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Abstract. I describe several models of population dynamics, both unstruc-
tured and gender structured, that include groups of individuals who do not
reproduce. I analyze the effect that the nonreproductive group may have on
the dynamics of the whole population in terms of the vital rates and the pro-
portion of nonreproductive individuals, and we provide specific examples for
real populations.

1. Introduction. The basic dynamics of a population depends on the interplay
between reproduction and mortality. Long-term trends of population growth or de-
cline are usually affected not by temporary changes in reproduction or mortality but
rather by long-term or permanent changes in these vital dynamics parameters. Ex-
amples of the latter are the extremely significant reduction in mortality during the
twentieth century triggered by various medical discoveries, such as penicillin, and
the reduction in the mean number of progeny per woman that accompanied social
conquests by women. One factor whose long-term effect on population growth has
not been examined is the segregation of portions of the reproductive population into
nonreproductive classes, such as same-sex isolation groups—prisoners, members of
religious orders, or lifelong homosexuals—or other nonreproductive classes who by
choice or for medical reasons remain childless for life. Under normal circumstances,
childless individuals who are incarcerated for the entirety of their reproductive years
will have no sexual contact with the opposite gender and therefore remain childless
for life. Similarly, men and women who participate exclusively in homosexual rela-
tionships (or in none at all) for their entire lives will remain childless. Some of these
groups (religious or incarcerated individuals isolated during all of their reproductive
years) are quite small; others (lifelong homosexuals and individuals who choose or
are forced by medical reasons not to have progeny) are not, and they may have a
long-term effect on population growth. Thus, we see the importance of studying
population models that take into consideration nonreproductive groups.

It is intuitively obvious that in a population closed to migration, if the segrega-
tion rate into nonreproductive groups is large enough, the population will decline
and eventually extinguish itself. In contrast, in a population with a steady immi-
gration of reproductive individuals, this is not the case: even if every individual in
the population were segregated into nonreproductive groups, the external supply of
new individuals would sustain a population, albeit an entire nonreproductive one.
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Similar results can be expected for the fate of an infectious disease invading a
population in which some proportion of infected individuals is isolated from all
(infectious) contact with others for the duration of the infectious period. Sexually
transmitted diseases, for example, represent such a situation when one considers
not the reproduction of individuals per se but rather the reproduction of the dis-
ease, that is, its transmission from infected to susceptible. A significant number of
individuals infected with herpes simplex type B, for example, refrain from sexual
activity during outbreaks, when they are contagious. If a large enough proportion
of them did this, the disease would eventually disappear. This situation and oth-
ers, such as the efficacy of quarantine of infected individuals with SARS, will be
analyzed in a forthcoming paper.

2. One-sex, constant-fertility and mortality models. The simplest unstruc-
tured demographic models prescribe a constant mortality rate per individual per
unit of time, µ, and either a constant total birth rate per unit of time, Λ, or a
constant per capita birth rate per unit of time, β.

The corresponding ordinary differential eqution (ODE) models are, respectively,

P ′(t) = Λ− µP (t) and P ′(t) = βP (t)− µP (t), (1)

with solutions

P (t) = P (0) e−µt +
Λ
µ

(
1− e−µt

)
and P (t) = P (0) e(β−µ)t. (2)

Both models have monotone behavior for P (0) > 0—the former asymptotically
converging to Λ

µ , the latter growing (or decreasing) exponentially at Malthusian
rate r = β − µ.

These are usually too simplistic for long-term demographic projections, since
many factors that influence the evolution of the size of human populations are not
taken into account.

If we assume there is a uniform probability per unit of time, ν ≥ 0, that a
randomly selected individual will not reproduce because of any of the reasons men-
tioned in the introduction (or for any other reason), then we can modify the un-
structured models (1) as follows to reflect this particular behavior: let R(t) and
N(t) denote the size of the reproductive and nonreproductive populations, respec-
tively. Then, the dynamics of the reproductive group is described by one of the
following equations,

R′(t) = Λ− µR(t)− νR(t) and R′(t) = βR(t)− µR(t)− νR(t), (3)

while that of the nonreproductive group is described by

N ′(t) = −µN(t) + νR(t). (4)

The respective solutions for the reproductive group are

R(t) = R(0) e−(µ+ν)t +
Λ

µ + ν

(
1− e−(µ+ν)t

)
and R(t) = R(0) e(β−µ−ν)t, (5)

while those for the nonreproductive one are

N(t) =
Λν

µ(µ + ν)
+

[
P (0)− Λ

µ

]
e−µt +

[
Λ

µ + ν
−R(0)

]
e−(µ+ν)t, (6)
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N(t) =
[
N(0)− ν R(0)

β − ν

]
e−µt +

ν R(0)
β − ν

e(β−µ−ν)t (if β 6= ν),

N(t) = [N(0) + R(0)ν t] e−µt (if β = ν).

(7)

Of course, ν = N(0) = 0 in (3)–(7) imply R(t) ≡ P (t) and N(t) ≡ 0; whence (3) is
the same as (1) and (5) is the same as (2).

Next, note that by summing (5) with (6) and (7), we obtain explicit formulas
for the total population size, P = R + N , for each model:

P (t) =
Λ
µ

+
[
P (0)− Λ

µ

]
e−µt, (8)





P (t) =
[
N(0)− ν R(0)

β − ν

]
e−µt +

βR(0)
β − ν

e(β−µ−ν)t (if β 6= ν),

P (t) = [P (0) + R(0)ν t] e−µt (if β = ν).

(9)

Comparing (2) and (8), we can readily see that in the first model the effect of the
nonreproductive group on total population growth is nil. Also, from (6) and (8), we
see that the proportion of nonreproductive individuals asymptotically approaches
the value ν/(µ + ν).

On the other hand, concerning the second unstructured model in (1), we see
from (9) that when β > µ and ν 6= β, there is a threshold value for ν, ν0 = β − µ,
that leads to ultimate population extinction if it is surpassed. Moreover, combining
(7) and (9), we see that the proportion of nonreproductive individuals in the total
population asymptotically approaches 1 if β ≤ ν, and it approaches the ratio ν/β if
β > ν. The latter is possible for exponentially decreasing populations (β < µ + ν),
bounded populations (β = µ + ν), or exponentially increasing ones (β > µ + ν).

We also note that in the case 0 ≤ β − µ = ν0 < ν < β, if N0) = 0, we can write




P (t) = R(0)
[

β

β − ν
e(β−µ−ν)t − ν

β − ν
e−µt

]
,

P ′(t) = R(0)
[
β(β − µ− ν)

β − ν
e(β−µ−ν)t +

µν

β − ν
e−µt

]
.

(10)

Thus, we see that the population increases for t ≤ ln( µν
β(µ+ν−β) )

β−ν , and then it decreases
exponentially to 0. Similarly, for β = ν > µ, P increases for t ≤ ν−µ

µν , and then it
decreases exponentially to 0. If ν > β, then P decreases exponentially to 0.

Example 1. I draw examples from Japan and Argentina based on real-life data.
Note that the vital rates for Japan in 2001 were β = 0.0093 and µ = 0.0077 [4],
which result in a threshold value ν0 = 0.0016 for this last model. If there were no
migration, a segregation rate from the reproductive population into the nonrepro-
ductive one exceeding just 0.16% per year would lead to population extinction. In
the city of Buenos Aires, Argentina, for that same year the values were β = 0.0139
and µ = 0.0111 [1], which result in a threshold value ν0 = 0.0028 for this last model.
I show this last case in Figure 1. This threshold should be interpreted with caution
as these values were estimated for the whole population, without consideration of
its age distribution.
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Figure 1. Example from Buenos Aires, Argentina, 2001.

3. One-sex logistic models. A better model for long-term projections than ei-
ther model (1) is that of logistic growth:

P ′ = r

(
1− P

K

)
P, (11)

where K is the carrying capacity of the environment and r is the Malthusiam rate,
with solution

P (t) =
K

1 +
[

K
P (0) − 1

]
e−rt

,

asymptotically approaching the value K for any nonzero initial value P (0).
We can also modify the logistic model (11) to include segregation into a nonre-

productive class as follows:



R′ = (β − µ)
(

1− P

K

)
R− ν R,

N ′ = −µN − (β − µ)
P

K
N + ν R,

(12)

where the total population is then modeled by

P ′ = (β − µ)
(

1− P

K

)
P − ν N.

Unfortunately, there is no explicit form of the solution of (12) for ν > 0. However,
the first equation in (12) exhibits a threshold phenomenon that separates popu-
lation persistence from population extinction. Clearly, if ν > β − µ > 0, then
R(0) e−(µ+ν−β)t is a supersolution, and thus R must asymptotically approach zero.
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On the other hand, if ν < β − µ, then R′ = (β − µ− ν)R− (β − µ) P
K R is positive

as soon as P < K (1 − ν
β−µ ), giving a positive lower limit for P . In this sense,

we see that the logistic model exhibits the same threshold behavior as Malthus’s
exponential growth model: when β > µ, they both represent declining populations
that go asymptotically extinct if ν > β − µ, and they both have populations that
persist for all time if ν < β − µ—the former asymptotically approaching a finite
positive limit, the latter growing exponentially at rate r = β − µ− ν.

Figure 2 presents the reproductive and the total population sizes obtained from
numerical solutions of (12) using the initial size, mortality and fertility rates from
the actual U.S. population in 2000: R(0) = P (0) = 281 million, N(0) = 0, carrying
capacity K = 300 million (chosen just for reference), mortality rate µ = 0.01303,
per capita birth rate β = 0.01442, and several values of the segregation rate ν.
I show the behavior of the logistic model in the absence of the nonreproductive
group (ν = 0), as well as the reproductive group size and the total population
size when the segregation rate is ν = 0.000125, 0.00025, 0.0005, 0.001, and 0.002.
The proportion of heterosexual individuals in the total population asymptotically
stabilizes to lower values with increasing ν at approximately 99% for ν = 0.000125,
98% for ν = 0.00025, 97% for ν = 0.0005, and 93% for ν = 0.001. Of course, for
ν = 0.002 > β − µ, the entire population asymptotically declines to extinction.

Figure 2. Example of the effect of segregation in logistic growth.

4. Two-sex models. When trying to model sexual reproduction, a simple model
due to Kendall [2] is described in terms of the numbers of uncoupled females, F ,
uncoupled males, M , and reproductive couples, C. Now, let µf and µm be the



584 F. A. MILNER

per capita mortality rates of females and males respectively, β represent the per-
couple birth rate per unit of time, γ represent the proportion of newborn males
among all newborn (e.g., γ = 2,076,969

4,058,815 = 0.511718 for the United States in 2000),
δ be the per-couple divorce rate per unit of time, and M represent the coupling
function giving the number of new reproductive pairings per unit of time when F
single (i.e., uncoupled) female and M single male individuals are present in the
population. Then, the ODE model is given by





F ′ = −µf F + (1− γ)β C −M(F, M) + δ C,

M ′ = −µm M + γβ C −M(F, M) + δ C,

C ′ = −(δ + µf + µm)C +M(F, M).

(13)

Now let νf and νm be the probability per unit of time that a single (uncoupled)
female or male newborn, respectively, will never reproduce (for any reason). Then,
modify (13) as follows:





F ′ = −µf F − νf F + (1− γ)β C −M(F, M) + δ C,

M ′ = −µm M − νm M + γβ C −M(F,M) + δ C,

C ′ = −(δ + µf + µm)C +M(F, M).

(14)

If we let ϕ(t) and χ(t) represent the numbers of nonreproductive females and males,
respectively, in the population at time t, then we can model their dynamics as
follows: 




ϕ′ = −µfϕ + νf F,

χ′ = −µmχ + νm M.
(15)

There is no explicit solution to the system (14)–(15) in general. However, if we
make the assumptions γ = 1

2 , µf = µm, νf = νm, M = 2ρ FM
F+M , and F (0) = M(0),

it follows that F (t) = M(t) for all t ≥ 0 and system (14) reduces to



F ′ = −(µ + ν)F + β
2 C − ρF + δ C,

C ′ = −(δ + 2µ)C + ρ F,
(16)

while assuming in addition that ϕ(0) = χ(0) implies ϕ(t) ≡ χ(t). It is possible
to determine conditions on the demographic rates that will make F a multiple of
C and further reduce system (16) to a single ODE that can be explicitly solved.
Letting F = αC in (16), we see that

α C ′ = −(µ + ν)α C +
β

2
C − ρα C + δ C = −(δ + 2µ)α C + ρα2 C,

whereby

ρα2 + (ρ + ν − µ− δ)α−
(

β

2
+ δ

)
= 0. (17)

Since the discriminant of this equation is always positive, it follows that the equation
has two real roots, one positive and one negative. The positive one,

α =
µ + δ − ρ− ν +

√
(ρ + ν − µ− δ)2 + 2ρ (β + 2δ)

2ρ
, (18)
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gives again the multiplier that relates F and C. With this value of α, we now solve
the second equation in (16) for C (namely, C ′ = rν C):

C(t) = C(0) erνt,

with Malthusian rate rν = ρα − δ − 2µ, dependent on ν through α. Finally, we
obtain for the singles

F (t) = M(t) = α C(0) erνt = F (0) erνt,

and, solving (15) using this expression for F , we obtain for the nonreproductive
group




ϕ(t) =
[
ϕ(0)− ανC(0)

µ + rν

]
e−µt +

ανC(0)
µ + rν

erνt (if ρα 6= µ + δ),

ϕ(t) = [ϕ(0) + ανC(0) t] e−µt (if ρα = µ + δ).

(19)

The total population size, P (t) = 2
[
F (t) + ϕ(t) + C(t)

]
, is now





P (t) = 2
[
1 + α +

αν

µ + rν

]
C(0) erνt + 2

[
ϕ(0)− νF (0)

µ + rν

]
e−µt (if ρα 6= µ + δ),

P (t) = 2 [1 + α] C(0) erνt + 2 [ϕ(0) + ανC(0) t] e−µt (if ρα = µ + δ).
(20)

It follows from (19) and (20) that the proportion of nonreproductive individuals in
the population asymptotically approaches 1 if ρα ≤ µ + δ, and it approaches the
ratio αν/[αν + (α + 1)(ρα− δ − µ)] if ρα > µ + δ.

Notice from (18) that

rν = ρα− δ − 2µ =
−(3µ + ρ + ν + δ) +

√
(ρ + ν − µ− δ)2 + 2ρ (β + 2δ)

2
vanishes if, and only if, (ρ + ν − µ − δ)2 + 2ρ (β + 2δ) = (3µ + ρ + ν + δ)2 or,
equivalently,

ν =
ρβ − 2µ(2µ + 2ρ + δ)

2(δ + 2µ)
. (21)

If we assume that in the absence of nonreproductive groups the population increases
exponentially at the rate

r0 =
−(3µ + ρ + δ) +

√
(ρ− µ− δ)2 + 2ρ (β + 2δ)

2
> 0,

it follows that (ρ− µ− δ)2 + 2ρ (β + 2δ) > (3µ + ρ + δ)2; that is,

ρβ − 2µ(2µ + 2ρ + δ) > 0.

Thus, we see from (21) a threshold effect, whereby a rate of passage into nonrepro-
ductive groups

νf = νm = ν =
ρβ − 2µ(2µ + 2ρ + δ)

2(δ + 2µ)
> 0

would stop the exponential growth and result in a stagnant population. Higher
values of ν would asymptotically lead to population extinction.

Next, let us assume M(t) = F (t) for all time and the harmonic mean marriage
function, and let us look for exponential solutions with M = F = αC. We see from
(14) that

−α(µf + νf ) + β(1− γ) = −α(µm + νm) + βγ. (22)
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It follows from (22) that either

µm + νm = µf + νf and, necessarily, γ =
1
2

or

µm + νm 6= µf + νf and, necessarily, α =
β (2γ − 1)

(µm − µf ) + (νm − νf )
. (23)

The first case leads, of course, to (16). In the second case, however, α also needs
to satisfy the relation ρα2 + (ρ − µf + νm − δ)α − (βγ + δ) = 0, corresponding to
(17) for this case, giving the following necessary condition for F (t) to be identical
to M(t) for all time in the case of unequal vital rates for the two genders:

µf + δ − ρ− νm +
√

(ρ− µf + νm − δ)2 + 4ρ (βγ + δ)
2ρ

=
β (2γ − 1)

(µm − µf ) + (νm − νf )
.

(24)
Of course, νf = νm = 0 together with φ(0) = χ(0) = 0 reduce (14) to (13), thus

simplifying case (18) to

α =
µ + δ − ρ +

√
(ρ− µ− δ)2 + 2ρ (β + 2δ)

2ρ
, (25)

giving the multiplier that relates F and C.
The total population in this case is given by P = 2F + 2C = 2(α + 1)C; that is,

C = 1
2(α+1) P . Therefore, using (16), we see that it satisfies P ′ = r P, with

r =
β − 2µ(α + 2)

2(α + 1)
. (26)

Notice from (25) and (26) that

r = ρα− δ − 2µ > 0

⇐⇒ (ρ− µ− δ)2 + 2ρ (β + 2δ) > (3µ + ρ + δ)2

⇐⇒ 2µ(2µ + δ) < ρ(β − 4µ)

⇐⇒ β > 4µ and ρ > 2µ 2µ+δ
β−4µ .

This says that the population will increase provided conditions β > 4µ and ρ >
2µ 2µ+δ

β−4µ are both satisfied. The first condition means that the fertility rate must
exceed the total mortality rate, while the second means that the marriage rate is
sufficiently large to produce enough newborn.

It is easy to verify that lim
ρ→∞

α = 0, as it should necessarily be so, since in

the limiting case ρ → ∞ all individuals are married, making F = 0 C. Also,
lim

ρ→∞
r= 1

2 (β − 4µ), which reconciles the two-sex model with the one-sex model,

since (16) has, in this limiting case, a fertility rate β/2 (i.e., the average couple
produces that many female newborns and an equal number of male newborns that
instantaneously become β/2 new couples), while the mortality rate for couples is
2µ, independent of the value of δ, as divorce has no effect on the number of couples
when the marriage rate is infinitely large.

We see from (23) that in the absence of nonreproductive groups, since α is greater
than 0, γ > 1

2 implies µm > µf . This is actually the case for human populations.
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Example 2. As indicated earlier, for the United States in 2000, γ = 0.5117 and the
mortality rates, computed as reciprocals of the life expectancy at birth, were µf =
0.01258 and µm = 0.01350 [3]. For that same year, β = 0.07338 (approximately
4.059 million births from 55.311 million couples), making α = 1.8664. However, α
also needs to satisfy the relation ρα2+(ρ−µf−δ)α−(βγ+δ) = 0, corresponding to
(25) for this case, giving the following necessary condition for F (t) to be identical
to M(t) for all time in the case of unequal vital rates for the two genders:

α =
µf + δ − ρ +

√
(ρ− µf − δ)2 + 4ρ (βγ + δ)

2ρ
=

β (1− 2γ)
µf − µm

. (27)

In the 2000 there were approximately 2,376,000 marriages among approximately
88.057 million unmarried females and 82.743 million unmarried males, resulting in
ρ = 0.027849. It then follows from (27) that δ must satisfy the relation

δ =
ζ2 − 4ρβγ − (ρ− µf )2

2(ρ + µf + ζ)
,

where

ζ =
2ρβ (1− 2γ)

µf − µm
+ ρ− µf .

Finally we see that with ζ = 0.1192, δ = 0.03069, and initial conditions

F (0) = M(0) = 1.8664 C(0), (28)

the system (13) would have the solution F (t) = M(t) = 1.8664 C(0) ert, with
Malthusian growth rate r = ρα−δ−µf−µm = −0.004795. This “model” population
decreases at a rate of approximately 0.5% per year. Although the total numbers
of unmarried females, unmarried males, and married couples in the United States
in 2000 do not satisfy (28), note that the actual divorce rate for 2000 computed
as the ratio of 0.9572 million divorces (excluding those from California, Indiana,
Louisiana, and Oklahoma, where no divorce statistics are recorded) to an estimated
45.784 million married couples outside those four states—a number obtained as
the proportion of the U.S. population living outside those four states multiplied by
C(0) = 55.311 million couples in the U.S.—is δ = 0.02091, approximately 33% lower
than 0.03069. For this reason, it is to be expected that the Malthusian growth rate
of the “model” population should be lower than that of the actual U.S. population
found from the one-sex model (1), r = β − µ = 0.01442 − 0.01303 = 0.00139, or
approximately 0.14% per year.

These calculations underscore the importance of distinguishing among the two
sexes when trying to determine the Malthusian rate for a human population, since
the assumption that their numbers are identical may result in errors in the Malthu-
sian rate that could make it uncertain whether the population is increasing or
decreasing. Let us redo these calculations in Example 3 without assuming that the
numbers of females and males are identical for all time.

It is worth noting that using δ = 0.02091 in (27), we obtain α = 1.55365, and
then using the right-hand side of (27), we find µm = 0.013685—just 1.4% larger
than the actual per capita male mortality rate for the United States in 2000. This
observation stresses the sensitivity of these calculations to changes in some of the
parameters involved.

Finally, let us remark that using the actual vital rates the right-hand side of (27)
gives α = 1.8664, and thus δ = αρ−r−µf −µm = 1.8664 ρ−0.02747. Substituting
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this relation in the first equality of (27), we see that there is no solution for ρ—
positive or negative. This summarizes the fact that the actual vital rates for the
United States in 2000 do not correspond to those of a two-sex population with equal
numbers of females and males for any marriage and divorce rates.

In general, if we assume marriages take place according to the harmonic mean
and still look for exponential solutions with a common Malthusian rate, we can set
F = αC, M = ξC, and letting σ = δ + µf + µm be the separation rate per couple,
we immediately obtain from (13)





−αµf + β(1− γ)− 2ρ
αξ

α + ξ
+ δ = −ασ + 2ρ

α2ξ

α + ξ
,

−ξµm + βγ − 2ρ
αξ

α + ξ
+ δ = −ξσ + 2ρ

αξ2

α + ξ
,

(29)

and subtracting these relations side-by-side,

(ξµm − αµf ) + β(1− 2γ) = (α− ξ)
[
2ρ

αξ

α + ξ
− σ

]
,

whereby if α 6= ξ,

2ρ
αξ

α + ξ
− σ =

β(1− 2γ) + (ξµm − αµf )
α− ξ

. (30)

Combining (13) with (30), we see that C(t) = C(0) ert, where the Malthusian rate
is

r =
β(1− 2γ) + (ξµm − αµf )

α− ξ
. (31)

Next, multiplying both sides of the equations by (α + ξ), we rewrite system (29) in
the following form:




ξ
[
β(1− γ) + δ + (σ − µf − 2ρ− 2ρα)α

]
=

[
(µf − σ)α− β(1− γ)− δ

]
α

α
[
βγ + δ + (σ − µm − 2ρ− 2ρξ)α

]
=

[
(µm − σ)ξ − βγ − δ

]
ξ,

which can be readily rearranged as




ξ =

[
(µf − σ)α− β(1− γ)− δ

]
α

β(1− γ) + δ + (σ − µf − 2ρ− 2ρα)α

(−2ρα + σ − µm)ξ2 +
[
(σ − µm − 2ρ)α + βγ + δ

]
ξ + (βγ + δ)α = 0.

(32)

If we now substitute the first equation in (32) into the second, we obtain a quintic
for α, whose positive real roots (if any), together with (32.2), lead to the desired
exponential solution.

Example 3. Using the data for the population of the United States in 2000 as given
in Example 2, we have σ = 0.04699, ξ = − −0.03441α2−0.05674α

−0.055698α2−0.021288α+0.05674 , and

(−0.055698α + 0.03349) ξ2 + (−0.022208α + 0.058458546) ξ + 0.058458546α = 0,

that is,

ξ =
(0.022208α− 0.058459)±√0.013517α2 − 0.010428α + 0.0034174

0.06698− 0.11140α
.
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There is a unique real positive solution, (α, ξ) = (1.536, 1.568). Using (31), it gives
a growth rate r = −0.00400. Note that the Malthusian rate computed in Example
2, assuming equal numbers of females and males, is 20% smaller than the value
we just found, stressing again the quantitative importance of keeping the sexes
separate in the model.

As a final remark, I shall explain why the Malthusian rate computed from the
two-sex model is so much smaller than that computed from the one-sex model—
indeed, the former is negative while the latter is positive. In the one-sex model, the
whole population is reproductive, and the only two parameters that may affect its
long-term growth are the vital rates, that is, the fertility and mortality rates. In the
two-sex model under consideration, only couples are reproductive, and therefore if
a two-sex population is to grow, it is not only necessary that fertility exceed total
mortality but also that there be enough marriages—as indicated in the argument
following (26). The necessary and sufficient conditions derived for the case γ = 1

2

and gender-independent vital rates are β > 4µ and ρ > 2µ 2µ+δ
β−4µ . The analogous

conditions when the vital rates differ among the sexes are β > 2(µf + µm) and
ρ >

σ (µf+µm)
β−2(µf+µm) . For the population of the United States in 2000, the first one is

clearly satisfied and the second one is clearly not. This is the real reason why the
Malthusian rate for the two-sex model population that results from using the actual
data for 2000 is negative. Part of the problem can be solved by considering births
not only from couples but from single females as well. Thus, a need for even more
detailed models arises; some already exist, and others will be developed elsewhere.

5. Conclusions. I considered several simple population models and introduced in
them nonreproductive classes that may represent, for example, lifelong childless
homosexuals, individuals incarcerated until the end of their reproductive years, or
others. I studied the effect that such groups can have on the growth of the total
population.

For the simplest model, a “learning curve” corresponding to a population with
a constant external supply of new individuals, I showed that the segregation into a
nonreproductive group does not alter the growth dynamics of the total population,
but rather it structures it into a reproductive class consisting of a proportion µ

µ+ν

of the total and a nonreproductive class consisting of a proportion ν
µ+ν of the total.

For the next simplest model, Malthus’s exponential model, I showed that the
segregation into a nonreproductive group can indeed alter the population trend
and make an exponentially increasing population stagnate or decline (depending
on how the per capita birth rate compares with the sum of the mortality and
segregation rates) and that the proportion of nonreproductive individuals in the
total population will either approach 1 or the ratio ν

β (depending on whether β ≤ ν

or β > ν).
For the logistic model, I showed similar results; namely, the segregation into

a nonreproductive group can indeed alter the population trend and make an in-
creasing logistic population stagnate or decline (depending on how the per capita
birth rate compares with the sum of the mortality and segregation rates). How-
ever, this time I could not derive this time an explicit expression for the asymptotic
proportion of nonreproductive individuals in the population.

Some important behavioral considerations of human populations are neglected in
the models in this paper, such as the role and of bisexual individuals in population
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growth, births from homosexual females, return of individuals from homosexual
groups to heterosexual ones, differences in contact rates among homosexuals form-
ing couples and those who do not, and others. These issues will be addressed in a
forthcoming paper.

Finally, the importance of segregation in population control discussed in this
paper will be extended to the context of disease transmission and control for sexu-
ally transmitted diseases. The effect of isolating infectious individuals from sexual
activity on the decline of disease prevalence will be analyzed elsewhere. There is
an obvious analogy between the effect that the segregation of reproductive indi-
viduals into nonreproductive groups has on population growth and the effect that
the segregation of individuals infected with a sexually transmitted disease into non-
sexually-active groups will have on the growth of the infected class.
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