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Abstract. It is generally accepted that the spatial buffering mechanism is im-
portant to buffer extracellular-space potassium in the brain-cell microenviron-
ment. In the past, this phenomenon, generally associated with glial cells, has
been treated analytically and numerically using a simplified one-dimensional
description. The present study extends the previous research by using a novel
numerical scheme for the analysis of potassium buffering mechanisms in the
extracellular brain-cell microenvironment. In particular, a lattice-cellular au-
tomaton was employed to simulate a detailed two-compartment model of a
two-dimensional brain-cell system. With this numerical approach, the present
study elaborates upon previous theoretical work on spatial buffering (SB) by
incorporating a more realistic structure of the brain-cell microenvironment,
which was not feasible earlier. We use the experimental paradigm consisting
of iontophoretic injection of KCl to study the SB mechanism. Our simulations
confirmed the results reported in the literature obtained by an averaged model.
The results also show that the additional effects captured by a simplified two-
dimensional geometry do not alter significantly the conclusions obtained from
the averaged model. The details of applying such a numerical method to the
study of ion movements in cellular environments, as well as its potential for
future study, are discussed.
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1. Introduction. The brain consists of cellular components (neurons and glial
cells) and chemical ions (sodium, Na+, potassium, K+, and chloride, Cl−). Regu-
lation of the extracellular space (ECS) and intracellular space (ICS) concentrations
of these ions is necessary for proper functioning of the brain through the electri-
cal activity of neurons. For example, increases in extracellular K+ concentration
([K+]o) from a resting level of 3 mM to 5 mM have been shown to lead to hyper-
excitability of the surrounding neurons [17]. Further increases in [K+]o also may
affect the efficiency of synaptic transmitter release [2]. Accordingly, [K+]o is tightly
regulated, normally never exceeding 11 mM.

It was suggested that temporary K+ accumulation can be caused by prolonged
neuronal activity [29, 30], iontophoretic K+ injection [19, 22], application of drugs,
or pathological conditions such as hypoxia and ischemia [23, 26]. To restore rest-
ing K+ levels, mechanisms by which K+ concentration gradients are dissipated,
superseding simple passive diffusion, have been demonstrated. In particular, three
primary mechanisms have been emphasized for extracellular K+ removal around
glial cells [6]: enhanced K+ transport by the Na+/ K+-ATPase, passive KCl co-
transport, and current-mediated K+ entry by means of K+ channels. The latter
mechanism, termed spatial buffering (SB) by K+ channels, will be the primary
focus of this paper.

First introduced by Kuffler and colleagues in their studies on Necturus glial
cells [25], SB is the direct consequence of basic biophysical properties. In a glial
syncytium connected via gap junctions, the membrane of connected cells tend to
remain isopotential. An increased [K+]o causes a local depolarization across the
glial cell membrane, which by the cable properties of the membrane, will spread
electrotonically down the cells to more remote regions of the syncytium. Local
currents are formed by the unbalanced spatial distribution of membrane potential
differences and completed through the ECS. Since glial cell membranes exhibit a
high K+ conductance, the asymmetric potential differences result in an influx of
extracellular K+ at the site of local depolarization and an efflux of K+ into the
ECS at a more distant region where the [K+]o is still near resting levels. The K+ is
passively transported from an ECS location of high [K+]o and dispersed to the ECS
of regions with low [K+]o. The circuit current loop is closed by intracellular and
extracellular ionic current flows, primarily those of Na+ and Cl−. It has been shown
that this passive buffering mechanism is energy-independent and generally more
efficient than diffusion for transporting K+ through the interstitial space [14, 16].

At rest, the glial membrane is selectively permeable to K+ ions and passively
obeys the Nernst equation [6]. The K+ conductance can be attributed to at least
four different voltage-dependent K+ channels: the inward rectifier, Kir; delayed
rectifier, Kd; transient A-type, KA; and Ca2+-activated channel, KCa [28]. Of
particular interest to the study of SB is the Kir channel, as it maintains an open
configuration at rest and can be activated at more negative potentials. In particu-
lar, the inward rectifier channel exhibits a different response to a hyperpolarization
in contrast to a depolarization. In the case of the former, the channel retains a high
open probability and thus has a high conductance compared to that during depo-
larization. This result for the inward rectification properties of the channel allows
a preferential influx of K+ into the glial cell. The efficiency of SB via Kir channels
is enhanced by increases in the influx of K+ in regions of high [K+]o [21] and by the
spreading of the membrane depolarization along the glial cell and syncytium [1].
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It should be noted that the distribution of the Kir channels in certain glial
cells, such as the Müller cells in the retina of amphibians, has been shown to be
nonuniform with a preponderance at the endfoot of the vitreous humor [5, 20, 21,
27]. This nonuniformity may manifest itself in a higher K+ conductance at the
endfoot processes. It has been suggested that the asymmetric distribution of K+

conductances most efficiently directs a K+ efflux through the high-conductance
areas in situations involving only a few space constants [4, 13]. The effects of these
asymmetries are addressed in the present study.

Specifically, we study K+ dynamics and homeostasis in the brain-cell microen-
vironment. We build a theoretical model to examine the migration of increased
[K+]o through the system in response to the injection of KCl, dealing principally
with the SB mechanism. Generally, the ECS and ICS of the brain-cell microenvi-
ronment have complicated geometrical structures. This intricate array of neurons
and glial cells constrain the migration of ions in the ECS to a tortuous and hin-
dered pathway. In the study of K+ dynamics, the influence of volume fraction and
the detailed structure of the ECS, which is described macroscopically by tortuos-
ity, have been analyzed by treating the brain as a porous medium [24]. In previous
studies, the glial syncytium geometry was modelled as a one-dimensional equivalent
cable [6, 15]. While this simplification is conducive to an analytical examination of
glial SB using continuous descriptions, it does not directly address the complicated
geometry of a glial syncytium. Presumably, the geometrical component of SB may
influence the buffer mechanism, as it dictates the form of the possible trajectories
of the migrating particles. The various buffering mechanisms will dissipate the
elevated K+. Any such dissipating mechanisms will require the movement of the
ions, whether through the ECS, the ICS, or both. As such, the structure of both
compartments dictates, in part, the evolution of the migrating particles. Accord-
ingly, a model that effectively allows for a more accurate study of the geometrical
components of the brain-cell microenvironment while incorporating the appropriate
ICS, ECS, and membrane properties–such as those described in previous theoreti-
cal work [6, 15]–would allow for a more comprehensive and accurate study of K+

buffering mechanisms. In the present work, a two-dimensional model of the glial
syncytium is generated, taking into account volume fractions of the ECS and ICS.
Through our computer simulations using a lattice cellular automata, we are able
to study more realistic geometries of the brain-cell microenvironment as well as in-
corporate an increased number of components of the K+ homeostatic mechanisms.

At a macroscopic level, the migration of ions in the ECS and ICS can be viewed
as a diffusion process coupled with nonlinear sources and sinks governed by a non-
linear diffusion equation. In contrast, at a microscopic level, the migration of ions
corresponds to a random walk of the ions as they collide with surrounding mole-
cules and cell membranes. This microscopic property allows us to make use of a
different approach, namely, a lattice cellular automata (LCA), in the study of ion
diffusion [7, 9, 11, 12]. The concept behind the LCA is to design a self-reproducing,
spatially discrete system that evolves in discrete time by following simple rules of
evolution. This generates an artificial microscopic structure that reproduces the
system’s behavior on a macroscopic scale.

There are several advantages to using an LCA to study the migration of ions in
the brain. An important advantage is that it can deal with complicated geometries
and interface conditions. Due to the microscopic interpretation of the ion dynamics
in the LCA, the membrane fluxes can be taken into account more naturally than
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when a continuous description is used. The continuous description loses the basic
intuition of the microscopic phenomena, particularly in mimicking ionic currents
through geometrically complex membrane boundaries. Another advantage is that
the evolution of several different ions can be simulated concurrently, with each ion
being updated according to its own set of rules in the ECS and ICS. The ion con-
centrations and fluxes are coupled by the dependence of the membrane currents on
the membrane potential and concentration profiles. The LCA is a self-reproducing
system, and it will evolve to its homeostatic state similar to a realistic brain-cell
system after various external stimuli and/or changes in the environment have been
introduced. The LCA model can readily be improved by adding more realistic rules
of evolution. A major advantage of the LCA is that it is a stable computational
algorithm, whereas other computational schemes for continuum models, e.g., finite
difference methods, have temporal and spatial step restrictions for stability.

In section 2, the mathematical modelling of the diffusion of ions in the ICS
and the ECS and movements of ions across membranes are addressed. First, a
discussion of the lattice structure representative of the brain-cell microenvironment
is presented. Then, the evolution rules of the lattice dynamics, as well as the
membrane conditions, are explained. Finally, we define the governing equations
of the membrane potential and currents. Each membrane current is modelled by
Ohm’s law in addition to a passive pumping flux. In section 3, the simulation results
are described. We begin with the migration of ions for a single cell environment.
This simulation is used to explicitly demonstrate the properties of our virtual glial
cell, how the cell maintains its resting state and how the system returns to its stable
resting state after imposing a transient perturbation from its resting state. Next,
we address the issue of the spatial buffer. This study proceeds through the analysis
of two different geometries: a multicellular glial system constructed with a realistic
volume fraction and elliptical glial cells arranged in an array. In the case studies,
the K+ buffering mechanisms, including the cable and endfoot effects, are explored
using the iontophoretic paradigm. The paper concludes with a discussion in section
4.

2. Mathematical model.

2.1. The brain-cell microenvironment. Initially, we consider a general two-
compartment model, which could represent a homogeneous ECS and glial ICS, for
example. By neglecting the detailed components within these two compartments,
ions are assumed to undergoes free diffusion in the ECS and ICS. The concentrations
of each distinct ion are governed by the diffusion equation

∂C

∂t
= ∇ · (D∇C) (1)

where t is time, C is the ionic concentration, and D is the diffusion coefficient of
the ion. We assign diffusion coefficients to each kind of ion in aqueous solution
and assume that they are the same in the ICS and ECS. The diffusion of ions in
the ECS of brain tissue is analogous to diffusion in porous media composed of one
permeant phase and one impermeant phase.

In addition, we assume that all electrophysiological features for each cell are uni-
formly distributed over the cell membrane for most of the simulations. In particular,
the densities of the relevant ion channels are assumed to be evenly distributed over
each cell membrane. However, a nonuniform distribution of Kir channels can be
accounted for easily by modifying the description of the LCA.
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The model system then has three components: the ICS, the ECS, and the mem-
brane that separates the two compartments. Although the brain-cell microenvi-
ronment has a complex three-dimensional structure, we will consider only the two-
dimensional case, analogous to a thin section through the brain tissue. For each
cell, the membrane is a closed curve that encircles a set of ICS lattice nodes. The
ions diffuse freely in the ECS and in the ICS and can move across the membrane in
the form of membrane currents. Two factors that influence the migration of ions in
the brain are the volume fraction of the ECS and the geometric shapes of the cells.
In the current study, we consider the glial cells as the only cellular components of
the brain-cell microenvironment, ignoring the neuronal membrane contributions.
Experiments indicate ECS and glial volume fractions are approximately 0.2 and
0.4, respectively [6, 10, 18]. A detailed description of the cellular geometries in this
study are given in section 3.

2.2. Migration of ions in the ICS and ECS. We design a two-dimensional
LCA by defining a square lattice representation of our model system. The lattice
system consists of M +1 sublattices, with M being the number of cells. One lattice
is assigned to the uninterrupted ECS, while each of the other independent lattices is
assigned to the ICS of each individual glial cell. The sublattices are disjoint, but the
ECS lattice is coupled to all of the other sublattices through the membranes. The
membranes themselves do not occupy any lattice nodes, but they are assumed to lie
between adjacent ICS and ECS nodes. If there are no membrane currents, then the
ionic particles placed on the nodes of a given sublattice will migrate independently
of particles on other sublattices. However, if there are membrane currents, then
ionic particles may move between the ICS and ECS lattices. The complicated
geometrical structure of the brain-cell microenvironment is embodied in the shape
of the membrane, that is, the shapes of the ECS and ICS lattice structures. This
shape helps define the boundary conditions that influence the migration of ions
across the interface between the ICS and ECS. In this study, the distance between
neighboring nodes, λ, in each square lattice is taken to be 0.1 µm.

As described in Dai and Miura [9], there are three iteration steps involved in
the evolution of the LCA: injection, collision, and propagation. During the initial
injection step, ions are placed at each node of the lattice with a certain density
distribution to mimic the realistic microenvironment of the brain. Particles that
may move out of the system boundary are compensated for by the constant injection
of particles at a certain rate through the four boundaries such that the density of
ions in the ICS and the ECS are held at the resting values when the whole system is
at rest. Furthermore, in the study of the spatial buffering phenomenon, additional
ionic particles are injected at certain nodes in the ECS lattice for a given amount
of time, mimicking the iontophoresis paradigm. In the second step, at each node,
to replicate the random walk of the diffusion process, the migrating ions undergo
collisions subject to specified collision rules. The third step is the migration or
propagation of the particles within a given lattice and between adjacent lattices via
the membrane currents. In this step, a particle may move from its present node
to one of its nearest neighboring nodes. If a particle moves towards the boundary
between the ECS and ICS, it is possible for it to migrate across the membrane and
enter the adjacent lattice. The probability that this will occur is determined by the
membrane current. In each time step, the above three steps operate at each node,
and the distribution of particles is updated.
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There are four directions, vj (j = 1,2,3,4), in which an ion travelling on the lattice
can move, as shown schematically in Figure 1. Also, for a given time step, a particle
could remain at a given node. As a particle can enter or leave a node in one of five
ways, including not moving at all, there are 25 combinations of incoming-outgoing
motions that exist at each node for a particle at every two time steps.

Figure 1. A particle migrating on the lattice can travel in four
directions, given by the directional vectors vj for j = 0,1,2,3,4.
The direction v0 corresponds to a particle that remains still at a
given position.

Each node is labeled by the discrete spatial vector R = (x, y). We define the
number of the particles of a given ion at each lattice node by

C(R, t) =
4∑

j=0

Nj(R, t) (2)

where Nj is the number of particles of a given ion that are moving in the direction
of the unit vector vj with v0 = 0.

With this notation, the dynamics of our LCA model are given by two steps:
1. propagation

Nj(R, t) −→ Nj(R + vj , t + τ) and (3)

2. collision

Nl(R, t) =
4∑

j=0

pl,j(R, t)Nj(R− vj , t). (4)

Here τ is the time step of evolution. The pl,j is the probability that a particle which
entered the node at R with direction vj is permuted to a particle with direction
vl . The sum of these probabilities must satisfy

4∑

l=0

pl,j = 1. (5)

For the sake of simplicity, we restrict ourselves to cyclic permutations. Namely,
the probability of an incoming particle being permuted to direction vl is pl, which
is independent of its incoming direction, that is, pl,j = pl. Furthermore, it is
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reasonable to assume that the lattice spacing is uniform, and hence, for a given ion
species, pl, l = 1, 2, 3, 4, is the same for all nodes and directions in the same lattice

p = p1 = p2 = p3 = p4 =
1− p0

4
. (6)

The value of p0 is determined from the diffusion coefficient of each ion species in
a compartment. When both τ and λ are small and τ = O(λ2) [7, 9], it can be proved
by employing the Chapman-Enskog expansion that the macroscopic law governing
the evolution of the LCA is the diffusion equation. The diffusion coefficient of a
given ion species in a specific compartment is given by

D =
λ2

4τ
(1− p0), (7)

which allows for a mapping of parameters between the LCA and the macroscopic
diffusion process. We are able to fit realistic values of the diffusion coefficients for
each ion species by defining the time scale, τ , and value of p0. In this study, where
we treat only K+ and Cl− movements, we select

p0,Cl = 0

since chloride ions have a larger diffusion coefficient than potassium ions. It then
follows that the diffusive time step is determined by

τ =
λ2

4DCl
= 1.67× 10−6s (8)

where DCl is given in Table 1. The probability, p0,K+ , then can be determined
from (7).

In determining the size of the time step used in the numerical experiments, it
is important to account for the differences between the speeds of the particles as a
result of diffusion and the speed of propagation of the membrane potential. We can
compare these speeds by comparing the associated diffusion coefficients. For the
membrane potential, the effective diffusion coefficient is characterized by u/Cm in
(16). Note that u/Cm is equal to Λ2/Γ where Λ and Γ are the electrical space and
time constants, respectively, of the glial cell membrane under resting conditions.
It follows from the parameters presented in Table 1 that the membrane potential
diffusion coefficient u/Cm is approximately 4000 times the particle diffusion coeffi-
cient. Consequently, the above-determined time step must be modified to account
for this difference in speeds by dividing by this factor of approximately 4000. Thus,
each numerical iteration should correspond to a time step

τ =
1.67× 10−6s

4000
= 4.18× 10−10s. (9)

That is, in terms of the LCA, a diffusion step would occur once in every 4000
iterations of the membrane dynamics. If this differential between the membrane
and diffusive time scales were implemented, it would increase the computational
time dramatically. To run the system in a more realistic computational scenario,
we allow for diffusion every 40 iterations of membrane dynamics.

While the above LCA is valid away from the cell membrane, that is, in the
interiors of the ECS and ICS, we need to describe boundary conditions at two
types of boundaries: the boundary of the whole system and the boundary between
the ICS and the ECS. Though the four border sides of the whole system may end
up in either the ICS or ECS, in the simulations the simplified model cells were
chosen such that the surrounding border nodes were completely in the ECS. This
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Table 1. Typical parameter values used in the LCA simulations

Parameter Symbol Value Reference
Resting [K+]o C∞K,o 3 mM [25]
Resting [K+]i C∞K,i 73 mM [6]
Resting [Cl−]o C∞Cl,o 146 mM Donnan equil
Resting [Cl−]i C∞Cl,i 6 mM [6]
Specific K+ conductivity go

K 1.3×10−4 S cm−2 [21]
Cl− pump conductance gCl,p

K+ diffusion coefficient DK 2.2×10−5 cm2 s−1 [8]
Cl− diffusion coefficient DCl 2.4×10−5 cm2 s−1 [8]
Static K+ permutation probability p0,K 0.082 eqn 7
Static Cl− permutation probability p0,Cl 0
Glial resting (K+) potential eo

K -85.2 mV Nernst eqn
Apparent ECS resistivity r0 1000 Ω cm [6]
Apparent ICS resistivity ri 4000 Ω cm [6]
Glial membrane surface density a 4884 cm−1 [6]
KCl uptake time constant τ̂ 5 s [6]
Lattice length constant λ 0.1 µm
Time step τ 1.67×10−6 s eqn 8
Faraday constant F 96500 Coul mol−1

Note: The effective diffusion coefficient for the membrane potential is given
by u/Cm in equation (16) and is equal to Λ2/Γ where Λ and Γ are space
and time constants, respectively. Since Λ is given by [go

Ka(ro + ri)]−1/2 and
Γ by CmRm, we obtain u/Cm = 9.63 × 10−2. Compared with the diffu-
sion coefficient for K+, we see that the membrane propagation velocity is
approximately 4000 times that of diffusion.

implies that there were no broken cells in the system since all ICS lattices were
fully encircled by membrane. Accordingly, the density of each kind of ion along the
bordering ECS was set to the resting ECS levels. By employing this requirement,
we stipulate that there should be a constant injection of particles to compensate
for the leakage of ions from the four sides.

The boundary condition between the ICS and ECS lattices is determined by the
shape of the cell membrane. There are six groups of boundaries between the ICS and
ECS due to the geometric shape of the ICS lattice node boundary. One ECS lattice
boundary node may border one, two, or three ICS lattice nodes, labeled I, II, and
III, respectively, in Figure 2. Similarly, one ICS lattice boundary node may have
one, two, or three ECS neighbors. In group I, there are four possible configurations
in which an ECS node may be bordered by one ICS node. These configurations
correspond to one of the four neighboring nodes being an ICS node. Similarly,
there are six and four arrangements for groups II and III, respectively. Therefore,
to account for the detailed structure of the ICS and ECS on the membrane current,
a total of 28 configurations must be taken into account.

To deal with the complicated boundary conditions, we mimic the movement of
ionic particles in the brain. To do this, we assume that a particle is sitting on an
ECS boundary node. At the next time step, it can remain at this node or move
in one of four directions. If the direction points to an ECS node, meaning a node
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Figure 2. Each boundary ECS lattice node may border one, two,
or three ICS lattice nodes, labeled I, II, and III, respectively. Sim-
ilarly, one boundary ICS lattice node may have one, two, or three
ECS neighboring nodes (not shown). This results in a total of 28
membrane configurations that need to be taken into account when
defining the boundary conditions for the LCA. In the above, • and
◦ represent ECS and ICS nodes, respectively.

within its own lattice, it will move freely to its neighbor. Conversely, if the direction
points to the boundary, then there are two possible outcomes. If there is no net
membrane current for this ion species, then the particle cannot propagate through
the membrane and is bounced back. Alternatively, if there is a nonzero membrane
current for this ion species, then the particle may bounce back or propagate through
the membrane and enter the ICS. The probability of being bounced back or moving
into the ICS is determined by the biophysical properties of the membrane, the local
membrane potential, and the local ion concentration in the ECS and ICS. Whatever
the shape of the boundary, if one direction from the ECS boundary node points
to the cell boundary, then there must exist a corresponding opposite direction at
the matching ICS boundary node. Once a particle has moved from the ECS to the
ICS, it becomes a particle that may freely move within the ICS lattice.

The LCA rule at the boundary can be explicitly determined from the above
description. We first consider case I in Figure 2, where the boundary is in the
direction of v4. Note that due to the assumption of cyclic permutation, we have
Nj(r, t) = pj(r)C(r, t). If there is no membrane current, the LCA rule for the node
reads as

c(R, t + τ) =
4∑

j=0,j 6=2

pj(R− vj)C(R− vj , t) + p4(R)C(R, t)

where R is the ECS node of interest (see Figure 2). The first term reflects the sum
of the particles that migrate toward node R from adjacent nodes. We note that
since there is no membrane current, any particles migrating from the ICS node R′

are not considered. The second term corresponds to the density of the particles



684 B. STEINBERG, Y. WANG, H. HUANG, AND R. M. MIURA

that would have otherwise migrated in the direction of R′ but have bounced back.
Similarly, the equation for the corresponding ICS node, R′, is

C(R′, t + τ) =
4∑

j=0,j 6=4

pj(R′ − vj)C(R′ − vj , t) + p2(R′)C(R′, t).

If there is a net migration of ions across the membrane, then the above LCA needs
to be modified to incorporate the passage of these ions through the membrane. As
elaborated on below, we consider two types of ionic currents: current through the
potassium inward rectifier Kir channel, IKir; and a pump current, Ip. Combining
these additional currents with those described above, the density at the boundary
ECS node evolves according to

C(R, t+τ) =
4∑

j=0,j 6=2

pj(R−vj)C(R−vj , t)+p4(R)C(R, t)−|v4|(R)(IKir +Ip)λτ.

(10)
Explicitly including the j = 2 term in the summation, equation (10) can be rewrit-
ten as

C(R, t + τ) =
4∑

j=0

pj(R− vj)C(R− vj , t)− p2(R− v2)C(R− v2, t) +

+ p4(R)C(R, t)− |v4|(R)(IKir + Ip)λτ. (11)

We now make the simplifying assumption that the discrete membrane lies midway
between the extracellular and intracellular nodes, that is, the membrane node lies
at a position given by R− v2

2 . To ensure that this does give the correct macroscopic
dynamics, namely, that Cy = ∂C/∂y = IKir + Ip, we first expand C(R, t + τ) and
pj(R− vj)C(R− vj , t) for j = 1, 3, 4 at node R and at time t in Taylor series for
small ε = |vj | and τ :

C(R, t + τ) = C(R, t) + τ
∂C

∂t
(R, t) + O(τ2),

p1(R−v1)C(R−v1, t) =
{

p1C +(−|v1|)(p1C)x +
1
2
(−|v1|)2(p1C)xx

}
(R, t)+O(ε),

p3(R−v3)C(R−v3, t) =
{

p3C +(−|v3|)(p3C)x +
1
2
(−|v3|)2(p3C)xx

}
(R, t)+O(ε),

p4(R−v4)C(R−v4, t) =
{

p4C +(−|v4|)(p4C)y +
1
2
(−|v4|)2(p4C)yy

}
(R, t)+O(ε).

Finally, we expand p2(R − v2)C(R − v2, t) and p4(R)C(R, t) at the membrane
location, assumed to be at R− v2

2 , and time t:

p2(R− v2)C(R− v2, t) =
{

p2C +
(−|v2|

2

)
(p2C)y +

1
2

(−|v2|
2

)2

(p2C)yy

}

×(R− v2

2
, t) + O(ε),

p4(R)C(R, t) =
{

p4C −
(−|v2|

2

)
(p4C)y +

1
2

(−|v2|
2

)2

(p4C)yy

}
(R− v2

2
, t) + O(ε).
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Hence, from the normalization condition (6) for the probabilities, equation (10) is
equivalent to

τ
∂C

∂t
+ O(τ2) =

[
∂C

∂y
− (IKir + Ip)

]
pε +

+
[
∂2C

∂x2
+

∂2C

∂y2

]
pε2 + O(ε3). (12)

Assuming that the time unit τ is proportional to ε2, that is, τ = kε2 for some
positive constant k, and solving for ∂C/∂y(R, t), we obtain

∂C

∂y
(R, t) = (IKir + Ip)−

{
∂2C

∂x2
+

∂2C

∂y2
− k

p

∂C

∂t

}
(R, t)ε + O(ε2). (13)

In the limit where ε → 0, equation (13) becomes the desired membrane boundary
condition.

Similarly, for the ICS node R′, the boundary LCA becomes

C(R′, t + τ) =
3∑

j=0

pj(R′ − vj)C(R′ − vj , t) + p2(R′)C(R′, t) + εp2(R′)(IKir + Ip).

(14)
Following an analogous procedure as above for the ICS node, we obtain

∂C

∂y
(R′, t) = (IKir + Ip) +

{
∂2C

∂x2
+

∂2C

∂y2
− k

p

∂C

∂t

}
(R′, t)ε + O(ε2), (15)

which also approaches the membrane boundary condition in the appropriate limit.
The corresponding results for the other three configurations of case I follow

similarly. In the case of a type II boundary, we can separate it into two pairs of
directions. Each pair of directions has the same rule as that of a type I boundary
given above. Similarly, the type III boundary can be separated into three pairs.
As a result, the complicated boundary can be determined by direct, simple rules;
however, this requires that the exact pairs of 28 different configurations be known.

2.3. Membrane potential and currents. The number of particles that move
across the boundary between the ICS and the ECS is governed by the membrane
properties, the membrane potential, and the ionic concentrations. In terms of mod-
elling, the membrane potential and the ionic currents are assumed to be continuous
both in time and space. As treated above, the boundary conditions are determined
by the concentrations of ions on its two sides, that is, by their density values at
the boundary nodes in the ICS and ECS. Thus, the membrane serves to couple the
ICS and ECS.

The glial membrane potential, vm, is defined by convention as the difference
between the intracellular and extracellular potentials (vi−vo). Membrane potential
dynamics can be described by cable theory:

Cm
∂v

∂t
= u∇2v +

∑

i

Ii (16)

where Cm is the membrane capacitance, and Ii is the membrane current through
the ion channels of a given species i, determined by the respective channel variables
and membrane potential.
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To study the effects of the membrane potential dynamics, we use a finite dif-
ference method to discretize the continuous membrane. The membrane now is
described by nodes with finite spacing. Each node of the membrane corresponds to
one boundary node in the ICS and one in the ECS. We use the same time step τ as
that of the LCA. We note that the diffusive time scale for the membrane potential
is much faster (4000 times faster) than that of the ion diffusion in the ICS and ECS.
We could use the pseudosteady solution of the membrane potential equation (16).
However, since (16) is nonlinear (via the membrane current), iterative methods
must be used. An alternative way is to solve the time-dependent problem, which is
used in our simulation. This method may not be as fast as iterative methods, such
as Newton’s method; however, it is more robust. In addition, our method can be
used readily to study other phenomena where dynamics of the membrane potential
are important.

Moreover, because of the nearly exclusive permeability of glial cells to K+, we
assume that the transmembrane current I is carried solely by K+. Although passive
Cl− membrane flux is considered, we presume that it offers a negligible contribution
to changes in the membrane current [6]. For the constitutive relationship between
the membrane current and membrane potential, we assume the Hodgkin-Huxley
form of an ohmic relationship, namely,

Im = gK∆v = gK(vm − Ek) (17)

where EK is the glial equilibrium potential described by the Nernst equation for K+.
The specific glial membrane K+ conductance is given by gK . As outlined above,
we consider only the Kir channel and thus make use of the empirically derived K+

conductivity of the Kir channels given by Newman [21]:

gK = go
K

√
Ck

Co
k

{
1 + exp[18.5/42.5]

1 + exp[(∆v + 18.5)/42.5]

}

×
{

1 + exp[(−118.6 + Eo
K)/44.1]

1 + exp[(−118.6 + vm)/44.1]

}
. (18)

The resting membrane conductance is given by go
K and corresponds to the conduc-

tance when vm = Eo
K , CK = Co

K , and ∆v = 0. The first term in braces describes
the influence of ∆v on the rectification, and the second term reflects the impact of
the membrane potential on the channel’s opening probabilities.

In addition to current through the inward rectifier channels, passive flux of KCl
is considered. According to the model of Boyle and Conway [3], variation in the
concentration of both K+ and Cl− in either the ICS and ECS will result in passive
redistribution of KCl across the membrane. In their model, the final concentrations
in both compartments obey a Donnan equilibrium [6]. As such, we take the passive
KCl movement to be proportional to the concentration difference. Note that the
values of the resting densities have been chosen to satisfy a Donnan equilibrium.
The change in the concentration, P , of a given ion species due to passive flux is
given by

P =
dCK,i

dt
=

dCCl,i

dt
=

C∞K,i − CK,i

τ̂
(19)

where τ̂ is the first-order uptake constant; CK,i and CCl,i represent [K+]i and [Cl−]i
concentrations, respectively, and C∞K,i is the [K+]i concentration at the Donnan
equilibrium.
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Note that our treatment of diffusion through the LCA assumes electroneutrality.
It then follows that in our synthetic brain-cell microenvironment, the Cl− ions act
purely as a spectator species relative to the K+ ions. Specifically, the transmem-
brane flux of Cl− follows the passive flux of K+ and has no impact on the ultimate
evolution of the system. In particular, it is solely the K+ dynamics that govern
the Cl− membrane current, and, therefore, the actual state of the Cl− ions with
regard to their distribution across the membrane will not drive the chloride ions
to reestablish their initial resting conditions, satisfying the Donnan equilibrium.
Consider, for example, the situation where the intracellular and extracellular K+

concentrations return to their equilibrium values ahead of the Cl−. In this case,
the system has effectively returned to its resting state, and further iteration would
show no change. However, the intracellular and extracellular Cl− densities are
not necessarily at their equilibrium levels. They are held at these values because
their movement depends on a K+ concentration gradient, of which there is none.
Considering the passive nature of the anion, it does not seem necessary to account
for the Cl− ions; however, by monitoring the Cl− movement, we easily obtain the
component of the total K+ membrane current that consists of passive movement.
Additionally, coupling the passive flux of K+ with an anion gives a more reasonable
biological treatment. As we are primarily concerned with potassium spatial buffer-
ing, whether the Cl− returns fully to the resting value does not have a significant
impact on the system and the mechanisms of this study. However, to correct for the
possibility of having the system evolve to a state where the Cl− particles are not
at the initial resting values, we can add an additional Cl− pumping current. For
simplicity, we can represent the pump current ICl,p using an ohmic relationship,
with constant conductance gCl,p and a driving force determined by the difference
between the present Cl− Nernst potential eCl and the predetermined resting Cl−

Nernst potential Eo
Cl:

ICl,p = gCl,p(eCl − Eo
Cl).

Note that by the Donnan equilibrium condition, Eo
Cl is equal to Eo

K . Hence, by
incorporating this additional pumping current, the system will move toward its
initial resting state.

In summary, we consider the membrane current of two ionic species, K+ and
Cl−. The K+ current is the result of flux through Kir channels as well as passive
redistribution governed by local fluctuations in concentration. The Cl− current,
on the other hand, is assumed to result from the passive flux due to coupling with
the K+ current. An additional Cl− pumping current is incorporated to ensure that
the Cl− concentration returns to its resting value. Moreover, the concentrations
also can be changed by iontophoretic injection, which can be represented by a
source or sink term. Combining the above currents, we can describe the changes in
intracellular and extracellular concentrations of these two species.

Finally, returning to our treatment of the membrane boundary, if we know the
membrane potential and total ionic current, then at each time step, the number of
particles exchanged across the membrane is given by

∆Q(t) =
τI∆S

F
(20)

where ∆S is the area corresponding to a node of membrane, and F is the Fara-
day constant. Because the brain is modelled as a two-dimensional system, this
parameter cannot be determined from realistic neurophysiological parameters. In
the present study, we do not know exactly how many particles can be transported
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Figure 3. Schematic diagram of the single cell microenvironment
with injection and recording sites. The ECS and ICS nodes at
which the particle concentrations were recorded are depicted by the
triangles and squares, respectively. The injection sites are shown
by diamonds. The solid line indicates the region of membrane at
which the Kir conductance was increased. The increased conduc-
tance was used in simulations only when specified.

through the membrane. As an approximation, we assume the maximum number of
ions passing through the membrane to be constant.

3. Results. Table 1 lists the parameter values used for all our simulations.

3.1. Single circular cell. We begin our investigation of the SB properties of our
two-dimensional LCA by analyzing how a single glial cell maintains a stable resting
membrane potential and responds to perturbations. We construct a 100 x 30 lattice
system with one circular cell placed at the center of the ECS environment (see
Figure 3; note the different scales on the two axes). The ECS and ICS densities
of both K+ and Cl+ are set to their respective resting levels. Accordingly, the
system is initially in its resting state. The evolution of the system in response to
particle injection can be monitored by recording the particle densities at nodes of
the system as the system is iterated. The ICS and ECS recording sites, as well as
the injection sites, are shown in Figure 3. In the single cell simulations, the K+

ions were injected at the nodes indicated by diamonds in Figure 3 at a rate of 64
mM/msec for 3.125 msec.

3.1.1. Spatial buffering mechanism. The simulations were run with the above in-
jection protocol. The injected K+ ions can diffuse around the single glial cell or
can enter into the ICS through the membrane current. As described above, the
mechanisms by which K+ ions may enter the cell are passive flux, driven by a trans-
membrane density gradient, and ohmic membrane current through inward rectifier
channels. While the excess K+ ions must still migrate to the borders for the system
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to return to its resting state, there is now the potential for other mechanisms, in
addition to simple diffusion, to accelerate the diffusion of the particles.

As K+ ions are injected, the local [K+]o increases. At a segment of membrane
near this site of increased [K+]o, there is an increased (more positive) resting equi-
librium potential. The local depolarization creates an electrical driving force on
the K+ ions, and because of the permeability of the membrane to potassium, the
ions move across the membrane into the intracellular lattice. Concurrently, the
deviation of the intracellular K+ density results in the passive cotransport of KCl
across the membrane. The cotransport acts in the direction opposite to the direc-
tion of the influx of K+ through the inward rectifier channels, damping the impact
of the inward channel current. Furthermore, the local depolarization moves elec-
trotonically along the membrane away from the site of local depolarization. In so
doing, segments of the membrane not immediately adjacent to the injection site are
depolarized, although not to the same degree as at the injection site since there is
some spatial dissipation of the potential as it propagates along the membrane (Fig-
ure 4). Because a glial cell has the tendency to remain isopotential, at segments of
membrane further removed from the injection site, the resting membrane potential
is now more negative than the actual membrane potential. As a result, there is an
outwardly directed driving force on the K+. The K+ permeability through the Kir
channels allows for the cation to move through the membrane into the ECS lattice.
Effectively, the initial iontophoretic injection of K+ ions formed a current loop: in
regions of high extracellular K+, there is positive current into the glial cell and a
subsequent outward current away from the location of increased K+ density. In our
system, the current is closed by an ECS return current carried by Cl−. Through-
out the cell, the movement of K+ through the Kir channels driven by membrane
depolarization is countered by the passive flux of K+.

This description of the spatial buffering mechanism can be determined from
analyzing the evolution of the system. First, we consider extracellular nodes lo-
cated along the membrane. As expected, the K+ ion concentrations at these nodes
increase as a result of the injected ions being diffused throughout the system (Fig-
ures 5a and 5c). The nodes in closer proximity to the stimulus are the first ones
subjected to higher potassium levels. In our system, two components cause the
increase in [K+]o. First and predominantly, for the nodes relatively close to the
injection point, direct diffusion of the particles results in the observed increase. As
we move further away from the injection site, the aforementioned current loop plays
a more predominant role. Because the propagation of the membrane potential de-
polarization along the membrane surface is faster than that of ion diffusion, the
[K+]o at further-removed sites is increased by the movement of K+ out of the cell
through Kir channels. Effectively, the cell has taken in K+ ions from the region of
increased ion concentration and then expelled K+ ions at a distant region. Note
that in Figure 5c, there appears to be a slight undershoot of [K]o at the sites distant
from the location of injection. This may be caused by the nonlinear interaction be-
tween the membrane potential and cross-membrane transport and diffusion in ICS
and ECS. Due to depolarization of the membrane potential, the potassium ions
are driven out of the cell (flow from ICS to ECS) and carried away by diffusion
in the ECS. When the membrane potential returns to its resting level, the ECS
potassium concentration becomes lower than its equilibrium value, caused by the
flux of potassium back into the cell as well as by the amount diffused away in the
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Figure 4. The local depolarization resulting from the K+ ion in-
jection spreads electrotonically along the membrane surface. Seg-
ments not immediately adjacent to the injection site thus are de-
polarized. As you move further from the source, the depolarization
decreases. The indicated nodes refer to the geometry shown in
Figure 3.

ECS during the depolarized stage. This appears as an undershoot when its value
eventually comes back to the rest value at a slower diffusive time scale.

While the potassium concentration increases at all extracellular nodes to vary-
ing degrees in SB, depending on location, both the magnitude and direction of the
K+ ion concentration changes at the intracellular nodes depend on their location
relative to the injection site (Figures 5b and 5d). As described above, the increased
K+ ion levels result in the flux of the cation into the cell, raising the intracellular
concentration accordingly. Further away, the membrane is depolarized while the
concentrations remain transiently at the resting levels. This forces the intracellular
K+ ions to move out of the cell across the membrane, lowering the intracellular con-
centration, such that this depolarized potential becomes the new resting membrane
potential. For this reason, we observe that at intracellular boundary nodes away
from the injection site, there is a decrease in K+. The magnitude of this decrease
is larger at the segments of membrane where diffusion has not already raised the
extracellular concentration level.

3.1.2. Spatial buffering mechanism with increased endfoot conductance. So far, we
have assumed that the cell membrane has uniform properties. In reality, however,
the electrical properties of a glial cell membrane are not uniformly distributed. As
described above, a specific example is the increased conductance at the endfeet
of the Müller cells in the retina of amphibians [5, 20, 21, 27]. Obviously, it will
be interesting to find out whether the increased endfoot conductance enhances or
retards the diffusion of ions via the spatial buffering mechanism.
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Figure 5. Time courses of [K+] concentrations at (a) extracellular
and (b) intracellular nodes facing toward the injection site and at
(c) extracellular and (d) intracellular nodes facing away from the
injection site. The indicated nodes refer to the geometry shown in
Figure 3.

To simulate the situation of increased endfoot conductance, we increased the
Kir channel conductance by a factor of 25 from the value given in Table 1 along
the region indicated by the solid curve in Figure 3. The simulation was run with
the same initial conditions and injection protocol as in the previous section. In
Figure 6, we have compared the ion concentration for the system with and without
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Figure 5

the endfoot effect. For comparison, the right and left columns show the results of
simulations run with and without increased endfoot conductance, respectively. It
can be seen that the increased endfoot conductance enhances the effects of spatial
buffering. The first plots show the transient increase in [K+]o at nodes near the
injection site. The similarity between the two is due to the fact that this increase
reflects the diffusion of the injected ions towards the glial membrane. The increased
conductance allows for more ions to move into the cell so that the transient increase
in [K+]o is smaller while the corresponding increase in [K+]i is larger. Without the
increased conductance, more of the added K+ must navigate outwards through the
extracellular space from the injection site.
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Figure 6. Comparison of the time courses of [K+] at various lat-
tice sites with and without increases in endfoot conductances. (a)
In descending order, the frames of the left column are the same
as Figure 5. (b) The right column shows recordings at the same
lattice sites, but in a simulation run with an increase in endfoot
conductance. With increased endfeet conductance, the amount of
K+ moved through the glial cell is increased. Also, [K+] ions are
directed preferentially from one side of the cell to the other as
shown by the third panels from the top.

The larger Kir current causes a greater local depolarization of the membrane
which spreads along the cell. At the other end of the cell, there is an observable
difference between the two conditions. The increased conductance allows more
intracellular K+ to be moved from the cell to the extracellular space. This is shown
by the enhanced increase in [K+]o and decrease in [K+]i at lattice sites bordering
the membrane (see third and fourth rows of Figure 6). Effectively, the larger endfeet
conductance allows for a more directed and increased movement of K+ away from
the injection site.

3.2. Syncytium of multicell environment. To look at the impact of geometry
on the evolution of the system, a cellular environment was artificially generated and
is shown in Figure 7. When each cell is in its resting state, K+ ions are injected
at a rate of 64 mM/msec for 3.125 msec at an ECS node located approximately at
the center of the system (Figure 7). At the site of injection, however, the [K+]o
increases only by a factor of about two, reflecting the balance between the injection
process and the concurrent dilution by diffusion away from the source (Figure 8).
The migration processes of K+ and Cl− ions then are recorded and analyzed. It
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Figure 7. Schematic diagram of the multicellular environment.
The injection site–labeled as A–is indicated by a diamond; ECS
recording sites–labeled as B, C, D, and E–are indicated by trian-
gles.

should be noted that during intense neuronal stimulation or during seizure, the
ECS [K+]o may reach a ceiling level of 12 mM; while in the case of injury–such as
hypoxia, ischemia, trauma, or hypoglycemia–the ceiling level can be exceeded and
the ECS K+ concentration can reach levels of 25 mM [31]. Accordingly, the amount
of K+ ions injected at the point sources in our simulations remain well within the
normal ceiling level as well as the pathophysiological range. The number of injected
particles in these simulations represents a balance between using physiologically
accurate injection rates and being able to capture the qualitative component of the
results. As we are primarily concerned with the implementation of a novel method
to study SB mechanisms and the resulting qualitative effects, we use the above
injection conditions.

In this multicellular system, the SB mechanism is observed as follows. As K+

ions are injected into the center of the system, the cations begin to diffuse away
from the injection point toward the cell membranes. A narrow ECS surrounds the
glial cells, giving little space for the diffusion to move the excess K+ ions through
the system. When the K+ ions arrive at a cell, the membrane depolarizes. This
depolarization spreads electronically around the cell, and K+ ions are extruded from
the ICS to the ECS at a location distant from the initial site of depolarization. In
this way, K+ ions are moved radially outward from the site of injection by the cells
surrounding the injection point. In turn, there is an accumulation of K+ ions at
the distal sides of the cells that surround the injection point, which causes a local
depolarization in the surrounding cells. This mechanism persists until the initial
accumulation of K+ has been dissipated.

The SB in the multicellular system is depicted in Figure 9, which shows record-
ings of [K+] in the ICS (Figure 9a) and ECS (Figure 9b) and the membrane potential
(Figure 9c) at two locations each for the three cells indicated in Figure 7. At nodes
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Figure 8. Potassium time course at the injection site, node
(47,51) of Figure 7.

facing the injection site, [K+]i increases as K+ ions move into the cell, whereas at
a node distal from the injection site, [K+]i decreases as K+ ions are extruded. The
ECS [K+] increases at each recording site as expected. The response is greatest in
Cell 1 and decreases as we move away from the injection site to Cell 2 and then to
Cell 3. This is because, as the K+ front moves away from the center of the system,
the accumulation is distributed over a larger area which degrades the response.

With the above injection protocol, the multicellular system was simulated with
and without membrane flux. By removing the membrane currents, we can deter-
mine how effective diffusion alone is in dissipating the accumulated K+ ions. This
then can be compared with the dispersion of K+ ions when the membrane currents
(i.e., the spatial buffer) are included. Monitoring the cumulative flux through the
four borders of the system gives a measure of how quickly K+ ions can move from
the center of the system to the periphery. As shown in Figure 10, at each border,
the increase in flux is initially both more rapid and larger when the spatial buffer
mechanism is included, as compared to simple diffusion. In the latter case, the in-
jected particles must navigate a tortuous path towards the periphery, while in the
former, some of the K+ ions are moved through the glial cells as described above.
As a result, a larger amount of K+ ions are moved more quickly to the system’s
borders. In each case, the flux reaches a maximum by a subsequent decrease. The
maximum flux occurs later in the system when only diffusion is included. During
the decrease to the resting level where SD is not included, the flux through the
border for the system becomes larger than when SB is included. This occurs be-
cause SB has sequestered the excess K+ intracellularly and can return the ECS K+

concentration more quickly to its resting value. These observations can be seen in
all four cases, with the slight variations in magnitude due to the differences in the
cell membrane geometry. Again, it is important to note that in these simulations,
the discrepancy between membrane potential propagation velocity and ion diffusion
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Figure 9. Potassium concentration time course at (a) intracellu-
lar and (b) extracellular nodes for three cells shown in Figure 7.
The corresponding membrane potential is given in (c).
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Figure 10. Cumulative K+ flux through the system’s four borders
with (solid line) and without (dashed line) spatial buffering. (a)
Right. (b) Top. (c) Left. (d) Bottom. In the system with SB, there
is a more rapid and greater increase in border flux as compared to
the system without SB. This reflects a more efficient movement of
excess K+ ions to the system’s periphery.

has been artificially decreased. The actual time taken to disperse the accumulated
ions is expected to be longer.

Observations analogous to those above can be seen when comparing the time
course of K+ ion migration through nodes that are equidistant from the injection
source (Figures 11a and b). In the system with SB, the movement of K+ ions
occurs more quickly than without SB. The differences in the magnitudes of the
K+ ion number profiles between nodes equidistant from the injection source reflect
the differences in geometry. For example, consider Figure 11a. The path from the
injection source (node A in Figure 7) to node B is relatively straight except for one
small cell that is blocking the direct path. Injected K+ ions can move from node A
unimpeded in the direction of node B. When some of the particles arrive at the cell
blocking the direct path, this causes a depolarization of the cell which propagates
electrotonically in both directions around the cell, causing K+ to be extruded on
the far side in the direction of node B. Other particles can navigate around the
small cell directly to node B. In contrast, the most direct path connecting the
injection source A with node C is hindered by parts of cells. While some K+ ions
will move by diffusion towards node C, the spatial buffer mechanism will not move
K+ directly in the direction of node C due to the orientation of the impeding cells
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Figure 11. Time courses of [K+] at nodes equidistant from the
injection site. The labels correspond to the nodes indicated in
Figure 7.

relative to the injection point source. As a result the increase in K+ at node C will
be less than at node B, even though they are both equidistant from the point of
injection.

Also, note that in both Figures 11a and 11b, the maxima of the ECS K+ number
profile is greater in the system without SB as compared to that with SB. By having
K+ ions enter the glial cells, the cells themselves can hold onto some of the K+,
thereby keeping the ECS K+ lower.

3.3. Endfoot effect. As in the case for the one-cell system, we examine the ef-
fect of an increased endfoot conductance on spatial buffering. Elliptical cells were
arranged in a 100 x 180 regular array. The injection protocol used for this geometry
was a constant injection of K+ ions along the left boundary at a rate of 32 mM/sec
for 3.125 msec. Simulations were run for the case with a uniform distribution of
Kir conductance and with increased conductance at the ends of the cells.

Figure 12 shows the flux of K+ through the right-most boundary for simula-
tions with and without the increased endfoot conductances. It can be seen that
the increased endfoot conductance enhances the spatial buffering mechanism. Sim-
ulations indicate that by having an increased conductance at opposing ends of the
cells, the accumulated K+ is dissipated more quickly. After diffusing toward the
cellular array, a greater amount of K+ is moved by the Kir channels into the cell.
This results in a larger depolarization, which then spreads along the cellular mem-
brane. At the other end of the cell, the depolarization causes K+ to be moved out
of the cell as described previously. However, with the increased conductance, more
K+ is moved. Effectively, the movement of K+ is directed away from the injection
site more efficiently. The larger conductances bias the dispersion of ions to occur
linearly away from the injection site.

4. Conclusion. In this study, a lattice cellular automaton approach was used to
investigate the brain-cell microenvironment comprised of ECS and glial cells. This
numerical method can readily deal with the complicated geometry and boundary
conditions of neuronal tissue because of the microscopic interpretation of the LCA.
To demonstrate the usefulness of the LCA in modelling neuronal processes, we



SPATIAL BUFFERING 699

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

−4

Time step

C
ha

ng
e 

in
 fl

ux

Normal conductance
Increased endfoot conductance

Figure 12. Time courses of the changes in flux through the right-
most boundary of the system for simulations run with and without
increased endfoot conductances. With increased endfoot conduc-
tance, K+ ions are moved more quickly to the far boundary, away
from the injection site.

studied the spatial buffering mechanism of glial cells. The model considered K+

and Cl− dynamics. The ECS and ICS of the system were assumed to be uniform
with constant diffusion coefficients for both ionic species. The interactions between
the ECS and ICS were through the complicated membrane boundary conditions.
K+ ions were able to move through the membrane via Kir channels and via a passive
flux that is coupled to Cl−. The Cl− also could move through the membrane by
an ohmic pump.

Simulations of a single glial cell showed that our system does exhibit the spatial
buffering mechanism. To study the buffering mechanism, K+ ions were injected
near the cell and the evolution of the ion numbers was traced. The ions move by
diffusion toward the membrane, where they cause a local depolarization, causing K+

to move into the intracellular lattice via the Kir current. The local depolarization
would concurrently spread along the membrane away from the site of local injection.
As a result, at locations away from the injection, there was an outwardly directed
driving force on the K+ ions, which would move K+ ions out of the cell. In this
way, the glial cell could disperse the accumulated K+ from the site of injection.
This process describes the spatial buffering mechanism.

To further reveal how readily the LCA can be adapted to suit more specific
membrane boundary conditions, the Kir conductance along the region of membrane
facing away from the injection site was increased. The purpose was to give a
simple representation of the increased Kir conductance seen in the endfoot region
of amphibian retina glial cells, where this increased conductance has been suggested
as a mechanism to help siphon K+ ions into the vitreous humor. By comparing
simulations with and without the increased conductance, it was shown that in a
single cell, the increased conductance effectively directs the K+ away from the
injection site toward the endfoot membrane.

An objective of this study was to demonstrate that this numerical method is able
to treat complicated geometries associated with cellular environments. The repre-
sentative two-dimensional geometry used in this preliminary investigation was not
intended to mimic exactly a particular cellular geometry seen in slices of neuronal
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tissue with the accompanying membrane properties. The geometry was generated
to contain approximately circular cells, resulting in a volume fraction of approx-
imately 0.23, which is near the measured value of 0.20 [18]. The specific aim of
this system was to account for the geometrical parameters that influence the move-
ment of particles in the brain-cell microenvironment, including the volume fraction
and tortuosity. As such, implementing a more detailed representation of the indi-
vidual glia morphologies was not considered, even though it can be implemented
easily. A circular cellular morphology was used only to approximate the irregular
and elongated shapes of glial cells. Again, the increased efficiency of the spatial
buffer mechanism could be traced through the evolution of the system. We also
were able to look more closely at the influence of geometry on K+ ion buffering.
The simulations indicate that while differing geometries do impact the movement
of K+ ions on the scale of a single cell, this effect does not appear to be significant
on a larger scale. The results of the average models used in previous studies in
the literature [6, 15] appear to capture the essential elements of the spatial buffer
mechanism.

We note that the time scales for diffusion in the ICS and ECS are approximately
4000 times longer than the time scale for propagation of membrane potential along
the cell via electrotonic spread. In our simulations, the diffusion time scale was set
to be approximately 100 times shorter than it actually is. Therefore, in reality the
buffering mechanism should be slightly more effective than our results have shown.
The reason for choosing this diffusion time scale was to increase the computational
efficiency in running numerous simulations. Also, we only considered an isotropic
tissue, although anisotropic tissue can be handled easily.

Our simplified model can be extended to incorporate other mechanisms that
may play a role in glial buffering of K+ ions. For example, incorporating Na+

dynamics into the model would allow consideration of the Na+/K+ pump on the
glial buffering mechanism. Also, the LCA can account for the different types of K+

channels located at different anatomical locations on the cell membranes.
A more detailed investigation as to the importance of geometry also can be car-

ried out. In particular, glial cells are arranged in syncytia of glial cells connected by
gap junctions. The electrical coupling of the cells may further improve the efficiency
of the buffering by allowing for electrical activity to more effectively spread a con-
siderable distance away from the site of K+ ion accumulation. Without coupling,
glial cells have both a short physical length and length constant which can prohibit
the spatial buffer mechanism from working efficiently on larger space scales. The
extensive coupling through gap junctions may enhance buffering, and this can be
implemented in a straightforward fashion using the current approach.

What also would be interesting is to add a neuronal compartment to the model.
In the brain-cell microenvironment, glial cells are interposed between the neurons.
An accurate representation of brain-cell tissue would include both cell types. Such
a model could be used to study K+ ion buffering, but also could be applied to
other problems such as mathematical treatments of spreading depression, a slowly
propagating chemical and electrical wave in cortical neuronal tissue.

In summary, we have presented a versatile LCA numerical scheme that can be
used effectively to model ion dynamics in realistic neuronal tissue. There are nu-
merous potential applications of this numerical method in the study of physiological
systems, e.g., a three-compartment model can be used to study spreading depres-
sion, which will be the subject of a future project.
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