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Abstract. This work is concerned with the analysis of the possibility for
eradicating a disease in an infected population. The epidemiological model
under study is of SI type with diffusion. We assume the policy strategy acting
on the infected individuals over a subset of the whole spatial territory. Using
the framework of nonlinear reaction-diffusion equations, and spectral theory
of linear differential operators, we give necessary conditions and sufficient con-
ditions of eradicability.

1. Introduction and main results. We consider a nonlinear model describing
the dynamics of an epidemiological system of the susceptible-infected type (SI) in
a spatial domain Ω ⊂ Rn, n ≥ 1, with a smooth boundary ∂Ω. We denote by
S(t, x) ≥ 0 the density of the susceptible population and by I(t, x) ≥ 0 the density
of the infected population at time t ≥ 0 and position x ∈ Ω. In an infected-free
setting the susceptible population increases at a natural rate r > 0 and saturates at
a level K > 0, known as the carrying capacity of the environment. The incubation
period is assumed to be very short; thus the force of the infection is of the kind
pI(t, x), and the gain in the infective class is pI(t, x)S(t, x), where p > 0 is the
constant infection rate. The rate of removal of infectives is proportional to the
number of infectives; that is, aI(t, x), where (a > 0) is a constant. In our model,
we assume that the infected individuals do not contribute to the population renewal.

In our model, population fluxes obey a Fickian law and are proportional to
their respective spatial gradients; this is k1∇S(t, x) for susceptible and k2∇I(t, x)
for infected, k1 and k2 being positive numbers. These considerations yield a 2×2
system of reaction-diffusion equations in (0, +∞)×Ω for the SI dynamics; namely,
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St(t, x)− k1∆S(t, x) = r(1− S(t, x) + I(t, x)
K

)S(t, x)−pS(t, x)I(t, x),

x ∈ Ω, t > 0,

It(t, x)− k2∆I(t, x) = −aI(t, x) + pS(t, x)I(t, x), x ∈ Ω, t > 0,
∂S

∂ν
(t, x) =

∂I

∂ν
(t, x) = 0, x ∈ ∂Ω, t > 0,

S(0, x) = S0(x) ≥ 0, I(0, x) = I0(x) ≥ 0, x ∈ Ω,

(1)

where S0 and I0 are nonnegative and bounded initial data, assumed to be non-
identically zero on Ω (S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e. x ∈ Ω, ‖S0‖L∞(Ω) > 0,
‖I0‖L∞(Ω) > 0).
The no-flux boundary conditions on the boundary ∂Ω of Ω in (1) correspond to
an isolated spatial environment. For biological significance of all the terms and
parameters in (1), we refer to [6].

This paper concerns the internal eradicability (or zero-stabilizability) of the in-
fected population. Let ω be a nonempty subdomain with a smooth boundary ∂ω,
such that ω̄ ⊂ Ω, and denote by m the characteristic function of ω̄, and by p1 the
constant p + r

K . The question we wish to answer is the following: is there any
control u ∈ L∞loc([0, +∞)× ω) such that the solution to the following system,





St(t, x)− k1∆S(t, x) = r(1− S(t, x)
K

)S(t, x)− p1 S(t, x)I(t, x),

x ∈ Ω, t > 0,

It(t, x)− k2∆I(t, x) = −aI(t, x) + pS(t, x)I(t, x) +m(x)u(t, x),
x ∈ Ω, t > 0,

∂S

∂ν
(t, x) =

∂I

∂ν
(t, x) = 0, x ∈ ∂Ω, t > 0,

S(0, x) = S0(x) ≥ 0, I(0, x) = I0(x) ≥ 0, x ∈ Ω,

(2)

satisfies both

S(t, x) ≥ 0, I(t, x) ≥ 0, ∀t > 0, a.e. x ∈ Ω

and
lim

t→+∞
I(t) = 0 in L∞(Ω)?

Remark 1. The nonnegativity of S and I is a natural requirement, because S and
I represent densities of population. The existence and uniqueness of a solution
(S, I) to the nonlinear system (2) (for any S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e.
x ∈ Ω, and for any u ∈ L∞loc([0, +∞)×ω)) follows by way of the Banach fixed-point
theorem and using comparison results for the solutions to parabolic equations. If in
addition u := 0, then the solution to (2) (the solution to (1)) is nonnegative.

Definition 1.1. We say that the infected population is internally eradicable (or
zero-stabilizable) if for any S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e. x ∈ Ω,
‖S0‖L∞(Ω) > 0, ‖I0‖L∞(Ω) > 0, the answer to the above-mentioned question is
affirmative.

We say that the infected population is internally null-controllable if for any
S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e. x ∈ Ω, ‖S0‖L∞(Ω) > 0, ‖I0‖L∞(Ω) > 0,
and for any T > 0, there exists u ∈ L∞((0, T )× ω) such that the solution (S, I) to
(2) satisfies I(T, x) a.e. x ∈ Ω.
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For basic results of controllability, we refer to [7].

Remark 2. Note that one can easily prove that when Kp < a, the infected pop-
ulation is stabilized to zero naturally (without external control); indeed, using the
maximum principle and comparison theorems one obtains S(t, x) ≤ y(t), where y

is the solution of yt = r(1 − y

K
)y, y(0) = ‖S0‖L∞(Ω). Thus for each ε > 0, one

can find T̃ s.t. K − ε < y(t) < K + ε, for each t > T̃ . Going back to the equation
describing the dynamics of the infected population, integrating by parts on Ω and
choosing ε appropriately (less than a−Kp

p ), one obtains via Gronwall’s lemma that
I(t, ·) → 0 in L1(Ω) as t → +∞ and via the parabolic regularity that I(t, ·) → 0 in
L∞(Ω) as t → +∞.

When Kp > a, an endemic situation occurs for the free SI system, and an
external control is needed to stabilize to zero the infective population.

So, our main problem is to treat the case when Kp > a.

We denote the principal eigenvalue of the following problem,




−∆ϕ = λϕ in Ω \ ω,

ϕ = 0 in ∂ω,
∂ϕ

∂ν
= 0 in ∂Ω,

(3)

by λω
1 .

The main result of our paper is as follows.

Theorem 1.1. If the infected population is eradicable, then k2λ
ω
1 + a − pK ≥ 0.

Moreover, if k2λ
ω
1 + a− pK > 0, then there is a feedback control that stabilizes the

infected population to zero.

Remark 3. It is important to notice that this is a stabilizability problem with state
constraints; this is because the solution (S, I) to (2) must satisfy

S(t, x) ≥ 0, I(t, x) ≥ 0, ∀t ≥ 0, a.e. x ∈ Ω.

If k2λ
ω
1 +a−pK > 0, then we shall also provide a feedback control that stabilizes

the infected-population density to zero.
The control of the infected population means that we destroy (eliminate) or sep-

arate (quarantine) the infected individuals.

Another question that we will discuss is related to the null controllability of the
infected population. In fact, we shall prove that for any I0 ∈ L∞(Ω), I0(x) ≥ 0
a.e. x ∈ Ω such that ‖I0‖L∞(Ω\ω) > 0 and that for any T > 0, there is no control
u ∈ L∞((0, T )× ω) such that the solution (S, I) of (2) satisfies

I(T, x) = 0, a.e. x ∈ Ω

and
S(t, x) ≥ 0, I(t, x) ≥ 0, ∀t ∈ (0, T ), a.e. x ∈ Ω.

Related stabilizability results for nonnegative solutions to some parabolic equa-
tions and to the age-dependent population dynamics have been established in
[3, 4, 1]. The detailed description of the SI systems can be found in [6, 9]. Stabiliz-
ability results for another epidemic model and, using a different technique, can be
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found in [5]. For basic results concerning the parabolic boundary value problems
in Lk frame, we refer to [8].

Our paper is organized as follows: in section 2 we remind some auxilliary results
concerning the principal eigenvalue of −∆ and give the proof of Theorem 1.1. In
section 3 we give some remarks concerning the shape of the domain Ω, to get the
fastest stabilization of the infected population.

2. Proof of the main results. For any arbitrary but fixed real numbers ε and
γ, we consider the eigenvalue problem



−∆ϕ = εϕ−m(x)γϕ + λϕ in Ω,
∂ϕ

∂ν
= 0 in ∂Ω,

(4)

and we denote the principal eigenvalue of (4) by λγ
1,ε.

The following two lemmas have been proved by the authors in [2].

Lemma 2.1. If ε = 0, then
lim

γ→+∞
λγ

1,0 → λω
1 ,

where λω
1 is the principal eigenvalue for (3).

Lemma 2.2. For any γ > 0, we have

lim
ε↘0

λγ
1,ε = λγ

1,0.

The proofs of these two lemmas are mainly based on Rayleigh’s principle.

Let us now state and prove two useful lemmas concerning the asymptotic behavior
of the solution to (1).

Lemma 2.3. Assume that S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e. x ∈ Ω,
‖S0‖L∞(Ω) > 0, ‖I0‖L∞(Ω) > 0 and u ∈ L∞loc([0, +∞)× ω). Let (S, I) be a nonneg-
ative solution to (2). For each ε > 0, there exists T > 0 such that

0 ≤ S(t, x) ≤ K + ε, for any t > T and a.e. x ∈ Ω.

Proof. Let us denote by S̄ the solution to{
S̄t(t) = r(1− S̄(t)

K )S̄(t), t > 0,

S̄(0) = ‖S0‖L∞(Ω).
(5)

Thus 0 ≤ S(t, x) ≤ S̄(t), ∀t ≥ 0, a.e. x ∈ Ω, and lim
t→∞

S̄(t) = K. Then for each
ε > 0, there exists T > 0 such that

0 ≤ S(t, x) ≤ K + ε, ∀t > T, a.e. x ∈ Ω.

Lemma 2.4. Assume that S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e. x ∈ Ω,
‖S0‖L∞(Ω) > 0, ‖I0‖L∞(Ω) > 0 and u ∈ L∞loc([0, +∞)× ω). Let (S, I) be a nonneg-
ative solution to (2). If we assume

I(t) → 0 in L∞(Ω),

as t → +∞, then
S(t) → K in L∞(Ω),

as t → +∞.
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Proof. Let ε > 0 be a fixed and small enough number. Then there exists T > 0
such that for t > T one has ‖I(t)‖L∞(Ω) < ε. Let us denote by S̃ the solution of





S̃t(t, x)− k1∆S̃(t, x) = r(1− S̃(t,x)
K )S̃(t, x)− p1εS̃(t, x), x ∈ Ω, t > T,

∂S̃

∂ν
(t, x) = 0, x ∈ ∂Ω, t > T,

S̃(T, x) = S(T, x), x ∈ Ω .

Using the comparison result for the solutions of parabolic equations, we get that
S̃(t, x) ≤ S(t, x) ≤ S̄(t, x), ∀t > T , a.e. x ∈ Ω (S̄ is the solution to (5)). Now using
arguments similar to those in [2], we obtain that

lim
t→∞

S̃(t) =
K(r − p1ε)

r

in L∞(Ω). Passing to the limit ε → 0, we get the conclusion.

Proof of Theorem 1.1. Let us assume that the infected population is eradicable. Let
u be the control that stabilizes to zero the infected population and denote by (S, I)
the solution of (2) corresponding to u, where S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e.
x ∈ Ω, ‖S0‖L∞(Ω) > 0, ‖I0‖L∞(Ω) > 0. Let K > ε > 0 be arbitrary but fixed.
There exists T > 0 such that for any t > T ,

‖S(t)−K‖L∞(Ω) < ε.

Consider the solution Ĩ to



Ĩt(t, x)− k2∆Ĩ(t, x) = −aĨ(t, x) + p(K − ε)Ĩ(t, x), x ∈ Ω \ ω̄, t > T,

∂Ĩ

∂ν
(t, x) = 0, x ∈ ∂Ω, t > T,

Ĩ(t, x) = 0, x ∈ ∂ω, t > T,

Ĩ(T, x) = I(T, x), x ∈ Ω \ ω̄ .

Then 0 ≤ Ĩ(t, x) ≤ I(t, x), ∀t > T , a.e. x ∈ Ω \ ω̄. Thus

lim
t→∞

Ĩ(t) = 0 (6)

in L∞(Ω \ ω̄).
Note that there exists I0 ∈ L∞(Ω), I0(x) ≥ 0 a.e. x ∈ Ω such that I(T, x) is

not identically zero. Indeed, if we suppose that I(T, x) = 0 a.e. x ∈ Ω, for any
I0 ∈ L∞(Ω), I0(x) ≥ 0 a.e. x ∈ Ω, then the solution to the following problem,





Īt(t, x)− k2∆Ī(t, x) = −aĪ(t, x), x ∈ Ω \ ω̄, t > 0,

∂Ī

∂ν
(t, x) = 0, x ∈ ∂Ω, t > 0,

Ī(t, x) = 0, x ∈ ∂ω, t > 0,

Ī(0, x) = I0(x), x ∈ Ω \ ω̄,

satisfies 0 ≤ Ī(t, x) ≤ I(t, x) for any t ∈ (0, T ) and a.e. x ∈ Ω\ω̄ (we have used again
the comparison result for the solutions of parabolic equations). Using the backward
uniqueness theorem, we may infer that Ī(0, x) = I0(x) = 0 a.e. x ∈ Ω \ ω̄; this is
absurd if we choose I0 such that ‖I0‖L∞(Ω\ω̄) > 0. Using now (6), we may infer
that the principal eigenvalue λε

1 = k2λ
ω
1 +a−p(K−ε) of the following eigenfunction
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problem,




−k2∆ϕ(x) = −aϕ(x) + p(K − ε)ϕ(x) + λϕ(x), x ∈ Ω \ ω̄,
∂ϕ

∂ν
(x) = 0, x ∈ ∂Ω,

ϕ(x) = 0, x ∈ ∂ω,

is positive. Passing to the limit ε → 0, we get that k2λ
ω
1 + a− pK ≥ 0.

Let us prove now the second assertion of our theorem. Assume that the principal
eigenvalue of the following eigenvalue problem,





−k2∆ϕ(x) = −aϕ(x) + pKϕ(x) + λϕ(x), x ∈ Ω \ ω̄,
∂ϕ

∂ν
(x) = 0, x ∈ ∂Ω,

ϕ(x) = 0, x ∈ ∂ω,

is positive (this is equivalent to the fact that k2λ
ω
1 + a− pK > 0), and let S0, I0 ∈

L∞(Ω), S0(x), I0(x) ≥ 0 a.e. x ∈ Ω, ‖S0‖L∞(Ω) > 0, ‖I0‖L∞(Ω) > 0.
Consider the solution to





S̃t(t, x)− k1∆S̃(t, x) = r(1− S̃(t,x)
K )S̃(t, x), x ∈ Ω, t > 0,

∂S̃

∂ν
(t, x) = 0, x ∈ ∂Ω, t > 0,

S̃(0, x) = S0(x), x ∈ Ω.

For any ε > 0 arbitrary but fixed, there exists T > 0 such that K − ε ≤ S̃(t, x) ≤
K + ε, for any t ≥ T and a.e. x ∈ Ω.

Taking in (2), u := 0 for t ∈ (0, T ) and u := −γI (with γ > 0) for t ≥ T , one has
that there exists a unique solution (S, I) to (2), which is nonnegative and satisfies

S(t, x) ≤ K + ε, ∀t > T, a.e. x ∈ Ω

(because S(t, x) ≤ S̃(t, x), ∀t > T , a.e. x ∈ Ω) and 0 ≤ I(t, x) ≤ I∗(t, x), for any
t > T , a.e. x ∈ Ω, where I∗ is the solution to





I∗t (t, x)− k2∆I∗(t, x) = −aI∗(t, x) + p(K + ε)I∗(t, x)−m(x)γI∗(t, x),
x ∈ Ω, t > T,

∂I∗

∂ν
(t, x) = 0, x ∈ ∂Ω, t > T,

I∗(T, x) = I(T, x), x ∈ Ω .

Using Lemmas 2.1 and 2.2, we conclude that there exist ε > 0 (small enough) and
γ > 0 (large enough) such that the principal eigenvalue of the following eigenvalue
problem,




−k2∆ϕ(x) = −aϕ(x) + p(K + ε)ϕ(x)−m(x)γϕ(x) + λϕ(x), x ∈ Ω,
∂ϕ

∂ν
(x) = 0, x ∈ ∂Ω,

is positive. In conclusion, 0 ≤ limt→∞ I(t) ≤ limt→∞ I∗(t) = 0 in L2(Ω), and
consequently by the regularizing effect of the parabolic operator, we get that

lim
t→∞

I(t) = lim
t→∞

I∗(t) = 0

in L∞(Ω).
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3. Final remarks. The argument used in the first part of the proof of Theorem
1.1 allows us to conclude that for any S0, I0 ∈ L∞(Ω), S0(x), I0(x) ≥ 0 a.e. x ∈ Ω
satisfying ‖I0‖L∞(Ω\ω) > 0 and for any T > 0, there is no control u ∈ L∞((0, T )×ω)
such that

I(T, x) = 0, a.e. x ∈ Ω
and

S(t, x) ≥ 0, I(t, x) ≥ 0, ∀t ∈ (0, T ), a.e. x ∈ Ω.

It means that the infected population is not exactly null controllable at a finite
moment T .

If the infected population is zero-stabilizable, then, at infinity it behaves (in
L2(Ω)) as the exponential

e(−k2λω
1−a+pK)t.

Assume now that ω ⊂ Rn is a ball of radius ρ > 0. We wish to find the domain
Ω ⊂ Rn of class C1, of a given measure L > meas(ω) such that ω̄ ⊂ Ω and that
the principal eigenvalue of problem (3) is maximal. The answer to this question
has been given by the authors in [2]. We remind it:

Theorem 3.1. Let ω ⊂ Rn be a ball of radius ρ > 0. The maximal value for the
principal eigenvalue corresponding to (3) in the class of all domains Ω ⊂ Rn of
class C1 with measure L > meas(ω), which contain ω, is realized when Ω is the
ball of measure L with the same center as the given ball ω.
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[4] S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics. Kluwer Aca-
demic, Dordrecht, 2000.
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