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Abstract. In this paper, a general periodic vaccination has been applied to
control the spread and transmission of an infectious disease with latency. A
SEIRS1 epidemic model with general periodic vaccination strategy is analyzed.
We suppose that the contact rate has period T , and the vaccination function
has period LT , where L is an integer. Also we apply this strategy in a model
with seasonal variation in the contact rate. Both the vaccination strategy
and the contact rate are general time-dependent periodic functions. The same
SEIRS models have been examined for a mixed vaccination strategy composed
of both the time-dependent periodic vaccination strategy and the conventional
one. A key parameter of the paper is a conjectured value Rc

0 for the basic
reproduction number. We prove that the disease-free solution (DFS) is globally

asymptotically stable (GAS) when Rsup
0 < 1. If Rinf

0 > 1, then the DFS is
unstable, and we prove that there exists a nontrivial periodic solution whose
period is the same as that of the vaccination strategy. Some persistence results
are also discussed. Necessary and sufficient conditions for the eradication or
control of the disease are derived. Threshold conditions for these vaccination
strategies to ensure that Rsup

0 < 1 and Rinf
0 > 1 are also investigated.

1. Introduction. Mass immunization is frequently used as a tool to control the
spread of epidemics. The simplest vaccination strategy is to vaccinate all individuals
at a constant rate. This may also be combined with vaccination of a fixed fraction
of very young children at the smallest possible age where maternal antibodies no
longer confound the effect of the vaccine, commonly 9–18 months for measles. In
this paper, we ignore the effect of maternal antibodies, so these young children
are in essence vaccinated at birth. In the absence of vaccination, cases of many
common childhood diseases show a regular periodic oscillation whose period is a
whole number of years [9, 14]. Much work has been done that analyzes seasonal
periodic outbreaks of infectious diseases by considering seasonal variation in the
contact rate [5, 9, 14].
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Recently it has been postulated that in some circumstances a periodic vaccination
strategy, for example, pulse vaccination, can be a more efficient use of limited
immunization resources than a continuous constant vaccination effort [1, 11, 15].
In this paper, we study a general continuous periodic vaccination strategy r(t). This
is combined with vaccination of a given proportion of newborn individuals. Because
in many real diseases there is a time delay between the time an individual becomes
infected and the time he or she becomes infectious, we introduced an exposed or
latent class into the model. We consider the model with both a periodic disease
transmission rate and a constant one.

If the combined vaccination strategy is applied in the situation where no disease
is present, then the number of susceptibles eventually reaches a unique periodic
solution. Our results lead us to conjecture that this combined periodic and fixed
vaccination strategy is sufficient to eliminate disease from the population exactly
when the weighted, time-averaged, disease-free susceptible population is less than
a certain threshold value.

1.1. The pulse vaccination strategy. Pulse vaccination vaccinates susceptibles
at discrete points in time, usually at regular intervals. One such example is the use
of annual immunization days, which was successful in eradicating measles from The
Gambia between 1967 and 1972 [17]. In recent times, a pulse vaccination strategy
has been applied in South and Central America and was highly successful against
poliomyelitis [4, 13]. This method is now used in Brazil, where it is both easier
to arrange and has a greater uptake than the conventional continuous vaccination
strategy. Pulse vaccination has been used in Africa recently albeit with only partial
success. Agur et al. [1] discuss the possibility of implementation of the pulse
vaccination method in Israel.

Pulse vaccination has also been used in the United Kingdom. In November 1994,
a single dose of combined measles and rubella (MR) vaccine was given to children
aged 5 to 16 years. In England and Wales, an average of 92% of these children were
vaccinated. This policy caused a significant fall in the number of cases of measles
reported to the Office of Population Censuses and Surveys. It was concluded that
the application of pulse immunization to all schoolchildren would probably prevent
a large rate of morbidity and mortality and would have a marked effect on measles
transmission for several years [11].

Nokes and Swinton [11] use simple steady-state and age-structured dynamic
models to extend the theory of the mechanism of action of pulse vaccination, and to
explore the relationship between the maximum permitted interval between pulses
and key epidemiological, demographic, and vaccination variables. They further
developed the work of Agur et al. [1]. An ordinary differential equation model is
used to derive equilibrium expressions for the pulse interval and considers combined
routine and pulse vaccination. Simulations using age-structured compartmental
deterministic models illustrate complex epidemiological dynamics associated with
pulse vaccination, particularly when there is age heterogeneity in contact rates in
the population.

Pulse vaccination in an SIR epidemic model with vaccination has been considered
by Shulgin et al. [15]. They consider a vaccination function r(t) =

∑∞
n=0 pδ(t−nT ).

Here, δ(t) is the Dirac delta function, and p is a constant. This corresponds to a
series of pulse vaccinations, each separated by time T . They found that a periodic
DFS is possible where the numbers of susceptibles and recovereds are periodic
functions with a period equal to that of the pulse vaccination. Shulgin et al. also
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discovered a threshold condition for this periodic infection-free solution to be locally
stable, first in the case where β, the transmission rate of the infection, is a constant,
and second in the more general case where the disease transmission rate β(t) is a
nonconstant periodic function with the same period T as r(t). If this threshold is
not exceeded, then the periodic DFS is locally stable and a serious epidemic will
not occur. In what follows, we investigate a more realistic and complicated SEIRS
model with a general continuous periodic vaccination rate r(t).

2. The SEIRS model with vaccination. Our SEIRS model of the spread of
infectious diseases makes the following assumptions:

1. The total population size is N , and the per capita birth rate is a constant µ.
As births balance deaths, we must have that the per capita death rate is also
µ.

2. The population is uniform and mixes homogeneously.
3. The population is divided into susceptible, exposed, infective, and recovered

individuals. The total number of individuals in each of these classes is S ≡
S(t), E ≡ E(t), I ≡ I(t), and R ≡ R(t), respectively.

4. The infection rate β(t) is defined as the total rate at which potentially infec-
tious contacts occur between two individuals. A potentially infectious contact
is one which will transmit the disease if one individual is susceptible and the
other is infectious, so the total rate at which susceptibles become exposed
is β(t)SI. Biological considerations mean that β(t) is continuous. We also
assume that either (i) β(t) is not identically zero, positive, nonconstant and
periodic of period T or (ii) β(t) = β is a constant.

5. The susceptibles move from the exposed class to the infective class at a con-
stant rate σ, where (1/σ) is the average latent period conditional on survival
to the end of it.

6. The infectives move from the infective class to the recovered class at a constant
rate γ, where (1/γ) is the average infectious period conditional on survival to
the end of it. We assume that the disease does not give permanent immunity,
so individuals transfer back from the immune to the susceptible class at a
constant per capita rate δ.

7. A fraction p (0 ≤ p ≤ 1) of all newborn children are vaccinated. In addition
all susceptibles in the population are vaccinated at a time-dependent periodic
rate r(t). This is the periodic vaccination strategy. We shall suppose that
r(t) is periodic with period LT . The case where r(t) has period T can be
obtained by setting L = 1.

Our SEIRS model with time-dependent vaccination strategy can be written as
a set of four coupled nonlinear ordinary differential equations as:
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dS

dt
= µN(1− p)− β(t)SI − (µ + r(t))S + δR, (1)

dE

dt
= β(t)SI − (µ + σ)E, (2)

dI

dt
= σE − (µ + γ)I, (3)

dR

dt
= µNp + r(t)S + γI − (µ + δ)R, (4)

with
S + E + I + R = N. (5)

Here the disease transmission rate β(t) and the vaccination rate r(t) are nonzero,
positive, continuous periodic functions. The system (1)–(5) has no equilibrium
points, but a DFS, with E(t) = I(t) = 0, is still possible.

Consider the region D in R4, defined by

D = {(S, E, I, R) ∈ [0, N ]4 | S + E + I + R = N}.
The system of differential equations (1)–(4) with initial conditions in D obviously
starts off in the region D. The right-hand sides of these equations are differentiable
with respect to S, E, I, and R with continuous derivatives. It is straightforward to
show using standard techniques [7] (and considering separately the cases E(0) =
I(0) = 0 and E(0) > 0 or I(0) > 0) that the equations (1)–(4) with initial conditions
in D have a unique solution that remains in D for all time and moreover,

S + E + I + R = N.

3. The DFS. When r(t) is a nonconstant bounded continuous periodic function,
there is no equilibrium point for the system (1)–(5). So there is no disease-free
equilibrium point; however, a periodic DFS corresponding to the case E(t) = I(t) =
0. In this case, (1) becomes

dS

dt
= µN(1− p)− (µ + r(t))S + δR,

= N(µ(1− p) + δ)− (µ + r(t) + δ)S. (6)

If E(t) = I(t) = 0, (6) has a solution for S(t). We examine the behavior of this
solution. Integrating (6), we find that

S(t) = S(t0) exp
[
−(µ + δ)(t− t0)−

∫ t

t0

r(τ)dτ

]

+ N [µ(1− p) + δ] exp
[
−(µ + δ)(t− t0)−

∫ t

t0

r(τ)dτ

]

∫ t

t0

exp

[
(µ + δ)(ζ − t0) +

∫ ζ

t0

r(τ)dτ

]
dζ. (7)
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Hence,

S(t0 + (n + 1)LT ) = S(t0 + nLT ) exp

[
−(µ + δ)LT −

∫ t0+LT

t0

r(τ)dτ

]

+ N [µ(1− p) + δ] exp

[
−(µ + δ)LT −

∫ t0+LT

t0

r(τ)dτ

]

∫ t0+LT

t0

exp

[
(µ + δ)(ζ − t0) +

∫ ζ

t0

r(τ)dτ

]
dζ. (8)

Equation (8) gives a recursive relationship between the number of susceptibles at
time t0 + nLT, n = 1, 2, 3, . . . . If we let Sn = S(t0 + nLT ), then (8) defines a
mapping F such that

F (Sn) = Sn+1.

If S1 and S2 are different values of S, then

|F (S1)− F (S2)| ≤ |S1 − S2| exp(−µLT ).

So, F is a contraction mapping [3] and has a unique fixed point S∗(t0) such that

S∗(t0) =

(
N [µ(1− p) + δ] exp

[
−(µ + δ)LT −

∫ LT

0

r(τ)dτ

]

∫ t0+LT

t0

exp

[
(µ + δ)(ζ − t0) +

∫ ζ

t0

r(τ)dτ

]
dζ

)

1

1− exp
[
−(µ + δ)LT − ∫ LT

0
r(τ)dτ

] . (9)

Hence, S∗(t0 + LT ) = S∗(t0). So, S∗ is a periodic function of t. Differentiating (9),
S∗(t0) is continuously differentiable with respect to t0 and Ŝ(t) = S∗(t), Ê = Î = 0,
and R̂(t) = R∗(t) = N −S∗(t) is a disease-free periodic solution of the system (1)–
(5), which repeats itself every LT years. We have the following result.

Theorem 3.1. Equations (1)–(5) have a disease-free periodic solution of period LT
that is continuously differentiable, and this is the only disease-free periodic solution
to (1)–(5); any disease-free solution to (1)–(5) approaches this one as time becomes
large.

Proof This is a straightforward adaption of the SIRS model considered in [10] for
the case L = 1. ¤

Recall that R0, the basic reproduction number of the disease, is defined as the
expected number of secondary cases caused by a single infected case entering the
disease-free population at equilibrium [2]. Anderson and May [2] call this the
basic reproduction rate, but it is a number, not a rate. Consider a single newly
infected person entering the population at the DFS. During the latent period, this
person faces a death rate µ and leaves for the infectious class at rate σ. Assuming
that the time taken for these two events to happen follow independent exponential
distributions, the probability that the individual survives his or her incubation
period is σ/(µ + σ). Similarly, the average length of the infectious period is τ =
1/(µ+γ). The average value taken over a cycle of the expected number of secondary
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cases produced by a single infected person entering the population at the DFS is
our conjectured value for R0; namely,

Rc
0 =

1
LT

∫ LT

0

σβ(τ)Ŝ(τ)dτ

(µ + σ)(µ + γ)
. (10)

Define Rsup
0 =

σ

(µ + γ)(µ + σ)
sup

t∈[0,LT ]

∫ LT

0

(µ + σ)β(t− ζ)Ŝ(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
, (11)

and Rinf
0 =

σ

(µ + γ)(µ + σ)
inf

t∈[0,LT ]

∫ LT

0

(µ + σ)β(t− ζ)Ŝ(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
. (12)

Later we show that Rsup
0 ≥ Rc

0 ≥ Rinf
0 , with both of the inequalities being strict if

β(t)Ŝ(t) is nonconstant on [0, LT ]. We expect that if Rc
0 > 1 the disease will take

off, whereas if Rc
0 ≤ 1 the disease will die out. However, we have been able to show

only that if Rsup
0 < 1 the disease will die out, and if Rinf

0 > 1, then the disease will
take off if it is initially present. In the following sections, we formally investigate
these results.

4. The stability analysis of the DFS. In this section we concentrate on the
stability analysis of the DFS, and we try to extend the results obtained in [6] for
an SIRS model with constant vaccination of individuals of all ages.

4.1. Stability of the DFS when Rsup
0 < 1. Our first result is to show that the

DFS (Ŝ(t), 0, 0, R̂(t)) is GAS when Rsup
0 < 1. We need the following lemma.

Lemma 4.1.
lim sup

t→∞
(S − Ŝ)(t) ≤ 0.

Proof From equation (1),
dS

dt
= µN(1− p)− β(t)SI − (µ + r(t))S + δR,

≤ N(µ(1− p) + δ)− (µ + r(t) + δ)S.

As (Ŝ(t), 0, 0, R̂(t)) is a solution of (1), then

dŜ

dt
= N(µ(1− p) + δ)− (µ + r(t) + δ)Ŝ.

Therefore,

d(S − Ŝ)
dt

≤ −(µ + r(t) + δ)(S − Ŝ).

Integrating this inequality we find that

(S − Ŝ)(t) ≤ (S − Ŝ)(t0) exp
(
−(µ + δ)(t− t0)−

∫ t

t0

r(τ)dτ

)
.

Lemma 4.1 now follows. ¤

Now we can prove the global stability of the DFS when Rsup
0 < 1.
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Theorem 4.1. If Rsup
0 < 1, the DFS (Ŝ, 0, 0, R̂) is GAS for the system (1)–(5).

Proof Since
dI

dt
= σE − (µ + γ)I,

we can easily show that,

I∞ ≤ σE∞

µ + γ
.

The idea behind the proof of Theorem 4.1 is as follows: By Lemma 4.1, we know
that given ε > 0, there exists t1 such that S(t) ≤ Ŝ(t) + ε and I ≤ I∞ + ε for all
t ≥ t1. From (2), we bound E(t) above and from this upper bound, we deduce that
E∞ = 0. Suppose that E∞ > 0. Integrating (2), we find that for t ≥ t0 > t1,

E(t) ≤ E(t0) exp[−(µ + σ)(t− t0)]

+ (I∞ + ε) exp[−(µ + σ)t]
∫ t

t0

β(τ)(Ŝ(τ) + ε) exp[(µ + σ)τ ]dτ.

Define y(τ) = β(τ)Ŝ(τ). Note that y(τ) is a nonzero positive periodic function with
period LT , so

exp[−(µ + σ)t]
∫ t

t0

y(τ) exp[(µ + σ)τ ]dτ =
∫ t−t0

0

y(t− u) exp[−(µ + σ)u]du.

Suppose that (k + 1)LT ≥ t− t0 ≥ kLT. We have that
∫ t−t0

0

y(t− u) exp[−(µ + σ)u]du

=
∫ LT

0

y(t− u) exp[−(µ + σ)u]du
(
1+ exp[−(µ+σ)LT ]

+ exp[−(µ+σ)2LT ] +· · ·+exp[−(µ + σ)(k−1)LT ]
)

+
∫ t−t0

kLT

y(t− u) exp[−(µ + σ)u]du,

≤
∫ LT

0

y(t− u) exp[−(µ+σ)u]du
(
1+ exp[−(µ+σ)LT ]

+ exp[−(µ + σ)2LT ] + · · ·+ exp[−(µ + σ)kLT ]
)
,

<

∫ LT

0

y(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
.

Therefore, for t ≥ t0 we find that

E(t) ≤ E(t0) exp[−(µ + σ)(t− t0)]

+
I∞ + ε

µ + σ

∫ LT

0

(µ + σ)β(t− ζ)(Ŝ(t− ζ) + ε) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
,

≤ N exp[−(µ + σ)(t− t0)]

+
I∞ + ε

µ + σ

(
sup

t∈[0,LT ]

∫ LT

0

(µ + σ)y(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]

+ ε

∫ LT

0

(µ + σ)β(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]

)
.
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Now choose t2 > t0 large enough so that for t ≥ t2, N exp[−(µ + σ)(t − t0)] < ε.
Then for t ≥ t2,

E(t) ≤

Rsup
0 E∞+ ε

(
1 + sup

t∈[0,LT ]

∫ LT

0

y(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
+

(
I∞ + ε

µ + σ

)
βmax

)
,

where βmax = supu∈[0,LT ] β(u). Now choose ε small enough so that

ε

(
1 + sup

t∈[0,LT ]

∫ LT

0

y(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
+

(
I∞ + ε

µ + σ

)
βmax

)
< ψE∞,

where Rsup
0 +ψ < 1 and ψ > 0. Hence for t ≥ t2, we have that E(t) ≤ (Rsup

0 +ψ)E∞.
Thus, 0 ≤ E∞ ≤ (Rsup

0 + ψ)E∞. So, E∞ = 0. Hence also I∞ = 0 and E(t) → 0
and I(t) → 0 as t → ∞. It remains to show that (S − Ŝ)(t) → 0 and
(R − R̂)(t) → 0 as t → 0. Because R̂(t) is a solution of equation (4) when
E(t) = I(t) = 0, we have that,

d(R− R̂)
dt

= r(t)(S − Ŝ) + γI − (µ + δ)(R− R̂). (13)

Given ε1 > 0 using Lemma 4.1, there exists t3 such that E(t) + I(t) ≤ ε1 and
S(t) ≤ Ŝ(t) + ε1 for all t ≥ t3. So for t ≥ t3,

d(R− R̂)
dt

≤ (rmax + γ)ε1 − (µ + δ)(R− R̂),

where rmax = supu∈[0,LT ] r(u). Integrating this inequality, we find that

(R− R̂)(t) ≤ (R− R̂)(t3) exp[−(µ + δ)(t− t3)]

+ ε1

(
rmax + γ

µ + δ

)
(1− exp[−(µ + δ)(t− t3)]),

≤ N exp[−(µ + δ)(t− t3)] + ε1

(
rmax + γ

µ + δ

)
.

It is now straightforward to show that given ε2 > 0, there exists t4 such that
R(t)−R̂(t) ≤ ε2 for t ≥ t4. Hence, S(t) = N−R(t)−I(t)−E(t) ≥ N−R̂(t)−ε1−ε2
for t ≥ t4. Using Lemma 4.1, we deduce that S(t) → Ŝ(t) as t → ∞. Since
R(t) = N − S(t)− I(t)−E(t), then we must have that R(t) → N − Ŝ(t) = R̂(t) at
t →∞. This completes the proof of Theorem 4.1. ¤

Thus if Rsup
0 < 1, the DFS is GAS.

5. The existence of periodic solutions. The existence of a periodic solution of
(1)–(5) can be proved in two stages. The first is that if Rinf

0 > 1, then there exists
a minimum threshold value for I(t) such that if I(0) > 0 or E(0) > 0, then I(t)
will rise above this threshold value, and from then on the time spent continuously
beneath it can be bounded above by a bound that depends only on the model
parameters, not on the initial conditions. Moreover, the time taken to rise initially
above the threshold can be bounded above by a bound that depends only on the
initial value I(0) and the model parameters.

In the second stage, by using fixed-point theory we prove that the system (1)–
(5) has an LT -periodic solution. These results are also true for the same model
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when the contact rate is constant if the vaccination strategy is a general continuous
periodic function.

To prove the existence of periodic solutions of (1)–(5), we need the following
notations.

Definition 5.1.

R̄inf
0 (λ) =

σ

(µ + γ)(µ + σ)
inf

t∈[0,LT ]

∫ LT

0

(µ + σ)y(t− ζ) exp[−(µ + σ + λ)ζ]dζ

1− exp[−(µ + σ + λ)LT ]
.

Define

f(t, λ) =
∫ LT

0

y(t− u) exp[−(µ + σ + λ)u]
1− exp[−(µ + σ + λ)LT ]

du.

Note that f(t, λ) is monotone decreasing in λ for a fixed t, and hence, R̄inf
0 (λ) is

monotone decreasing in λ.
Now consider the equation λ2 + d1λ + d2(λ) = 0, where

d1 = (µ + σ) + (µ + γ) and d2(λ) =
1
2
(1− R̄inf

0 (λ))(µ + σ)(µ + γ).

If R̄inf
0 (0) = Rinf

0 > 1, then d2(0) < 0 and the equation λ2 + d1λ + d2(λ) = 0 has
a unique positive root, say λ1 > 0. Then

(R̄inf
0 (λ1) + 1)(µ + σ)(µ + γ)

2(µ + σ + λ1)(µ + γ + λ1)
= 1. (14)

Definition 5.2.

β̄sup = sup
t∈[0,LT ]

∫ LT

0

(µ + σ)β(t− ζ) exp[−(µ + σ + λ1)ζ]dζ

1− exp[−(µ + σ + λ1)LT ]
.

Definition 5.3.

K1(η) =
1
4 (R̄inf

0 (λ1)− 1)(µ + σ)(µ + γ)(1− η)[
1 + βmaxN

(µ+σ) + 2γ
(µ+δ)

]
σβ̄sup

,

where η < 1 is an arbitrarily small positive number and ψ(η) is a positive number
such that

0 < ψ(η) < min
{

K1(η)
2

, N

[
1− βmaxε0(η)

(µ + σ)

]
, N − 2γε0(η)

(µ + δ)

}
,

where ε0(η) is a positive number such that

0 < ε0(η) < min
{

(µ + σ)
βmax

,
N(µ + δ)

2γ
, K1(η)

}
.

Here K1(η) is a well-defined positive number, and ε0(η) and ψ(η) are in well-
defined ranges. Given η > 0, we suppose that I(0) > 0 and find an upper bound
for the time for which I(t) can spend continuously beneath ε0(η). We do this by
supposing that I(t) remains indefinitely and continuously beneath ε0(η), and we
deduce a contradiction. For the moment, we suppose that η > 0 is fixed and write
K1, ε0, and ψ for K1(η), ε0(η), and ψ(η) respectively. We need four preliminary
lemmas. We use these to show that I(t) must eventually rise again above ε0, and
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the time taken to do this can be bounded above by a time depending only on ε0,
ψ, and the model parameters.

If the solution has the initial value I(0) > ε0, suppose that the solution I(t)
drops beneath ε0 for the first time at time ζ0. Then, without loss of generality, we
can assume that ζ0 = 0. Our first result is that E(t) also becomes small.

Lemma 5.1. Suppose that I(0) = ε0 and I(t) ≤ ε0 for all t ≥ 0. Then there exists

a time T0 > 0 such that E(t) <
βmaxNε0
(µ + σ)

+ψ for all t > T0, where T0 depends only

on ψ, ε0, and the model parameters.

Proof This is straightforward. ¤

Lemma 5.2. Suppose that I(t) ≤ ε0 for all t. Then there exists a time T1 > 0 such
that

R(t) ≤ R̂(t) +
2γε0
µ + δ

+ ψ

for all t > T1, and T1 depends only on ψ, ε0, and the model parameters.

Proof Given ε > 0, there exists t0, depending only on ε and the model parameters,
such that (S − Ŝ)(t) ≤ ε for all t ≥ t0. So for t > t0 from (13),

d(R− R̂)
dt

≤ rmaxε + γε0 − (µ + δ)(R− R̂).

Lemma 5.2 now follows straightforwardly. ¤

Now, supposing that I(0) = ε0, our next aim is to find a time T2 and a strictly
positive lower bound E1 for E(T2), where E1 and T2 depend only on the model
parameters and ε0. We deal with the two cases, p < 1 and p = 1, separately in the
following two lemmas.

Lemma 5.3. If p < 1, define a time T2 = (x+1)LT , where x is the smallest integer
such that xLT ≥ T3 = (ln 2)/(βmaxN + µ + rmax) and E1 = E2 exp[−(µ + σ)T2] >

0, where E2 = ε0S1

∫ LT

0
β(τ) exp[−γτ ]dτ exp[−γxLT ] > 0 and S1 = µN(1 −

p)/2(βmaxN + µ + rmax). Then E(T2) ≥ E1 > 0, and E1 and T2 depend only on
the model parameters and ε0.

Proof From (1), we have that
dS

dt
≥ µN(1− p)− (βmaxN + µ + rmax)S.

Integrating this inequality, we have that

S(t) ≥ µN(1− p)
βmaxN + µ + rmax

(1− exp[−(βmaxN + µ + rmax)t]) .

As I(0) = ε0, I(t) ≥ exp[−(µ + γ)t]. Hence for t ≥ T3,
dE

dt
+ (µ + σ)E ≥ β(t)S1ε0 exp[−(µ + γ)t].

Multiplying by exp[(µ + σ)t] and integrating between xLT and (x + 1)LT , the
required result follows. ¤
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Lemma 5.4. If p = 1, define a time T2 = (x1+1)LT , where x1 is the smallest integer
such that x1LT ≥ T4 + T5. Here T4 = (ln 2)/(µ + δ) and T5 = (ln 2)/(βmaxN +
µ + rmax). Define E1 = E3 exp[−(µ + σ)T4] > 0, E3 = ε0S2

∫ LT

0
β(τ) exp[−γτ ]dτ

exp[−γx1LT ] > 0 , S2 = (δR1)/(2(βmaxN + µ + rmax)), and R1 = (µN)/2(µ + δ).
Then E(T2) ≥ E1 > 0, and T2 and E1 depend only on the model parameters and
ε0.

Proof From equation (4), we have that
dR

dt
≥ µNp− (µ + δ)R.

Integrating this inequality and arguing similarly to Lemmas 5.2 and 5.3, we deduce
that for t ≥ T4 = (ln 2)/(µ + δ), R(t) ≥ (µN)/(2(µ + δ)) = R1. Again, from (1), we
have that for t ≥ T4,

dS

dt
≥ δR1 − (βmaxN + µ + rmax)S.

Integrating this inequality for t ≥ T4, we have that

S(t) ≥ δR1

βmaxN + µ + rmax
(1− exp[−(βmaxN + µ + rmax)(t− T4)]) .

Hence for t ≥ T4 + T5, S(t) ≥ S2, and
dE

dt
+ (µ + σ)E ≥ β(t)S2I.

Lemma 5.4 is now a straightforward argument as in Lemma 5.3. ¤
These results allow us to proceed to the first theorem in this section, which gives

a lower bound η0 for I∞ and an upper bound on the initial time for which the value
of I(t) remains beneath η0.

Theorem 5.1. If Rinf
0 > 1, then there exists η0 > 0 such that all η1 > 0; if

I(0) ≥ η1, then I(t) ≥ η0 for all t ≥ T (η1), where T (η1) depends only on η1 and
the model parameters.

Proof First, suppose that I(0) = ε0 and I(t) ≤ ε0 for t ≥ 0. We show that Rinf
0 > 1

forces I(t) to rise to at least the level ε0 by a time T̃ that depends only on ψ, ε0,
and the model parameters. From Lemmas 5.1 and 5.2, we have shown that for
t > T6 = max (T0, T1) ,

S(t) = N − E(t)− I(t)−R(t),

≥
[
Ŝ(t)− 2ψ − ε0

(
1 +

βmaxN

(µ + σ)
+

2γ

(µ + δ)

)]
.

By Definition 5.3, we have that

2ψ + ε0

[
1 +

βmaxN

(µ + σ)
+

2γ

(µ + δ)

]

< K1

[
2 +

βmaxN

(µ + σ)
+

2γ

(µ + δ)

]
, as ψ < (K1/2) and ε0 < K1,

< K1 +
1
4 (R̄inf

0 (λ1)− 1)(µ + σ)(µ + γ)(1− η)
σβ̄sup

, using Definition 5.3,

<
(R̄inf

0 (λ1)− 1)(µ + σ)(µ + γ)(1− η)
2σβ̄sup

. (15)
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From (2), choose t0 > T7 = max(T4, T6), then E(t0) ≥ E1 exp[−(µ+σ)(t0−T4)] > 0,
using Lemmas 5.3 and 5.4, and from (3), we have that I(t0) ≥ ε0 exp[−(µ+γ)t0] > 0.
Note that from Definition 5.1 we have that

R̄inf
0 (λ) =

σ

(µ + γ)(µ + σ)
inf

t∈[0,LT ]

∫ LT

0

(µ + σ)y(t− ζ) exp[−(µ + σ + λ)ζ]dζ

1− exp[−(µ + σ + λ)LT ]
.

Given a small enough η > 0, choose ε1 and an integer k so that

σ

(µ + γ)(µ + σ)
inf

t∈[0,LT ]

∫ LT

0

(µ + σ)y(t− ζ) exp[−(µ + σ + λ1)ζ]dζ

(
1 + exp[−(µ + σ + λ1)LT ] + exp[−(µ + σ + λ1)2LT ] + · · ·

+exp[−(µ + σ + λ1)(k − 1)LT ]

)
> R̄inf

0 (λ1)(1− η), (16)

and 0 < ε1 < min

{
ε0
2

exp[−(µ + γ)(t0 + kLT )],

σ

2(µ + γ + λ1)
E1 exp[−(µ + σ)(t0 − T4 + kLT )]

}
.

Then E(t0) ≥ 2ε1((µ + γ + λ1)/σ) and I(t0) ≥ 2ε1. Provided that I(t) remains
continuously below the level ε0,

I(t0 +τ) ≥ ε1 exp[λ1(τ −kLT )] and E(t0 +τ) ≥ µ + γ + λ1

σ
ε1 exp[λ1(τ −kLT )].

Define τ0 such that

τ0 = inf

{
ξ ≥ 0 : I(t0 + τ) ≥ ε1 exp[λ1(τ − kLT )] and

E(t0 + τ) ≥ µ + γ + λ1

σ
ε1 exp[λ1(τ − kLT )] for τ ∈ [0, ξ]

}
.

By continuity, τ0 > 0, and if τ0 < ∞, then either

I(t0+τ0) = ε1 exp[λ1(τ0−kLT )] or E(t0+τ0) =
(µ + γ + λ1)

σ
ε1 exp[λ1(τ0−kLT )].

(17)

We show that (17) leads to a contradiction. If τ0 ≤ kLT , we have that

I(t0 + τ0) ≥ ε0 exp[−(µ + γ)(t0 + τ0)],
> ε1 exp[λ1(τ0 − kLT )],

and
E(t0 + τ0) ≥ E1 exp[−(µ + σ)(t0 − T4 + τ0)],

>
(µ + γ+ λ1)ε1

σ
exp[λ1(τ0 − kLT )].
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If τ0 > kLT from (3) we have that

I(t0 + τ0) = I(t0) exp[−(µ + γ)τ0]

+ exp[−(µ + γ)(t0 + τ0)]
∫ t0+τ0

t0

σE(ζ) exp[(µ + γ)ζ]dζ,

> ε1 exp[λ1(τ0 − kLT )]. (18)

Also, for τ0 > kLT , we have that

E(t0 + τ0) = E(t0) exp[−(µ + σ)τ0]

+ exp[−(µ + σ)(t0 + τ0)]
∫ t0+τ0

t0

β(ζ)S(ζ)I(ζ) exp[(µ + σ)ζ]dζ,

≥ E(t0) exp[−(µ + σ)τ0] + ε1 exp[−(µ + σ)(t0 + τ0)]
∫ t0+τ0

t0

β(ζ)

(
Ŝ(ζ)− (R̄inf

0 (λ1)− 1)(µ+γ)(µ+σ)(1− η)
2σβ̄sup

)

exp[(µ + σ)ζ + λ1(ζ − t0 − kLT )]dζ,

>
µ + γ + λ1

σ
ε1 exp[−(µ + σ)τ0] + ε1 exp[λ1(τ0 −kLT )]

∫ t0+τ0

t0

β(ζ)

(
Ŝ(ζ)− (R̄inf

0 (λ1)− 1)(µ+γ)(µ+σ)(1− η)
2σβ̄sup

)

exp[(µ +σ +λ1)(ζ −t0−τ0)]dζ,

> ε1 exp[λ1(τ0 −kLT )]
∫ τ0

0

β(t0 + τ0 − u)

(
Ŝ(t0 + τ0 − u)

− (R̄inf
0 (λ1)− 1)(µ+γ)(µ+σ)(1− η)

2σβ̄sup

)
exp[−(µ +σ +λ1)u]du,

>

(
µ + γ

σ
R̄inf

0 (λ1)(1−η)− (R̄inf
0 (λ1)− 1)(µ+γ)(1− η)

2σ

)

ε1 exp[λ1(τ0 −kLT )],

using Definition 5.2 and inequality (16),

=

(
(R̄inf

0 (λ1) + 1)(µ+γ)(1− η)
2σ

)
ε1 exp[λ1(τ0 − kLT )],

=
µ + γ + λ1

σ

µ + σ + λ1

µ + σ
(1− η)ε1 exp[λ1(τ0 − kLT )],

using equation (14).

Since η is arbitrarily small, we can choose η small enough so that (µ+σ+λ1)(1−
η)/(µ + σ) > 1, and

E(t0 + τ0) >
(µ + γ + λ1)

σ
ε1 exp[λ1(τ0 −kLT )]. (19)

Hence, (18) and (19) contradict (17); so we deduce that τ0 = ∞, and assuming that
I(ζ) always lies below ε0,

I(t0 + τ) ≥ ε1 exp[λ1(τ −kLT )] and E(t0 + τ) ≥ (µ + γ + λ1)ε1
σ

exp[λ1(τ −kLT )],
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for τ ≥ 0. In particular, I(t) must rise again above its initial value ε0 by a time at
most T̃ = kLT + T7 + τ1, where τ1 = (1/λ1) ln (ε0/ε1), and this time depends only
ε0, ψ, and the model parameters. Moreover, for all t ≥ 0, we have that

I(t) ≥ η0 = ε0 exp[−(µ + γ)(kLT + T7 + τ1)].

Next, suppose that ε0 > I(0) > η1 > 0. A similar argument shows that provided
η1 > 0, I(t) rises above ε0 by a time at most T (η1) = kLT + T7 + τ2, which
depends only on η1 and the model parameters, not on the initial conditions, where
τ2 = (1/λ1) ln (ε0/ε2) and

0 < ε2 < min

{
η1

2
exp[−(µ + γ)(t0 + kLT )],

σ

2(µ + γ + λ1)
E1 exp[−(µ + σ)(t0 + kLT − T4)]

}
.

Moreover, by our previous argument, I(t) remains above η0 for t ≥ T (η1). ¤

Hence, if I(0) > η1, then I(t) ≥ η0 for all t ≥ T (η1), where T (η1) depends only
on η1 and the model parameters. So, we can look for nonzero periodic solutions for
our system when Rinf

0 > 1. The following theorem gives the existence of a periodic
solution of the system (1)–(5) with period LT .

Theorem 5.2. The system (1)–(5) has a nonzero LT -periodic solution.

Proof The set Z = R4 with the norm |z| = √
S2 + E2 + I2 + R2 is a Banach space

[3]. Defining the sets

L0 =

{
(S, E, I,R) : S ≥ 0, E ≥ 0, I ≥ η0, R ≥ 0, S + E + I + R = N

}
,

L1 =

{
(S, E, I,R) : S ≥ 0, E ≥ 0, I >

η0

2
, R ≥ 0, S + E + I + R = N

}
,

L2 =

{
(S, E, I,R) : S ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0, S + E + I + R = N

}
,

we find that L0 and L2 are compact, L1 is open relative to L2 (i.e., L2-L1 is closed),
and L0, L1, and L2 are convex sets.

Define the mapping h : L2 → L2 such that

h(z0) = z(LT, 0, z0).

Then h(z0) is the solution of the initial value problem (1)–(5) at time LT with
z0 = (S(0), E(0), I(0), R(0)) at time t = 0. The mapping h is continuous since
the right-hand side of the system (1)–(5) is differentiable. Then for any positive
integer j, the image of the set L1 remains contained completely in the set L2, so
for j = 1, 2, 3, . . . we find that

hj(L1) ⊂ L2.

Now suppose that z0 ∈ L1. Then for t ≥ T ( 1
2η0), I(t) ≥ η0. Hence, if m0LT ≥

T ( 1
2η0), then we have hm(L1) ⊂ L0 for all m ≥ m0. Then by Horn’s Fixed Point

Theorem [8], the mapping h has a fixed point in the set L0. Hence, the system
(1)–(5) has a nonzero LT -periodic solution. ¤
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6. Persistence results.

6.1. Stability of the DFS when Rinf
0 > 1. Suppose first that E(0) = I(0) = 0.

Then from equations (1)–(5), we find that E(t) = I(t) = 0 for all t. Arguing as
in the proof of Theorem 4.1, we deduce that (S(t), R(t)) → (Ŝ(t), R̂(t)) as t →∞,
whatever the value of Rinf

0 > 1.
Next, consider the case where E(0) > 0 or I(0) > 0. If I(0) = 0, then it is

straightforward to show from (3) that I(∆t) > 0 for ∆t small and positive. So, by
changing the time origin, if necessary, we deduce the following from Theorem 5.1:

Corollary 6.1. The DFS is unstable if Rinf
0 > 1.

6.2. Persistence of the disease when Rinf
0 > 1. Now we examine the persis-

tence of the disease when Rinf
0 > 1. Here, persistence means that the number of

infectives is bounded away from zero.

Definition 6.1. For a function f : [0,∞) →R+, we define f∞ = lim inft→∞ f(t).

Definition 6.2. Uniform strong repeller. Following [16], we say that the set

q = {I = 0 : 0 ≤ S(t) ≤ N, 0 ≤ E(t) ≤ N, 0 ≤ S(t) + E(t) ≤ N}
is a uniform strong repeller for the set

G = {(S, I, E) : 0 ≤ S ≤ N, 0 < I ≤ N, 0 ≤ E ≤ N, 0 ≤ S + I + E ≤ N},
if I∞ > 0.

Definition 6.3. Uniform persistence. We say that the disease is uniformly persis-
tent if each of S(t), E(t), I(t), and R(t) is strictly bounded away from zero, and
moreover, this bound depends only on the model parameters.

From Theorem 5.1, we have the following corollary.

Corollary 6.2. If Rinf
0 > 1, then the set q is a uniform strong repeller for the set

G.

Proof As I∞ ≥ η0 the result is obvious. ¤

Our next step is to show that the disease is uniformly persistent when Rinf
0 > 1.

From Theorem 5.1, I(t) is bounded away from zero for large times. We need to
show that S(t), E(t), and R(t) are similarly bounded away from zero for large times.

Lemma 6.1. R∞ ≥ η3 > 0, where η3 depends only on the model parameters.

Proof Given ε1 > 0, there exists t1 such that I(t) ≥ η0 − ε1 for t ≥ t1. Then for
t ≥ t1 from (4),

dR

dt
≥ µNp + γ(η0 − ε1)− (µ + δ)R.

Integrating this inequality and arguing as in Lemma 4.1, we deduce that

R∞ ≥ µNp + γ(η0 − ε1)
(µ + δ)

.

Letting η3 = (µNp + γη0)/(µ + δ), the result follows by letting ε1 → 0. ¤

Lemma 6.2. S∞ ≥ η4 > 0, where η4 depends only on the model parameters.
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Proof Given ε1 > 0, there exists t2 such that R(t) ≥ 1
2η3 − ε1 for t ≥ t2. Then for

t ≥ t2 from equation (1), we have that

dS

dt
≥ µN(1− p) + δ

(
1
2
η3 − ε1

)
− (βmaxN + µ + rmax)S.

Arguing as in Lemma 6.1, we deduce that

S∞ ≥ η4 =
µN(1− p) + 1

2δη3

βmaxN + µ + rmax
> 0.

¤

Lemma 6.3. The exposed population is bounded away from zero by a bound that
depends only on the model parameters.

Proof There exists t3 such that for t ≥ t3, S(t) ≥ (S∞/
√

2) and I(t) ≥ (I∞/
√

2).
Hence, for t ≥ t3 from (2),

dE

dt
+ (µ + σ)E ≥ 1

2
β(t)S∞I∞. (20)

Choose n such that nLT ≥ t3 then multiply (20) by exp[(µ + σ)t] and integrate

E((n + 1)LT ) exp[(µ + σ)(n + 1)LT ]

≥ E( nLT ) exp [(µ + σ)nLT ] +
1
2
S∞I∞

∫ (n + 1)LT

nLT

β(t) exp [(µ + σ)t] dt.

So

E((n + 1)LT ) ≥ 1
2
S∞I∞

∫ LT

0

β(t) exp[(µ + σ)(t− LT )]dt = ε1 > 0,

considering the fact that β(t) is a nonzero, continuous, positive function so the
integral is strictly positive. Moreover, ε1 depends only on the model parameters.
But

dE

dt
≥ −(µ + σ)E.

So for (n + 2)LT ≥ t ≥ (n + 1)LT ,

E(t) ≥ ε1 exp [−(µ + σ)(t− (n + 1)LT )] ≥ ε2 = ε1 exp[−(µ + σ)LT ].

Hence, E(t) ≥ ε2 for all t ≥ (n + 1)LT . Lemma 6.3 follows. ¤

From Lemmas 6.1 through 6.3 and Theorem 5.1 we find that min (S∞, E∞, I∞, R∞)
= c > 0. So if Rinf

0 > 1, then S(t), E(t), I(t), and R(t) are strictly bounded away
from zero, and moreover, this bound depends only on the model parameters. Hence,
the disease is uniformly persistent when Rinf

0 > 1.
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7. Implications of results. Our results for the SEIRS model with a periodic
vaccination strategy are less complete than those for the corresponding SIRS model
[10]. We have not been able to show that the disease will die out if Rc

0 ≤ 1 and
that it will take off if Rc

0 > 1. We have shown that the disease always dies out
if Rsup

0 < 1 and that if Rinf
0 > 1 the DFS is unstable, the disease is uniformly

persistent if initially present, and an LT -periodic solution exists. As the disease is
uniformly persistent if initially present when Rinf

0 > 1, we deduce that instability
of the DFS when Rinf

0 > 1 can be extended from not being locally asymptotically
stable to being Lyapunov unstable.

It is straightforward from the definitions of Rsup
0 and Rinf

0 to show that

Rmax
0 =

σβmaxŜmax

(µ + σ)(µ + γ)
≥ Rsup

0 ≥ Rinf
0 ≥ Rmin

0 =
σβminŜmin

(µ + σ)(µ + γ)
.

Here, βmin = infu∈[0,LT ] β(u), Ŝmax = supu∈[0,LT ] Ŝ(u), and Ŝmin = infu∈[0,LT ] Ŝ(u).
Hence, if Rmax

0 < 1, then the disease will die out, and if Rmin
0 > 1, the DFS is

unstable, the disease is uniformly persistent, and an LT -periodic solution exists.
We can also show that Rsup

0 ≥ Rc
0 ≥ Rinf

0 with both inequalities being strict if
β(t)Ŝ(t) is nonconstant on [0, LT ]. Define

Z(t) =
∫ LT

0

y(t− u)f(u)du,

where y(t) = β(t)Ŝ(t) and f(u) = (µ+σ) exp[−(µ+σ)u]/(1−exp[−(µ+σ)LT ]), 0 ≤
u ≤ LT . By the definitions of Rc

0, Rsup
0 , and Rinf

0 , we need only to show that

inf
t∈[0,LT ]

Z(t) ≤ 1
LT

∫ LT

0

y(τ)dτ ≤ sup
t∈[0,LT ]

Z(t),

with strict inequality if y(t) is nonconstant. Now

∫ LT

0

Z(t)dt =
∫ LT

0

∫ LT

0

y(t− u)f(u)dudt,

=
∫ LT

0

∫ LT−u

−u

y(s)f(u)dsdu, letting s = t− u,

= LTy

∫ LT

0

f(u)du,

= LTy.

Hence, inf
t∈[0,LT ]

Z(t) ≤ y =
1

LT

∫ LT

0

Z(t)dt ≤ sup
t∈[0,LT ]

Z(t), with both inequalities

being strict unless Z(t) is a constant. Write

Z(t) =
∫ t

t−LT

y(s)f(t− s)ds,

Z ′(t) =
∫ t

t−LT

y(s)f ′(t− s)ds− y(t)(f(0)− f(LT )).

If Z(t) is a constant, then Z ′(t) = 0; so,
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y(t) =
(µ + σ)

(f(LT )− f(0))
Z(t)

is also a constant.
A sufficient condition for the DFS to be GAS is that Rsup

0 < 1, equivalently

sup
t∈[0,LT ]

∫ LT

0

(µ + σ)y(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
<

(µ + σ)(µ + γ)
σ

, (21)

and a necessary condition is that Rinf
0 > 1, equivalently

inf
t∈[0,LT ]

∫ LT

0

(µ + σ)y(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
>

(µ + σ)(µ + γ)
σ

. (22)

In the case that β is a constant, the first condition becomes

sup
t∈[0,LT ]

∫ LT

0

(µ + σ)Ŝ(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
<

(µ + σ)(µ + γ)
σβ

, (23)

and the second

inf
t∈[0,LT ]

∫ LT

0

(µ + σ)Ŝ(t− ζ) exp[−(µ + σ)ζ]dζ

1− exp[−(µ + σ)LT ]
>

(µ + σ)(µ + γ)
σβ

. (24)

We might conjecture that a necessary and sufficient condition for the DFS to be
GAS is Rc

0 ≤ 1, which is equivalent to
∫ LT

0
β(τ)Ŝ(τ)dτ

∫ LT

0
β(τ)dτ

≤ (µ + σ)(µ + γ)LT∫ LT

0
σβ(τ)dτ

= S̃c. (25)

Condition (25) says that the average number of susceptibles in the DFS weighted
by β(t) over the period of the vaccination function is less than or equal to a critical
value S̃c.

Recall that a similar condition for local stability of the DFS, Ŝ(t), for L = 1,
∫ T

0
β(τ)Ŝ(τ)dτ

∫ T

0
β(τ)dτ

<
(µ + γ)T∫ T

0
β(τ)dτ

= Sc,

was obtained for a pulse vaccination function r(t) = p
∑∞

n=0 δ(t− nT ) by Shulgin
et al. [15] in an SIR model. In the case that β(t) is a constant and L = 1 condition
(25) becomes

1
T

∫ T

0

Ŝ(τ)dτ ≤ (µ + σ)(µ + γ)
σβ

, (26)

and Shulgin’s condition

1
T

∫ T

0

Ŝ(τ)dτ <
(µ + γ)

β
.

8. Summary and Discussion. We have extended the work of [6] and [10] from
SIRS epidemic models to the more realistic and complicated SEIRS model. It
is important to include an exposed or latent class in our models, because many
childhood diseases have a latent period. We have studied control of the dynamics
of the infectious disease by using periodic vaccination of susceptibles of all ages,
combined with immunization of a given proportion of newborns. We did this both
for a constant and for a seasonally varying disease transmission rate. Using a
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periodic vaccination strategy in such a SEIRS model seems to lead to periodicity
in the disease dynamics.

This work can be summarized as follows. In section 1 a short introduction to
common, practically used vaccination strategies was given. Section 2 outlined the
SEIRS model that we studied and gave the assumptions underpinning the model.
Section 3 showed that there is a unique DFS for our SEIRS epidemic model, and
this solution is periodic with a period equal to that of the vaccination function.
We also gave a conjectured expression for R0, the basic reproduction number of
the disease, when the vaccination campaign r(t) is used. Lower and upper bounds,
Rinf

0 and Rsup
0 , respectively, for this expression were also defined. In this section,

we also studied the stability of the DFS of our model. We found that the DFS
was GAS when Rsup

0 < 1, and in this case, the infection will ultimately fade out of
the population. In section 4, fixed-point theory was used to show the existence of
nontrivial periodic solutions. Horn’s Fixed Point Theorem showed that the model
equations (1)–(5) have a nontrivial LT -periodic solution if r(t) has period LT and
β(t) has period T .

Section 5 proved some persistence results when Rinf
0 > 1. The DFS is unstable

(neither locally asymptotically stable nor stable in the Lyapunov sense). When
Rinf

0 > 1, if the disease is present initially, it will persist and remain endemic in
the population. We also showed that all of S(t), E(t), I(t), and R(t) were uniformly
bounded away from zero. Finally, section 6 presented a conjecture for a condition
under which an immunization program can prevent epidemics from occurring in the
population. This is to keep a weighted mean value of the susceptible population at
the DFS over the period of the vaccination function beneath a certain critical value.
Our upper and lower bound results go some way toward proving this. A similar
result for a SIRS model was found in [10]. We also gave an equivalent condition for
Rsup

0 < 1, that the maximum of a weighted average of the number of susceptibles at
the DFS is less than a certain critical value, and a similar condition for Rinf

0 > 1,
that the minimum of the same weighted average exceeds the same critical value.
The results were obtained for a SEIRS epidemic model with the disease transmission
rate β(t) having period T (or being a constant) and the vaccination function having
period LT , where L ≥ 1.

We conjectured that to control or eradicate the disease, it was both necessary
and sufficient to keep the mean value of the product of the disease transmission
rate and the susceptible population at the DFS beneath a critical threshold value.
If this is true, then it is possible for sometimes only a few individuals to be vacci-
nated, provided only that the weighted mean value of the number of susceptibles at
the DFS over the period of the vaccination function does not exceed the threshold
value. The disease will still be eradicated. This contrasts with the strategy of con-
stant vaccination, where a critical fixed level of immunization effort must always be
applied to guarantee eradication, and this is an advantage of a periodic vaccination
strategy over a constant one.

For a highly infectious disease such as measles, using vaccination at birth only
requires that approximately 91% to 94% of newborn individuals be vaccinated
to guarantee elimination of the disease [2]. It is difficult to achieve this level of
vaccination coverage, particularly bearing in mind that measles vaccine efficacy is
only around 95%, that some individuals may be difficult for health professionals
to locate, and that others may refuse vaccination for religious or other reasons.
Using a continuous periodic vaccination strategy in conjunction with vaccination of
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a fixed proportion of newborn individuals reduces the proportion of newborns who
need to be immunized to a more realistic level. Moreover, from (9), one can see
easily that using such a mixed vaccination strategy uniformly reduces the level of
fluctuation of susceptibles in the DFS compared with a purely periodic vaccination
function (p = 0). Hence, it is more effective to use a combined vaccination approach
to prevent major outbreaks of infectious disease from occurring.

9. Appendix: List of symbols, abbreviations, and medical terms.
S(t): number of susceptibles at time t

E(t): number of exposed individuals at time t

I(t): number of infected individuals at time t

R(t): number of removed individuals at time t

N : total population size

β(t): total rate at which potentially infectious contacts occur between two individ-
uals

r(t): general continuous periodic vaccination strategy

T : period of contact rate

L: LT is period of vaccination function

(1/σ): average latent period conditional on survival to the end of it

(1/δ): average immune period conditional on survival to the end of it

(1/γ): average infectious period conditional on survival to the end of it

µ: common per capita birth and death rate

p: fraction of newborn children who are vaccinated

δ(t): Dirac delta function

R0: basic reproduction number

Rc
0: conjectured value for basic reproduction number

Rsup
0 : upper bound for Rc

0

Rinf
0 : lower bound for Rc

0

τ = 1/(µ + γ): average length of infectious period

DFS: disease-free solution

GAS: globally asymptotically stable

Ŝ(t): susceptible population at DFS

R̂(t): recovered population at DFS

E∞: lim supt→∞E(t)

I∞: lim supt→∞ I(t)
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Progress. Am. Pediatr. Inf. Dis. J. 10 (1991) 222–9.

[5] K. Dietz, The incidence of infectious diseases under the influence of seasonal fluc-
tuations. In Proceedings of a workshop on mathematical modelling in medicine,
Mainz, ed. J. Berger, W. Bühler, R. Repges, and P. Tautu. Lecture Notes in Biomathematics
11. Springer-Verlag, Berlin, 1976, 1–15.

[6] D. Greenhalgh and I. A. Moneim, SIRS epidemic model and simulations using different
types of seasonal contact rate. Syst. Anal. Mod. Simul. 43(5) (2003) 573–600.

[7] J. K. Hale, Ordinary differential equations. Wiley, New York, 1969.
[8] W. A. Horn, Some fixed point theorems for compact maps and flows in Banach spaces.

Trans. Amer. Math. Soc. 149 (1970) 391–404.
[9] W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and

mumps, I. Amer. J. Epidemiol. 98 (1973) 453–468.
[10] I. A. Moneim and D. Greenhalgh, Threshold and stability results for an SIRS epidemic

model with a general periodic vaccination strategy. J. Biol. Systems. 13(2) (2005)
131–150.

[11] D. Nokes and J. Swinton, The control of childhood viral infections by pulse vacci-
nation. IMA. J. Math. Appl. Med. Biol. 12 (1995), 29–53.

[12] S. C. Pannuti, J. C. Moraes, V. A. Souza, M. C. C. Camargo, and N. T. R. Hidalgo, Measles
antibody prevalence after mass immunization in São-Paulo, Brazil. Bull. WHO 69
(1991) 557–60.

[13] A. B. Sabin, Measles, killer of millions in developing countries: Strategies of elim-
ination and continuing control. Eur. J. Epidemiol. 7 (1991), 1–22.

[14] I. B. Schwartz and H. L. Smith, Infinite subharmonic bifurcations in an SEIR model.
J. Math. Biol. 18 (1983), 233–53.

[15] B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model.
Bull. Math. Biol. 60 (1998), 1123–48.

[16] H. R. Thieme, Persistence under relaxed point-dissapitivity (with application to an
endemic model). SIAM J. Math. Anal. 24 (1993), 407–35.

[17] P. J. Williams and H. F. Hull, Status of measles in The Gambia, 1981. Rev. Inf. Dis. 5
(1983) 391–394.

Received on January 1, 2005. Revised on July 21, 2005.

E-mail address: moneim97@hotmail.com

E-mail address: david@stams.strath.ac.uk


