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Abstract. This short article carefully formulate a simple SI model for a
parasite-host interaction through the basic birth and death processes analysis.
This model reveals and corrects an error in similar models studied recently by
various authors. Complete mathematical investigation of this simple model
shows that the host extinction dynamics can happen and the outcomes may
depend on the initial conditions. We also present biological implications of our
findings.

1. Introduction. The phenomenon that parasites can dramatically reduce host
density and even drive host population to extinction has been shown by numerous
experimental studies (Ebert et al. 2000). Specifically, it is widely regarded as the
culprit of a number of high profile extinctions on various islands (McCallum and
Dobson 1995). In an effort to understand such parasite induced host population re-
duction and extinction, Ebert et al. (2000) formulated the following epidemiological
microparasite model with horizontal transmission:




x′(t) = a(x + θy)[1− c(x + y)]− dx− bxy,
y′(t) = −(d + α)y + bxy,
x(0) = x0 > 0, y(0) = y0 > 0,

(1.1)

where x(t), y(t) represent the densities of uninfected (susceptible) and infected (in-
fective) hosts at time t respectively. According to Ebert et al. (2000), a is the
maximum per capita birth rate of uninfected hosts; θ is the relative fecundity of
an infected host; c measures the per capita density-dependent reduction in birth
rate; d is the parasite-independent host background mortality; b is the infection
rate constant and α is the parasite-induced excess death rate. Notice that the
disease transmission is assumed to be horizontal. This SI deterministic model pre-
dicts the existence of a positive steady state and no periodic orbits in the region
∆ = {(x, y) ∈ R2

+ | c(x + y) < 1}. (A proof can be easily obtained by the applica-
tion of the Dulac criterion with the standard auxiliary function 1/xy). Such simple
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dynamics fails to explain the observed rich outcomes dependent on parameter values
and initial population levels (Ebert et al. 2000).

After a routine modification of the infection rate b (in view of the fact that
the total host and infected populations may not be constant) in the above ad hoc
deterministic model, we (Hwang and Kuang 2003) considered the following SI de-
terministic model:





x′(t) = a(x + θy)[1− c(x + y)]− dx− b
xy

x + y
,

y′(t) = −(d + α)y + b
xy

x + y
,

x(0) = x0 > 0, y(0) = y0 > 0.

(1.2)

In (1.2), b is the maximum number of infections an infective host can cause in a
unit of time. Notice that when the total population is constant, the infection term
bxy maybe justified (since b/(x+y) is now a constant). Through a blow-up change
of variable ((x, y)→(u, y), u = x/y), we (Hwang and Kuang 2003) transformed (1.2)
into a well studied Gause-type predator-prey system and obtained an almost com-
plete understanding of the asymptotic behavior of the solutions for (1.2). For later
comparisons, we summarize our main results in (Hwang and Kuang 2003) in Table
1. The most important finding here is that the origin can be an attractor (global)
for model (1.2), which may explain the often-observed deterministic extinctions of
hosts. This host extinction dynamics has resulted from the degeneracy of the origin
due to the ratio-dependent infection term. Such extinction dynamics in the context
of predator-prey interaction has been studied recently by many researchers (see the
references cited in Kuang and Beretta 1998 and Hsu et al. 2001). There is an
unusual feature for model (1.2): even if the basic reproduction number (Hethcote
2000) for the disease R0 = b/(d+α) is greater than 1 (equivalent to s > r + δ), the
disease may not persist. Instead, it may simply drive the host to extinction (when

b > α + a
d + α− dθ

d + α− aθ
or equivalent to sµ0/(1 + µ0) < r + δ in model (1.2)).

Table 1. Main results in Hwang and Kuang (2003). Here GS
stands for globally stable, s = b

a , δ = d/a, r = α/a, µ0 = θ/(s −
r − 1).

Conditions Results
1. δ > 1, or s− r ≤ δ plus δ ≥ 1 (0, 0) is GS
2. s− r ≤ δ, δ < 1 (1− δ, 0) is GS
3. 1 ≥ s− r > δ (x∗, y∗) is GS
4. s− r > 1, sµ0/(1 + µ0) ≤ r + δ (0, 0) is GS
5. s− r > 1, sµ0/(1 + µ0) > r + δ (x∗, y∗) is GS

Recently, a more general system was considered by Berezovsky et al. (2004):





x′(t) = a(x + θy)[1− c(x + y)]− (d + m)x− b
xy

x + y
,

y′(t) = −(d + α)y + b
xy

x + y
,

x(0) = x0 > 0, y(0) = y0 > 0,

(1.3)
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where m ≥ 0 is the per-capita emigration rate of susceptible individuals. Clearly,
if m = 0 then (1.3) reduces to (1.2). By applying two blow-up transformations,
Berezovsky et al. (2004) showed that system (1.3) can be completely studied. Let
R0 = b

d + α
, Rd = a

d + m
, ν = d + m

d + α
. Then their results can be summarized in

Table 2.

Table 2. Main results in Berezovsky et al. (2004)

Conditions Results
1. 0 < R0, Rd < 1 (0, 0) is GS
2. 0 < R0 < 1 < Rd GS
3. 1 < R0,

ν+R0−1
ν(θ(R0+1)+1) < Rd (x∗θ, y

∗
θ) is GS

4. 1 < R0, 1 < Rd < ν+R0−1
ν(θ(R0+1)+1) , νθ < 1 (0, 0) is GS (elliptic sector)

5. Rd < 1 < R0, νθ < 1 (0, 0) is GS
6. 1 < R0, Rd < ν+R0−1

ν(θ(R0+1)+1) , νθ > 1 (0, 0) is GS

Notice that the region ∆ is positively invariant and that x′(0) = aθy(0)(1 −
cy(0)) < 0 if x(0) = 0, y(0) > 1/c.

Recall that in the logistic model x′(t) = ax(1 − x/K), a is to be viewed as the
growth rate, which is usually the difference of birth and death rates. However, in
all the above models, the linear death term dx is added to the x equation. The
crowding effect term described by c(x + y) is also very ad hoc and in need of
justification. Moreover, the placement of θy is also questionable. In an attempt to
set these sensitive modeling issues, we formulate below a parasite-host model using
the standard birth and death processes (or gain and loss mechanisms) approach
(Turchin (2001) and Thieme 2003). According to the biological assumption of
model (1.1) on the birth process, we see that the birth function of x takes the form
of ax + aθy = a(x + y)− a(1− θ)y. The loss terms of x include those due to death
and immigration (d + m)x, crowding effect cx(x + y) and infection bxy/(x + y).
The birth term of y is simply bxy/(x + y), and the loss terms include those from
(d + α)y death and crowding effect cy(x + y). With these intuitive but important
modifications, we arrive at the following simple SI model:





x′(t) = a(x + y)− a(1− θ)y − cx(x + y)− (d + m)x− b
xy

x + y
,

y′(t) = −(d + α)y − cy(x + y) + b
xy

x + y
,

x(0) = x0 > 0, y(0) = y0 > 0

(1.4)

where a, c, d, b, α > 0 and θ ∈ [0, 1].
For simplicity, we nondimensionalizes the system (1.4) with the following scaling:

t = at, x = cx/a, y = cy/a.

Dropping the overlines on the variables, system (1.4) takes the form




x′(t) = x + y − (1− θ)y − x(x + y)− δx− s
xy

x + y
≡ F (x, y),

y′(t) = −(δ + r)y − y(x + y) + s
xy

x + y
≡ G(x, y),

x(0) = x0 > 0, y(0) = y0 > 0,

(1.5)
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where

s =
b

a
, δ =

d + m

a
, r =

α

a
. (1.6)

Observe that lim(x,y)→(0,0) F (x, y) = lim(x,y)→(0,0) G(x, y) = 0. We thus define that
F (0, 0) = G(0, 0) = 0. Clearly, with this assumption, both F and G are continuous
on the closure of R2

+ and C1 smooth in R2
+ where R2

+ = {(x, y)| x > 0, y > 0}.
So, by applying standard arguments, we see that the solutions of system (1.5)
are positive, bounded and defined on [0,∞). It is straightforward to see that
0 < x(t)+y(t) < 1 for all t > 0 provided that 0 < x0 +y0 < 1. Furthermore, if there
exists a solution such that x(t)+y(t) ≥ 1 for all t ≥ 0, then (x+y)′(t) < −δ(x+y)(t)
and hence limt→∞(x(t)+ y(t)) = 0 < 1. This contradiction implies that all positive
solutions of (1.5) eventually enter and stay in the triangular positive invariant re-
gion Ω = {(x, y) ∈ R2

+|x + y < 1}. Specifically, we have the following proposition:

Proposition 1.1. Let (x(t), y(t)) be the solution of (1.5), starting at (x0, y0) ∈ R2
+.

Then there is a t0 > 0 such that for t > t0, we have (x(t), y(t)) ∈ Ω.

For convenience, in the rest of this paper, we assume that

(A1): x0 > 0, y0 > 0, and x0 + y0 < 1.

Observe that if birth rate a is not greater than the sum of death rate d and per
capita emigration rate m, then δ ≥ 1. We have (x+y)′ < −(δ−1)(x+y)− (x+y)2,
which implies that limt→∞(x(t), y(t)) = (0, 0). This is the trivial and intuitive out-
come of the extinction of the host. So, in the rest of this paper, we assume further
that

(A2): δ < 1.

Our goal is to gain a thorough understanding of the global dynamics of model
(1.5) or equivalently (1.4).

The rest of this paper is organized as follows. In section 2, we find that the
ratio u = x/y function satisfies a linear differential equation which can be solved
easily. Taking advantage of this, we obtain a complete understanding of the asymp-
totic behavior of the solutions of system (1.5). Section 3 presents direct biological
implications and limitations of our mathematical results in terms of the original
parameters in system (1.4).

2. Mathematical analysis and results. To remove the nonsmoothness at the
origin, we carry out the blow-up transformation (x, y) → (u, y) where u = x/y in
system (1.5). This transforms it into the following system:

u′(t) = (1 + r − s)u + θ,
y′(t) = ϕ(u)y − ρ(u)y2,
u(0) = u0 = x0/y0 > 0, y(0) = y0 > 0,

(2.1)

where
ϕ(u) = s− r − δ − s

u + 1
,

ρ(u) = u + 1.
(2.2)
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Obviously, from the first equation in system (2.1), we have

u(t) =
{

θt + u0 if s− r = 1,
(u0 − u∗)e(1+r−s)t + u∗ if s− r 6= 1,

(2.3)

where u∗ = θ
s− r − 1 . Consequently, u = u0 if θ = s − r − 1 = 0, and u tends to

u∗ exponentially if s − r > 1 and θ ∈ [0, 1]. If either s − r < 1 and θ ∈ [0, 1], or
s − r = 1 and θ ∈ (0, 1] hold then limt→∞ u(t) = ∞. Hence, the system (2.1) or
equivalently, the system (1.5) has no periodic orbits.

Now we are in a position to prove the following main theorem.

Theorem 2.1. For system (1.5), the following statements are true:
(a) The equilibrium (1− δ, 0) is globally attractive if either s− r < 1 and θ ∈ [0, 1],

or s− r = 1 and θ ∈ (0, 1] hold.
(b) The equilibrium (0, 0) is globally attractive if 0 ≤ θ ≤ 1 < s− r and ϕ(u∗) ≤ 0.
(c) The equilibrium (x∗, y∗) is globally attractive if 0 ≤ θ ≤ 1 < s−r and ϕ(u∗) > 0

where y∗ = ϕ(u∗)/ρ(u∗), x∗ = u∗y∗.
(d) Let D1 = {(x, y) ∈ ∆|ϕ(x/y) ≤ 0}, D2 = {(x, y) ∈ ∆|ϕ(x/y) > 0}. Assume

θ = s− r − 1 = 0. Then limt→∞(x(t), y(t)) = (0, 0) if (x0, y0) ∈ D1 and
limt→∞(x(t), y(t)) = (x̂, ŷ) if (x0, y0) ∈ D2 where ŷ = ϕ(u0)/ρ(u0), x̂ = u0ŷ.

Proof. For part (a), observe that y = x/u ≤ 1/u, thus, from (2.3), we have
limt→∞ y(t) = 0 for all solutions (x(t), y(t)) of system (1.5). Hence, for any given
ε > 0, there exists a sufficiently large Tε such that y(t) ≤ εx(t) for all t ≥ Tε. Then
one can see that −x(t)y(t) ≥ −εx2(t) for all t ≥ Tε. Now from (1.5), we have

x′(t) = x(1− δ − x)− xy + θy − sxy/(x + y)
≥ x(1− δ − x)− εx2 − sεx/(1 + ε)
= x(1− δ − sε/(1 + ε)− (1 + ε)x)

for all t ≥ Tε. If we choose ε small enough such that 1 − δ − sε/(1 + ε) > 0
then, by a standard comparison theorem, one obtains lim inft→∞ x(t) = l > 0.
Let lim supt→∞ x(t) = L. We claim that L = l. Otherwise, we have L > l, and
there are two sequences {tn}, {sn} such that x′(tn) = x′(sn) = 0 for all n ≥ 1 and
limn→∞ x(sn) = l, limn→∞ x(tn) = L. Thus

L(1− δ − L) = l(1− δ − l) = 0,

a contradiction. Now we have limt→∞ x(t) = L. From (1.5), we see that x′′ is
bounded on [0,∞). Hence limt→∞ x′(t) = 0. Therefore,

0 = lim
t→∞

x′(t) = F (L, 0) = L(1− δ − L).

This implies limt→∞ x(t) = 1− δ, and the first assertion follows.

For part (b), since s − r − 1 > 0, it is clear from (2.3) that limt→∞ u(t) = u∗.
Since ρ(u) > 1 and it is assumed that ϕ(u∗) ≤ 0, we see that for any given ε << 1,
there is a Tε > 0 such that for t > Tε, ϕ(u(t)) < ε. Hence for t > Tε,

y′(t) = ϕ(u)y − ρ(u)y2 < y(ε− y),
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which implies that
lim sup

t→∞
y(t) ≤ ε.

Letting ε tends to zero, we see that limt→∞ y(t) = 0. Hence, limt→∞ x(t) = 0.

We now consider part (c). Notice that limt→∞ u(t) = u∗ for all solutions
(u(t), y(t)) of system (2.1) and ϕ(u) is a continuous function. We have, for any given
ε > 0, there exists a δε > 0 a sufficiently large Tε such that u∗− δε < u(t) < u∗+ δε

and ϕ(u(t)) > ϕ(u∗)− ε for all t ≥ Tε. Now from (2.1), we have

y′(t) = ϕ(u)y − ρ(u)y2 ≥ y (ϕ(u∗)− ε− (1 + u∗ + ε)y)

for all t ≥ Tε. If we choose ε small enough such that ϕ(u∗)− ε > 0 then, by a stan-
dard comparison argument, one obtains lim inft→∞ y(t) = l > 0. Let lim supt→∞ y(t) =
L. We claim that L = l. For otherwise, we have L > l and there are two se-
quences {tn}, {sn} such that y′(tn) = y′(sn) = 0 for all n ≥ 1 and limn→∞ y(sn) =
l, limn→∞ y(tn) = L. Thus

L(ϕ(u∗)− ρ(u∗)L) = l(ϕ(u∗)− ρ(u∗)l) = 0,

a contradiction. Now we have limt→∞ y(t) = L. From (2.1), we see that y′′ is
bounded on [0,∞). Hence limt→∞ y′(t) = 0. Therefore,

0 = lim
t→∞

y′(t) = L(ϕ(u∗)− ρ(u∗)L).

This implies limt→∞ y(t) = ϕ(u∗)/ρ(u∗) and limt→∞ x(t) = u∗y∗. Hence, assertion
(c) follows.

For part (d), since u(t) = u0, the function y satisfies the logistic equation:

y′(t) = y(ϕ(u0)− ρ(u0)y).

Assertion (d) follows easily.

Observe that the second equation of (2.1) is a Bernoulli equation. We can actu-
ally solve y(t) (and hence x(t)). This gives

y(t) = e
R t
0 ϕ(u(ξ))dξ/(y0 +

∫ t

0
ρ(u(τ))e

R τ
0 ϕ(u(ξ))dξdτ),

x(t) = u(t)e
R t
0 ϕ(u(ξ))dξ/(y0 +

∫ t

0
ρ(u(τ))e

R τ
0 ϕ(u(ξ))dξdτ).

(2.4)

While it is nice to have an explicit expression for the solution, the solution’s as-
ymptotical behavior is far from clear. For this purpose, we provide below an ap-
proximation of this analytical expression in the following corollary for the special
case of 0 ≤ θ ≤ 1 < s− r, ϕ(u∗) > 0 and y0 < ϕ(u∗)/ρ(u∗).

Corollary 2.1. If 0 ≤ θ ≤ 1 < s− r, ϕ(u∗) > 0 and y0 < ϕ(u∗)/ρ(u∗) then

y(t) ' ϕ(u∗)
2ρ(u∗)

(
1 + tanh

(
ϕ(u∗)

2 t + τ

))
;

y′(t) ' ϕ2(u∗)
4ρ(u∗) sech2

(
ϕ(u∗)

2 t + τ

)

where tanh τ = 2y0
ρ(u∗)
ϕ(u∗) − 1.
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Proof. From Theorem 2.1, we have u tends to u∗ exponentially. Hence, the
second equation in (2.1) can be approximated by

y′ ' y(ϕ(u∗)− ρ(u∗)y). (2.5)

A straightforward computation yields y(t) ' ϕ(u∗)
2ρ(u∗)

(
1 + tanh

(
ϕ(u∗)

2 t + τ

))
,

where tanh τ = 2y0
ρ(u∗)
ϕ(u∗) − 1. Substituting this expression into (2.5), we obtain

the desired expression for y′(t). This completes the proof of the corollary.

3. Discussion. To facilitate our discussion, we first summarize our main results
of system (1.5) in Table 3.

Table 3. Complete global results of system (1.5).

Conditions Results
a. δ ≥ 1 (0, 0) is GS.
b. δ < 1, s− r < 1 (1− δ, 0) is GS.
c. δ < 1, s− r = 1 plus 0 < θ ≤ 1 (1− δ, 0) is GS.
d. δ < 1, s− r > 1, ϕ(u∗) ≤ 0 (0, 0) is GS.
e. δ < 1, s− r > 1, ϕ(u∗) > 0 (x∗, y∗) is GS.
f. δ < 1, s− r − 1 = θ = 0 limt→∞(x(t), y(t)) = (0, 0)

(or (x̂, ŷ)) if ϕ(u0) ≤ (or >) 0.

Here s = b/a, δ = (d + m)/a, r = α/a and u0 = x0/y0.

Notice that the condition δ ≥ 1 is equivalent to d + m ≥ a. That is, the birth
rate is no greater than the sum of death rate d and per-capita emigration rate m.
This means there is no growth in total host population. Thus, the whole population
declines steadily and eventually dies out (even if there is no disease).

When δ < 1 (or d+m < a), the net change rate of susceptibles is positive in the
absence of infection. The survival of susceptibles may depend on the effects of the
disease. Observe that a(s− r − 1) = (b− (α + d))− (a− d); that is, the difference
of net growth rates of infectives and susceptibles. So the scenario of (b) and (c) in
Table 3 describes that except for the extreme case s − r − 1 = θ = 0, the disease
will die out and some individuals will escape the disease if the net growth rate of
the infective group is no greater than the susceptible group. Figure 2 depicts some
solutions in cases (e) and (d).

The conclusion (f) is the main difference between Tables 1 and 3. It describes
the scenario that when the net growth rate of infectives and susceptibles are the
same (s − r = 1) and the infection makes the infected group infertile (θ = 0). In
this unlikely case, the outcomes of system (1.5) depend on initial conditions. Recall
that ϕ(u0) ≤ 0 is equivalent to x0 ≤ r + δ

1− δ
y0. In terms of original parameters in

(1.4), this condition is equivalent to

x0 ≤ b− (a− d−m)
a− d−m

y0.

This means that if the ratio of uninfected to infected hosts population is not large
enough, then the system will collapse. Otherwise, the disease will persist.
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Figure 1. The extinction region, parasite extinction region and
coexistence region for model (1.5) and (1.4) in θ, b and δ, s − r
parameters space are depicted for (r, θ) = (0.7, 0.8), (0.75, 0.5) and
c = 1, a = 0.4, d = 0.01,m = 0, and α = 0.3, 0.4, respectively.
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Figure 2. In (a), solutions tend to E∗ monotonically after a brief
transition period. Here a = 0.4, d = 0.01, α = 0.2, θ = 0.6, b =
1, c = 1,m = 0. In (b), solutions tend to the origin monotonically
after a brief transition period. Here a = 0.4, d = 0.01, α = 0.2, θ =
0.2, b = 2, c = 1,m = 0.
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The deterministic extinction effect on host is reproduced here as well. This
occurs if s − r > 1 and ϕ(u∗) ≤ 0. Recall that ϕ(u∗) ≤ 0 is equivalent to θ ≤
s− r − 1
s− r − δ

(r + δ). In terms of the original parameters in (1.4), this condition is
equivalent to

b ≥ (d + m + α)
α + a− aθ

d + m + α− aθ
.

So the scenario describes a situation when infection rate is high (s > r +1) and the
infection imposes a severe reduction in the birth rate of the infected group (small
θ), or some significant yet subtle increases in the additional death rate (α) to the
infected group (Figure 1).

We conclude this paper by repeating the limitation statements we mentioned in
Hwang and Kuang (2003). Although model (1.4) exhibits the desirable host deter-
ministic extinction dynamics, we recognize that to reach extinction by a continuous-
time model, a population must eventually become very small and the stochastic
effects become noticeable and important. A more plausible explanation of the often-
observed host extinction phenomenon is that the deterministic infection dynamics
brings the total host population to the brink of extinction and the demographic
stochasticity actually drives the host population to extinction.
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