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Abstract. We introduce a model for describing the dynamics of large num-
bers of interacting cells. The fundamental dynamical variables in the model are
subcellular elements, which interact with each other through phenomenological
intra- and intercellular potentials. Advantages of the model include i) adap-
tive cell-shape dynamics, ii) flexible accommodation of additional intracellular
biology, and iii) the absence of an underlying grid. We present here a de-
tailed description of the model, and use successive mean-field approximations
to connect it to more coarse-grained approaches, such as discrete cell-based
algorithms and coupled partial differential equations. We also discuss efficient
algorithms for encoding the model, and give an example of a simulation of an
epithelial sheet. Given the biological flexibility of the model, we propose that
it can be used effectively for modeling a range of multicellular processes, such
as tumor dynamics and embryogenesis.

1. Introduction. Computational modeling of multicellular systems has become
an increasingly useful tool for the interpretation and understanding of experimental
data in a variety of biological areas. Numerous studies have been performed within
the modeling community, with application to collective dynamics of unicellular
organisms, such as myxobacteria [13] and slime molds [16, 28], and to dynamics
within multicellular organisms. Studies of the latter include avascular tumor growth
[3, 26], tumor angiogenesis [4], embryogenesis [5, 20], and cell sorting [7, 10].

A fundamental issue in modeling cell populations is that of scale. One is typically
interested in systems composed of tens of thousands to many millions of cells,
and yet the cell population is often phenotypically heterogeneous. Therein lies
the problem of whether or not to include more biological realism at the cellular
level, with the inevitable computational cost of being limited to smaller numbers
of cells. The different modeling techniques currently employed can be viewed as
different compromises to this inescapable problem. At the most coarse-grained level
one erases cell identity and uses continuous cell densities to describe the system.
The classic model of this type is the Keller-Segel differential equation model of
aggregation in social amoeba [14]. Similar differential equation models have been
applied to many other areas, including, of course, tumor growth [3, 4, 18]. Cell
densities can also be modeled using finite element methods [5]. At the next finer
scale, cells within the population are modeled as discrete objects, yet with little
or no internal structure [2, 19]. Such models may be constructed either as cellular
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automata on a grid, or else as many-body simulations with no underlying lattice.
Recent work has indicated that in the presence of chemotaxis, grid effects can lead
to strong artifacts. Proceeding to smaller length-scales, cells are endowed with a
size (which can change with time during the cell cycle), and perhaps anisotropy
(e.g. modeled as ellipsoids) to mimic cell shape and/or cell polarity [7, 21]. An
ingenious and popular model of this type is that due to Graner and Glazier, in
which cells are represented as clusters of Potts spins on a fine grid [10]. The
Potts model approach has been applied to a wide range of systems, including cell
sorting [8], slug formation in Dictyostelium [16], and avascular tumor growth [26].
At smaller scales still, the internal biochemical or biomechanical dynamics of the
cell are included, e.g. signal transduction for response to chemical signals, and/or
cytoskeleton dynamics via actin polymerization [9, 23]. As the scale of biological
detail becomes finer, computational constraints limit the size of the cell population.
Indeed, models primarily concerned with cytoskeleton dynamics typically focus on
a single cell.

In this paper we introduce a framework for modeling multicellular systems which
is designed to allow simulation of large numbers of cells in three dimensions, but
which also allows for adaptive cell-shape dynamics and the accommodation of suc-
cessive degrees of intracellular biology. This framework uses “subcellular elements”
(defined below) as the fundamental dynamical variables, along with overdamped
Langevin dynamics [19, 27] for temporal development of the system.

The outline of the paper is as follows. We describe the subcellular element model
in the next section. In section 3 we use a succession of mean-field approximations
to connect our model to more coarse-grained descriptions. In section 4 we briefly
discuss efficient implementation of the model and give a simple example of numerical
output. We conclude in section 5 with a summary of the main results of the paper
and a discussion of biological extensions of the model.

2. The subcellular element model. The cell sets the fundamental scale in mul-
ticellular systems. As such, it is natural to base model descriptions of these systems
at the cellular scale. One of the key properties to incorporate in a cell-based model
is dynamical change in cell shape (or, more generally, cell polarity), which can
occur in response to local mechanical interactions with neighboring cells, or in re-
sponse to long-ranged chemical signaling [1]. Adaptive changes in cell shape and
cell polarity allow coherent dynamics of large numbers of cells. For example, several
mechanisms of large-scale morphological change during gastrulation are due to cell
intercalation, which is driven by elongation of individual cells along a particular
axis [29]. From a modeling perspective, cell shape is difficult to parameterize. For
instance, systematically extending an ellipsoid model of cells in three dimensions
requires complicated geometrical constructions. Ideally, one would like a model
in which cell shape emerges from cellular interactions – in other words, for cell
shape to be adaptive to the local environment. Here, we attempt to instantiate this
property by sub-dividing each cell into a number of subcellular elements. Both the
intra- and intercellular dynamics are written in terms of interactions between these
elements. We shall first describe this dynamics by writing the equations of motion
for the elements, and then discuss how this dynamics can be interfaced with the
underlying biology.

For simplicity, consider a system with a constant number N of cells in three
spatial dimensions, with each cell being composed of M elements. We label an
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individual cell by i ∈ (1, N) and an element in cell i by αi ∈ (1,M). For ease of
discussion we assume that chemical signaling is absent from the system, so that cells
respond purely to local biomechanical interactions. In this case, the position vector
of element αi is taken to change in time according to three processes: (i) a weak
stochastic component, which mimics the underlying fluctuations in the dynamics
of the cellular cytoskeleton; (ii) an elastic response to intracellular biomechanical
forces; and (iii) an elastic response to intercellular biomechanical forces. We assume
further that the elements’ motion is over-damped, so that inertial effects can be
ignored. The equation of motion for the position vector of element αi takes the
form:

ẏαi
= ηαi

−∇αi

∑

βi 6=αi

Vintra(|yαi − yβi |)−∇αi

∑

j 6=i

∑

βj

Vinter(|yαi
− yβj

|) . (1)

On the right-hand side, the noise term ηαi
is a Gaussian-distributed random variate

with zero mean and correlator

〈ηm
αi

(t)ηn
βj

(t′)〉 = 2νδi,jδαi,βj δ
mnδ(t− t′) , (2)

where m and n are vector component labels in the three-dimensional space. The
second and third terms on the right-hand side of equation (1) represent, respectively,
intra- and intercellular interactions between the elements. These interactions are
completely characterized by the phenomenological potentials Vintra and Vinter. At
this level of description, all relevant biological detail must be encoded into these
two potentials. The elemental composition of cells, along with the inter-elemental
potentials, are shown schematically in Figure 1. We have assumed that “two-body”
potentials are sufficient to describe the dynamics. It may be necessary to use “three-
body” potentials to capture the essence of more complicated interactions.

αi

βj

i j
Vintra

Vinter

Figure 1. Schematic diagram showing two cells, i and j, and
a subset of the intra- and intercellular interactions between their
elements. The elements of cell i are represented by open circles,
and those of cell j by filled circles. The intra- and intercellular
interactions are represented by solid and dashed lines respectively.

For given biological applications of this modeling framework, one must intuit
(or, better, derive) reasonable forms for Vintra and Vinter. For illustrative purposes,
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consider a population of cells which are weakly adhesive to one another. Subcellular
elements both within and between cells will be mutually repulsive if their separation
is below the equilibrium size of an element. For separations larger than this size,
the elements will be mutually attractive, but with the strength of attraction falling
off rapidly with separation. These properties can, for example, be conveniently
encoded via a generalized form of the Morse potential, which is commonly used in
physics and chemistry to model inter-molecular interactions [24]. The (generalized)
Morse potential has the explicit form

V (r) = U0 exp(−r/ξ1)− V0 exp(−r/ξ2) , (3)

and is illustrated in Figure 2. It is straightforward to evaluate the position and
depth of the attractive potential minimum in terms of the four parameters
(U0, V0, ξ1, ξ2). In a simple application of the element model, one can use Morse
potentials for both Vintra and Vinter, with parameters chosen to ensure that the
former has stronger inter-elemental adhesion than the latter. This condition is
necessary, in this simplest version of the model, to maintain the mechanical integrity
of the cells.

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.2  0.4  0.6  0.8  1

r

V

Figure 2. The Morse potential for parameter values U0 = 0.25,
V0 = 0.1, ξ1 = 0.12, and ξ2 = 0.36, as used for the intracellular
potential in section 4.

The introduction and explicit choice of these potentials has so far been purely
phenomenological, and some discussion of the biological motivation for these po-
tentials is necessary. Considering a “typical” tissue cell, such as a fibroblast or
epithelial cell, the mechanical integrity of the cell is maintained by the internal
cytoskeleton [1]. This is a complex network of different types of interconnected
filaments, with actin being the most important filament type for cell motility. Di-
viding the cell into elements corresponds to modeling the shape and mechanical
integrity of the cell in terms of volume elements of cytoskeleton. The intracellular
attraction between elements arises from the mechanical rigidity of the cytoskele-
ton, more specifically, the elastic forces transmitted through filaments connecting
neighboring elements. These interactions are local, and thus it is necessary that
the potential has a rapid decay with distance. Elements at opposite sides of a cell
mechanically interact through elastic forces mediated by elements comprising the
interior of the cell. The biochemical and biomechanical interactions between cells
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is complex, and arises from a variety of cell-cell (and cell-matrix) contacts, such as
gap, tight, and anchoring junctions [1]. Still, the interactions are local, and, once
the cells are linked, one can think of the interaction in terms of a short-ranged
elastic potential. There is no reason to favor the Morse potential at this level of
description – there are many reasonable potentials that one can write down. Such
potentials will, however, be characterized by at least four parameters – two en-
ergy scales (for short-ranged repulsion, and intermediate-range adhesion) and two
length scales, which characterize the size of an element, and its adhesive range.
There are a number of models which have been focused on the detailed mechanics
of the cytoskeleton, and its role in cell motility [6, 9, 17, 23]. An interesting subject
of future study is the derivation of inter-elemental potentials from coarse-graining
the underlying cytoskeletal mechanics considered in these more detailed studies.

3. Connections to coarse-grained models. In this technical section we sketch
the derivation of coarser-grained models by applying a succession of mean-field
approximations to the element model. The essence of this section is summarized
in Figure 3, which shows the fundamental objects and fields characterizing the cell
models at different scales.
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Figure 3. Relationships between model descriptions of multicel-
lular systems at different scales. The four levels (from finer to
coarser scales) are described explicitly by equations (1), (5), (9),
and (10) respectively.

In the first of these coarse-graining steps, we replace the element model by a
subcellular density model, in which the discrete elements within a given cell i are
replaced by a smooth average density field ρi(x, t). We stress that a separate
density field exists for each cell in the system, and that these density fields are
strongly correlated to one another. To proceed, we first recast the subcellular
element model in terms of the probability distribution of individual elements. We
define the probability distribution of element αi by Pαi(x, t) = 〈δ3(x−yαi)〉, where
the angled brackets denote an average over the noise η. Starting from equations
(1) and (2) we use standard methods [19, 27] to derive an equation of motion for
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Pαi
, which takes the form

∂tPαi(x, t) = ν∇2Pαi(x, t)

+ ∇ ·
∫

d3x′ [∇Vintra(|x− x′|)]
∑

βi 6=αi

Pαi,βi
(x, t;x′, t)

+ ∇ ·
∫

d3x′ [∇Vinter(|x− x′|)]
∑

j 6=i

∑

βj

Pαi,βj (x, t;x′, t) , (4)

where Pαi,βj
is the “two-element” distribution function. The equation of motion for

this two-element distribution will involve the three-element distribution, and so on.
The simplest truncation scheme to break the hierarchy of equations is the mean-
field approximation (MFA), in which the statistical correlations between elements
are discarded. Within this MFA we have Pαi,βj

(x, t;x′, t) = Pαi
(x, t)Pβj

(x′, t).
We now define the subcellular density of cell i via ρi(x, t) =

∑
αi

Pαi(x, t).
Summing over αi in equation (4), and imposing the MFA, we find a closed equation
for this subcellular density function, which takes the form of an advection-diffusion
equation:

∂tρi(x, t) = ν∇2ρi(x, t) +∇ · ρi(x, t)∇Φi(x, t) , (5)
where the velocity potential experienced by the density field of cell i is given by

Φi(x, t) =
∫

d3x′ Vintra(|x−x′|)ρi(x′, t)+
∫

d3x′ Vinter(|x−x′|)
∑

j 6=i

ρj(x′, t) . (6)

The MFA used to derive this density equation will typically be good when the
number of elements used to define the cell is very large. The density representation
may well be interesting to explore from an analytical standpoint; however, it is
probably not so useful for numerical implementation. For simulation of N cells,
one must simultaneously integrate N coupled partial differential equations on a fine
three-dimensional grid. As we shall see in the next section, the underlying element
model, expressed in equation (1), can be very efficiently encoded for simulation
with no need of an underlying grid.

We take this opportunity to mention that equation (5) can be discretized in such
a way that it resembles a master equation [11]. In this representation, the density
of cell i can be interpreted as a probability distribution of identical elements, which
move from one grid site to the next by activated hopping. The hopping rate has the
Arrhenius form ∼ exp(−∆Φi/2ν) (where ∆Φi is the change in velocity potential,
for an element from cell i, between the two grid sites of interest, which is actually
nontrivial to compute since it depends self-consistently on the density ρi). The
multicellular system as a whole is then defined on a grid, with each grid site able
to accommodate (one or more) elements from the N different cells. The elements
move about the lattice (and consequently interact) via activated hopping, with
highly nonlinear hopping rates as indicated above. This representation, although
not easily implemented, illustrates a qualitative connection between a discretized
form of the subcellular element model (after one level of MFA) and the lattice-
based Potts model [10]. This discretized form of the element model has the flavor
of a lattice-gas analog to the Potts model, in the sense that a lattice-based element
moves over the lattice and yet keeps its original parent cell identity, whereas a Potts
spin is defined at a lattice site and identifies, at a given time, the cell spanning that
particular site. Having to hand these two distinct models of multicellular systems
(the subcellular element model, as expressed in equation (1), and the Potts model)
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defined at similar scales of biological realism, will allow useful cross-validation of
these approaches, especially when applied to complicated biological systems.

We can use the density equation (5) to coarse-grain to another scale – where now
only gross properties (which we refer to loosely as “moments”) of the subcellular
density field are used to characterize the cell. This coarse-graining step is analogous
to a multipole expansion in electromagnetism. The zeroth moment of cell i is its
mass, which is defined by mi(t) =

∫
d3x ρi(x, t). Within the present discussion,

this quantity is independent of time and cell index i since we have assumed that all
cells have the same number of elements, and that the number of elements does not
change with time. Proceeding to the first moment, we define the position vector of
the center of mass of cell i via xi(t) =

∫
d3x xρi(x, t). The equation of motion for

this position vector is obtained from equation (5) and takes the form

ẋi = −
∫

d3x ρi(x, t)∇Φi(x, t) . (7)

We briefly mention the second moment of cell i, namely its inertia tensor [15]. This
is defined as Tmn

i (t) =
∫

d3x
(
x2δmn − xmxn

)
ρi(x, t). An equation of motion,

similar to equation (7), can be written down for this tensor. This quantity contains
crucial information regarding the mechanical polarity of the cell. Higher-order mo-
ments can be defined and contain successively more information about the shape
and density distribution of the cell.

Since the equations of motion of these moments are written in terms of integrals
over the subcellular density, they are all strongly inter-dependent. To write closed
equations again requires some form of truncation. Here we use the simplest, which
is again a form of MFA; namely,

∫
d3x f(x)ρi(x, t) = f(xi(t)). This allows us to

express the right-hand side of equation (7) in terms of xi(t), and we find the closed
equation

ẋi(t) = −∇
∑

i 6=j

Vinter(|xi(t)− xj(t)|) . (8)

There are two interesting points to note: (i) the intracellular potential has vanished
under this approximation, since we are essentially shrinking the cells to points, and
(ii) the dynamics are now deterministic. Concerning the first point, the intracellular
potential will reappear in this coarse-grained description if we include second-order
effects – namely, if we derive two coupled equations for each cell, describing the
time-dependence of the cell’s position vector and its inertia tensor. Concerning the
second point, the effect of the noise ηαi has vanished since the first MFA leading to
equation (5) essentially assumes an infinite number of elements, so that the explicit
noise terms are averaged to zero. The noise from a finite number (M) of elements
will be nonzero, and have a variance which scales as 1/M . This weak noise (which
describes the random wandering of the center of mass) can be added to equation
(8) a posteriori in order to retain stochasticity in this discrete cell representation.
One can then write equation (8) as

ẋi(t) = ηi(t)−∇
∑

i 6=j

Vinter(|xi(t)− xj(t)|) , (9)

where the noise ηi has zero mean, and correlator 〈ηm
i (t)ηn

j (t′)〉 = 2Dδi,jδ
mnδ(t−t′),

where D = ν/M . This stochastic model, which tracks the positions of the cells,
is precisely that studied by Newman and Grima [19]. As shown in that work, a
further MFA applied to equation (9) leads to a closed equation for the density of
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cells, which is defined as n(x, t) =
∑

i〈δ3(x−xi(t))〉. We omit the details here and
simply give the final result:

∂tn(x, t) = D∇2n(x, t) +∇ · n(x, t)∇Ψ(x, t) , (10)

where the coarse-grained velocity potential Ψ for the cell density has the form

Ψ(x, t) =
∫

d3x′ Vinter(|x− x′|)n(x′, t) . (11)

A rigorous derivation of this last step has been given by Stevens in the context of
chemotaxis [25], and uses the limit of infinite cell number, with an appropriately
scaled chemotactic coupling.

Finally, after three levels of coarse-graining, we have arrived at a partial differen-
tial equation for the cell density, as given in equations (10) and (11). As mentioned
in the introduction, this level of description has been widely used to describe the
large-scale dynamics of cell populations. However, as should be clear from this anal-
ysis, a great deal of statistical information and smaller-scale biomechanics must be
discarded at this scale. It would be very interesting to rederive the density equations
from a more careful analysis. Some details of the intracellular potentials (especially
regarding cell polarity) can be captured in this largest-scale description through i)
calculating renormalized parameters, such as the diffusion coefficient D, in the den-
sity description (10), and ii) deriving the companion equation for a “cell-polarity
field” from the discrete cell equations for the inertia tensor.

4. Efficient algorithms and model output. We now return to the subcellular
element model as described in section 2. The numerical implementation of this
model turns out to be fairly straightforward and efficient. Since the fundamental
dynamical variables are position vectors, we have no need for an underlying grid,
and simply need to track the values of the (M×N) vectors {yαi} which completely
describe the state of the system at any given time.

It is worth mentioning that some care must be taken in constructing the algo-
rithm so as to avoid a CPU cost which scales as (MN)2. This would arise from
attempting to interact every element with every other in order to update the sys-
tem. Clearly this is not necessary since the potentials are short-ranged. As such,
the algorithm only needs to interact a given element αi with those elements which
are close enough to have a nonnegligible interaction. As long as we can efficiently
identify these nearby elements, our algorithm will have a CPU cost which scales
as MN . This will allow the simulation of large numbers of cells with moderate
to large numbers of elements per cell. There are a number of ways to identify
nearby elements. The methods to achieve this have been developed over the years
in molecular dynamics simulations [12, 22]. Examples are neighbor tables and the
more sophisticated binary search trees and octrees. We have employed a method
based on “sectors.” The three dimensional system is broken up into a grid of sec-
tors – the size of a sector chosen to be about twice the range of inter-elemental
interactions. The dynamics of the elements are completely oblivious to the sectors.
The sectors simply allow one to construct a look-up table, wherein for each sector
there is a list of the identity of those elements in that sector. When one calculates
the interactions of a given element, one computes the interactions between that
element and all those in its own sector and the nearest-neighbor sectors. Tem-
poral development is performed using an explicit Euler discretization, with time
increment δt.
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Figure 4. An example of numerical output from the model using
Morse potentials. Parameter values are given in the main text.
Shown here is a two-dimensional projection of data from a model
of an epithelial sheet. Each of the 128 cells is composed of 20
elements (open circles), and element motion is constrained in the
third dimension by hard-wall boundaries. The filled circles indicate
the center of mass of each cell.

In Figure 4 we show an example of the output of this algorithm. In this ex-
ample we have simulated 128 cells, with each cell constructed from 20 subcellular
elements. Both the intra- and intercellular potentials are chosen to be general-
ized Morse potentials, with parameter sets (U0, V0, ξ1, ξ2) = (0.25, 0.1, 0.12, 0.36)
and (0.25, 0.05, 0.12, 0.24), respectively. Other parameter values are ν = 0.001 and
δt = 0.1. For ease of presentation we have simulated the cells in a quasi-two-
dimensional geometry, with hard-wall boundary conditions at z = 0 and z = 0.5,
which might represent an epithelial layer bounded by a basement membrane. The
system is shown after about 3,000 iterations, starting from a random distribution
of cell positions (with the initial positions of the elements for each cell randomly
distributed in a small region about these cell positions). This simulation requires
about three minutes on a 2GHz PC. Extrapolating to larger systems, we see that
thousands of iterations for a system of 10, 000 cells (each with 20 elements) requires
a few hours of CPU time on a PC. More sophisticated optimization of the algo-
rithm will allow further improvements in efficiency. Note that as a result of the
elements attempting to form intercellular adhesive bonds with elements of nearby
cells, the cells have adapted their cell shapes to their local biomechanical environ-
ment. A more systematic numerical study comparing the different coarse-grained
descriptions is currently in progress.
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5. Summary and outlook. In this paper we have introduced a model of inter-
acting multicellular systems, in which the fundamental objects are not cells, but
subcellular elements – by which we mean, in the simplest sense, small volume el-
ements of intracellular cytoskeleton. The dynamics of the elements is described
by Langevin equations, as given in equation (1). The three dynamical contribu-
tions to a given element’s motion are (i) a weak stochastic component; (ii) local
biomechanical interactions with other elements within the same cell, described by
a phenomenological potential Vintra; and (iii) local biomechanical interactions with
elements in nearby cells, these described by a potential Vinter (see Figure 1). The
success of the model in a given biological application depends, in large part, on well-
chosen forms of these potentials. The generic form of these potentials is reasonably
well captured by the generalized Morse potential (Figure 2). We have outlined, in
section 3, a series of coarse-graining procedures (summarized in Figure 3), whereby
the subcellular element model can be linked to models at larger scales, such as dis-
crete cell models and differential equation models describing the macroscopic cell
density. In section 4 we indicated how an efficient algorithm may be constructed to
integrate equation (1) forward in time for large numbers of cells or elements, and
gave an example from a simulation of a sheet of cells (Figure 4).

We conclude with a discussion of some of the many possible extensions of the
model, whereby biological detail can be added without distortion of the underlying
element framework.

5.1. Cell types. For simplicity, in this introductory paper we have presented the
element model for a population of N identical cells. Phenotypic heterogeneity at
the cell level can be described by attaching cell labels to the noise strength (ν → νi),
intracellular potentials (Vintra → Vi), and intercellular potentials (Vinter → Vi,j).

5.2. Subcellular element types. For many applications it will not be sufficient
to construct a cell from M identical elements. For instance, it might be necessary
to distinguish elements in the interior of the cell (“cytoplasmic elements”) from
elements on the surface of the cell (“membrane elements”). Different element types
can easily be instantiated by defining the appropriate classes of intra- and inter-
cellular potentials. In the example just given, the intercellular interactions would
primarily be described by an intercellular potential connecting membrane elements
from neighboring cells, while the cytoplasmic elements would interact only with
elements within the same cell. In addition, elements can be endowed with inter-
nal variables registering environmental variables such as pH or nutrient level, and
communicate these variables to neighboring elements to trigger appropriate cell
response.

5.3. Extracellular element types. Cells not only adhere to each other, but also
interact biomechanically with a range of non-cellular environmental structures, such
as the extracellular matrix or various gel-like media [1]. In some cases these struc-
tures are produced by the cells themselves. Within the spirit of the element model,
these extracellular structures can also be constructed from elements (i.e. elastically
coupled degrees of freedom on the same length-scale as the subcellular elements)
with appropriately defined interaction potentials to describe the cell/non-cell inter-
actions.

5.4. Chemotaxis. We have been exclusively concerned with short-ranged biome-
chanical interactions in this paper. Equally important for many applications (e.g.
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embryogenesis, wound healing) are long-ranged chemical interactions. The simplest
way to introduce such interactions in the element model is to chemically couple the
centers of mass of cells which are signaling to one another. Then, since the source
and sink of the signal are points, it is straightforward to implement the Green func-
tion methods developed in some detail in Newman and Grima [19]. These methods
encode the diffusion of chemical signals through the diffusion equation Green func-
tion (which allows one to avoid introducing a fine grid for explicit integration of the
chemical diffusion equations). More sophisticated treatments would be based on
cell polarity induced by the chemical signal. For instance, one could use chemically
responsive element types within the cell, so that the cell as a whole responds to a
chemical signal via a subcellular element response, followed by a cell-level response
mediated by elastic interactions between responsive and non-responsive elements.

5.5. Cell cycle. For many applications, and in particular that of tumor growth,
cells in the population are undergoing numerous cell divisions over the time scales of
interest. Cell growth can be accommodated in the modeling framework by allowing
new elements to be spawned within the cell (based on, for instance, an internal
monitoring of nutrient levels as discussed above in subsection 5.2). Mitosis is more
complicated, and we here describe a simple mechanism to achieve this, although
more realistic dynamics may be necessary in particular applications. To capture
the biological essence of mitosis, one can define a spindle axis in the cell, which
then defines a plane separating the two future daughter cells. One can then turn
off intracellular interactions between elements on either side of this plane to initiate
cell division.

In this final section we have tried to give a flavor of possible biological exten-
sions of the model, and the ease with which they can be implemented within the
element framework. This flexibility must ideally be tempered by minimal incremen-
tal model-building in order to keep models simple enough to understand from both
quantitative and biological perspectives. Equally important is the need to calibrate
and confront the model with real biological data. A first step will be to estimate
parameters in the phenomenological potentials using data from force measurements
on cytoskeleton mechanics and cell adhesion. Note, such parameterizations will be
fairly specific to particular cell types. With these caveats in mind, we hope that the
subcellular element model will prove useful in the computational study of a wide
range of multicellular systems.

Acknowledgments. The author would like to thank James Glazier, Ramon Grima,
John Nagy, Kevin Schmidt, Erick Smith, and Cornelius Weijer for interesting dis-
cussions. The author gratefully acknowledges partial support from the NSF (no.
IOB-0540680) and NSF/NIH (no. DMS/NIGMS-0342388).

REFERENCES

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology
of the cell, 4th ed., Garland, New York, 2004.

[2] T. Bretschneider, B. Vasiev, and C. J. Weijer, A model for Dictyostelium slug movement,
J. Theor. Biol. 199 (1999), 125-136.

[3] H. M. Byrne, Modeling avascular tumor growth, in Cancer Modelling and Simula-
tion, ed. L. Preziosi, Chapman and Hall/CRC, Boca Raton, Fl., 2003.

[4] M. A. J. Chaplain, Mathematical modeling of angiogenesis, J. Neurooncol. 50 (2000),
37-51.



624 T. J. NEWMAN

[5] L. A. Davidson, M. A. R. Koehl, R. Keller, and G. F. Oster, How do sea urchins invaginate
– using biomechanics to distinguish between mechanisms of primary invagination,
Development 121 (1995), 2005-2018.

[6] P. A. Dimilla, K. Barbee, and D. A. Lauffenburger, Mathematical model for the effect
of adhesive mechanics on cell-migration speed, Biophys. J. 60 (1991), 15-37.

[7] D. Drasdo, R. Kree, and J. S. McCaskill, Monte Carlo approach to tissue-cell popula-
tions, Phys. Rev. E 52 (1995), 6635-6657.

[8] J. A. Glazier, and F. Graner, Simulation of the differential adhesion driven rear-
rangement of biological cells, Phys. Rev. E 47 (1993), 2128-2154.

[9] M. E. Gracheva and H. G. Othmer, A continuum model of motility in amoeboid cells,
Bull. Math. Biol. 66 (2004), 167-193.

[10] F. Graner, and J. A. Glazier, Simulation of biological cell-sorting using a two-
dimensional extended Potts model, Phys. Rev. Lett. 69 (1993), 2013-2016.

[11] R. Grima, and T. J. Newman, Accurate discretization of advection-diffusion equa-
tions, Phys. Rev. E 70 (2004), no. 036703.

[12] J. M. Haile, Molecular dynamics simulation: elementary methods, Wiley Interscience,
1997.

[13] O. A. Igoshin, A. Mogilner, R. D. Welch, D. Kaiser, and G. Oster, Pattern formation and
traveling waves in myxobacteria: theory and modeling, Proc. Natl. Acad. Sci. (USA)
98 (2001), 14013-14018.

[14] E. F. Keller, and L. A. Segel, Initiation of slime mold aggregation viewed as an insta-
bility, J. Theor. Biol. 26 (1970), 399-415.

[15] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed., Butterworth-Heinemann, Oxford,
2000.

[16] A. F. M. Maree, and P. Hogeweg, How amoeboids self-organize into a fruiting body:
multicellular coordination in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 98
(2001), 3879-3883.

[17] A. Mogilner and G. Oster, Cell motility driven by actin polymerization, Biophys. J.
71 (1996), 3030-3045.

[18] J. Nagy, The ecology and evolutionary biology of cancer: a review of mathematical
models of necrosis and tumor cell diversity, Math. Biosci. Eng. 2 (2005), 381-418.

[19] T. J. Newman, and R. Grima, Many-body theory of chemotactic cell-cell interac-
tions, Phys. Rev. E 70 (2004) no. 051916.

[20] K. J. Painter, P. K. Maini, and H. G. Othmer, A chemotactic model for the advance
and retreat of the primitive streak in avian development, Bull. Math. Biol. 62 (2000),
501-525.

[21] E. Palsson and H. G. Othmer, A model for individual and collective cell movement
in Dictyostelium discoideum, Proc. Natl. Acad. Sci. (USA) 97 (2000), 10448-10453.

[22] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press,
2004.

[23] B. Rubenstein, K. Jacobson, and A. Mogilner, Multiscale two-dimensional modeling of
a motile simple-shaped cell, Multiscale Model. Sim. 3 (2005), 413-439.

[24] L. I. Schiff, Quantum mechanics, 3rd ed., McGraw-Hill, Singapore, 1968.
[25] A. Stevens, The derivation of chemotaxis equations as a limit dynamics of moderately

interacting stochastic many-particle systems, SIAM J. Appl. Math. 61 (2000), 183-212.
[26] E. L. Stott, N. F. Britton, J. A. Glazier, and M. Zajac, Stochastic simulation of benign

avascular tumor growth using the Potts model, Math. Comp. Model. 30 (1999), 183-
198.

[27] N. G. van Kampen, Stochastic processes in physics and chemistry, North-Holland, Am-
sterdam, 1992.

[28] B. Vasiev and C. J. Weijer, Modeling of Dictyostelium discoideum slug migration, J.
Theor. Biol. 223 (2003), 347-359.

[29] L. Wolpert, R. Beddington, T. Jessell, P. Lawrence, E. Meyerowitz, and J. Smith, Principles
of development, 2nd ed., Oxford University Press, Oxford, 2002.

Received on April 12, 2005. Revised on August 3, 2005.

E-mail address: timothy.newman@asu.edu


