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Abstract. The AIDS epidemic is having a growing impact on the transport
sector of the economy of sub-Saharan Africa, where long-distance truck drivers
are at an increased risk of infection due to their frequent contacts with com-
mercial sex workers. The spread of AIDS in the transport industry is especially
significant to the economy, as truck drivers are largely responsible for trans-
porting crops and supplies needed for daily subsistence. In this paper we
analyze these effects via two models, one employing a switch and the other
a Verhulst saturation function, to describe the rate at which new drivers are
recruited in terms of the supply and demand for them in the general popula-
tion. Results provide an estimate of the epidemic’s economic impact on the
transportation sector through the loss of truck drivers (an estimated 10% per
year, with endemic levels near 90%).
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1. Introduction. HIV/AIDS, one of the leading causes of death in the world, is
especially destructive in Africa. At the end of 2003, an estimated 26.6 million
people in sub-Saharan Africa (SSA) were infected with the HIV virus, making up
two thirds of the world’s HIV-infected population. The estimated number of adults
and children newly infected with HIV in 2003 was a startling five million, over three
million of which were in SSA. Over three quarters of the estimated three million
adult and child deaths due to HIV/AIDS in 2003 occurred in SSA [30]. In fact, the
levels of infection are so high that the number of deaths in the next decades may
result in population decline [19].

An epidemic of such magnitude has serious repercussions for the African society
and economy. The AIDS epidemic is particularly damaging to the transportation
sector, where long distance truck drivers (TDs) are at an increased risk of infection
due to the migratory nature of their job and their prolonged absence from home.
As a result, TDs are more likely to have sexual interactions with commercial sex
workers (CSWs), who often provide them with affordable food and lodging during
their journeys. The spread of AIDS is further exacerbated by the highly sexually
active lifestyles of both the TDs and the prostitutes they visit. Many of the TDs
and CSWs have multiple sexual partners (a study of one truck stop [9] found 87%
of the TDs reported having a different partner [CSW] every time they visited),
and CSWs report that many of their clients insist on not using condoms [4]. A
number of studies show a high prevalence of AIDS among long-distance TDs in
SSA, and a corresponding high prevalence of the virus among CSWs and their
clients [2, 3, 21, 17]. Ramjee and Gouws found an average prevalence of 56% in
each of these the two high-risk groups; at one truck stop the prevalence rates were
as high as 95% [21]. A 2001 study in Uganda [9], where incidence rates are much
lower than in most of Africa, found a 40% overall incidence rate at one truck stop,
compared to an overall incidence rate of 8% in the surrounding province.

The spread of AIDS in the transport industry is especially significant to the
SSA economy. The TDs are largely responsible for transporting a majority of the
goods and supplies needed for daily subsistence. Badly affected areas are losing a
large percentage of these valuable skilled drivers to the AIDS epidemic. As more
experienced drivers are lost, it may become costly to hire and train new recruits.
Moreover, the prevalence of AIDS among experienced TDs is higher than that
among the less experienced drivers since these TDs generally have higher wages
and can afford repeated visits with CSWs, thereby greatly increasing their chances
of infection [2, 3]. Once TDs have contracted HIV, their physical health diminishes,
resulting in reduced efficiency of the transport industry as a whole.

In this study, we investigate the effect of the HIV/AIDS epidemic on the popu-
lation of TDs and CSWs in SSA and more specifically its impact on the transport
industry economy. The simple models presented in the following sections track the
relationship between the number of men available to work as truck drivers and
the number of drivers the transportation industry needs, as the HIV/AIDS epi-
demic progresses within the TD population. Section 2 considers a model which
switches explicitly between cases in which each of these two populations (supply
and demand) is greater than the other, while section 3 considers a model where
the transition between dominance of supply and demand is smooth (provided by a
Verhulst-type function). Finally, we estimate parameters to provide some concrete
predictions and discuss implications.
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Figure 1. Flow diagram for the two-sex SI model

2. The switching model. We begin our investigation with a two-sex SI model
as shown in Figure 1. We assume for simplicity that all new TD and CSW recruits
are HIV-negative (this is not necessarily true, but our results will thus provide a
conservative estimate of the epidemic’s impact). TDs and CSWs enter the popula-
tion under study at respective rates of f1(I1) and f2(I2) and remain in their jobs
an average of 1/µ1 and 1/µ2 units of time, respectively (in the absence of HIV).
TDs and CSWs become infected at respective rates of β21 and β12, and progress
to AIDS at respective rates of δ1 and δ2. (The infection rates incorporate sexual
activity and risk levels, and the progression rates include all screenings which may
remove individuals before progression to AIDS.)

In models for diseases transmitted by heterosexual contact, it has been estab-
lished (e.g., [5]) that parameters describing sexual contact rates between men and
women are constrained to obey certain balance laws when the populations form a
closed network of contacts. In the present context, however, it is important to note
that both TDs and CSWs have regular sexual contacts outside the study popula-
tion: TDs with wives and girlfriends at home and CSWs with other clients and
partners. Balance laws, which state that the total number of male sexual contacts
in unit time must equal the total number of female sexual contacts in unit time,
typically constrain sexual activity rates (here incorporated into the βij) as func-
tions of the population sizes. Studies (e.g., [2, 10]) suggest, however, that this open
network of sexual contacts may prevent TD and CSW sexual activity levels from
fluctuating dramatically with changes in population sizes. Instead, CSWs may ad-
just the proportion of their contacts with TDs versus other clients and partners to
meet the demand of TD clients (who may pay more than other clients), while the
CSWs’ overall activity level, driven primarily by economic need, remains more or
less constant. It is the sexual activity level of the outside population which there-
fore accommodates these fluctuations. The impact of the HIV/AIDS epidemic is
magnified by the connections between the TD-CSW core group and the general
population, but for simplicity we shall not model explicitly the complete network
of sexual contacts.
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Recruitment into both populations depends in practice upon two economic fac-
tors: the number of jobs the market can support and the number of candidates
willing and able to fill them. For TDs we denote these quantities by Nd and Ns

and assume that Nd < Ns; that is, under normal circumstances truck driving is a
desirable enough job that all positions are filled. We also define Λd = µ1Nd and
Λs = µ1Ns as the recruitment rates corresponding to them. (We similarly define
Ñd, Ñs, Λ̃d and Λ̃d for the CSWs.) Therefore, in the absence of HIV, recruitment
is driven by the job market; that is, f1(0) = Λd. However, as the AIDS epidemic
invades the TD population, infected drivers begin to quit their jobs sooner than
normal because of their illness. At first, the number of excess candidates Ns −Nd

can quickly replace the TDs who develop AIDS. However, as the epidemic increases
in size, recruitment becomes limited by the pool of candidates Ns.

In this section we consider a model that switches from a demand-driven re-
cruitment to a supply-driven recruitment at the point where the demand for jobs
overcomes the supply of candidates. We define this switch point mathematically
as I1sw = µ1

δ1
(Ns − Nd), with a corresponding term I2sw = µ2

δ2
(Ñs − Ñd) for the

CSWs. Figure 2 shows the supply-demand graph for f1(I1). Figure 3 shows how
implementing two such switches (one in each population) divides the model into
four distinct regions of operation. In Case I (I1(t) < I1sw , I2(t) < I2sw) the preva-
lence of HIV is low enough in both populations that their sizes remain constant.
In Case II (I1(t) > I1sw , I2(t) < I2sw), although the CSW population remains
constant, TDs are being lost to AIDS fast enough that recruitment is limited by
the number of available candidates. The reverse is true in Case III (I1(t) < I1sw ,
I2(t) > I2sw), while in Case IV both populations’ recruitment is affected by the
epidemic.

The full switching model is therefore given as follows. Let

f1(I1) = min(µ1Nd + δ1I1, µ1Ns), f2(I2) = min(µ2Ñd + δ2I2, µ2Ñs)
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be the respective recruitment rates. Then

I ′1 = β21
I2

N2
(N1 − I1)− (µ1 + δ1)I1, (1)

I ′2 = β12
I1

N1
(N2 − I2)− (µ2 + δ2)I2, (2)

N ′
1 = f1(I1)− µ1N1 − δ1I1, (3)

N ′
2 = f2(I2)− µ2N2 − δ2I2. (4)

Model parameters are summarized in Table 2 in section 4, where their values are
estimated.

2.1. Analysis of component submodels. We begin our analysis by determining
the behavior of each of the four component models contained in the switching
model. If we define x1 = I1/N1 and x2 = I2/N2, then equations (1) and (2) give
us equilibrium conditions (x∗1, x

∗
2) = (0, 0) and

(x∗1, x
∗
2) =

(
β12β21 − (µ1 + δ1)(µ2 + δ2)

β12[β21 + (µ1 + δ1)]
,
β12β21 − (µ1 + δ1)(µ2 + δ2)

β21[β12 + (µ2 + δ2)]

)
, (5)

the latter (endemic) equilibrium existing only when R0 > 1, with

R0 =

√
β12β21

(µ1 + δ1)(µ2 + δ2)
. (6)

(R0 can be calculated using the next-generation operator method originated in [7]
and detailed in [6].)

In Cases I and III, f1(I1) = µ1Nd+δ1I1, so that N ′
1 = µ1(Nd−N1). The solution

to this equation is N1(t) = Nd + [N1(0)−Nd]e−µ1t, so that N1(t) → Nd regardless
of R0. Likewise, in Cases I and II, we find that N2(t) → Ñd.

In Cases II and IV, f1(I1) = µ1Ns, so that N ′
1 = µ1

(
Ns −N1 − δ1

µ1
I1

)
, which

has the unique equilibrium N∗
1 = Ns/(1 + δ1

µ1
x∗1). Likewise, in Cases III and IV,

we find that N∗
2 = Ñs/(1 + δ2

µ2
x∗2). We shall defer the question of stability here to

a more general examination (below) and merely observe here that for N1 > Ns,
N ′

1 < 0, while for N1 < µ1
µ1+δ1

Ns, N ′
1 > 0, so that N1 remains in [ µ1

µ1+δ1
Ns, Ns] and

similarly for N2.
The Jacobian matrix at the disease-free equilibrium (henceforth DFE) is




−(µ1 + δ1) β21
N∗

1
N∗

2
0 0

β12
N∗

2
N∗

1
−(µ2 + δ2) 0 0

f ′1(0)− δ1 0 −µ1 0
0 f ′2(0)− δ2 0 −µ2


 . (7)

The eigenvalues corresponding to the third and fourth rows/columns are negative
(−µ1,−µ2), so that local stability depends on the eigenvalues of the upper left 2×2
submatrix, whose trace is negative and whose determinant is positive precisely when
R0 < 1. Therefore, the DFE is locally stable when R0 < 1, regardless of the form(s)
of the fi.
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The Jacobian matrix at the endemic equilibrium (henceforth EE) has the form



−(β21x
∗
2 + µ1 + δ1) β21

N∗
1

N∗
2
(1− x∗1) β21x

∗
2 c14

β12
N∗

2
N∗

1
(1− x∗2) −(β12x

∗
1 + µ2 + δ2) −β12

N∗
2

N∗
1
x∗1(1− x∗2) β12x

∗
1

−∆1 0 −µ1 0
0 −∆2 0 −µ2


 , (8)

where

c14 = −β21
N∗

1

N∗
2

(1− x∗1)x
∗
2,

∆1 =
{

0 Cases I, III,
δ1 Cases II, IV and ∆2 =

{
0 Cases I, II,
δ2 Cases III, IV .

In Case I, the eigenvalues corresponding to the third and fourth rows/columns are
again negative (−µ1,−µ2), reducing our analysis to a study of the eigenvalues of
the upper left 2×2 submatrix, whose trace is again negative and whose determinant
β12β21(x∗1 + x∗2 − x∗1x

∗
2) (calculated using (5)) is always positive. The Case I EE is

thus always locally stable when it exists.
Determining local stability for the EE in general is more complicated. The

identities
(β21x

∗
2 + µ1 + δ1)(β12x

∗
1 + µ2 + δ2) = β12β21 (9)

and
β12β21(1− x∗1)(1− x∗2) = (µ1 + δ1)(µ2 + δ2), (10)

derived from (5), facilitate computations throughout. The characteristic equation
has the form λ4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0, where

a1 = (β21x
∗
2 + µ1 + δ1) + (β12x

∗
1 + µ2 + δ2) + µ1 + µ2 > 0,

a2 = (µ1 + µ2)[(β21x
∗
2 + µ1 + δ1) + (β12x

∗
1 + µ2 + δ2)] + µ1µ2

+[β12β21 − (µ1 + δ1)(µ2 + δ2)] + ∆1β21x
∗
2 + ∆2β12x

∗
1 > 0,

a3 = (µ1 + µ2 + ∆1x
∗
1 + ∆2x

∗
2)[β12β21 − (µ1 + δ1)(µ2 + δ2)]

+µ1µ2[(β21x
∗
2 + µ1 + δ1) + (β12x

∗
1 + µ2 + δ2)] + µ1∆2β12x

∗
1 + µ2∆1β21x

∗
2 > 0,

and
a4 = (µ1 + ∆1x

∗
1)(µ2 + ∆2x

∗
2)[β12β21 − (µ1 + δ1)(µ2 + δ2)] > 0.

The fourth-order Routh-Hurwitz criteria are a1 > 0, a4 > 0, a1a2 > a3 and
a3(a1a2 − a3) > a2

1a4. The first two are demonstrated above, and calculations
show

a1a2 − a3 = (µ1 + µ2)[(β21x
∗
2 + µ1 + δ1) + (β12x

∗
1 + µ2 + δ2)]2 + µ1∆1β21x

∗
2

+(µ1 + µ2)2[(β21x
∗
2 + µ1 + δ1) + (β12x

∗
1 + µ2 + δ2)] + µ2∆2β12x

∗
1

+[(β21x
∗
2 + µ1 + δ1) + (β12x

∗
1 + µ2 + δ2)][β12β21 − (µ1 + δ1)(µ2 + δ2)]

+∆1x
∗
1[(β21x

∗
2 + µ1 + δ1)2 + (µ1 + δ1)(µ2 + δ2)] + µ1µ2(µ1 + µ2)

+∆2x
∗
2[(β12x

∗
1 + µ2 + δ2)2 + (µ1 + δ1)(µ2 + δ2)] > 0.

Proof of the final inequality is technical and is relegated to the appendix. With
these four conditions satisfied, we see that the EE is always locally stable when it
exists.

A result by Thieme (Theorem 1.6 in [27], Theorem 1.5 in [28]) provides a
Poincaré-Bendixson type trichotomy that can be applied to the Case I model. Here
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the limiting system is equations (1)–(2) with N1 = Nd, N2 = Ñd, where by in-
spection we can see that solutions are bounded in [0, Nd]× [0, Ñd] and Bendixson’s
criterion rules out periodic solution. Thus local stability extends to global stability
in the Case I model.

Finally, a Lyapunov function approach can provide a sufficient condition for the
global stability of the DFE when R0 < 1 in Cases II and III. For Case II, let
V = x1

µ1+δ1
+ β21x2

(µ1+δ1)(µ2+δ2)
. Then V > 0 except at the DFE, and

dV

dt
≤ x1(R2

0−1)+x1

(
µ1 + δ1x1

µ1 + δ1
− µ1 + δ1x

∗
1

µ1 + δ1
· N∗

1

N1

)
+

β21

µ1 + δ1
x2

µ2

µ2 + δ2

(
1− N∗

2

N2

)
.

Since, as seen above, N ′
1 < 0 for N1(t) > Ns, for any given ε > 0 there exists some

finite moment τ1(ε) after which N1(t) < Ns +ε, so that −N∗
1 /N1 < − µ1

µ1+δ1x∗1
(1− ε̃)

(where N∗
1 = Ns/(1 + δ1

µ1
x∗1), ε̃ = −∑∞

n=1(−ε/Ns)n < ε/Ns) and

dV

dt
< x1

(
R2

0 − (1− ε̃)
µ1

µ1 + δ1

)
+

β21

µ1 + δ1
x2

µ2

µ2 + δ2

(
1− N∗

2

N2

)
.

Now, since N2(t) → N∗
2 = Ñd monotonically, if kII = R2

0 − µ1
µ1+δ1

< 0, then there

exists some finite moment τ2 after which
(
1− N∗

2
N2

)
< x1|kII |β12/R2

0µ2, so that for
t > max(τ1(ε), τ2), dV/dt < x1

µ1
µ1+δ1

ε̃. Since this is true for any ε no matter how
small, we conclude that dV/dt ≤ 0. That is, for R0 <

√
µ1/(µ1 + δ1), the Case II

DFE is globally stable. By interchanging subscripts, we can obtain a similar result
for Case III.

2.2. Switching behavior. We now return to the switching model to assemble a
picture of its behavior using the analyses of the component submodels. We first
observe that, since equations (1) and (2) are unaffected by the switches in f1 and
f2, the values of x∗1 and x∗2, and therefore the expression for R0, are the same as
derived above.

To see which equilibria from the component models exist in the switching model,
we must compare each I∗1 = x∗1N

∗
1 with I1sw , and each I∗2 = x∗2N

∗
2 with I2sw . We

see immediately (see Figure 3) that the only DFE that exists in the switching model
comes from Case I (and is stable for R0 < 1). For the EE (5), some algebra shows
that

x∗1Nd < I1sw ⇔ Nd <
Ns

1 + δ1
µ1

x∗1
and x∗1

Ns

1 + δ1
µ1

x∗1
> I1sw ⇔ Nd >

Ns

1 + δ1
µ1

x∗1
,

so that each of the two possible values for I∗1 falls on the appropriate side of I1sw

(to exist in the switching model) precisely when the corresponding value of N∗
1 is

the lesser of the two possible values for N∗
1 . A similar result holds for population

2. Therefore, the switching model exhibits precisely one EE (which exists, and is
stable, if and only if R0 > 1), for which I∗1 = x∗1N

∗
1 and I∗2 = x∗2N

∗
2 with (x∗1, x

∗
2)

given by (5) and

N∗
1 = min

(
Nd,

Ns

1 + δ1
µ1

x∗1

)
, N∗

2 = min

(
Ñd,

Ñs

1 + δ2
µ2

x∗2

)
.

The switching model therefore predicts classical threshold behavior with respect
to R0 (i.e., a forward bifurcation at R0 = 1) and an impact on the overall sizes
of populations 1 and 2 based upon the extent to which the epidemic reduces the
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Figure 4. A graph comparing f1sw
(I1) and f1sat

(I1) for A = I1sw

supply of available drivers (in population 1) or sex workers (in population 2). When
the prevalence (5) rises high enough to make Ns/(1+ δ1

µ1
x∗1) fall below Nd, then the

number of truck drivers will begin to fall, making transportation of essential goods
more difficult.

3. The smooth saturation model. Now suppose that instead of taking a two-
part model, we use a single continuous Verhulst-type function to describe the re-
cruitment functions. A function

f1sat(I1) = µ1

(
Nd + (Ns −Nd)

I1

I1 + A

)

satisfies the properties f1(0) = Λd, f ′1(I1) ≥ 0, f ′′1 (I1) ≤ 0 [a.e.], limI1→∞ f1(I1) =
Λs, just as the switching version f1sw does, and in addition it is smooth at A. Since
f1sat(A) = (Λd+Λs)/2, A provides a halfway mark, a measure of how fast saturation
occurs (e.g., A = 0 gives the “immediately saturated” recruitment function f1(I1) =
Λs). We can choose any positive value for A, but if we match derivatives of the
two f1’s at I1 = 0 (which makes f1sat(I1) ≤ f1sw(I1) ∀I1), then we find that A
corresponds to the switch point, A = I1sw = µ1

δ1
(Ns −Nd). Figure 4 compares the

two recruitment functions.
Now we have a model with I ′1 and I ′2 as in (1) and (2), and

N ′
1 = µ1

[
Nd + (Ns −Nd)

I1

I1 + A
−N1 − δ1

µ1
I1

]
, (11)

N ′
2 = µ2

[
Ñd + (Ñs − Ñd)

I2

I2 + Ã
−N2 − δ2

µ2
I2

]
. (12)

This model has the same two equilibrium values for x∗1 and x∗2, and consequently
the same expression for R0, as the switching model. The equilibrium condition for
N1,

Nd + (Ns −Nd)
x∗1N

∗
1

x∗1N
∗
1 + A

−
(

1 +
δ1

µ1
x∗1

)
N∗

1 = 0,

yields N∗
1 = Nd for x∗1 = 0 (i.e., for the DFE) and for the EE can be rewritten as

N∗2
1 −

(
Ns

1 + δ1
µ1

x∗1
− A

x∗1

)
N∗

1 −
Nd

1 + δ1
µ1

x∗1

A

x∗1
= 0,
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which has the unique positive solution

N∗
1 =

1
2




(
Ns

1 + δ1
µ1

x∗1
− A

x∗1

)
+

√√√√
(

Ns

1 + δ1
µ1

x∗1
− A

x∗1

)2

+ 4
Nd

1 + δ1
µ1

x∗1

A

x∗1


 . (13)

We observe that since Nd < Ns, replacing Nd in (13) with Ns would increase
its value; that is, N∗

1 ≤ Ns/(1 + δ1
µ1

x∗1). We can also show1 that for A = I1sw
,

N∗
1 < Nd. In other words, N∗

1sat
≤ N∗

1sw
, consistent with the fact that f1sat ≤ f1sw .

The expression for N∗
2 is similar.

The Jacobian matrices at the DFE and EE likewise follow (7) and (8), respec-
tively, with ∆1 redefined as

∆1 = δ1 − µ1
(Ns −Nd)A
(x∗1N

∗
1 + A)2

,

with x∗1 as in (5) and N∗
1 as in (13), and similarly for ∆2. Here we observe that,

as in the switching model, ∆1 < δ1 and ∆2 < δ2, and if we take A = I1sw and
Ã = I2sw

, then we also have that

∆1 = δ1

[
1− I2

1sw

(x∗1N
∗
1 + I1sw)2

]
≥ 0,

and similarly for ∆2. Therefore, the stability analysis for the EE of the switching
model holds here also, and we see that the DFE is again locally stable whenever
R0 < 1, while the EE exists and is locally stable for R0 > 1.

4. Parameter estimates. In this section we review studies and data on the model
parameters, so as to develop some quantitative estimates and predictions of the
epidemic’s effect on the populations under study. By necessity all estimates are
ballpark figures, as what little data is available relies largely on self-reporting and
self-identification and vary widely by location and study.

Contact rates. The rate of infectious contact, βij , depends on the total number
of contacts per person per year and the probability of transmission per contact. Ac-
cording to [23], the per-contact probability of female-to-male transmission ranges
in general from 0.0003–0.0060, and the per-contact probability of male-to-female
transmission ranges from 0.0005–0.0080. Estimates vary significantly among re-
gions where the epidemic is in different stages, however [23], and one study in
Uganda (which did not distinguish between genders and considered only monog-
amous couples) found an overall per-contact infection probability of 0.0011 [8].
As we are considering the high-risk groups of TDs and CSWs, we will take the
probabilities of transmission to be the upper bounds of these ranges. One lon-
gitudinal study of a trading town on the trans-Africa highway [20] found CSWs
had an average of 5.8 contacts per week, while the male clients studied reported
an average of 3.1 contacts per week. This is very likely an undercount for the
TD population, as the men in the study were not all TDs, and the usual figure
of 2 trips per month [2, 3]—coupled with short periods of only a few days be-
tween trips and studies that report high likelihood of CSW contacts while on the
road—suggests between 3 and 5 contacts per week; however, we will use it as it

1We derive the inequality by observing that Nd −
�
Ns/(1 + δ1

µ1
x∗1)−A/x∗1

�
> (Ns −

Nd)/ δ1
µ1

x∗1(1 + δ1
µ1

x∗1), by building the right-hand side into the radicand of (13), and by taking

the square root.



780 KRIBS-ZALETA ET AL.

is a rare instance of a direct determination of the figure. We therefore estimate
β12 = 0.0080infections/contact× 5.8contacts/wk× 52wk/yr ≈ 2.4infections/yr and
β21 = 0.0060infections/contact × 3.1contacts/wk × 52wk/yr ≈ 0.97infections/yr.
The estimate of approximately 300 contacts per year per CSW is consistent with
the range of roughly 63 to 364 calculated from data on four large African cities in
[18], although this same study notes that few of the clients of CSWs in large cities
are TDs (in one of the cities, only 15% of the clients were TDs [16]).

Natural loss rates. We let the natural (i.e., due to other factors than HIV/AIDS)
TD loss rate µ1 be the reciprocal of the average remaining lifetime of a healthy TD
(without AIDS) following recruitment. Assuming that the life expectancy of a
healthy South African individual is 62 years [30], and the average age of a TD at
recruitment is 29 years (average age of 37 years minus average time on the job of
8 years [21]; this is consistent with Mbugua et al. [17], who report a mean age
of 33.5 years for drivers and 28.5 years for assistants), we have 1/µ1 = 33 yr and
µ1 ≈ 0.03 yr−1.

Gysels, Pool, and Nnalusiba report [10] that CSWs who work at truck stops
and bars on the main road are generally in their 20s or early 30s. We will use
the estimate of 22.5 years as the age at which CSWs begin working (based on an
average age of 25 years and an average time in the profession of 2.5 years given
in [21]—this is compatible with an average age of 27.5 years given in [20] and the
age range of 19–25 years for first sex work given in [18]), and a heuristic estimate
of 40 years as the average age at which they effectively stop working as CSWs.
(Gysels, Pool, and Nnalusiba interviewed CSWs as old as 55 but included in their
sample women who owned their own bars and therefore had the financial security to
negotiate lower risk levels. They classify these women separately from the high-risk
CSWs working at truck stops, and we also exclude them from our model.) This
provides an estimate of 1/µ2 = 17.5 years and µ2 ≈ 0.057 yr−1.

AIDS-related removal rates. Estimates of rates for progression to AIDS continue
to change with time, both because of fuller knowledge of the distribution and be-
cause of improving treatments. Here we follow the lead of Hyman et al. [14] in
assuming a mean duration of infection of 8.6 years; many more recent estimates are
higher but also reflect improved healthcare. Here we assume that since health care
in sub-Saharan Africa is often poor or prohibitively expensive, the average remain-
ing working life of an infected TD or CSW (which may end before full progression
to AIDS) is relatively short. So we take δ−1

i = 8.6 years, which translates to an
AIDS-related death rate of δi = 0.116 yr−1 for i = 1, 2.

Population of TDs. Many different scales are possible here—a single country,
a single stretch of a given highway, or the entire network of sub-Saharan Africa’s
roads. Here, as an illustration, we begin with the 1996 population of truck drivers
in South Africa as reported in the official occupational survey [25], 73,000. As this
number does not include the assistants who commonly accompany TDs on long-
distance trips and who are equally likely to have sexual contacts with CSWs, we
double it to arrive at an estimate of N1(0) = 156, 000. We also assume the size
of the current TD population to be determined by the number of jobs available,
giving Nd this same value. To estimate Ns, we take the number of unemployed,
economically active individuals in South Africa from the same year, 2,019,000 [26],
and, assuming future HIV screening, reduce it by the 25% HIV prevalence among
this population [22] to get 1,514,250. (This figure includes women, so we might
halve it, but it also excludes unemployed, economically inactive individuals who
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Table 1. Some single-city estimates for CSW populations

Est. Est.
total CSW

City, country pop. pop. Source Comments
Chirundu, Zimbabwe 2,700 100 [31] permanent population only
Chirundu, Zimbabwe 4,000 300 [31] includes transients
Diego-Suarez, Madagascar 80,000 2684 [15] 12% of 15–49-year-old female pop.

Kisumu, Kenya 231,500 1374 [18] 19.5 CSWs/1000 men aged 15–59

Ndola, Zambia 433,000 2288 [18] 19.1 CSWs/1000 men aged 15–59

Cotonou, Benin 653,000 1915 [18] 10.1 CSWs/1000 men aged 15–59

Bulawayo, Zimbabwe 1,000,000 7000 [32] —
Yaoundé, Cameroon 1,256,000 5600 [18] 14.4 CSWs/1000 men aged 15–59

might take a job as a TD if they could get it. The order of magnitude is the main
idea here.) Estimates of HIV incidence among TDs varies but is generally reported
to be high; we will use the figure of 56% reported in [21] to calculate I1(0) as of
the year 2000.

Population of CSWs. Estimating the size of the CSW population in any area
larger than a single town is considerably more difficult; even experts decline to make
estimates beyond putting the order of magnitude in the tens of thousands in all
of southern Africa [12]. The occupation tends to be driven by economic need, and
women leave the profession when they can and return to it when they must [12].
Many CSWs move to follow demand—going to towns on the main road at times
of the month when TDs come through [31] and moving to mines and construction
sites when such sites arise [12]. For this reason the population of CSWs even in a
single roadside town fluctuates according to many factors. Table 1 gives a review
of single-city estimates found in the literature; however, only one of these (the
first) is a roadside trading village—the rest are major cities, which are not likely to
be representative of populations where truck stops and roadside bars are located.
Furthermore, different studies used different estimation methods, so estimates may
not be comparable. However, in general the estimates suggest that CSWs form
approximately 0.3% to 0.7% of the population in larger cities and 3.7% to 7.5% (an
order of magnitude higher) in smaller towns located along major commerce routes.

Although in reality any given population of TDs and CSWs is not a closed sexual
network—members of both populations have outside sexual contacts—for simplicity
we will take the initial proportion of CSWs to TDs to be determined by the balance
law for sexual contacts: 3.1N1(0) = 5.8N2(0), i.e., N2(0)/N1(0) ≈ 0.53. (Recall that
3.1 and 5.8 are the estimates cited earlier in [20] of the average numbers of sexual
contacts per week made by CSW clients and CSWs, respectively.) For comparison,
one study [29] describes a network consisting of the six major trucking and border
towns in Zambia (Chirundu, Livingstone, Chipata, Nakonde, and Kasumbalesa on
the borders and Kapiri Mposhi in the interior), which combined have an estimated
250,000 inhabitants, including 1,500 CSWs and 2,000 itinerant TDs (giving 0.75
CSWs per TD). Other estimates have given a ratio as low as 0.3 CSWs per TD.
With N1(0) = 156, 000, a ratio of 0.53 CSWs per TD gives N2(0) ≈ 83, 000. Since
the CSW population is driven by the economic need of the individual women rather
than the demand by TDs for CSWs, we will take N2(0) as an estimate for Ñs.
And, since some studies found a median number of clients per week as low as 1



782 KRIBS-ZALETA ET AL.

Table 2. Model parameters

Symbol Meaning Value
β12 infection rate of CSWs by TDs 2.4 yr−1

β21 infection rate of TDs by CSWs 0.97 yr−1

µ1 natural loss rate of TDs 0.03 yr−1

µ2 natural loss rate of CSWs 0.057 yr−1

δ1 loss rate of TDs due to AIDS 0.116 yr−1

δ2 loss rate of CSWs due to AIDS 0.116 yr−1

Nd = N1(0) number of TD jobs supported by the economy 156,000
Ns estimated number of TD candidates available 1,514,250
I1(0) initial (current) population of infected TDs 87,360
Ñd number of CSW jobs supported by the economy 481,400
Ñs = N2(0) estimated number of CSW candidates available 83,000
I2(0) initial (current) population of infected CSWs 46,480

in some areas [18], we will use this as a minimum contact rate in determining
demand for CSWs. We therefore set Ñd · 1 contact/wk = N2(0) · 5.8 contact/wk =
481, 400. (Note that these estimates make Ñs < Ñd, so that the population and
recruitment of CSWs is entirely supply-driven regardless of HIV prevalence, in
accordance with observations.) To determine an initial condition for I2, we will use
the HIV prevalence among CSWs reported by [21], which was also 56%.

Table 2 summarizes the estimates of model parameters. These parameters yield
an estimate of 9.6 for R0 and predict a rapid rise to an endemic state in which
86% of TDs and 92% of CSWs are HIV-positive, 10% of the TD population is
lost to AIDS per year (bringing the average job lifetime below 8 years), and the
CSW population is reduced to about 35% of its current size. The switching model
predicts a steady TD population with the current potential recruit population, but
the smooth saturation model predicts a drop to about 61% of the available number
of jobs. If we change the model to discard the assumption that all new recruits are
HIV-negative, endemicity levels rise even further. The rise in prevalence of HIV
among TDs may appear sharp—numerical analysis suggests it will require only
ten years—but is consistent with the growth of HIV prevalence in this population
suggested by some studies in the last decade of the twentieth century (from 26% in
1990–1 in two studies [17] to 56% in 2000 [21]).

However, there are several caveats for interpreting these predictions. The fact
that many of the parameters connected with the general population are changing
as the AIDS epidemic spreads makes it unlikely that the epidemic will reach a
constant level in this study population in the years to come. For example, Ns is
likely to decrease over time as the epidemic affects the larger population. A decrease
in N1 is also likely to decrease Ñd. We have also not incorporated any behavior
changes in the models (see, e.g., [18], p. S67), even to the extent of keeping the
CSW activity level constant. In general, however, our simplifying assumptions tend
to make our estimates conservative, and the overall conclusion remains valid that
sexual network nodes such as truck stops will continue to grow in significance as
the AIDS epidemic spreads.

5. Discussion. The spectrum of systems delimited by the two models analyzed
in this paper extend the classical two-sex SI epidemic model to situations where
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disease-induced mortality limits or decreases population size and recruitment. Al-
though the simple caricatures presented here lack the complexity of real sexual
networks, the oversimplifications tend toward a conservative estimate of the impact
of the HIV/AIDS epidemic on these populations and suggest a way to incorporate
the inevitable external effects of the disease on these core groups into estimates.
The high prevalence of HIV predicted for the TD and CSW populations is in line
with the rapid rise of HIV seen there in the last years of the twentieth century.

Despite the difficulty in estimating the exact sizes of the populations involved in
this HIV transmission cycle, it is clear that the growth of the AIDS epidemic among
TDs and CSWs is far outpacing that of the general population in Africa. At some
point it is possible that TDs will be lost to AIDS faster than they can be replaced.
The size of the recruitment rate/pool is critical to maintaining the TD population—
and thereby the delivery of goods—and, indirectly, the economy as well. An annual
loss of even the projected 10% of the TD population means an enormous cost to
the economy in terms of training expenses and lost time. By official statistics [24],
690 million metric tons of goods were transported by South African road and rail
enterprises in 2003, a number which has been steadily increasing since 1999. One
newspaper article [11] claimed that about 870 million metric tons per year of goods
are transported by South African trucks,2 with an estimated value of about R2000
billion (US$300 billion). With the estimated TD population given in the previous
section, this means that between 4,000 and 6,000 metric tons of goods and supplies
are transported per TD annually. As the number of working TDs decreases, the
amount of goods transported decreases, posing a major threat to the economic
status of the continent. These goods include food and medical supplies, the lack or
ineffective distribution of which may cause severe hardships in many small towns
and communities throughout SSA.

So what should be done? African countries are already struggling to deal with
the AIDS epidemic and its effects. However, this particular population highlights
areas that tend to fall between the cracks of traditional public health interventions:
truck drivers tend to work under demanding conditions and timetables for many
different companies of varying sizes and nationalities, while roadside sex workers
carry out a socially stigmatized and typically undocumented business, with few
resources available to them. The only approach presently available to these groups
with the potential to slow or stop the spread of HIV/AIDS is education to reduce
the risk of infection, typically by promoting condom use and providing condoms,
information, and referrals.

Sociological studies have identified strategies that may maximize the effects of
a targeted education campaign for these populations. Gysels et al. [9, 10] found
that middlemen are employed at many truck stops to arrange and mediate TD-CSW
interactions, claiming to offer some level of CSW screening to TDs while negotiating
price for the CSWs. At places where they are employed, middlemen therefore have
some potential influence on both groups. Ramjee and Gouws [21] identified toll
plazas and border crossings as places where education campaigns could have an
important effect on TDs, as all drivers pass through them regularly. There is also
an important opportunity for the TDs’ employers to shoulder some responsibility
for this education, as it is in their own best interests to take measures which will
reduce their turnover and loss rates.

2This figure includes goods transported by enterprises whose primary business is not transport,
such as retail companies. The official statistics cited include only transport companies.
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Among CSWs, studies have identified the newest and poorest of the women as
those at greatest risk of being infected [1, 10], as they are the ones least avail-
able to negotiate safer arrangements for themselves. Indeed, in general the CSW
population is driven by economic desperation and feelings of powerlessness, with
individual women negotiating better situations for themselves as their financial situ-
ations improve. Campbell [4] cites several factors that impede CSWs from insisting
on condom use, including clients’ refusal to do so, competition for clients, lack of
a common language between CSWs and their clients, and lack of self-confidence
stemming from early life experiences. To empower CSWs, several studies have rec-
ommended developing peer support networks of CSWs through which information
and education could be transmitted [4, 10, 12]. In fact, in some areas the TDs and
CSWs themselves have been trained as peer educators (e.g., Swaziland’s Corridors
of Hope initiative [12]).

Therefore, although resources are extremely limited, it is possible to maximize
their effect through highly targeted interventions. Future modeling work may be
able to predict or clarify the effects of these targeted interventions further, as has
been done in other areas (e.g., Hethcote and Yorke’s work with the role of core
groups in the transmission of gonorrhea [13]). For example, a model which incor-
porates age distribution for CSWs could predict the effects of interventions targeted
at new recruits. Also, as both populations have significant sexual contact with other
populations (e.g., 70% of the TDs interviewed by Ramjee and Gouws [21] had wives
and girlfriends in rural areas), modeling the wider sexual network may help relate
the growth rates of the epidemic in the concentrated and wider populations.

Appendix. Stability of EE for switching model. The fourth and final Routh-
Hurwitz criterion for the local stability of the EE of model (1)–(4) is a3(a1a2−a3) >
a2
1a4, with the ai as given in section 2.1. Mathematica software was used to calculate

an expression for a3(a1a2 − a3) − a2
1a4 using the definitions of the ai but keeping

K ≡ [β12β21− (µ1 + δ1)(µ2 + δ2)] intact as a single constant (positive since R0 > 1
when the EE exists) where it appears in a2, a3, and a4. The resulting expression
(after cancellations and grouping of identical terms) involves over 400 terms, 28 of
which are negative. Proof that the desired inequality holds therefore reduces to
finding positive terms which dominate the 28 negative terms. Table 3 identifies
the 28 negative terms and some of the corresponding positive terms that dominate
them.
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Table 3. The 28 negative terms (signs omitted) in the expression
for a3(a1a2 − a3) − a2

1a4 and corresponding positive terms in this
expression that dominate them

Line Negative term Positive term(s)

1
∆1δ2µ2

2K2

β12(β21 + µ1 + δ1)
= ∆1δ2µ

2
2K x

∗
1 [2]δ1δ2µ

2
2K

2
δ1∆2µ2

1K2

β21(β12 + µ2 + δ2)
= δ1∆2µ

2
1K x

∗
2 [2]δ1δ2µ

2
1K

3
2∆1µ3

2K2

β12(β21 + µ1 + δ1)
= ∆1µ

3
2K x

∗
1 [3]δ1µ

3
2K

4
2∆2µ3

1K2

β21(β12 + µ2 + δ2)
= ∆2µ

3
1K x

∗
2 [3]δ2µ

3
1K

5
∆1µ2

2K3

β12(β21 + µ1 + δ1)2

[2]δ1µ2
2K2

β21 + µ1 + δ1

=
∆1µ2

2K2

β21+µ1+δ1
x∗1

6
∆2µ2

1K3

β21(β12 + µ2 + δ2)2

[2]δ2µ2
1K2

β12 + µ2 + δ2

=
∆2µ2

1K2

β12+µ2+δ2
x∗2

7
δ2
1∆1∆2K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

δ1∆1∆2K3

β21(β12 + µ2 + δ2)2
(& see l. 18)

<
δ1∆1∆2K3(1−x∗1)

β21(β12+µ2+δ2)2

8
δ2
2∆1∆2K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

δ2∆1∆2K3

β12(β21 + µ1 + δ1)2
(& see l. 19)

<
δ2∆1∆2K3(1−x∗2)

β12(β21+µ1+δ1)2

9
4δ1∆1∆2µ1K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

3δ1∆1∆2µ1K2

β12(β21 + µ1 + δ1)

<
3δ1∆1∆2µ1K2 x∗2
β12(β21 + µ1 + δ1)

+
δ1∆1∆2µ1K2

(β21 + µ1 + δ1)(β12 + µ2 + δ2)

+
δ1∆1∆2µ1K2

(β21+µ1+δ1)(β12+µ2+δ2)

10
4δ2∆1∆2µ2K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

3δ2∆1∆2µ2K2

β21(β12 + µ2 + δ2)

<
3δ2∆1∆2µ2K2 x∗1
β21(β12 + µ2 + δ2)

+
δ2∆1∆2µ2K2

(β21 + µ1 + δ1)(β12 + µ2 + δ2)

+
δ2∆1∆2µ2K2

(β21+µ1+δ1)(β12+µ2+δ2)

11
2δ2∆1∆2µ1K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

∆1δ2
2µ1K2

β12(β21 + µ1 + δ1)

=
δ2∆1∆2µ1K2 x∗2

β12(β21 + µ1 + δ1)
+

δ1δ2∆2µ1K2

β21(β12 + µ2 + δ2)

+
δ2∆1∆2µ1K2 x∗1
β21(β12+µ2+δ2)

12
2δ1∆1∆2µ2K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

δ2
1∆2µ2K2

β21(β12 + µ2 + δ2)

=
δ1∆1∆2µ2K2 x∗2

β21(β12 + µ2 + δ2)
+

δ1∆1∆2µ2K2 x∗2
β12(β21 + µ1 + δ1)

+
δ1∆1δ2µ2K2

β12(β21 + µ1 + δ1)

13
4∆1∆2µ2

1K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

4∆1δ2µ2
1K2

β12(β21 + µ1 + δ1)

=
4∆1∆2µ2

1K2 x∗2
β12(β21+µ1+δ1)

14
4∆1∆2µ2

2K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

4δ1∆2µ2
2K2

β21(β12 + µ2 + δ2)

=
4∆1∆2µ2

2K2 x∗1
β21(β12+µ2+δ2)

15
6∆1∆2µ1µ2K3

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

3∆1δ2µ1µ2K2

β12(β21 + µ1 + δ1)

=
3∆1∆2µ1µ2K2 x∗2
β12(β21 + µ1 + δ1)

+
3δ1∆2µ1µ2K2

β21(β12 + µ2 + δ2)

+
3∆1∆2µ1µ2K2 x∗1
β21(β12+µ2+δ2)
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Line Negative term Positive term(s)

16
∆2µ2

1K3

(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)

[2]δ2µ2
1K2

β21 + µ1 + δ1

=
∆2µ2

1K2 x∗2
β21+µ1+δ1

17
∆1µ2

2K3

β12(β21 + µ1 + δ1)(β12 + µ2 + δ2)

[2]δ1µ2
2K2

β12 + µ2 + δ2

=
∆1µ2

2K2 x∗1
β12+µ2+δ2

18
2δ1∆1∆2K4

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)2

∆1∆2K4

β21(β12 + µ2 + δ2)3
(& see l. 26)

<
∆1∆2K4

β21(β12 + µ2 + δ2)3
(1− x

∗
1) +

δ1∆1∆2K3

β21(β12 + µ2 + δ2)2
(& see l. 7)

+
δ1∆1∆2K3 x∗1

β21(β12+µ2+δ2)2

19
2δ2∆1∆2K4

β12(β21 + µ1 + δ1)2β21(β12 + µ2 + δ2)

∆1∆2K4

β12(β21 + µ1 + δ1)3
(& see l. 27)

<
∆1∆2K4

β12(β21 + µ1 + δ1)3
(1− x

∗
2) +

δ2∆1∆2K3

β12(β21 + µ1 + δ1)2
(& see l. 8)

+
δ2∆1∆2K3 x∗2

β12(β21+µ1+δ1)2

20
2δ1∆1∆2K4

β12(β21 + µ1 + δ1)2β21(β12 + µ2 + δ2)

δ1∆2K3

β21(β12 + µ2 + δ2)

<
δ1∆2K3 x∗1

β21(β12 + µ2 + δ2)
+

∆2K4

β21(β12 + µ2 + δ2)2
(& see l. 28)

+
∆2K4(1−x∗1)

β21(β12+µ2+δ2)2

21
2δ2∆1∆2K4

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)2

∆1δ2K3

β12(β21 + µ1 + δ1)

<
∆1δ2K3 x∗2

β12(β21 + µ1 + δ1)
+

∆1K4

β12(β21 + µ1 + δ1)2
(& see l. 28)

+
∆1K4(1−x∗2)

β12(β21+µ1+δ1)2

22
4∆1∆2µ1K4

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)2
δ1µ1K

2
+

∆1µ1K3

β12(β21 + µ1 + δ1)

< δ1µ1K
2
x
∗
1x
∗
2 +

2∆1∆2µ1K3

β21(β12 + µ2 + δ2)2

+
∆1µ1K3 x∗2

β12(β21+µ1+δ1) +
2∆1∆2µ1K3x∗1

β21(β12+µ2+δ2)2

23
4∆1∆2µ2K4

β12(β21 + µ1 + δ1)2β21(β12 + µ2 + δ2)
δ2µ2K

2
+

∆2µ2K3

β21(β12 + µ2 + δ2)

< δ2µ2K
2
x
∗
1x
∗
2 +

2∆1∆2µ2K3

β12(β21 + µ1 + δ1)2

+
∆2µ2K3 x∗1

β21(β12+µ2+δ2) +
2∆1∆2µ2K3x∗2

β12(β21+µ1+δ1)2

24
4∆1∆2µ1K4

β12(β21 + µ1 + δ1)2β21(β12 + µ2 + δ2)
δ2µ1K

2
+

δ1∆2µ1K2

β21 + µ1 + δ1

< δ2µ1K
2
x
∗
1x
∗
2 +

2∆1δ2µ1K3

β12(β21 + µ1 + δ1)2

+
∆1∆2µ1K2 x∗1x∗2

β21+µ1+δ1
+

2∆1∆2µ1K3x∗2
β12(β21+µ1+δ1)2

25
4∆1∆2µ2K4

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)2
δ1µ2K

2
+

∆1δ2µ2K2

β12 + µ2 + δ2

< δ1µ2K
2
x
∗
1x
∗
2 +

2δ1∆2µ2K3

β21(β12 + µ2 + δ2)2

+
∆1∆2µ2K2 x∗1x∗2

β12+µ2+δ2
+

2∆1∆2µ2K3x∗1
β21(β12+µ2+δ2)2

26
∆1∆2K5

β12(β21 + µ1 + δ1)β21(β12 + µ2 + δ2)3

∆1∆2K4

β21(β12 + µ2 + δ2)3
(& see l. 18)

=
∆1∆2K4x∗1

β21(β12+µ2+δ2)3

27
∆1∆2K5

β12(β21 + µ1 + δ1)3β21(β12 + µ2 + δ2)

∆1∆2K4

β12(β21 + µ1 + δ1)3
(& see l. 19)

=
∆1∆2K4x∗2

β12(β21+µ1+δ1)3

28
2∆1∆2K5

β12(β21 + µ1 + δ1)2β21(β12 + µ2 + δ2)2

∆1K4

β12(β21 + µ1 + δ1)2
(& see l. 21)

<
∆1K4x∗2

β12(β21 + µ1 + δ1)2

∆2K4

β21(β12 + µ2 + δ2)2
(& see l. 20)

+
∆2K4x∗1

β21(β12+µ2+δ2)2
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