
MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/
AND ENGINEERING
Volume 2, Number 4, October 2005 pp. 703–717

PREDATOR-PREY DYNAMICS WITH DISEASE IN THE PREY

Peter A. Braza

Department of Mathematics and Statistics, University of North Florida
4567 St. Johns Bluff Road, Jacksonville, FL 32224, USA

(Communicated by Yang Kuang)

Abstract. The Holling-Tanner model for predator-prey systems is adapted
to incorporate the spread of disease in the prey. The analysis of the dynamics
centers on bifurcation diagrams in which the disease transmission rate is the
primary parameter. The ecologically reasonable assumption that the diseased
prey are easier to catch enables tractable analytic results to be obtained for the
stability of the steady states and the locations of Hopf bifurcation points as a
function of the ecological parameters. Two parameters of particular relevance
are the ratio of the predator’s intrinsic growth rate to the prey’s growth rate
and the maximum number of infected prey that can be eaten per time. The
dynamics are shown to be qualitatively different depending on the comparative
size of these parameters. Numerical results obtained with AUTO are used to
extend the local analysis and further illustrate the rich dynamics.

1. Introduction. The basic Holling-Tanner model for predator-prey interactions
is given by the equations:

dx

dt
= r1x (1− x

K
)− a x y

1 + aTh x
(1)

dy

dt
= r2y (1− y

x/J
)

[1] - [5]. The variables x(t) and y(t) denote the prey and predator densities. The
parameters r1 and r2 denote the intrinsic linear growth rates and K is the carrying
capacity of the prey. The parameter a is the rate of successful search and Th

is the handling time. The Tanner contribution to the model, first proposed by
Leslie [6], is the equation describing the predator dynamics. The predator grows
exponentially for small predator values and has a prey dependent carrying capacity
given by x/J. The parameter J is the number of prey required to support the
predator at equilibrium.

To incorporate prey that can be susceptible to and infected with disease, we
introduce variables, S(t) and I(t). It is assumed that the disease only affects
the prey. The infected prey population will decrease due to the disease and the
interactions with the predator but will increase due to the spread of disease among
the susceptible prey. The susceptible prey will grow with a logistic component
depending on the populations of both prey types but decline due to the transmission
of disease and the interactions with the predator.
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Different rates of successful search aS and aI will have to be introduced for the
susceptible and infected prey respectively. Two factors that affect the magnitude
of the search rates are the speed of movement of the predator relative to the prey
and the proportion of attacks that result in a successful capture of the prey [7].
The running premise in this paper is that the predator will find it much easier to
search for and catch the diseased prey rather than the merely susceptible prey thus
implying that aS ¿ aI . With this premise it will also be the case that JI ¿
JS since many more susceptible prey would be required to sustain the predator (it
is harder to find and catch the susceptible prey). There are three primary factors
affecting the handling times: time actually spent pursuing and subduing the prey,
time spent eating the prey, and time during which the predator is not hungry [7].
When comparing the handling times for the susceptible prey and infected prey, the
first factor comes into play only in such a manner that would imply TI < TS but
not TI ¿ TS . Finally, using the parameter c to denote the net natural death rate
due to disease and β to denote the disease transmission rate, the equations of the
Holling-Tanner model with disease in the prey are:

dS

dt
= r1S(1− S + I

K
)− βSI − aS S

1 + aI TI I + aS TS S
Y (2)

dI

dt
= −cI + βSI − aI I

1 + aI TI I + aS TS S
Y

dY

dt
= r2Y (1− Y

S/JS + I/JI
).

The adaptations of the Holling type II functional response term to include multiple
prey types follow from time budget analyses and are shown in [8] - [11].

Other authors use different models to incorporate the disease. Xiao and Chen
used simple mass action (terms proportional to −SY and −IY ) to describe the
decline of both prey types in the presence of the predator [12]. They were mostly
interested in theoretical issues such as permanence, boundedness of solutions, na-
ture of equilibria, etc. due to time delays attributed to gestational times. In their
conclusions it was acknowledged that their results would be more meaningful if a
Holling type II functional response was used. Chattopadhyay and Arino did use
Holling type II responses but did not include both prey types in each response
function as above [13]. They considered the case when the predator eats only the
infected prey and their emphasis was on a special case in which the susceptible
prey’s linear growth rate is very large thus allowing the system to be reduced to
two equations.

Hadeler and Freedman used a model in which the parasitically infected prey
were more vulnerable to predation than the susceptible prey [14]. They pointed
to several studies which provide validity to the assumption that the infected prey
are easier to catch. A review article by Holmes and Bethel noted that infected
prey are simply less active and therefore more prone to be caught [15]. Some prey
would alter their behavior in their habitat in a way that would make them more
vulnerable to predation. For example, infected snails would stay on the top of
vegetation rather than safely embedded within.

The mathematical and ecological consequences stemming from the assumption
that the infected prey are easier to catch have been studied from different view-
points. This paper provides a further one in which a more precise accounting of
the ecological parameter sizes quantifies the assumption and the analysis of the



PREDATOR-PREY DYNAMICS WITH DISEASE IN THE PREY 705

dynamics is approached from a bifurcation perspective. Although the standard
Holling-Tanner model is well established, no one (to this author’s knowledge) has
considered a predator prey system with disease that incorporates the Tanner model
for the predator dynamics.

The central goal of this paper is to study how disease in the prey affects the
overall dynamics of the system. This is achieved primarily by means of local bifur-
cation analysis and secondarily by the use of AUTO and XPPAUT [17] [18]. The
paper proceeds by first non-dimensionalizing the variables and identifying a suitable
small parameter based on the condition aS ¿ aI . The use of a small parameter
enables the ready identification of the influence that the ecological parameters have
on the stabilty properties of the steady states and the location of Hopf bifurcation
points.

2. Analysis. As a first step in the bifurcation analysis, equations (2) need to be
non-dimensionalized. New prey and predator variables are defined by:

susceptible prey s =
S

K
, infected prey i =

I

K
, predator y =

Y JI

K
.

The new time is defined by
tnew = r1told,

so the ratio of linear growth rates naturally arises as

r =
r2

r1
. (3)

The scaled death rate and the disease transmission rate are given by,

cnew =
cold

r1
and βnew =

K

r1
βold.

Utilizing aS ¿ aI , the small parameter ε will be defined by

ε =
aSTS

aITI
¿ 1.

Furthermore, with the definitions,

ε j = JI/JS , b =
1

aS TS K
, qs =

1
r1 JI TS

, and qi =
1

r1 JI TI
,

equations (2) become:

ds

dt
= s (1− s− i)− β s i− ε qs s

i + ε s + εb
y (4)

di

dt
= −c i + β s i− qi i

i + ε s + εb
y

dy

dt
= r y (1− y

i + ε j s
).

As a note, the inverses of the handling times (1/TS and 1/TI) are often described
in the literature as the maximum number of prey (of the specified type) that can
be eaten per predator per time so the parameters qs and qi should be interpreted
as scaled versions [1], [7], [16].

The first step in the bifurcation analysis is to find the steady states. The rea-
sonable assumption ε ¿ 1 coming from the idea that the infected prey are easier to
catch allows for a simpler characterization of the steady states, albeit approximate,
and subsequent bifurcation analysis. Since the main emphasis of this paper is to
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study the effects of disease on predator-prey dynamics, the disease transmission
rate β will be used as the primary bifurcation parameter.

2.1. The O(1) Steady States. With the assumption that ε ¿ 1, a good way
to begin unraveling the bifurcation structure of equations (4) is to first set the
parameter ε equal to zero. With this done, equations (4) become:

ds

dt
= s (1− s− i)− β s i (5)

di

dt
= −c i + β s i− qi y (6)

dy

dt
= r y (1− y

i
) (7)

At this order, the infected prey are diminished by the interactions with the predator
but the susceptible prey are not. The susceptible prey do decline because of the
disease however and thereby increase the ranks of the infected prey. By setting
the right hand sides of these equations equal to zero the following two steady states
are obtained,

s =
c + qi

β
, i = y =

β − c− qi

β(1 + β)
(8)

s =
c

β
, i =

β − c

β(1 + β)
, y = 0, (9)

along with two degenerate steady states,

s = 1, i = y = 0 (10)
s = i = y = 0. (11)

To help visualize the steady states, the susceptible prey s and infected prey i are
shown as a function of the disease transmission rate β in Figure 1.

Coexistence of the predator and two prey types is featured in the primary steady
state (8) and this steady state is valid only for β ≥ c+qi. This inequality essentially
represents the fact that the disease transmission rate has to be above a threshold
value for the infected prey to be sustained. This in turn allows the predator to
thrive on its primary source of food, the infected prey. When β = c + qi this
steady state matches the degenerate steady state (10) in which the populations of
the infected prey and the predator are both zero while the susceptible prey is at its
maximum. The second steady state (9) features no predator and the coexistence
of the susceptible and infected prey. Although plausible on ecological grounds, it
will be shown that this steady state is unstable for all parameter values. The term
y/i in equations (7) is indeterminate with the latter two steady states (10 and 11)
so higher order analysis will be done in a subsequent section to rectify this.

The stability of the steady states (8) and (9) is determined by linearizing equa-
tions (5 - 7) about the steady states. The resulting characteristic equations for the
eigenvalues λ are of the form,

λ3 − T1λ
2 + T2λ− T3 = 0, (12)

in which T1 is the trace of the linearized matrix, T2 is sum of determinants of the
cofactor matrices formed from the trace elements, and T3 is the determinant. The
Routh-Hurwitz criteria of T1 < 0, T3 < 0, and T1T2−T3 < 0 are the necessary and
sufficient conditions for a steady state to be stable.
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For the zero predator steady state (9) in which the susceptible and infected prey
coexist at the values s = c/β, i = (β − c)/(β(1 + β)), the characteristic equation is

λ3 − (r − c

β
)λ2 +

c

β
(β − c− r)λ− cr

β − c

β
= 0.

All three conditions for stability cannot be satisfied simultaneously so this steady
state is always unstable.

2.2. The Primary O(1) Steady State. The primary steady state given in (8),

s = (c + qi)/β, i = y = (β − c − qi)/(β(1 + β)), will yield much more interesting
dynamical behavior. The characteristic equation is

λ3 +
c + qi + βr − βqi

β
λ2 +

(c + qi)(β − c− 2qi + r)
β

λ +
r(c + qi)(β − c− qi)

β
= 0.

The condition for stability, T3 < 0, implies β > c + qi but this is automatically
satisfied since it is merely the condition for the infected prey i and predator y to
be positive. The condition T1 < 0 is satisfied if

β(qi − r) < (c + qi). (13)

This inequality foreshadows a qualitative change in the bifurcation structure when
r = qi.

The requirements on the parameters dictated by the third stability condition
T1T2 − T3 < 0 are not so evident. However, of particular interest for the present
is the case T1T2 − T3 = 0 which is a necessary condition for a Hopf bifurcation.
Simplified somewhat, the expression is:

T1T2 − T3 =
c + qi

β2
[βr(β − c− qi)− (β − c− 2qi + r)(c + qi + βr − βqi)] . (14)

Because the local frequency of a bifurcating periodic solution is
√

T2, a Hopf bifur-
cation can only occur if the additional condition T2 > 0 accompanies T1T2−T3 = 0.

Viewing the disease transmission rate β as the primary bifurcation parameter, a
Hopf bifurcation may occur at the following two values:

β± =
1

2qi

(
D ±

√
D2 − 4qi(c + qi)(c + 2qi − r)

)
(15)

with D = (c + qi)(1 + qi) + (qi − r)2.
On the face of it, it appears that there would be two Hopf bifurcation values of β
if c + 2qi − r > 0 but the condition T2 > 0 also imposes the requirement r < qi; if
r > qi there is only one Hopf bifurcation value at β+.

A useful property is that the steady states do not depend on the ratio r of the
linear growth rates but the stability and the location of the Hopf bifurcation point(s)
do depend on r. One example in the two Hopf bifurcation point case is that, as
r increases to qi, the value of β− from (15) decreases to c + qi which corresponds
to the point where the primary steady state (8) intersects the degenerate one (10).
Also, the steady state branch is stable when β satisfies β− < β < β+ and unstable
when β satisfies c+ qi < β < β− or β > β+. This is the scenario depicted in Figure
1. As a further note, when r → q−i , the stability of the s = (c + qi)/β, branch
extends all the way from β = β+ back down to β = c + qi or the s = 1 degenerate
steady state branch. When r > qi there is only one Hopf bifurcation at β = β+ and
the steady state branch is stable for β < β+ but unstable when β > β+; the stability
of the branch is determined by T1T2 − T3 < 0 since (13) is automatically satisfied.
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In all cases, the bifurcations are supercritical so that the periodic solutions are
locally stable. Representative bifurcation diagrams (using the full equations (4))
created with AUTO in XPPAUT [18] are illustrated in Figures 3 - 7.

The remarks are predicated on the assumption that there will be Hopf bifurcation
points on the primary O(1) steady state when r < qi but this need not be the
case. It is apparent that the two Hopf bifurcation values of β may coalesce if the
discriminant

D2 − 4qi(c + qi)(c + 2qi − r) (16)
in expression (15) is equal to zero and indeed, there will be no Hopf bifurcation
values of β if the discriminant is less than zero. There are different ways to char-
acterize the ensuing parameter relationships. One way to proceed is to fix qi and
then determine the values of the parameters c and r that make the discriminant
less than zero; the results of this can be seen in Figure 2. Bifurcation diagrams
(using the full equations (4)) for the case when there is no Hopf bifurcation on the
primary branch are shown in Figures 8 and 9. Note that there is a bifurcating
periodic solution but it arises from the degenerate steady state s = 1, i = y = 0
(10). Understanding how the bifurcations from this steady state are linked with
the primary steady state (8) is essential for the proper insight into the dynamics
and a complete view of the overall bifurcation diagram.

2.3. The Degenerate Steady States. Of some ecological importance is the value
of the disease transmission rate β that destabilizes the environment in which the
susceptible prey are the only thriving species. The stability properties of the order
1 steady state s = 1, i = y = 0 (10), which indicate that only the susceptible prey
are present, need to be determined. A more delicate analysis has to be done since
the term y/i found in equations (7) is indeterminate. To accomplish this, the
variables are expanded in asymptotic series in ε as:

s(t) = 1 + s1(t) ε + s2(t) ε2 + · · · (17)
i(t) = i1(t) ε + i2(t) ε2 + · · ·
y(t) = y1(t) ε + y2(t) ε2 + · · ·

When these expressions are substituted into equations (4), a set of equations is
generated at each power of ε. At O(ε) there are three different steady states given
by:

(s1, i1, y1) = (0, 0, 0) (18)
(s1, i1, y1) = (−qs/2, 0, 1) (19)

and

s1 =
(1 + β)(2β − 2c− qi)

β − c− qi
− (β − c)qs

qi
, i1 =

−2β + 2c + qi

β − c− qi
, y1 =

−β + c

β − c− qi
.

(20)
The parameters b and j were set equal to 1 since their significance is minor and the
subsequent analysis will be simplified by fixing the values.

Although not mentioned yet but quite evident is the fact that s = 1, i = y = 0
is a steady state of the full equations (4) and the O(ε) steady state (s1, i1, y1) =
(0, 0, 0) in (18) is just the beginning part of its expansion. By considering the
characteristic equation, it is easy to see that this steady state is always unstable.

The second steady state (s1, i1, y1) = (−qs/2, 0, 1) given in (19) indicates that
a small number of the predator coexists with the bountiful susceptible prey but
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no infected prey. Actually, when the equations for this steady state are solved
at the higher orders of ε, ik = 0 for all k. In other words, there are no infected
prey. The characteristic equation for the eigenvalues of the O(ε) system linearized
about the second steady state is λ3 − T1λ

2 + T2λ − T3 = 0 with the coefficients
T1 = β−c−qi/2−1−r, T2 = (c+qi/2−β)(1+r)+r, and T3 = r(β−c−qi/2). The
conditions for stability T1 < 0, T3 < 0, and T1T2 − T3 < 0 imply that this steady
state is unstable when the disease transmission rate satisfies β > c+qi/2 and stable
when β < c+qi/2. Basically this means that if the disease is not transmitted above
a sufficiently high rate, the susceptible prey thrives at levels near its capacity, the
infected prey are not sustained at all and the predator population is small - just
subsisting on the harder to catch susceptible prey.

2.3.1. The Third Degenerate Steady State. The third steady state given in (20) has
the most interesting bifurcation possibilities. This steady state only makes sense
ecologically if the values for i1 and y1 are positive (s = 1 + s1 ε will automatically
be positive). This imposes the condition on β,

c +
qi

2
< β < c + qi. (21)

The second steady state (19) bifurcates into the third branch at β = c + qi/2, and,
as will be seen, transfers the stability to the third branch.

The characteristic equation for the O(ε) linearized system is again of the form,
λ3 − T1λ

2 + T2λ− T3 = 0. This time the coefficients are less tractable:

T1 =
(
2(β − c)(β − c− qi

2
)− qi(1 + r)

)
/qi (22)

T2 =
[
−2(β − c)(β − c− qi

2
)− r

(
2(β − c− qi

2
)(β − c− qi)− qi

)]
/qi

T3 = 2r(β − c− qi

2
)(β − c− qi)/qi.

It is easily seen that the stability condition T3 < 0 is satisfied when c + qi/2 <
β < c + qi which is precisely the domain of β that gives ecologically valid (greater
than zero) population values (21). The stability condition T1T2 − T3 < 0 is more
cluttered with parameters but setting T1T2 − T3 = 0 admits four values of β which
satisfy β1 < β2 < βh < β4. The values β1 and β2 are not ecologically valid being
less than c + qi/2. The condition T1T2− T3 < 0 is satisfied when β2 < β < βh and
β > β4. The stability condition T1 < 0 holds true when βT1− < β < βT1+ where
βT1− < c + qi/2 and βh < βT1+ < β4. The combined effect of all these inequalites
is that the third branch is stable when,

c +
qi

2
< β < βh (23)

and unstable otherwise.
The value of

β = βh = c +
qi

4
+

1
4

√
q2
i + 8qir (24)

is special since a Hopf bifurcation will occur at β = βh if T2(βh) > 0. As noted
earlier, this latter condition is necessary because the local frequency of the bifur-
cating periodic solution is

√
T2. It can be verified that T2(βh) > 0 only if r < qi.

Additionally, as r increases to qi, βh increases to c + qi, which is the upper value
of β for which the steady state is valid (21) and also the value of β for which the
steady state expansion (20) becomes singular.
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2.4. Ecological Meaning for the Condition r > qi. Before continuing, some
ecological meaning needs to be ascribed to the condition r > qi. The parameter r
was scaled (3) so that it was proportional to the predator’s linear growth rate r2 and
that rate governs the predator’s growth especially when the predator population is
small as can be seen by considering the original equations (2). The third degenerate
steady state branch given in (20) features a small predator population and the
stability of that branch extends further as the value of r (r2) increases. It is
reasonable on ecological grounds to suspect that the predator population would be
stable if its growth rate r2 is relatively large. That observation begs the question,
“what is relatively large?,” - the inequality r > qi provides a meaningful answer.
The third degenerate branch is always stable if r > qi or it loses its stability at a
Hopf bifurcation if r < qi.

The significance of qi as the dividing point can be found by considering the
inequality

r2 >
1

JiTi
,

which is equivalent to r > qi. Both r2 and 1/(JiTi) are rates. Since Ti is the
handling time per infected prey and Ji is the number of infected prey needed to
sustain the predator at equilibrium, the product JiTi is the time to handle all the
prey needed to sustain the predator. This means that 1/(JiTi) can be interpreted
as the sustaining rate for the predator. It makes sense that a healthy, stable en-
vironment for the predator would exist if its natural growth rate r2 exceeded its
sustaining rate. From an ecological viewpoint, an environment is less stable for a
predator if there is periodic behavior (which will occur if r < qi) when the popula-
tion is low since noise could then make the population disappear. This observation
is particularly pertinent for the predator population in the third degenerate steady
state since its value is small.

On a related note, when considering the primary O(1) steady state (8) in section
2.2, it was pointed out that there was only one Hopf bifurcation point (at β = β+)
when r > qi and that steady state was stable for values of the disease transmission
rate β up to β+. This stability property agrees with the significance expressed
above in which the condition r > qi is favorable for the predator. Actually, the
next section establishes that the primary O(1) steady state and the third degenerate
steady state are just parts of the same branch. This implies that, in the r > qi

case, the predator population (in particular) will be stable all the way from nearly
depleted value given in (20) to the more robust value in (8) with β = β+.

2.5. The Connection Between the Steady States, Patching the Singular-
ity at β = c + qi. The values of the predator and infected prey in the primary
O(1) steady state given in (8) are positive (and therefore ecologically relevant) only
if the disease transmission rate β satisfies β > c + qi. Seemingly contrary to this,
the values of the predator and infected prey in the third degenerate steady state
given in (20) are positive only if β < c+ qi. Moreover, the values in the degenerate
steady state become singular at β = c+ qi. It was not brought up in the discussion
in section 2.2 but there are O(ε) corrrections to the primary O(1) steady state (8)
that also become singular at β = c + qi.

It is readily seen by using numerical techniques such as AUTO that these two
branches are really parts of the same branch. The analytic way of showing this
is to bridge the singularity by expanding the steady state of the full system (4)
in powers of ε1/2 instead of ε. The idea is to accomodate the O(ε) terms that
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become infinite at β = c + qi by putting in larger O(ε1/2) corrections. Noting the
form of the highest order values of the primary O(1) steady state (8) and the third
degenerate steady state (20), the variables s, i, and y are expanded as:

s(t) = 1 + s1(t) ε1/2 + s2(t) ε1 + · · · (25)

i(t) = i1(t) ε1/2 + i2(t) ε1 + · · ·
y(t) = y1(t) ε1/2 + y2(t) ε1 + · · ·

The disease transmission rate is expanded as

β = c + qi + ε1/2p

so that the magnitude of p measures how far β is from the singular value c + qi.
When these expressions are substituted into the full system (4) and the coefficients
of the powers of ε1/2 are in turn equated to zero, the following steady state values
are obtained:

s1 = −p +
√

p2 + 4qi(c + qi)(1 + c + qi)
2(c + qi)

(26)

i1 = y1 =
p +

√
p2 + 4qi(c + qi)(1 + c + qi)
2(c + qi)(1 + c + qi)

. (27)

By the nature of the expansion of β, these expressions are only valid when p is less
than O(1/ε1/2).

This analysis provides the patch for the singularities in the expansions at β =
c + qi, thus establishing analytically that the primary O(1) steady state given in
(8) and the third degenerate steady state given in (20) are parts of the same steady
state branch.

3. Numerical Results and Discusssion. The interplay of the local mathemat-
ical results with the ecological parameters has been the focus of this paper. In
accord with this analysis, global numerical results are discussed using bifurcation
diagrams which are explored using AUTO (in XPPAUT) from the vantage point of
either r > qi or r < qi.

As pointed out, the condition r > qi is beneficial for the stability of the steady
state predator population when it is low in number. A representative bifurcation
diagram is illustrated in Figure 3. The steady state is stable until the lone Hopf
bifurcation point at β+ (15). The resulting periodic branch is supercritical and
remains stable throughout the domain of interest. Even though the periodic solu-
tion is mathematically (deterministically) stable for all β, the system is inherently
unstable from an ecological point of view when the population size becomes close
to zero since noise from environmental fluctuations can cause one of the species to
become extinct [2], [19] This ecological instability could have been independently
conjectured on the basis that the disease transmission rate was simply too large to
sustain the prey.

There are more exciting bifurcation possibilities when r < qi. As r decreases
from a value larger than qi to one smaller than qi, two new Hopf bifurcation points
emerge at βh (24) of the third degenerate steady state and β− (15) of the primary
O(1) steady state. The periodic solution branch originating at βh terminates at
β−. When these β values are relatively close, the resulting periodic solution is
stable throughout with a relatively small amplitude as can be seen in Figure 4. As
r decreases further from qi, βh and β− separate more causing the periodic solution
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Figure 1. The O(1) steady states are shown for the susceptible
(Fig. 1a) and infected prey (Fig. 1b). The figures illustrate the
case in which there are three Hopf bifurcation points. The solid
curve represents the stable steady state and the dashed curve is
the unstable steady state.

.05 .15 .25
r

.10

.20

c

Figure 2

c qi 1 qi qi r 2 2 4qi c qi c 2qi r 0

Figure 2. There will be two Hopf bifurcation points on the pri-
mary O(1) steady state if the point (r, c) lies above the curve and
none if (r, c) lies below the curve. The value of qi was fixed at .40.

amplitude to increase and the branch to lose stability at period doubling points
(see Figures 5 and 6). Also to be observed, the periodic solution amplitude of
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Figure 3. Bifurcation diagrams for the susceptible prey (Fig. 3a)
and the predator (Fig. 3b) verses the disease transmission rate are
shown for the case r > qi. The steady state is stable all the way to
the lone Hopf bifurcation point and the resulting periodic solution
is stable throughout. The unstable steady state is represented
by the light line. The maximum and minimum of the periodic
solutions are shown with solid circles (sometimes appearing as a
thick solid curve) denoting that they are stable. The parameters
used are r = .45, c = .2, qi = .4, ε = .002, qs = .1, and b = j = 1.
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Figure 4. The bifurcation diagram of the susceptible prey shows
two stable periodic solution branches. The first one has a relatively
small amplitude and it stems from the Hopf bifurcation point β =
βh and terminates at β−. The second branch starts at β+ and
remains stable. The parameters used are r = .3, c = .2, qi = .4,
ε = .002, qs = .1, and b = j = 1.

the susceptible prey approaches 1 and the predator’s minimum value approaches
zero. Although not part of the figure, the infected prey population also gets close
to zero. These latter two factors make the system ecologically unstable but this
time the cause can be attributed to the fact that r has become too distant from its
sustaining value qi.
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Figure 5. The bifurcation diagram of the susceptible prey shows
the two periodic solution branches in which the separation of βh

and β− is greater than in Figure 4 due to a smaller value of r. Both
branches lose stability at period-doubling points and the (stable)
period-doubling branches are labelled as PD. The parameters used
are r = .2, c = .2, qi = .4, ε = .002, qs = .1, and b = j = 1.
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Figure 6. The bifurcation diagram of the susceptible prey in
which there is a sequence of period doubling points. The value of
r is less than in Figure 5 and the consequent separation of βh and
β− is greater. Unstable periodic solutions are denoted by open
circles. The period-doubling branches are labelled as PD and
the period-doubling branches bifurcating from the basic period-
doubling branches are labelled as PDD. The parameters used are
r = .12, c = .2, qi = .4, ε = .002, qs = .1, and b = j = 1.

Mathematically the bifurcation diagrams are more compelling as r decreases from
qi. In Figure 5 it is seen that period-doubling branches emerge as stable attractors
in the region in which the periodic solutions were previously stable. In Figure 6
with the same qi as in Figure 5 but a smaller r, a sequence of period-doubling points
give rise to higher period attractors on both periodic branches. Ascribing precise
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Figure 7. The bifurcation diagram of the susceptible prey in
which the Hopf bifurcation points β− and β+ nearly coalesce. The
parameters used are r = .15, c = .17, qi = .4, ε = .002, qs = .1,
and b = j = 1.
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Figure 8. The bifurcation diagram of the susceptible prey in
which the Hopf bifurcation points β− and β+ have passed through
each other and disappeared. The lone periodic solution branch
arises from the Hopf bifurcation point βh. The parameters used
are r = .15, c = .168, qi = .4, ε = .002, qs = .1, and b = j = 1.

ecological meaning to these mathematical results would be a stretch, but it would
be appropriate to infer that the system may simply be in a realm of ecologically
interesting dynamics.

Another feature in the r < qi case is that the Hopf bifurcation points β− and β+

on the primary O(1) steady state may coalesce and disappear. The conditions for
this occurring were discussed at the end of section 2.2 and the resulting parameter
relationships were illustrated in Figure 2. Figure 7 shows the bifurcation diagram
in which β− and β+ nearly coalesce and Figure 8 is the companion figure in which
β− and β+ have just disappeared. The interesting feature is that the periodic
solution from βh dips down toward the ghosts of the Hopf bifurcations that were
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Figure 9. As in Figure 8, bifurcation diagrams are shown in which
there is one Hopf bifurcation at β = βh. By decreasing the disease
death rate c, the periodic branch loses its secondary bifurcations
and eventually becomes entirely stable. Figures 9a, 9b, and 9c all
use the values r = .15, qi = .4, ε = .002, qs = .1, and b = j = 1
but c = .1 in Figure 9a, c = .05 in Figure 9b, and c = .025 in
Figure 9c.

at the points β− and β+ while the secondary bifurcation features remain the same.
Figure 2 was used as a guide to explore this solution more by fixing the values of
r and qi and varying c, the net disease death rate. As c decreases further into
the region, the periodic solution branch loses its secondary bifurcation points and
eventually becomes entirely stable. This can be seen in the sequence of bifurcation
diagrams in Figure 9. Interestingly, with a smaller net death rate due to disease,
the system can be ecologically unstable.

From both mathematical and ecological perspectives, the bifurcation possibili-
ties in the Holling-Tanner predator-prey system with disease in the prey are quite
rich. A fundamental demarcation in the dynamics occurs at r = qi, which can be
interpreted as the predator’s (scaled) growth rate, r, equaling its sustaining rate qi.
As discussed, there are many bifurcation possibilities when r < qi, which contrasts
with the much simpler solution structure when r > qi. When r > qi, there is a
larger range of the disease transmission rate β in which the steady state populations
are stable. Those stable steady branches lose stability at a Hopf bifurction for a
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relatively large value of β and the emerging periodic solutions are stable. This
comparatively uncomplicated stable mathematical behavior makes ecological sense
since the condition r > qi indicates that the predator’s rate of growth is greater
than its sustaining rate.
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