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Abstract. This paper presents analysis and biomedical implications of a
certain class of bilinear systems that can be applied in modeling of cancer
chemotherapy. It combines models that so far have been studied separately,
taking into account both the phenomenon of gene amplification and drug speci-
ficity in chemotherapy in their different aspects. The methodology of analysis
of such models, based on system decomposition, is discussed. The mathemati-
cal description is given by an infinite dimensional state equation with a system
matrix, the form of which allows decomposing the model into two interacting
subsystems. While the first one, of a finite dimension, can have any form, the
second one is infinite-dimensional and tridiagonal. Then the optimal control
problem is defined in l1 space. To derive necessary conditions for optimal
control, the model description is transformed into an integrodifferential one.

1. Introduction. Our previous works (e.g., [15, 21]) dealt with models with a
tridiagonal system matrix. They led to the development of a methodology for
investigating such systems and formed a basis for further generalization. This
work pushes the research a step further, studying properties of a model in which
significantly less simplification has been made and less additional assumptions are
required. Moreover, it combines models that so far have been studied separately,
taking into account both the phenomenon of gene amplification and multidrug
chemotherapy in their different aspects.

Two examples are discussed in this paper, each of them addressing different
aspects of cancer cell modeling.

As the first one, a model taking into account partial sensitivity of the resistant
subpopulation will be introduced. In this case, it is assumed that the resistant sub-
population consists of two parts–one sensitive to the drug (but, contrary to previous
works, may contain cells of different drug sensitivity), and another, completely drug
resistant.

In the second example, phase-specific control of the drug-sensitive cancer popu-
lation will be addressed. Actually, each drug affects cells in specific phases, and it
makes sense to combine these drugs so that their cumulative effect on the cancer
population would be the greatest. So far, phase-specific chemotherapy has been
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considered with no regard to problems stemming from increasing drug resistance.
Combining infinite dimensional model of drug resistance with the phase-specific
model of chemotherapy should move mathematical modeling much closer to its
clinical application. Despite a long history of research and rich literature devoted
to problems of modeling and control of infinite dimensional systems, almost all effi-
cient methods developed to deal with them present approaches suitable for partial
differential equations (PDE) models, and optimisation solutions are often limited
to linear–quadratic (LQ) problems. More general solutions, involving abstract dif-
ferential equations [6], lead, in turn, to theoretical results whose applicability is
arguable. Models based on an infinite number of state equations may be applied
to a variety of systems. Besides the models of drug resistance evolution caused by
gene amplification [9, 12] that are analysed in this paper, they may also describe,
for example, resistor–capacitor ladders, which are approximations of long transmis-
sion lines [23]; microsatellite repeats evolution [22] which plays an important role
in genetic disorders [14]; telomere shortening [1, 11] responsible for cell aging and
death; or some queuing systems [10]. Usually, additional assumptions are made,
resulting in system matrices of tridiagonal form. Moreover, analysis of such models
is often limited to their finite-dimensional approximation. However, in that case,
some dynamical properties may be neglected. Moreover, as shown in our previous
papers (e.g., [18, 20]), studies of infinite-dimensional models may lead to compact
results, convenient in further analysis, which would be impossible or very difficult
to obtain in finite dimensional approximation.

2. Problem statement. The original model and its properties have been thor-
oughly discussed (see, e.g., [20, 21]). However, the basic underlying biological
background remains the same for the subject of this paper and therefore needs to
be introduced in brief.

In this section, a model of cell population with evolving drug resistance caused
by gene amplification or other mechanisms is presented. The model, based on the
results of [2, 8, 9], is general enough to accommodate different interpretations.

We consider a population of neoplastic cells stratified into subpopulations of cells
of different types, labeled by numbers i = 0, 1, 2, . . . . If the biological process con-
sidered is gene amplification, then cells of different types are identified with different
numbers of copies of the drug resistance gene and differing levels of resistance. Cells
of type 0, with no copies of the gene, are sensitive to the cytostatic or cytotoxic
agent. Through a mutation the sensitive cell of type 0 can acquire a copy of gene
that makes it resistant to the agent. Likewise, the resistant cells can change the
number of gene copies in the process of cell division. The resistant subpopulation
consists of cells of types i = 1, 2, . . . . The probability of mutational event in a
sensitive cell is of several orders smaller than the probability of the change in the
number of gene copies in a resistant cell. Since we do not limit the number of gene
copies per cell, the number of different cell types is denumerably infinite.

Cell division and change in the number of gene copies are stochastic processes
with the following hypotheses:

1. The lifespans of all cells are independent, exponentially distributed random
variables with means 1/λi for cells of type i.

2. A cell of type i ≥ 1 may mutate in a short time interval (t, t + dt) into a type
i+1 cell with probability bidt+ o(dt) and into type i−1 cell with probability
didt+o(dt). A cell of type i = 0 may mutate in a short time interval (t, t+dt)
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into a type 1 cell with probability αdt + o(dt), where α is several orders of
magnitude smaller than any of bis or dis.

3. The drug action results in fraction ui of ineffective divisions in cells of type i
(hence 0 ≤ ui ≤ 1 or, more specifically, 0 ≤ ui ≤ uimax ≤ 1).

4. The process is initiated at time t = 0 by a finite population of cells of different
types.

Figure 1. Flows between subpopulations for the model, taking
into account (a) the original assumptions or the partial sensitivity
of the resistant subpopulation; (b) two-drug chemotherapy; (c)
phase-specific chemotherapy. In all cases, numbers denote cell
types.

The graph representing the possible flows between subpopulations is presented
in the Figure 1a. If we denote Ni(t) the expected number of cells of type i at time
t, the model is described by the following system of ordinary differential equations
(ODEs)
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Ṅ0(t) = [1− 2u0(t)]λ0N0(t)− αN0(t) + d1N1(t),

Ṅ1(t) = [1− 2u1(t)]λ1N1(t)− (b1 + d1)N1(t) + d2N2(t) + αN0(t),

· · · ,

Ṅi(t) = [1− 2ui(t)]λiNi(t)− (bi + di)Ni(t) + di+1Ni+1(t)+
+bi−1Ni−1(t), i ≥ 2.

· · · ,
(1)

So far, only the simplest case has been investigated–the case in which the resis-
tant cells are completely insensitive to a drug’s action and there are no differences
between parameters of cells of different types:





Ṅ0(t) = [1− 2u(t)]λN0(t)− αN0(t) + dN1(t),

Ṅ1(t) = λN1(t)− (b + d)N1(t) + dN2(t) + αN0(t),

· · · ,

Ṅi(t) = λNi(t)− (b + d)Ni(t) + dNi+1(t) + bNi−1(t),

· · · , i ≥ 2.

(2)

However, using the same line of reasoning that has been applied to that case, it is
also possible to analyze a less simplified model. If it is assumed that the parameters
can vary for an arbitrarily chosen finite number of cell subpopulations and are the
same only for the infinite-dimensional tail of the system, the following model can
be investigated:
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Ṅ0(t) = [1− 2u0(t)]λ0N0(t)− αN0(t) + d1N1(t),

Ṅ1(t) = [1− 2u1(t)]λ1N1(t)− (b1 + d1)N1(t) + d2N2(t) + αN0(t),

· · · ,

Ṅl−1(t) = [1− 2ul−1(t)]λl−1Nl−1(t)− (bl−1 + dl−1)Nl−1(t) + dlNl(t)

+bl−2Nl−2(t),

· · · ,

Ṅi(t) = λNi(t)− (b + d)Ni(t) + dNi+1(t) + bNi−1(t), i ≥ l,

· · · .

(3)

Moreover, in the model given above, multivariable control is allowed, meaning
that either certain types of the resistant cells can be affected by chemotherapy or
different drugs are being used. Justification of its usefulness is presented in the
following sections.

Several control problems arising in all these cases may be addressed by the model
presented in the paper. One of those problems is establishing constant control u (in
that case it leads to the determination of feedback parameters) that stabilizes the
infinite-dimensional system. In biological terms, it refers to calculation of a constant
dose rate of a chemotherapeutic agent that suppresses the growth of the resistant
subpopulation. However, the constant treatment protocol, which guarantees decay
of the cancer population after sufficiently long time, is unrealistic. Most of all, it
does not take into account the cumulative negative effect of the drug on normal
tissues. To make the solution more realistic, it is justifiable to find the optimal
control, which minimizes the performance index,

J =
l−1∑

i=0

Ni(T ) + r1

∞∑

i=l

Ni(T ) + r

m∑

k=0

∫ T

0

uk(t)dt, (4)

where r1, r ≥ 0 are weighing factors, m is the number of drugs being used, and T
represents the time horizon for chemotherapy.

The idea on which such optimisation is based is to minimise the resistant can-
cer subpopulation at the end of therapy with simultaneous minimisation of the
cumulative negative effect of the drug represented by the integral component.

3. Partial sensitivity of the resistant subpopulation. In this case, it is as-
sumed that the resistant subpopulation consists of two parts–one, which is partially
sensitive to the drug, and another one, completely drug - resistant. Then the fol-
lowing set of equations is obtained:
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Ṅ0(t) = [1− 2u(t)]λ0N0(t)− αN0(t) + d1N1(t),

Ṅ1(t) = [1− 2µ1u(t)]λ1N1(t)− (b1 + d1)N1(t) + d2N2(t) + αN0(t),

· · ·

Ṅl−1(t) = [1− 2µl−1u(t)]λl−1Nl−1(t)− (bl−1 + dl−1)Nl−1(t) + dlNl(t)

+bl−2Nl−2(t),

· · · ,

Ṅi(t) = λNi(t)− (b + d)Ni(t) + dNi+1(t) + bNi−1(t), i ≥ l,

· · · ,

(5)

where 0 ≤ µi ≤ 1 are ”efficiency factors” that determine the effectiveness of the drug
in relation to a particular type of cell. Given the general assumptions about the
model, presented at the beginning of this section, these factors satisfy the following
relations:

0 ≤ µi ≤ µi−1 ≤ 1, i = 2, . . . , l − 1, (6)

0 ≤ u ≤ umax ≤ 1. (7)

4. Phase-specific control of the drug-sensitive cancer population. The cell
cycle is composed of a sequence of phases that each cell undergoes from its birth
to its division. Actually, each drug affects cells that are in a particular phase and
it makes sense to combine these drugs so that their cumulative effect on the can-
cer population will be the greatest. So far, phase-specific chemotherapy has been
considered only in the finite-dimensional case, with no regard to problems stem-
ming from increasing drug resistance [17, 18]. Combining the infinite-dimensional
model of drug resistance with the phase-specific model of chemotherapy should
move mathematical modeling much closer to its clinical application.

Once again, some modification of the assumptions underlying the mathematical
model presented at the beginning of this section should be introduced. The sensitive
subpopulation consists of two types of cells: type i = 0, in the phase G1 + S, and
i = 1, in the phase G2M . The phase-specific drug affects only cells of type i = 1.
Then the following set of equations can represent the system dynamics:
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Ṅ0(t) = −λ0N0(t) + [1− u(t)](2λ1 − α)N1(t) + dN2(t),

Ṅ1(t) = −λ1N1(t) + λ0N0(t),

Ṅ2(t) = λ2N2(t)− (b + d)N1(t) + γN1(t) + dN2(t),

· · · ,

Ṅi(t) = λNi(t)− (b + d)Ni(t) + dNi+1(t) + bNi−1(t), i ≥ 3,

· · · .

(8)

where α is the intensity of the primary mutational event as in model (1).
The graph illustrating possible transfers between different subpopulations is pre-

sented in Figure 1c.
Similarly, multidrug therapy that includes blocking drugs [4, 19] as well as the

killing agent (or multiple killing agents) could be analysed in the same way. One
of the simplest possible scenarios in which there are two drugs and the cells can
be sensitive to both of them, resistant to one, or resistant to both drugs (the
infinite-dimensional tail has the same interpretation as in the model given by (2))
is presented in Figure 1b. The mathematical form of such a model is not discussed
in detail, since a more general case can be addressed in which there are many
different compartments, representing various drug actions and various forms of
drug resistance. The mathematical framework for that modeling is presented in
the subsequent sections.

5. Properties of the models. The system is described by the following state
equation:

Ṅ =

(
A +

m∑

i=0

uiBi

)
N. (9)

where N = [N0 N1 N2 . . . Ni . . .]′ is an infinite-dimensional state vector (′ denotes
transposition); A and B are the system and control matrices, respectively, of the
form

A =




Ã1 | 01

− − − −
02 | Ã2


 , (10)

Bi =




B̃i | 01

− − −
03


 , (11)

Ã1 =




a00 a01 . . . a0,l−1 0
a10 a11 . . . a1,l−1 0
...

... . . .
... 0

al−1,0 al−1,1 . . . al−1,l−1 al−1,l


 ,
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Ã2 =




c1 a2 a3 0 0 . . .
0 a1 a2 a3 0 0 . . .
0 0 a1 a2 a3 0 . . .
...

...
. . . . . . . . . . . . . . .


 ,

B̃i =




bi
0,0 bi

0,1 . . . bi
0,l−1

bi
1,0 bi

1,1 . . . bi
1,l−1

...
... . . .

...
bi
l−1,0 bi

l−1,1 . . . bi
l−1,l−1


 ;

u(t) is the m-dimensional control vector u = [u0u1u2 . . . um−1]′, 01,02,03- zero
matrices of dimensions l ×∞, ∞× l − 1, and ∞×∞, respectively; and l > m.

It is important to note that the model parameters satisfy the following relations:
a3 > a1 > 0 and a2 < 0. However, a complete problem analysis can be done
in other possible cases (e.g., when no additional conditions are to be satisfied by
parameters a1, a3), using exactly the same line of reasoning.

The performance index to be minimised is given by (4). The specific structure of
system and control matrices may be used to decompose the system for its analysis
as well as optimal control synthesis.

6. Decomposition of the system. To make analysis of the model possible, it
is convenient to present it in the form of a block diagram, as shown in Figure 2,
effectively decomposing the model into two parts. The first part, of finite dimen-
sion, does not require parameters to meet any particular assumptions. The second
subsystem is infinite-dimensional, with a tridiagonal system matrix, and does not
include terms containing control variables ui(t).

First, let us consider the infinite-dimensional tail without the influx of cells Nl−1:



Ṅl(t) = a2Nl(t) + a3Nl+1(t),

Ṅl+1(t) = a1Nl(t) + a2Nl+1(t) + a3Nl+2(t),

· · · ,

Ṅi(t) = a1Ni−1(t) + a2Ni(t) + a3Ni+1(t),

· · · .

(12)

Using methods similar to those demonstrated in our previous work devoted to
biomedical modeling [16, 21], it is possible to show that for initial condition Ni(0) =
δik (Kronecker delta)–that is Nk(0) = 1, Ni(0) = 0 for i 6= k–the following relations
hold true:

Nk
l (s) =

1
a3


s− a2 −

√
(s− a2)

2 − 4a1a3

2a1




k−l+1

, (13)

Nk
Σ(s) =

1
s− (a1 + a2 + a3)


1−


s− a2 −

√
(s− a2)

2 − 4a1a3

2a1




k−l+1
 , (14)
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Figure 2. Decomposition of the system model.

where Nk
l (s), Nk

Σ(s) are Laplace transforms of Nk
l (t) and

∑
i≥l N

k
i (t) = Nk

Σ(t),
respectively (superscript k is introduced to underscore the index of the state vari-
able with nonzero initial condition). Now, let us assume that k = l. Then, after
calculating the inverse Laplace transform the following formulae are obtained:

N l
l (t) =

1
a3

(√
a3

a1

)
I1

(
2
√

a1a3t
)

t
exp(a2t) (15)

N l
Σ(t) =

∑

i≥l

N l
i (t) = exp [(a1 + a2 + a3)t] ·

·
[
1−

(√
a3

a1

) ∫ t

0

I1

(
2
√

a1a3τ
)

τ
exp [−(a1 + a3)τ ] dτ

]
,

(16)

where I1(t) is a modified Bessel function of the first order.
It should be emphasised that the assumption about the initial condition does

not introduce any additional constraints to the applicability of the model. Because
of the infinite-dimensional tail’s linearity any finite non-zero initial condition can
be incorporated into the final solution.

Using an asymptotic expansion of (16) it has been found [12] that, assuming
a3 ≥ a1, a stability condition for the autonomous system is given by
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a2 ≤ −2
√

a1a3. (17)
To understand the implications of those conditions, let us rewrite them using

biological parameter notation. Then, they can be presented as d ≥ b and
√

d−
√

b ≥√
λ. The first, assumed inequality is confirmed by experimental data, and it means

that the amplification ratio should not be greater than the deamplification ratio.
Surprisingly, this is not sufficient to the stability of the autonomous system (it does
not lead to the extinction of the resistant subpopulation when there is no influx of
cells from the sensitive compartment). The additional condition implies that the
difference in those rates must be large enough to prevent amplification before cells
divide (parameter λ corresponds to the cell lifespan).

Relation (13) can be used to determine the following transfer function in the
model (9):

K1(s) =
Nl(s)

Nl−1(s)
=

c1

a3
· s− a2

√
(s− a2)2 − 4a1a3

2a1
. (18)

Moreover, ∑

i≥l

Ni(t) = N l
Σ(t) + N+(t), (19)

where

N+(t) = c1

t∫

0

N l
Σ(t− τ)Nl−1(τ)dτ (20)

and N l
Σ(t) is defined by (16).

Let us now introduce the following notation:

B̂1 =




0
...
0

al−1,l


 , C = [0, . . . , 0, 1] , dimC = l. (21)

Then, applying standard control theory techniques [23], the following relation
holds true for u(t) = 0:

K2(s) =
Nl−1(s)
Nl(s)

= C(sI− Ã1)−1B̂1. (22)

Taking into account the linear form of such a system, it is possible to present the
model in the form of the block diagram shown in Figure 3. This makes it possible
to analyze the dynamical properties of the closed-loop system.

Figure 3. Block diagram of the system without control.
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Let us now consider the problem of stabilization of the system (9) by a con-
stant control. Then, the transfer function K2(s) representing the finite dimensional
subsystem in the Figure 3 takes the following form:

K2(s) =
Nl−1(s)
Nl(s)

= C

[
sI−

(
Ã1 +

m∑

i=0

B̃i

)]−1

B̂1 (23)

Again, standard control theory techniques, including the Nyquist criterion [23]
can be applied to find the stability conditions for such a system.

7. Optimization problem. The system description (9) in the form of an infinite
number of ODEs, is not very convenient, although it may be used in different
approaches to optimization problems that will be considered in this section. Instead,
a model transformation into an integrodifferential one is proposed.

Let us denote

Ñ =




N0

...
Nl−1


 (24)

and Ck = [cj ], ck = 1, cj = 0 for j 6= k, i = 1, 2, . . . , l − 1.
Let us also assume the initial conditions Ni(0) = 0 for i > l − 1 (once again

it should be stressed that any finite nonzero initial condition can be incorporated
into the final solution). Then, the last equation in the first subsystem, influenced
directly by control, as presented in Figure 2, can be transformed into an integro-
differential form:

Ṅl−1(t) =
l−1∑

j=0

m∑

i=0

bj
l−1,iui(t)Nj(t) +

l−1∑

i=0

al−1,iNi(t) + al−1,l

t∫

0

k1(t− τ)Nl−1(τ)dτ,

(25)
where k1(t) is the inverse Laplace transform of K1(s), given by (18).

Similarly, other equations can also be rewritten in the same way, leading to the
transformation of the model (9) into the following form:

˙̃N = h(u, Ñ) +

t∫

0

f̃(Ñ, t, τ)dτ, Ñ(0) = Ñ0, (26)

where h(..), f̃(...) are the respective l–dimensional vector functions

h(u, Ñ) =
l−1∑

j=0

m∑

i=0

bj
k,jui(t)Nj(t) +

l−1∑

j=0

ak,jNj(t), (27)

f̃k(Ñ, t, τ) =
{

0 for k < l − 1,
al−1,lk1(t− τ)Nl−1(t) for k = l − 1.

(28)

After transforming the system description, it is possible to address effectively
the arising optimal control problem.

Let the system be governed by equation (9), which afterwards is transformed
into the form (26). The control is bounded:

0 ≤ ui(t) ≤ uimax ≤ 1, i = 0, 1, . . . , m, (29)
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where ui(t) = uimax represents the maximum allowable dose of the drug i and
ui(t) = 0 represents no application of the drug i. The goal is to minimise the
performance index given by (4). Due to the particular form of both the performance
index and the equation governing the model, it is possible to find the solution to
the problem by applying an appropriate version of Pontryagin’s maximum principle
[13].

It is important to notice that although the performance index (4) seems to
consist of two components–a sum and an integral–the sum actually involves another
integral, which stems from (19)–(20). Therefore, it should be rewritten to emphasize
this relation:

J =
i=l−1∑

i=0

Ni(T ) + r1N
l
Σ(T ) +

∫ T

0

[
r1c1N

l
Σ(T − τ)Nl−1(τ) + r

m∑

i=0

ui(τ)dτ

]
. (30)

A number of formulations of necessary conditions for the optimization problem for
dynamical systems governed by integro-differential equations can be found in the
literature (see, e.g., [3, 5, 7]). However, they usually are either too general to be
efficiently applied in such a particular problem or have overly strong constraints–
for example, smoothness of the control function. Nevertheless, following the line
of reasoning presented in [3], it is possible to derive the necessary conditions for
optimal control:

uopt(t) = arg min
u

[
r

m∑

k=0

uk(t) + p′(t)h(u, Ñ) + al−1,l

∫ ′

t

pl−1(τ)k1(t− τ)Nl−1(τ)dτ

]
,

(31)

ṗ′(t) = −
[
q′(t) + p′(t)hÑ (u, Ñ) +

∫ ′

t

p′(τ)f̃Ñ (t− τ)dτ

]
, (32)

q(t) =
[

0 . . . 0 r1c1N
l
Σ(T − t)

]
,′ (33)

pi(T ) = 1, i = 0, 1, . . . , l − 1, (34)
where p(t) is an adjoint vector.

Taking into account constraint (7) and the bilinear form of (27), it can be proved
that to satisfy (31), the optimal control must be of bang-bang type. Then, to find
the optimal number of switches and switching times, a gradient method can be
developed, following the line of reasoning presented in [15].

8. Conclusions. This paper is concerned with an infinite-dimensional bilinear
model of dynamical systems. Basing on model decomposition, it is possible to
analyze some of their dynamical properties. Transforming the system description
into one integrodifferential equation makes it possible to solve an optimal control
problem with the performance index defined in l1 space of summable sequences.

Possible applications of the model presented in this paper include modeling of
emergence of drug resistance in cancer cells and analyzing possible chemotherapy
protocols. Until now, the treatment protocols have been designed mainly on the
basis of experimental results and general knowledge about drug activity. However,
no general mathematical approach exists that would help to explain obtained results
or design treatment in chemotherapy.
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It should be stressed that the control u in the model represents the effect of
the drug action and not the time course of the drug treatment (in particular, the
drug concentration). Therefore, further research is crucial to establish the relation
between those variables, taking into account both the pharmacokinetics of different
agents used in chemotherapy and the spatial distribution of drug concentration in
growing cancer tissue.

In our opinion, this model can be used as a basis for other research concerning the
development of drug resistance and the evolution of populations of cancer cells. So
far the population evolution is more suited to such cancers as leukemia. However,
combining it with models of the spatial growth of solid tumors seems to be very
promising, and in fact it is a subject of our future research. Another possible
extension of this work, though apparently much more difficult and distant in the
future, is relating drug effects given by control u to actual drug administration.
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