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Abstract. Treatment of human immunodeficiency virus type 1 (HIV-1) infec-
tion during the symptomatic phase has significantly improved patient survival.
We present a two-strain HIV mathematical model that captures the dynamics
of the immune system and two HIV-1 variants under antiretroviral therapy.
We explore the effects of chemotherapy on the dynamics of two viral strains
and T lymphocytes with one mutant strain phenotypically resistant to drug
effects. Model calculations show that there is a common pattern for CD4+ T
cell count increase. There is a drastic increase of CD4+ T cells during the first
few weeks of treatment, followed by a gradual increase, and these increases are
strictly by clonal expansion of preexisting CD4+ T cells. Plasma HIV RNA
dramatically decline to zero levels during the first week of drug administration.
If drug efficacy is equal to or above a threshold efficacy, viral load remains at
zero levels and if drug efficacy is less than the threshold efficacy, viral load
gradually increases until it stabilizes. Viral rebound during treatment is en-
tirely due to the recovery of CD4+ T cells. The results also reveal that there is
a dynamic equilibrium between viral load and cytotoxic T lymphocyte (CTL)
response in an infected individual during drug administration.

1. Introduction. A number of HIV-1 antiretroviral therapies have been devel-
oped that have potent and durable efficacy profiles, favorable resistance patterns,
patient-friendly dosing schemes and minimal side effects. The use of these new
HIV therapies have significantly contributed to decreased morbidity and mortality
in HIV infected patients. Currently, these chemotherapies offer added dosing con-
venience and improved safety profiles. Clinical benefits of drug therapy for HIV
infected individuals include maximum duration of suppressive antiviral activity
and minimizing toxicity, ultimately leading to improved survival and quality of life.

2000 Mathematics Subject Classification. 92D30.
Key words and phrases. HIV-1, chemotherapy, viral load, mathematical model, Cytotoxic T

Lymphocytes.

811



812 T. SHIRI, W. GARIRA, AND S. D. MUSEKWA

Triple or quadruple drug therapy combinations of reverse transcriptase inhibitors
and protease inhibitors can reduce the virus load by orders of magnitude and can
maintain plasma virus below detection limit for several months. Also, drug combi-
nations have immunologic effects associated with increase in CD4+ T lymphocytes
for a long period of time. However, deleterious side effects such as risk of cardiovas-
cular, lactic acidosis and mitochondrial damage remain rife during prolonged drug
administration [8]. Furthermore, it is not feasible that current drugs can eradicate
HIV from infected individuals because of the presence of resistant mutants which
when exposed to drugs are less affected or not affected at all. The resistant strains
are as a result of mutations. These resistant strains can preexist in drug-naive
patients or evolve after the initiation of therapy [1, 22].

New insights have been derived from mathematical models of antiviral drug
treatment that have been developed to study the frequency of drug-resistant virus
in untreated patients [17], the effect of treatment on reducing viral diversity [3, 16],
long-term changes in viral load in treated patients to identify principal factors re-
sponsible for sustained suppression of virus load [2], the role of immune responses in
the rise of drug-resistant mutants [22], conditions under which resistance dominates
as a result of imperfect adherence [20], time evolution of intracellular concentra-
tions of active forms of drugs [6], and the relationship between HIV and the immune
system in the context of different antiviral treatment regimes [21]. Bonhoeffer and
Nowak, [1] compared the likelihood of pre-existence of resistant strains with the
likelihood of production of resistant virus during therapy using two strain basic
models of viral dynamics. Bonhoeffer and Nowak showed that if resistant virus
preexists before therapy, then a stronger therapy may lead to a greater initial re-
duction of virus load, but will cause a faster rise of resistant virus. The total benefit
of treatment in this scenario is independent of the degree of inhibition of sensitive
virus. One drawback of all the models developed is that they did not incorporate
the effects of CTLs’ lytic and nonlytic mechanisms on disease progression explicitly.

In the light of evidence that CTLs play a crucial role in controlling HIV-1 in-
fection [10, 18, 13], here we design a model that incorporates explicitly the lytic
and nonlytic effects of CTLs as well as drug effects on baseline HIV-1 disease para-
meters. CTLs can kill infected cells by direct contact (lytic response) or suppress
HIV replication through the release of soluble antiviral factors (nonlytic response),
including rantes, macrophage inflammatory protein-1α (MIP-1α), and macrophage
inflammatory protein-1β (MIP-1β). In addition to CTL effects, we incorporate the
feature of potential “bystander killing” of uninfected CD4+ T cells due to apoptotic
receptors induced by viral particles. The primary goal of this paper is to establish
virologic and immunologic effects of chemotherapy, that is, effects of drugs on HIV
RNA viral load and on T lymphocyte (CD4+ T cells and CTLs) count of treatment-
naive patients respectively, using a two strain viral immune dynamic model that
assumes that one viral strain is resistant to therapy.

We will start by formulating a pretreatment model of two HIV-1 variants which
describes the interaction of two viral strains and the immune system in section 2,
and this builds on our earlier work [9]. We make an analysis of the pretreatment
model in section 3 and investigate the effects of drugs using a mathematical model
incorporating therapy in section 4. We use the fourth-order Runge-Kutta scheme
to numerically simulate the effects of drugs in section 5. In section 6, we present
some concluding remarks, and due to the arbitrariness of some parameter values
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chosen in our numerical simulations, we also point out where the predictions agree
and where they disagree with experimental evidence.

2. The Pretreatment Model. First, we present a basic model of HIV immune
system dynamics that will form the basis for modifications that will incorporate the
effects of chemotherapy on baseline HIV-1 disease parameters. The model builds
on our earlier work [9], where a version of this model involving a single strain was
studied in the context of optimal control. We modify the model [9] by incorpo-
rating mutation. Viral mutation can lead to epitope deletion, failure of antigen
processing, loss of major histocompatibility complex class I (MHC I) binding, and
impaired recognition by the T cell receptor (TCR) [18]. The viral heterogeneity is
largely the result of the high error rate of the HIV reverse transcriptase enzyme,
which produces the DNA copy of the viral RNA, together with the absence of any
mechanism to correct such errors. The result is the production of HIV proviral
DNA containing one or more mutations, and some of these mutations will lead to
amino acid sequence changes in the viral envelope. It is these sequence differences
which are responsible for the different biological properties of different isolates of
HIV [13]. Most of these mutations affect the env gene, producing different envelope
glycoproteins. A mutation able to reduce recognition of an epitope would give a
viral variant a survival advantage, up to a time when the immune system discovers
and reacts to the altered peptide [15]. In real situations, viruses have several differ-
ent epitopes that can be recognized by immune responses. Some virus mutants may
differ in one epitope but coincide in others. This means that the immune response
may recognize a number of different virus strains, but fail to recognize others. We
assume that viral strains are not recognized by the same immune responses; that
is, immunity is not cross-reactive between the two strains. If the epitope fueling
the dominant immune response mutates, the corresponding CTL clone (CTL pop-
ulation recognizing one epitope) may not recognize the mutant. Viral particles
bearing this peptide then multiply almost unnoticed. Sometimes the immune sys-
tem catches up with the renegade group and mounts a defense targeted against the
new version of the epitope [15].

The pretreatment model simply monitors the temporal dynamics of seven popu-
lations, namely, uninfected CD4+ T cells, two groups of infected CD4+ T cells (one
infected by wild-type strain virus and the other by a mutant strain virus), two viral
strains (wild-type strain and the mutant strain), and two CTL clones (one group of
CTLs recognizing wild-type strain viral infected CD4+ T cells and the other group
of CTLs recognizing mutant strain viral infected CD4+ T cells). We assume that,
during the course of normal wild-type strain viral replication, virus variants that
are resistant to the present CTL response arise at a rate γ. We also assume that
there is no back-mutation from the resistant strain to the wild-type strain. The two
virus strains have different replication and cytopathic effects. The proposed model
of evolutionary variants before initiation of therapy is schematically illustrated in
figure 1.
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Figure 1. Schematic representation of the mathematical model
of two evolutionary HIV-1 variants. Uninfected CD4+ T cells are
produced at a rate s, and they are infected by wild-type strain
viral particles. The uninfected CD4+ T cells are lost by natural
death and also by “bystander killing.” The body mounts an im-
mune response to fight the virus, and specific CTL clones fight the
virus with soluble factors such as chemokines and also kill infected
cells. The initial CTL response against the wild-type virus, CTL
clone 1, is specific to the wild-type strain. Due to virus mutation,
new HIV-1 variants emerge and also infect CD4+ T cells. The
body mounts another defense mechanism targeted against the new
version of the viral strain, CTL clone 2. Infected CD4+ T cells
are lost by virus cytopathogenecity and CTL lytic effects. The two
viral strains have different cytopathic effects.
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The mathematical model of two evolutionary variants is given by the nonlinear
initial-value problem, where the rates of change of each variable with respect to
time are:

dT (t)
dt

= s + T (t)

{
2∑

i=1

riVi(t)
BV

i + Vi(t)
−

2∑

i=1

kiVi(t)
BT

i + T (t)
−

2∑

i=1

βie
−aiCi(t)Vi(t)

}

− µT T (t) (1)
dT ∗1 (t)

dt
= e−a1C1(t)β1T (t)V1(t)(1− γ)− (

α1 + h1C1(t)
)
T ∗1 (t) (2)

dT ∗2 (t)
dt

= e−a2C2(t)β2T (t)V2(t) + γe−a1C1(t)β1T (t)V1(t)− α2T
∗
2 (t)

− h2C2(t)T ∗2 (t) (3)
dVi(t)

dt
= NiαiT

∗
i (t)e−biCi(t) − µiVi(t) (4)

dCi(t)
dt

= si + piT (t)Ci(t)Vi(t)− δiCi(t), (5)

where i = 1, 2 and T (t) is the population density of CD4+ T cells; T ∗1 (t) is the
density of wild-type virus infected CD4+ T cells; T ∗2 (t) is the density of resistant
virus infected CD4+ T cells; V1(t) is the wild type viral population; V2(t) is the
CTL clone 1-resistant virus population; C1(t) is the density of CTLs specific to the
wild type virus; and C2(t) is the population of CTLs specific to the newly evolved
strain.

Equation (1) describes the dynamics of uninfected CD4+ T cells. The first
term on the right-hand side, s, represents the source of new CD4+ T cells from
the thymus [11]. This is followed by a proliferation term for CD4+ T cells in the
presence of two virus strains: ri is the proliferation rate induced by strain i. The
parameter BV

i is a parameter that determines the amount of strain i needed to
generate half maximal stimulation, that is, saturation constant of the proliferative
process [11]. This parameter is also referred to as “antigenicity” parameter: highly
antigenic strains will have a low BV

i value [4]. The third term represents the
destruction of CD4+ T cells by the influence of toxic viral proteins. The parameter
ki represents the rate at which strain i induces apoptosis receptors. A feature of
potential “bystander killing” of uninfected CD4+ T cells is a monotonic decreasing
function as disease progresses; that is, there is an increase of apoptosis at low
CD4+ T cell count because viral load would be high. At high CD4+ T cells, viral
load is low; therefore, apoptosis decreases. The-second-from last term describes
the infection of CD4+ T cells by the two viral strains. The two viral strains have
different infectivity rates; that is, β1 is the rate at which the wild-type strain virus
infects CD4+ T cells; and β2 is the rate at which the CTL clone 1-resistant strain
infects CD4+ T cells. The presence of specific CTLs that release chemokines,
such as β-chemokines that block the entry of certain virions into target cells [12],
prevents infection of new cells by a factor e−aiCi for the specific CTL clone i. The
parameters ai represent the efficiency of CTL clone i infection of the CD4+ T cells
infection by HIV strain i [9]. The term −µT T (t) is the natural death term for
uninfected CD4+ T cells, and on average the life span is 1/µT .

Equation (2) describes the rate of change of CD4+ T cells infected by the wild-
type strain virus. The first term on the right-hand side is a gain term for CD4+
T cells infected by the wild-type strain virus. A fraction of the virus’s wild-type
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strain mutates to resistant mutant viral particles during the transcription process
at a rate γ. The wild-type strain infected CD4+ T cells die due to this strain’s
cytopathic effect, (that is the term α1T

∗
1 (t)), and these cells are also killed through

perforin-granzyme and Fas-Fas Ligand pathways by CTLs specific to the wild-type
strain at a rate h1.

The third equation describes the rate of change of CD4+ T cells infected by
the resistant strain of the virus. Similar to the second equation, the first term on
the right-hand side describes the gain for resistant-strain infected CD4+ T cells.
The second term is a gain term of resistant strain virus infected CD4+ T cells
through mutation of the wild-type strain during transcription process. The third
term α2T

∗
2 (t) is a loss term due to the cytopathic effect of the resistant strain, and

h2T
∗
2 (t)C2(t) is loss term due to the lytic effect of resistant-strain-specific CTLs

prior to the assembly and release of infectious virions.
The fourth equation describes the rate of change of the two viral strain popu-

lations, where the first term on the right-hand side explains the source of strain i
viral particles. The product Niαi is the average rate of strain i virus production per
productively strain i-infected cell. CTLs specific to strain i release cytokines, prin-
cipally interferon-γ (INF-γ), interleukin-6 (IL-6), and interleukin-10 (IL-10) [13],
that can suppress the rate of virus production; therefore, they reduce viral burst by
a factor of e−biCi , where bi is the rate at which strain i specific CTL suppress viral
production [9]. The last term on the right hand side represent the loss of strain i
through natural death with an average life-span of 1/µi.

Equation (5) represents the dynamics of strain i-specific CTLs. The first term
on the right-hand side, si, models the production rate of specific CD8+ T cells
from precursors. Epitopes differ in their ability to induce CTL responses where the
immunogenecity of an epitope is the rate at which it induces CTL proliferation.
Naive specific CD8+ T cells differentiate into CTLs specific to the antigen in re-
sponse to HIV antigen with the help of CD4+ T cells at a rate pi, modelled by the
second term. The last term, δiCi(t) represents the loss of CTLs by natural death.
A summary of variables and parameters used in our model appears in table 1.

3. Analysis of the Pretreatment Model. We analyze system of equations (1)-
(2) by determining its steady states. A steady state of a system is a point in
phase space for which the system will not change in time. The dynamical sys-
tem,(equations (1)-(5)) has an uninfected steady state given by:

(
T̄u, T̄ ∗1,u, T̄ ∗2,u, V̄1,u, V̄2,u, C̄1,u, C̄2,u

)
=

( s

µT
, 0, 0, 0, 0,

s1

δ1
,
s2

δ2

)
, (6)

which corresponds to a situation when an individual has an abortive infection. If
infection persists after the initial inoculum the system converges to an infected
steady state given by

Ē =
(
T̄p, T̄

∗
1,p, T̄

∗
2,p, V̄1,p, V̄2,p, C̄1,p, C̄2,p

)
, (7)

where T̄p, T̄ ∗1,p, T̄ ∗2,p, V̄2,p, C̄1,p and C̄2,p are given by expressions (8), (9), (10), (12),
(13), and (14), respectively. The uninfected CD4+ T cells has a steady-state value

T̄p =
µ1(α1 + h1C̄1,p)e(a1+b1)C̄1,p

(1− γ)α1β1N1
. (8)

The equilibrium density of healthy CD4+ T cells during the chronic phase of HIV-1
infection depends on the kinetic parameters of the wild-type strain viral population
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Table 1. Description of the units of variables and parameters used
in the model of two evolutionary viral strains

Symbol Description Units

Variables

T Uninfected CD4+ T cells cells mm−3

T ∗1 Wild-type strain infected CD4+ T cells cells mm−3

T ∗2 Mutant strain infected CD4+ T cells cells mm−3

V1 Wild-type strain infectious virus copies mm−3

V2 Mutant strain infectious virus copies mm−3

C1 CTLs specific to wild-type strain virus cells mm−3

C2 CTLs specific to mutant strain virus cells mm−3

Parameters

s Supply rate of CD4+ T cells cells mm−3 day−1

µT Death rate of CD4+ T cells day−1

r1,r2 Proliferation rates of CD4 cells day−1

k1, k2 Apoptosis rates cells mm−3

copies mm3 day1

β1, β2 Rates CD4+ T cells are infected by virus copies mm3 day−1

a1, a2 Rates CTLs reduce infectivity cells mm3

γ Virus mutation rate mutations
nucleotide

α1, α2 Virus cytopathic rates day−1

h1, h2 Rates CTLs lyse infected cells cells mm3 day−1

N1, N2 Virus burst sizes cells−1
mm3

copies mm3

µ1, µ2 Virus clearance rates day−1

s1, s2 CTL supply rates cells mm−3 day−1

p1, p2 CTL proliferation rates cells mm3

copies mm3day1

δ1, δ2 Natural CTL death rates day−1

BT
1 , BT

2 Stimulation constants cells mm−3

BV
1 , BV

2 Stimulation constants copies mm−3

and CTL clone 1 effects; that is, the density is dependent on the viral production
rate of the nonmutating wild-type strain virions, (1 − γ)α1N1, wild-type virus
infectivity, β1, wild-type virus clearance rate, µ1, CTL clone 1’s lytic and nonlytic
effects and the average clearance rate of wild-type virus infected cells, (α1 +h1C̄1).
The equilibrium population of wild-type infected cells is

T̄ ∗1,p =
µ1V̄1,pe

b1C̄1,p

N1α1
, (9)
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and the density of mutant strain population is

T̄ ∗2,p =
µ2V̄2,pe

b2C̄2,p

N2α2
, (10)

such that the total number of infected cells at equilibrium is given by

T̄ ∗1,p + T̄ ∗2,p =
µ1V̄1,pe

b1C̄1,p

N1α1
+

µ2V̄2,pe
b2C̄2,p

N2α2
. (11)

The equilibrium number of infected cells depends on the two virus strains’ average
clearance rates, viral production rates, and the effects of specific CTL clones in
reducing burst sizes. The abundance of the mutant strain viral population during
the chronic phase is

V̄p,2 =
γβ1α2N2T̄pe

−(a1C̄1,p+b2C̄2,p)

µ2(α2 + h2C̄2,p)− β2α2N2T̄pe−(a2+b2)C̄2,p
V̄1,p. (12)

Expression (12) means that during the chronic phase of HIV-1 infection, the density
of the mutant strain virus population is dependent on the mutating equilibrium
wild-type strain virus population, γV̄1,p, CTL effector mechanisms of both clones,
infectivity of two virus strains, the equilibrium density of health CD4+ T cells,
and the average clearance rate of mutant strain infected CD4+ T cells. During the
chronic phase, the equilibrium density of CTL clone 1 is given by

C̄1,p =
s1

δ1 − p1T̄pV̄1,p
, (13)

and the density of CTL clone 2 is given by

C̄2,p =
s2

δ2 − p2T̄pV̄2,p
. (14)

Equations (13) and (14) largely depend on the densities of healthy CD4+ T cells
and virus population. The expression for V̄1,p is too long to be written down, but
we indicate that it can be obtained by solving equation (1) for dT (t)

dt = 0 after
substituting the expressions (8), (12), (13), and (14). The equilibrium value of the
wild-type viral population expression involves apoptosis and proliferation rates, the
production rate of CD4+ T cells, and the effectiveness of CTLs in suppressing HIV
replication. The endemic infected state given by equation (7) and also shown by
figure 2 corresponds to the prolonged asymptomatic phase (chronic phase) in HIV-1
infected patients, and in most cases this will ultimately lead to a situation when
the viral population overwhelms the immune system leading to acquired immune
deficiency syndrome (AIDS). The AIDS stage is associated with a weakened immune
system which has difficulty in fighting off opportunistic infections. The infected
steady state gives the HIV-1 parameters that will be perturbed by drug effects.
Current recommendations suggest that treatment is to be offered to symptomatic
patients or those with a CD4+ T cell count below 200 cells mm−3.

To calculate the reproductive ratios for the two viral variants, we adopt the
method of [5] where the reproductive ratio is defined as the spectral radius of the
“next generation operator approach.” We define heterogeneity using groups defined
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by fixed characteristics; that is, our model can be written in the form:

dX

dt
= f(X,Y,Z),

dY

dt
= g(X,Y,Z),

dZ

dt
= h(X,Y,Z), (15)

where X ∈ R3, Y ∈ R2, Z ∈ R2, and h(X, 0, 0) = 0. Assuming that the equation
g(X∗,Y,Z) = 0 implicitly determines a function Y = g̃(X∗,Y). We also let that
A = DZh(X∗, g̃(X∗, 0), 0) and further assume that A can be written in the form
A = MD−1, with M ≥ 0 (that is, mij ≥ 0) and D > 0, a diagonal matrix. The
two reproductive ratios are obtained by evaluating the eigenvalues of the matrix
MD−1. The population is divided into the following subgroups: uninfected CD4+
T cells susceptible to infection (T ); infected CD4+ T cells with strain i (i = 1
represents the wild-type strain and i = 2 the resistant strain) of HIV (T ∗i ); HIV
strain i (Vi); and CTL clones Ci (i = 1 represents CTL clone specific to strain 1
and i = 2 the clone specific to strain 2). We set X = (T, C1, C2), Y = (V1, V2)
and Z = (T ∗1 , T ∗2 ). The components of X denote the number of uninfected CD4+
T cells susceptible to infection and the two classes of CTLs that are not infected
by the virus where X∗ = ( s

µT
, s1

δ1
, s2

δ2
). The components of Y represent the number

of two infectious viral strains, and the components of Z denote the number of
infected CD4+ T cells by different strains. Let U0 = ( s

µT
, 0, 0, 0, 0, s1

δ1
, s2

δ2
) denote

the virus-free equilibrium and g̃(X∗,Z) = (g̃1(X∗,Z), g̃2(X∗,Z)) with

g̃1 =
N1α1T

∗
1 e−b1C̄1,u

µ1
and g̃2 =

N2α2T
∗
2 e−b2C̄2,u

µ2
.

Therefore

M =




β1α1N1(1−γ)T̄ue−(a1+b1)C̄1,u

µ1
0

γβ1α1N1T̄ue−(a1+b1)C̄1,u

µ1

β2α2N2T̄ue−(a2+b2)C̄2,u

µ2




and

D =



−(α1 + h1C̄1,u) 0

0 −(α2 + h2C̄2,u)


 .

The two eigenvalues λ1 and λ2 of MD−1 are

λ1 =
(1− γ)β1α1N1se

−(a1+b1)C̄1,u

µ1µT (α1 + h1C̄1,u)
and λ2 =

β2α2N2se
−(a2+b2)C̄2,u

µ2µT (α2 + h2C̄2,u)
,

where
C̄1,u =

s1

δ1
and C̄2,u =

s2

δ2
.

It follows that the wild-type strain’s reproductive ratio is

R01 =
(1− γ)β1α1N1se

−(a1+b1)C̄1,u

µ1µT (α1 + h1C̄1,u)
(16)
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and that the resistant strain’s reproductive ratio is

R02 =
β2α2N2se

−(a2+b2)C̄2,u

µ2µT (α2 + h2C̄2,u)
. (17)

The basic reproductive ratio for the system is the maximum of these two repro-
ductive ratios [7]. If both R01 and R02 are less than one, then the viral population
cannot grow within an individual and so the immune system can resolve the infec-
tion; that is, infection becomes abortive. If, on the other hand, the two reproductive
ratios are greater than one or if any one of the reproductive ratios is greater than
one, then the viral population can grow and can establish an infection. Persistence
of an infection depends entirely on the the two strains’ virulence and the potency
of the immune response in controlling viral population as shown by the two repro-
ductive ratios. By substituting for s

µT
from equation (16), we can rewrite equation

(17) as

R02 =
R01

(1− γ)

(
β2e

−a2C̄2,u

β1e−a1C̄1,u

)(
N2e

−b2C̄2,uα2

N1e−b1C̄1,uα1

)(
µ1

µ2

)(
α1 + h1C̄1,u

α2 + h2C̄2,u

)
. (18)

The reproductive ratio of the mutant strain virus is governed by the following
proportions:

1. mutation rate of the wild-type strain
2. proportion of mutant strain infectivity to the wild-type strain infectivity(

β2e−a2C̄2,u

β1e−a1C̄1,u

)

3. rates of viral production of the mutant strain to the wild-type strain(
N2e−b2C̄2,uα2

N1e−b1C̄1,uα1

)

4. virion clearance rate of wild-type to the mutant strain
(

µ1
µ2

)

5. the equilibrium average life-span of mutant strain to the equilibrium average
life-span of wild-type strain infected cells

(
α1+h1C̄1,u

α2+h2C̄2,u

)

We assume that CTL activity is polyclonal; that is, CTL activity is against mul-
tiple HIV gene products because CTLs can show cross-reactivity for serologically
distinct strains of virus through recognition of peptide epitopes in conserved pro-
teins shared between virus strains (e.g, matrix proteins and nucleoproteins) [13].
We also consider the extreme cases that the two strains have the same infectivity
rates and average life-spans. This essentially means that the two viral strains have
different replication rates and cytopathic effects. These assumptions are not nec-
essary but allows us to gain clear mathematical analytical insights. Using these
assumptions, equation (18) becomes

R02 =
R01

1− γ

(N2α2

N1α1

)(α1 + hC̄u

α2 + hC̄u

)
, (19)

where C̄u is the number of CTLs before infection and h the rate at which each CTL
lyse infected cells. We have R02 < R01 if

1
1− γ

(N2α2

N1α1

)(α1 + hC̄u

α2 + hC̄u

)
< 1, which implies N2 < (1−γ)N1

(α1

α2

)(α2 + hC̄u

α1 + hC̄u

)
.

On the other hand, we have R02 > R01 if

1
1− γ

(N2α2

N1α1

)(α1 + hC̄u

α2 + hC̄u

)
< 1, which implies N2 > (1−γ)N1

(α1

α2

)(α2 + hC̄u

α1 + hC̄u

)
.
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If the production of mutant-strain viral particles per infected cell is greater than
the production of wild-type strain viral particles per non-mutating wild-type strain
infected cell, then R02 > R01; otherwise R02 < R01. The model results show that
even if R01 < 1, R02 can still be greater than one depending on the mutant strain
viral particles’ virulence. Figure 2 shows the qualitative behavior of the seven
populations of system (1)-(5) during the first 200 days of infection. The parameter
values used to numerically solve the infection model are in table 2:

Table 2. Parameter values used in numerical simulations

Parameter Value
s 20
s1 10
s2 10
β1 2× 10−5

β2 5× 10−5

B1
T 350

B2
T 250

B1
V 400

B2
V 300

h1 2× 10−3

h2 2× 10−3

µT 0.02
δ1 1.4
δ2 1.4
µ1 0.95
µ2 0.85
k1 2× 10−3

k2 2.5× 10−3

r1 0.01
r2 0.02
α1 0.25
α2 0.3
p1 1× 10−5

p2 1× 10−5

N1 1000
N2 1500
a1 0.002
a2 0.002
b1 0.05
b2 0.05
γ 3× 10−5

Without loss of generality, we assume that CTL effects are similar (a2 = a1, b2 = b1,
and h2 = h1). The initial values for the populations are T (0)=1000 cells mm−3,
T ∗1 (0)=0 cells mm−3, T ∗2 (0)=0 cells mm−3, V I

1 (0)=0.001 copies mm−3, V2(0)=0
copies mm−3, C1(0)=10 cells mm−3, and C2(0)=10 cells mm−3. Most of these
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parameter values have been used in [9] and other references quoted therein. The
graphs of the solution curves to system (1)-(5) approach an infected steady state
in agreement with analytic results, where R01 = 14 and R02 = 58.
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Figure 2. Graph of the numerical solution to the system (1)-(5),
showing propagation of CD4+ T cells, viral strains, and CTL-
specific cells during the first 200 days of infection: (a) CD4+ T
cell kinetics during the first 200 days of infection, (b) viral strains
kinetics during the first 200 days of infection, (c) infected CD4+
T cells kinetics that evolve during 200 days of infection, and (d)
abundance of CTLs specific to each strain.

4. Effects of Chemotherapy. If the immune system fails to control the virus we
approach a severe stage associated with a clinical spectrum of symptoms; that is,
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the AIDS stage. It is at this stage when therapy is started in an attempt to aug-
ment CTL responses in infected individuals. To study the effects of chemotherapy
we extend the model given by equations (1)-(5) by incorporating the effects of drug
efficacy. We incorporate in our model, two commonly used categories of antiretro-
viral drugs, namely, reverse transcriptase inhibitors (RTIs) and protease inhibitors
(PIs), and assume that the drugs act only on the wild-type strain virus and the
mutant strain viral particles are not susceptible to the drug’s antiviral effects. As-
suming that reverse transcriptase inhibitors are administered, then the infectivity
of the wild-type strain is modified to (1 − εRTI)β1, where εRTI is the efficacy of
RTIs and 0 < εRTI < 1. If we also assume that PIs are administered, then the
burst size parameter of the wild-type infectious viral particles becomes (1−εPI)N1,
where εPI is the efficacy of PIs and 0 < εPI < 1. Protease inhibitors render some of
the wild-type viral particles noninfectious with efficacy, εPI . We assume that there
are no pharmacological and intracellular delays; that is, upon drug administration
the drug starts to work. Hence the model for chemotherapy (RTIs plus PIs) as-
sumes eight interacting species, the components being: healthy CD4+ T cells (T ),
wild-type virus-infected CD4+ T cells (T ∗1 ), mutant strain virus-infected CD4+ T
cells (T ∗2 ), infectious wild-type strain viral particles (V I

1 ), noninfectious wild-type
viral particles (V NI

1 ), infectious mutant strain plasma viral load (V2), CTLs specific
to the wild-type virus particles (C1), and mutant strain virus-specific CTLs (C2).
Thus, the model becomes

dT (t)
dt

= s + T (t)

(
r1V

I
1 (t)

BV
1 + V I

1 (t)
+

r2V2(t)
BV

2 + V2(t)

)
− µT T (t)

−T (t)

(
k1V

I
1 (t)

BT
1 + T (t)

+
k2V2(t)

BT
2 + T (t)

)
− β2e

−a2C2(t)T (t)V2(t)

−(1− εRTI)β1e
−a1C1(t)T (t)V I

1 (t) (20)
dT ∗1 (t)

dt
= (1− γ)(1− εRTI)β1e

−a1C1(t)T (t)V I
1 (t)− (α1 + h1C1(t))T ∗1 (t) (21)

dT ∗2 (t)
dt

= β2e
−a2C2(t)T (t)V2(t) + γ(1− εRTI)β1e

−a1C1(t)T (t)V I
1 (t)− α2T

∗
2 (t)

−h2C2(t)T ∗2 (t) (22)
dV I

1 (t)
dt

= (1− εPI)N1α1T
∗
1 (t)e−b1C1(t) − µ1V

I
1 (t) (23)

dV NI
1 (t)
dt

= εPIN1α1T
∗
1 (t)e−b1C1(t) − µ1V

NI
1 (t) (24)

dV2(t)
dt

= N2α2T
∗
2 (t)e−b2C2(t) − µ2V2(t) (25)

dC1(t)
dt

= s1 + p1T (t)C1(t)V I
1 (t)− δ1C1(t) (26)

dC2(t)
dt

= s2 + p2T (t)C2(t)V2(t)− δ2C2(t). (27)

Equations (20), (21), and (22) are simple modifications of equations (1), (2), and
(3) respectively where the wild-type strain’s infectivity rate parameter has been
modified to incorporate the effects of RTIs. Similarly, equations (23) and (24) are
an extension of equation (4), for i = 1, incorporating the effects of PIs. Because
PIs render newly produced wild-type strain virions non-infectious, we now have
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two wild-type strain virus subpopulations: V I
1 - is infectious wild-type strain virus

whose dynamics is described by equation (23), and V NI
1 - is the wild-type virions

rendered non-infectious by PI whose dynamics is described by equation (24). We
also assume that the two wild-type strain subpopulations have the same clearance
rate from the system. Equations (25) and (26) are the same as equations (4) and
(5), for i = 2, respectively. Also, CTL clone 1 cells are stimulated to proliferate by
the infectious wild-type strain viral particles.

Drugs perturb the equilibrium densities of wild-type virus, uninfected CD4+ T
cells, and the wild-type infected CD4+ T cells. The uninfected steady state of the
system of equations (20) to (27) is given by

(
T̄p, T̄

∗
1,p, T̄

∗
2,p, C̄1,p, C̄2,p, V̄2,p, V̄

NI
1,p , V̄ I

1,p

)
=

( s

µT
, 0, 0,

s1

δ1
,
s2

δ2
, 0, 0, 0

)
, (28)

which resembles a situation when chemotherapy eradicates disease. The endemic
infected steady state is given by:

Ē =
(
T̄s, T̄

∗
1,s, T̄

∗
2,s, C̄1,s, C̄2,s, V̄2,s, V̄

NI
1,s , V̄ I

1,s

)
, (29)

where T̄s, T̄ ∗1,s, T̄ ∗2,s, C̄1,s, C̄2,s, V̄2,s and V̄ NI
1,s are given by expressions (30), (31),

(32), (35), (36), (33), and (34), respectively. The equilibrium abundance of healthy
CD4+ T cells is given by

T̄s =
µ1(α1 + h1C̄1,s)e(a1+b1)C̄1,s

(1− εRTI)(1− εPI)(1− γ)α1β1N1
. (30)

The effects of chemotherapy on CD4+ T cells are to decrease the rate at which they
are infected by the wild-type strain virus population and also to reduce the number
of infectious wild-type strain virions produced. In reducing the infectious wild-type
strain viral population, the equilibrium value of CTL clone 1 is also reduced. The
equilibrium state value of the wild-type strain infected cells is given by

T̄ ∗1,s =
µ1V̄

I
1,se

b1C̄1,s

(1− εPI)N1α1
, (31)

where the drugs reduce the burst size of infectious wild-type strain-infected cells
by a factor (1− εPI). This results in a reduction of wild-type-strain infected cells.
The mutant strain infected CD4+ T cells has a steady-state value

T̄ ∗2,s =
µ2V̄2,se

b2C̄2,s

N2α2
, (32)

which is also reduced by drug effects, since drugs lower the equilibrium value of
the mutant strain viral particles. Mutant strain virus population at equilibrium is
given by

V̄2,s =
(1− εRTI)β1α2N2γT̄se

−(a1C̄1,s+b2C̄2,s)

µ2(α2 + h2C̄2,s)− β2α2N2T̄se−(a2+b2)C̄2,s
V̄ I

1,s. (33)

Drugs have an indirect effect on the mutant strain viral load as they directly affect
the kinetic parameters of the wild-type strain viral particles. Mutant strain viral
particles are linearly related to the wild-type strain viral population. Drugs decrease
the density of non-mutating infectious wild-type virus. The noninfectious wild-type
strain viral population at equilibrium is given by

V̄ NI
1,s =

εPI V̄
I
1,s

1− εPI
, (34)
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which entirely depends on the efficacy of the protease inhibitor. HIV-1 specific CTL
clone 1 cells have an equilibrium density given by

C̄1,s =
s1

δ1 − p1T̄sV̄ I
1,s

, (35)

and the CTL clone 2 density is

C̄2,s =
s2

δ2 − p2T̄sV̄2,s
. (36)

The drugs affect the equilibrium abundance of viral load by reducing the pre-
treatment quantities implies that at equilibrium CTL quantities are also reduced.
If drugs are potent enough to reduce viral load to zero levels, then infection can
be resolved. The explicit expression for V̄ I

1,s is too long to be written down, but
we remark that its value can be determined by solving equation (18) for dT (t)

dt = 0
using expressions (30), (33), (34), (35), and (36). The equilibrium value of the wild-
type strain virus population expression involves apoptosis and proliferation rates,
production rate of CD4+ T cells, and the effectiveness of CTLs in suppressing HIV
replication. The uninfected CD4+ T cell steady state can be written in the form:

T̄s =
1

(1− εRTI)(1− εPI)

(α1 + h1C̄1,s

α1 + h1C̄1,p

)(
e−(a1+b1)(C̄1,p−C̄1,s)

)
T̄p. (37)

Now the equilibrium density of the uninfected cells depends on drug efficacy and
CTL control. We let (εRTI + εPI − εPIεRTI) = η, be the total drug efficacy. Of
interest is the minimum drug efficacy necessary to retain the immune CD4+ T cells
to preinfection levels; that is, ηc is the value of η at which T̄s = s

µT
. The critical

efficacy value given by the model is

ηc = 1−
(α1 + h1C̄1,s

α1 + h1C̄1,p

)(e−(a1+b1)C̄1,p

e−(a1+b1)C̄2,s

) T̄p

T̄u
. (38)

The critical drug regimen efficacy to clear the wild-type viral population is deter-
mined by three proportions, namely,

1. the proportion of the equilibrium life-span of wild-type strain infected cells
before therapy administration to the equilibrium life-span of wild-type strain
infected cells during therapy uptake

(
α1+h1C̄1,s

α1+h1C̄1,p

)
,

2. the proportion of equilibrium CTL effectiveness in inhibiting infection of
CD4+ T cells and reducing infectious wild-type viral particles to the equilib-
rium CTL effects during therapy,

(
e−(a1+b1)C̄1,p

e−(a1+b1)C̄2,s

)
,

3. the proportion of equilibrium abundance of CD4+ T cells before therapy to
the equilibrium abundance of CD4+ T cells prior to infection T̄p

T̄u
.

Drug efficacy needed to control disease is increased by:
1. a decrease in effectiveness of CTLs in reducing number of infectious wild-type

strain viral particles,
2. a decrease in inhibitory effects of CTLs in reducing viral infectivity,
3. an increase in the life-span of infected CD4+ T cells during therapy.

Infectious virions before therapy are in large numbers compared to infectious viri-
ons after therapy, because some viral particles will be rendered noninfectious. This
implies that the equilibrium abundance of CTLs specific to the wild-type strain un-
der therapy is low because of low infectious wild-type strain virions, which in turn
implies high CD4+ T cell levels. This shows that there is a dynamic equilibrium
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between viral load and CTLs in infected individuals during drug administration.
Low titers of wild-type strain viral population imply few viral particles mutating,
which leads to low mutant strain viral particles, implying better clinical benefits.

Using the method of [5], the reproductive ratio of the wild-type strain is given
by

R′01 =
(1− γ)(1− εRTI)(1− εPI)β1α1N1se

−(a1+b1)C̄1,u

µ1µT (α1 + h1C̄1,u)
, (39)

where C̄1,u = s1
δ1

, C̄2,u = s2
δ2

and the reproductive ratio of the mutant strain remains
as in equation (17). The consequences of drug administration are that R′01 < R01.
If we rewrite equation (39) in terms of R01 we get the following expression:

R′01 = (1− εRTI)(1− εPI)R01, (40)

for R01 > 1, since therapy is administered only to symptomatic patients. For a
potent combination regimen, we have R′01 < 1, which gives the following result:

η > 1− 1
R01

, (41)

for η = εRTI + εPI − εRTIεPI . This gives the critical total drug regimen efficacy to
eradicate infection as

ηc = 1− 1
R01

. (42)

Equations (38) and (42) give us the following result:

R01 =
(1− γ)β1α1N1e

−(a1+b2)C̄1,s T̄u

µ1(α1 + h1C̄1,s)
, (43)

if and only if C̄1,s = C̄1,u; that is, complete wild-type viral population eradication
by chemotherapy is achieved if the antiviral CTL clone 1 response is returned to
pre-infection levels.

5. Numerical Simulations. In this section we use numerical simulations to in-
vestigate the effects of drugs on HIV-1 disease parameters. A fourth-order Runge-
Kutta scheme is used to simulate the results. Because of the deleterious side effects
of drugs and drug resistance, we consider short term administration of drugs where
we assumed that no side effects occur during the first 200 days. The initial condi-
tions for all the numerical simulations are T (0)=200 cells mm−3, T ∗1 (0)=600 cells
mm−3, T ∗2 (0)=500 cells mm−3, V I

1 (0)=3,000 copies mm−3, V2(0)=2,500 copies
mm−3, C1(0)=400 cells mm−3, C2(0)=400 cells mm−3 and V NI

1 (0)=0 copies mm−3.
The parameter values used to generate the computer simulations of changes over
time in HIV abundance, CD4+ T cell count, and CTL count in an individual pa-
tient, as described by system of equations (15)-(22) are as in figure 2. In figure 3
the drug efficacies are given by εRTI = 0.45 and εPI = 0.5, with a total efficacy of
0.725. Using the above parameter values and these drug efficacy values, we depict a
less effective drug regimen, because minimum efficacy to eradicate wild-type strain
viral particles is 0.93, since the reproductive ratio of the wild-type strain is 14. Also
the virus reproductive ratio of the mutant strain virus population is 58 which means
that any drug intended to eradicate this strain should have at least an efficacy of
0.98. Since the drugs do not act on the mutant strain, this population continues to
exist. Suppression of the wild-type strain viral population is not complete, there-
fore, disease progresses. The total viral load is lowered to zero levels during the first
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week of therapy, but thereafter it rebounds. After rebound, the mutant strain viral
levels remain high until therapy is stopped. Over the 200-day course of therapy
administration, CD4+ T cells drastically increase during the first week, thereafter
they gradually increase. CTL counts initially increase to high levels during the first
week of therapy and then drastically drop and stabilize at low levels.

In figures 4 and 5, we show the evolution of the virus when combined drug effi-
cacy is increased to the minimum efficacy (0.927) and slightly above the minimum
efficacy (0.932), respectively, and other parameters remain as in figure 2. Serum
levels of HIV RNA decay exponentially, and the CD4+ T cell count increases. The
potency of the drugs has enhanced the increase in CD4+ T cells and also managed
to eradicate the wild-type strain virus population. Of interest is the density of
mutant strain viral particles, which remain in large numbers, solely because drugs
have no effect on this population.

In all these numerical simulations the slopes for exponential decay are very sim-
ilar in figures 3, 4, and 5 which we attribute to the death of infected CD4+ T
cells. The fact that the drug has no effect on the mutant strain virus population
is the reason disease progresses, as shown by figure 3. The rebound of viral load is
entirely due to the recovery of CD4+ T cells; that is, more prey will be available to
the predator [19]. The most common pattern of CD4+ T cell kinetics, is an initial
dramatic increase in CD4+ T cell count in the first few weeks of drug therapy,
followed by a more gradual increase. Increase in CD4+ T cells is strictly by clonal
expansion of pre-existing naive CD4+ T cells, since the model does not capture
CD4+ T cells “retrafficking” effect–a phenomenon in which once viral load is sup-
pressed by drugs, CD4+ T cells regain their ability to travel from lymphocytes into
the blood stream. Our numerical results (figure 3, 4, and 5) show that during the
first week of therapy viral load decays exponentially to zero levels. If drug efficacy
is potent enough to eradicate infection, viral loads remain at zero levels, and if
drugs are less potent, the viral load will gradually increase until it stabilizes.

Similarly, we can also consider a case when R02 < R01, all greater than 1. If
drugs act only on the wild-type viral strain and if drug efficacy is potent enough to
clear the wild-type viral population, disease still progresses. On the other hand, if
the drugs act on both viral strain populations, the critical efficacy to eradicate the
entire viral population is given by the reproductive ratio of the system; that is, it
is given by the virus population with the largest reproductive ratio. These results
show that the existence of drug resistant strains makes HIV-1 disease eradication
impossible.
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Figure 3. Graph of the numerical solution to the system, showing
propagation of CD4+ T cells, viral strains, and CTL-specific cells
during the first 200 days of combined therapy administration: (a)
CD4+ T cell kinetics during the first 200 days of therapy, (b) viral
strains kinetics during the first 200 days of therapy, (c) infected
CD4+ T cells kinetics that evolve during 200 days of therapy up-
take, and (d) abundance of CTLs specific to each strain. Drug
efficacy is given by εRTI = 0.45 and εPI = 0.5.
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Figure 4. Graph of the numerical solution to the system, showing
propagation of CD4+ T cells, viral strains and CTL specific cells
during the first 200 days of combined therapy administration: (a)
CD4+ T cell kinetics during the first 200 days of therapy, (b) viral
strains kinetics during the first 200 days of therapy, (c) infected
CD4+ T cells kinetics that evolve during 200 days of therapy up-
take, and (d) abundance of CTLs specific to each strain. Drug
efficacy is given by εRTI = 0.6 and εPI = 0.807.
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Figure 5. Graph of the numerical solution to the system, showing
propagation of CD4+ T cells, viral strains and CTL specific cells
during the first 200 days of combined therapy administration: (a)
CD4+ T cell kinetics during the first 200 days of therapy, (b) viral
strains kinetics during the first 200 days of therapy, (c) infected
CD4+ T cells kinetics that evolve during 200 days of therapy up-
take, and (d) abundance of CTLs specific to each strain. Drug
efficacy is given by εRTI = 0.66 and εPI = 0.8.

6. Discussion and Conclusion. Antiretroviral drugs have gone a long way in
conferring clinical benefits to symptomatic HIV-infected individuals; that is, in-
creasing CD4+ T cell counts and suppressing HIV RNA viral load below detection
levels, despite significant metabolic drug toxicities. Using a mathematical model,
we considered the effect of drugs on HIV-1 disease parameters and deduced that
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the model qualitatively accounts for the initial and the second phases of virus decay
during antiretroviral administration [14]. The results show the following:

1. If the immune control and drugs are potent enough to maintain infected CD4+
T cells at low levels, there are clinical benefits.

2. There is a dynamic equilibrium between viral load and CTL response; that is,
after commencement of antiretroviral therapy, the number of CTLs increases
and with ongoing suppression of HIV, the number of CTLs decline. If the
viral load increases again, the number of CTLs increase as well.

3. Drug resistance is the major factor that makes complete disease eradication
by therapy impossible as shown by the numerical results.

There are significant differences between the model behavior and clinical findings.
To start with, upon onset of therapy, there is no initial delay where viral loads
remain at pretreatment levels. Thus, one could argue that to rectify the difference
we should incorporate pharmacokinetic and intracellular time delays. This aspect
will be considered elsewhere. Second, in our dynamical model, we considered only
a single-point mutation which has no stochasticity: mutation is implemented as a
constant process. Stochasticity of the mutation process is a source of variation,
and depends on selective pressure exerted on the viral population by both drugs
and CTLs. With respect to the parameter values used in simulations (especially
viral kinetics), infectivity and apoptosis rate remain the most important unknowns.
Although predicted trends qualitatively agree with observed clinical findings, the
quantitative results depend on accurate parameter values. Estimating these values
in vitro is extremely difficult.
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