
so that for large t, Ṙ1 ≥ ρ`−M2R1. Any solution of Ṙ = ρ`−M2R with R(0) > 0
must eventually become larger than (ρ`/M2) − ε for any ε > 0. Since R1 is a
supersolution, we have R1(t) > R(t) if R(0) = R1(0), so for large t we have
R1(t) > (ρ`/M2)− ε as well. We may choose ε so that (ρ`/M2)− ε > 0.

Proof of Lemma 3. Consider first the case where u(0), v(0), R1(0), and R2(0) are
all positive. Let w = u−µv−νR−τ

1 R2, where µ, ν, and τ are positive constants to be
chosen later. By Lemma 1, u−µv−νR−τ

1 is bounded from below by some positive
constant for t sufficiently large, so if w → 0 as t → ∞ then R2(t) → 0 as t → ∞.
Computing ẇ yields

ẇ = [−µ(A1R1 + A2qR2 − d1)− ν(A3R1 + A4qR2 − d2)

−τ

(
ρ`

R1
− d3 −B1u−B2v

)

+r

(
1− R2

k`2

)
− C1u− C2v]w.

Thus, we have

ẇ ≤ [−µA1R1 + µd1 − νA3R1 + νd2 − τρ`

R1

+τd3 + τB1u + τB2v + r − C1u− C2v]w

Choosing τ = min{C1/B1, C2/B1} we have

ẇ ≤ [−(µA1 + νA3)R1 − τρ`

R1
+ µd1 + νd2 + τd3 + r]w. (A.3)

The minimum of the expression

(µA1 + νA3)R1 +
τρ`

R1

for R1 > 0 is given by
2
√

(µA1 + νA3)τρ`

so (A.3) implies

ẇ ≤ [−2
√

(µA1 + νA3)τρ` + µd1 + νd2 + τd3 + r]w. (A.4)

In general if we choose any fixed positive values for µ and ν, then the expression in
square brackets on the right side of (A.4) is clearly negative if ` is sufficiently large;
so, in that case w(t) → 0 as t →∞ and thus R2(t) → 0 as t →∞.

If v(0) = 0, then v(t) = 0 for all t. If we take ν = 0 and τ = C1/B1, then in that
case we may replace (A.3) with

ẇ ≤
[
−µA1R1 − C1ρ`

B1R1
+ µd1 +

C1d3

B1
+ r

]
w (A.5)
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and then we may replace (A.4) with

ẇ =
[
−2

√
µA1C1ρ`/B1 + µd1 +

C1d3

B1
+ r

]
w. (A.6)

Choosing µ > 0 to minimize the first two terms inside the square brackets yields

ẇ ≤
[
−A1C1ρ`

B1d1
+

C1d3

B1
+ r

]
w. (A.7)

The expression inside the square brackets in (A.7) is negative provided (2.3) holds,
so in that case w(t) → 0 and hence R2(t) → 0 as t →∞. The case with u(0) = 0,
v(0) > 0 can be treated analogously and leads to the conclusion R2(t) → 0 as
t →∞ if (2.4) holds.

Proof of Lemmas 4 and 5. We have

(u−d2/d1v)• = u−d2/d1v

[
−d2

d1
(A1R1 + A2R2q − d1) + (A3R1 + A4R2q − d2)

]

= u−d2/d1v

[
−

(
A1

d1
− A3

d2

)
d2R1 +

(
A4

d2
− A2

d1

)
d2qR2

]

By (2.2) (A1/d1)− (A3/d2) > 0, and by Lemma 2, R1(t) > R
¯1 > 0 for large t; so,

if R2(t) → 0 as t →∞ then for large t (u−d2/d1v)• ≤ −c(u−d2/d1v) for some c > 0.
That would imply u−d2/d1v → 0 as t → ∞ and hence v → 0 as t → ∞. If (2.5)
holds then

(u−d2/d1v)• ≤ (u−d2/d1v)
[
−

(
A1

d1
− A3

d2

)
d2R1

]

for all t so again (u−d2/d1v) → 0 and hence v → 0 as t →∞.

Proof of Lemma 6. We already know that `1 < `2 for q small and `2 < `1
for q large. It remains to verify that the value of q for which `1 = `2 is uniquely
determined as q = −αγ/β2. If `1 = `2 = `, then (3.4) and (3.6) imply

a2q`
2 + a1`− d1 = 0

a4q`
2 + a3`− d2 = 0.

Multiplying the first equation by a4 and the second by a2 and subtracting yields

(a1a4 − a2a3)`− a4d1 + a2d2 = 0,

so that in terms of the quantities in (3.1) we have ` = β/α. Solving for q in the
first of the quadratics above when ` = β/α gives

q =
α2

a2β2

[
d1 − a1β

α

]
=

α

a2β2
(αd1 − a1β) = −αγ

β2

since αd1−βa1 = −a2γ. (The corresponding calculation using the second equation
gives the same result.) Thus, we can have `1 = `2 only in the case described in
Lemma 6. In that case it is straightforward to verify `1 = `2 = β/α by using the
relation αd1 − βa1 = −a2γ. Since decreasing q increases `1 and `2, `1 < `2 for q
small, and we can have `1 = `2 only if q = −αγ/β2, it follows that `2 > `1 > β/α
for q < −αγ/β2. Similarly, since `1 > `2 for q large we must have β/α > `1 > `2
for q > −αγ/β2.
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Stability Analysis (Lemmas 8-10).

The system (2.22) has the form

u̇ = f(u, v)u

v̇ = g(u, v)v

so the Jacobian has the form

J =




ufu + f ufv

vgu vgv + g


 .

Proof of Lemma 8. At a coexistence equilibrium (u∗∗, v∗∗) we have f = g = 0.
Computing fu, fv, gu, gv gives

fu =
−a1b1`

(1 + b1u + b2v)2
− c1a2q`

2

fv =
−a1b2`

(1 + b1u + b2v)2
− c2a2q`

2

gu =
−a3b1`

(1 + b1u + b2v)2
− c1a4q`

2

gv =
−a3b2`

(1 + b1u + b2v)2
− c2a4q`

2.

At (u∗∗, v∗∗) we have 1 + b1u
∗∗ + b2v

∗∗ = α`/β by (3.11), so at the equilibrium,

J =




[−a1b1β
2

α2`
− c1a2q`

2

]
u∗∗

[−a1b2β
2

α2`
− c2a2q`

2

]
u∗∗

[−a3b1β
2

α2`
− c1a4q`

2

]
v∗∗

[−a3b2β
2

α2`
− c2a4q`

2

]
v∗∗




.

Computing |J − λI| yields (after some algebra)

λ2 +
[
u∗∗

(
a1b1β

2

α2`
+ c1a2q`

2

)
+ v∗∗

(
a3b2β

2

α2`
+ c2a4q`

2

)]
λ

+
u∗∗v∗∗β2q`

α2
[b1c2a1a4 + b2c1a2a3 − b2c1a1a4 − b1c2a2a3].

The term multiplying λ is positive. Since all the entries in J have the same sign, the

eigenvalues of J must be real. (If J =
(

P Q
R S

)
then the equation |J − λI| = 0

has the form
λ2 − (P + S)λ + PS −RQ = 0

with discriminant (P +S)2−4(PS−RQ) = (P −S)2 +4RQ which will be positive
if R and Q have the same sign.) The equation |J − λI| = 0 admits a positive root
if and only if

b1c2a1a4 + b2c1a2a3 − b2c1a1a4 − b1c2a2a3 < 0,
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which is equivalent to

c1c2

(
b1

c1
− b2

c2

)
(a1a4 − a2a3) = c1c2(−α)

(
b1

c1
− b2

c2

)
< 0.

Since α < 0, the equation |J − λI| = 0 admits a positive root, and hence (u∗∗, v∗∗)

is unstable, if and only if
b1

c1
<

b2

c2
.

Proof of Lemma 9. At (u∗, 0) the Jacobian takes the form

J =




u∗fu(u∗, 0) u∗fv(u∗, 0)

0 g(u∗, 0)


 ,

so the eigenvalues of J are u∗fu(u∗, 0) and g(u∗, 0). Since fu < 0, we have
u∗fu(u∗, 0) < 0; the corresponding eigenvector is (1, 0). The eigenvalue

g(u∗, 0) =
a3`

1 + b1u∗
+ a4q`

2(1− c1u
∗)− d2

may be of either sign, depending on the specific parameters. If g(u∗, 0) = u∗fu(u∗, 0),
then that eigenvalue has algebraic multiplicity 2 but geometric multiplicity 1; that
is, the eigenvalue admits only the eigenvector (1, 0) but has a generalized eigen-
vector as well. In all other cases the eigenvector for g(u∗, 0) can be chosen as
(u∗fv(u∗, 0)/[g(u∗, 0) − u∗fu(u∗, 0)], 1). The equilibrium (u∗, 0) is unstable when
g(u∗, 0) > 0; that is, when

a3`

1 + b1u∗
+ a4q`

2(1− c1u
∗)− d2 > 0. (A.8)

In that case the first component of the eigenvector corresponding to g(u∗, 0) is
negative. Recall that u∗ satisfies

a1`

1 + b1u∗
+ a2q`

2(1− c1u
∗)− d1 = 0. (A.9)

Multiplying (A.9) by a3/a1 yields (after some algebra)

a3

1 + b1u∗
+ a4q`

2(1− c1u
∗)− d2 =

(
a4 − a2a3

a1

)
q`2(1− c1u

∗) +
a3d1

a1
− d2

=
1
a1

[−αq`2(1− c1u
∗)− γ

]
.

(A.10)
Similarly, multiplying by a4/a2 yields

a3`

1 + b1u∗
+ a4q`

2(1− c1u
∗)− d2 =

1
a2

[
α`

1 + b1u∗
− β

]
. (A.11)

Thus, the expressions on the right sides of (A.10) and (A.11) are equal, and (A.8)
holds if and only if they are positive. Thus, if u∗ exists, (A.8) holds if and only if

α`

1 + b1u∗
− β > 0, (A.12)

or equivalently if and only if

−αq`2(1− c1u
∗)− γ > 0. (A.13)
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Solving (A.12) and (A.13) for u∗ yields
(

1 +
γ

αq`2

)
/c1 > u∗ >

(
α`

β
− 1

)
/b1, (A.14)

so that if u∗ exists and (A.8) holds then it is necessary that
(

1 +
γ

αq`2

)
b1 −

(
α`

β
− 1

)
c1 > 0, (A.15)

which is equivalent to (3.17). We still need to verify that (3.17) is sufficient for
(A.8). Suppose (3.17) and hence (A.15) holds. Equating the two expressions on
the right sides of (A.10) and (A.11) and rewriting them yields

−αq`2c1

a1

[(
1 +

γ

αq`2

)
1
c1
− u∗

]
=

−βb1

a2(1 + b1u∗)

[
u∗ − 1

b1

(
α`

β
− 1

)]
(A.16)

The left side of (A.16) is clearly decreasing in u∗. The right side of (A.16) is still
equal to the form shown on the right side of (A.11), so it is increasing in u∗ on
the interval (−1/b1,∞). (Recall that α < 0.) Since u∗ > 0 is uniquely determined
when it exists, if w > 0 is a solution of

−αq`2c1

a1

[(
1 +

γ

αq`2

)
1
c1
− w

]
=

−βb1

a2(1 + b1w)

[
w −

(
α`

β
− 1

)]
(A.17)

then we must have w = u∗. (Since the left side of (A.17) decreases in w and the
right side increases, w is uniquely determined by (A.17) if w exists. If we take

w =
1
b1

(
α`

β
− 1

)
then the right side of (A.17) is zero while the left side is positive

because of our assumption that (3.17) and hence (A.15) holds. If w is increased

to w =
1
c1

(
1 +

γ

αq`2

)
, then the right side of (A.17) becomes positive while the

left side becomes zero. Thus, since u∗ = w for w > 0 satisfying (A.17), it must
be the case that (A.14) holds so that (A.8) holds whenever (3.17) is satisfied and
u∗ > 0 exists. Note that by (A.14) we cannot have u∗ > 0 with (u∗, 0) unstable if
1 +

γ

αq`2
< 0.

Remark on Lemma 10. The stability analysis for (0, v∗) is analogous to that for
(u∗, 0) but in place of (A.8) one obtains

a1`

1 + b2v∗
+ a2q`

2(1− c2v
∗)− d1 > 0 (A.18)

and in place of (A.14) one obtains
(

α`

β
− 1

)
1
b2

> v∗ >

(
1 +

γ

αq`2

)
1
c2

and hence (3.16) follows.

Sketch of proof of Lemma 11. Write (2.22) as

u̇ = F (u, v)

v̇ = G(u, v).
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For ε > 0 we have


F (ū + εφ, v̄ + εψ)

G(ū + εφ, v̄ + εψ)


 =




F (ū, v̄)

G(ū, v̄)


 + εJ




φ

ψ


 + h.o.t.

= ελ




φ

ψ


 + h.o.t.

so F (ū + εφ, v̄ + εψ) > 0 and G(ū + εφ, v̄ + εψ) < 0 for ε > 0 small. We can choose
ε > 0 so that those inequalities hold and so that u(0) > ū + εφ and v(0) < v̄ + εψ.
Let (ũ1, ṽ1) be the solution of (2.22) with ũ1(0) = ū + εφ and ṽ1(0) = v̄ + εψ. We
have u > ũ1 and v < ṽ1 by the order-preserving property of the system. Also,
dũ1/dt > 0 and dṽ1/dt < 0 at t = 0, so for δ > 0 sufficiently small we have
ũ1(δ) > ũ1(0), ṽ1(δ) < ṽ1(0). By the order-preserving property of the system,
ũ1(t + δ) > ũ1(t) and ṽ1(t + δ) < ṽ1(t), so ũ1 must increase and ṽ1 must decrease.
All nonnegative solutions to (2.22) are bounded and nonnegative, so ũ1(t) and ṽ1(t)
must converge as t →∞. By continuity of F and G they must converge to an equi-
librium. The proof in the case φ < 0, ψ > 0 is similar.

Proof of Lemma 13. Suppose ` satisfies (4.3) for i = 1, 2. Subtracting (4.3) with
i = 1 from (4.3) with i = 2 yields (Q2 − Q1)(αβ`2 + βγ/q) = 0 so
q = −γ/α`2. Multiplying (4.3) with i = 1 by Q2, multiplying (4.3) with i = 2 by Q1,
then subtracting yields (Q2−Q1)(α2`3−αβ`2) = 0 so ` = β/α. Using q = −αγ/β2,
we see that ` − (β/α) is a factor of the cubic for i = 1, 2. Dividing it out and ap-
plying the quadratic formula to the result yields ` = (β/2α)[Qi ±

√
Q2

i + 4Qi].
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