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ABSTRACT. In light of recent clinical developments, the importance of math-
ematical modeling in cancer prevention and treatment is discussed. An exist-
ing model of cancer chemotherapy is reintroduced and placed within current
investigative frameworks regarding approaches to treatment optimization. Ar-
eas of commonality between the model predictions and the clinical findings
are investigated as a way of further validating the model predictions and also
establishing mathematical foundations for the clinical studies. The model pre-
dictions are used to propose additional ways that treatment optimization could
enhance the clinical processes. Arising out of these, an expanded model of can-
cer is proposed and a treatment model is subsequently obtained. These models
predict that malignant cells in the marrow and peripheral blood exhibit the
tendency to evolve toward population levels that enable them to replace normal
cells in these compartments in the untreated case. In the case of dose-dense
treatment along with recombinant hematopoietic growth factors, the models
predict a situation in which normal and abnormal cells in the marrow and
peripheral blood are obliterated by drug action, while the normal cells regain
their growth capabilities through growth-factor stimulation.

1. Introduction. In 1997, Citron et al. [1] of Intergroup Trial C9741/Cancer and
Leukemia Group B Trial 9741 (INT C9741) launched studies to test two propo-
sitions. These propositions were based on hypotheses arising from mathematical
models of tumor cell growth kinetics introduced by Norton and Simon [2] in 1986.
The INT C9741 studies looked at dose densification of chemotherapy and also ad-
dressed the issue of heterogeneous drug sensitivity through the use of sequential
dose-dense, non-cross-resistant single agents or regimens. Pfreundschuh et al. [3, 4]
of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL),
in a different setting, have also studied the effects of dose densification on young
and elderly patients with findings that are in some respects similar to and different
from those of Citron et al. [1]. Other studies have come to similar or varying con-
clusions regarding the concept of dose densification in different situations [5, 6, 7].
Dose densification involves the delivery of chemotherapy at reduced intervals with
the aim of maximizing the chances of eradicating a tumor. The use of mathemat-
ical models to better understand how chemotherapy might affect the kinetics of
mammary tumor cells can be credited to Skipper [8], who in 1971 introduced the
idea of log cell kill, in which a given dose of cytotoxic chemotherapy kills a con-
stant fraction of the tumor. This idea derived from murine experiments. It was
revisited by Norton and Simon [2] and later refined by Norton [9] to match data
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generated by clinical trials of adjuvant chemotherapy conducted in the last two
decades. Growth curves that fit those data best were of the Gompertzian type, and
the ensuing simulations showed that manipulations that compress the conventional
schedule of drug administration could result in greater treatment efficacy through
the minimization of tumor cell regrowth in between treatment cycles.

The work of Norton and Simon using mathematical models and clinical testing
of those models by Citron et al. [1] shows the importance of mathematical modeling
as a resource in clinical trials involving cancer chemotherapy. Chemotherapy is the
single most effective kind of treatment against cancer, and this makes it imperative
for clinicians to investigate various strategies that may be optimally efficient in car-
rying out cancer treatment in ways that maximize success and prolong the life of
the patient. As the battle against cancer continues questions that will remain unan-
swered for a long time to come concern the best strategies for achieving remissions
and laying the necessary foundations for a cure. As clinicians face the future chal-
lenges of ethical questions related to experiments involving animals and humans,
mathematical models may provide initial important insights into treatment issues
that, even though they may hold the key to breakthroughs in the clinic, could be
considered dangerous in human clinical trials.

Clinical testing of the Norton-Simon hypothesis [2] is an indication that the
biomedical community is welcoming and opening another significant front in the
fight against cancer and other diseases. Piccart-Gebhart [10] points out that it took
about 15 years to test the concept of dose densification in the clinic partly because
of concerns about the safety of such an approach. He also explains that much of the
energy of the oncology community in the last two decades has been driven by specific
drug questions, to the neglect of most of the other key variables of chemotherapy
that might turn out to be of utmost importance. These include the timing of
chemotherapy in relation to tumor resection and initiation of endocrine therapy,
the duration of chemotherapy, and the schedule of drug administration. Linch [11]
raised other questions that combined with issues raised by Piccart-Gebhart in [10],
suggest looking at cancer treatment as a formal optimization problem in which
mathematical modeling plays a significant role. We must point out here that the
significance of our work lies in the realization that more mathematical models will be
needed in the future to gain useful insights on which investigations of biomedical
phenomena can be based, as has been done by Citron and his co-workers. This
article is written in that context.

Using the aforementioned points as a background, this article highlights the
importance of mathematical modeling to the clinic. Consequently, this article is
laid out as follows. In section 2, we briefly discuss the work of Citron et al. [1] and
Pfreundschuh et al. [3, 4] and follow it up by reintroducing and placing in context
an existing model [12] that employs the treatment-optimization approach. The aim
is to further validate the predictions of that model based on the findings of Citron et
al. [1] and Pfreundschuh et al. [3, 4] and consequently to seek model improvements
that could aid in further clinical trials. In section 3, some models are introduced
that serve as improvements of the model discussed in section 2; simulations of this
model are discussed. Discussions and concluding remarks appear in section 4.

2. The work of INT C9741, DSHNHL, and mathematical modeling. Cit-
ron and his co-workers [1] studied adjuvant chemotherapy for women with axil-
lary node-positive breast cancer to compare sequential doxorubicin (A), paclitaxel
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(T), and cyclophosphamide (C) with concurrent doxorubicin and cyclophosphamide
(AC) followed by paclitaxel (T) for disease-free survival and overall survival. Their
aim was to determine whether dose density of the cytotoxic agents improved disease-
free survival and overall survival, and also to compare toxicities.

Subjects in the INT C9741 study were randomly divided into four groups and
received regimens based either on the sequential or the concurrent modes of admin-
istration mentioned earlier. Among the two groups receiving sequential treatment,
one group received filgrastim, a growth factor, with treatment carried out every two
weeks, and the other group received no filgrastim and was treated every three weeks.
A similar approach was adopted for the two groups receiving concurrent treatment.
Specifically in this study, a total of 2,005 female patients were randomly assigned
to receive one of the following regimens in a 2 x 2 factorial design:

sequential A x 4 (doses) — T x 4 — C x 4, with doses every 3 weeks
sequential A x 4 — T x 4 — C x 4 every 2 weeks with filgrastim
concurrent AC x 4 — T x 4 every 3 weeks

concurrent AC x 4 — T X 4 every 2 weeks with filgrastim

From the studies, Citron et al. [1] concluded that dose densification over a shorter
treatment period of 2 weeks instead of 3 weeks improves clinical outcomes signif-
icantly, despite the lower-than-expected number of events at this time. They also
reported that sequential chemotherapy is as effective as concurrent chemotherapy.

In one DSHNHL study [3], randomized groups of patients between ages 18
and 60 years with good-prognosis aggressive lymphoma were given combinations
of cyclophosphamide, doxorubicin, vincristine, and prednisone or combinations
of cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide every
two or three weeks, respectively. These were classified as CHOP-21 or CHOP-
14 (chemotherapy without etoposide carried out over 3 weeks or 2 weeks) and
CHOEP-21 or CHOEP-14 (chemotherapy with etoposide carried out over 3 weeks
or 2 weeks). In this study, 710 patients were randomized to 6 cycles of CHOP-21,
CHOP-14, CHOEP-21, or CHOEP-14 in a 2 x 2 factorial study design. Patients in
the biweekly regimens additionally received granulocyte colony-stimulating factor
(G-CSF). The aim was to determine whether treatment over 2-week periods could
produce better results than treatment over the standard 3-week period. Despite
limitations of the study, certain aspects of the trial showed that the administra-
tion of combinations of cyclophosphamide, doxorubicin, vincristine, and prednisone
provided better results in the 2-week treatment case than in the 3-week case with
respect to survival. It was found that the regimen including combinations of cy-
clophosphamide, doxorubicin, vincristine, prednisone, and etoposide delivered 3
weeks improved only event-free survival, whereas the same regimen delivered every
2 weeks along with G-CSF significantly improved complete remission rates, reduced
progressions under therapy, and improved event-free survival and overall survival.
Even though this 2-week dosing strategy was observed to be more toxic, it was
recommended for younger patients with good prognosis.

In another DSHNHL trial [4] that studied treatment of elderly patients between
ages 61 to 75 years, 689 randomized groups of patients with aggressive lymphoma
received the same types of regimens described above over respective 2- or 3-week
cycles. The study concluded that administration of combinations of cyclophos-
phamide, doxorubicin, vincristine, and prednisone along with G-CSF given in 2-
week cycles instead of 3-week cycles should be considered as the new standard
chemotherapy regimen for patients age 60 or older.
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The studies by Citron et al. [1], Pfreundschuh et al. [3, 4], and others uncover
and suggest strategically viable options provided by the concept of dose densifi-
cation within a growth factor enhanced treatment environment. However, more
investigations are advocated [1, 3, 4, 10, 11] as a way to build enough confirma-
tory evidence in favor of such approaches. In the pursuit of further investigations
we believe that mathematical models could give some insights to clinicians about
how to optimize treatment so as to lessen the additional cost offered by addition
of growth factors to the treatment regimens, for example. Among a number of
questions relating to the treatment strategies are the following: How optimal is the
reduction of the standard treatment time interval from three weeks to two weeks
considering the various constraining factors on treatment? Are there other time in-
tervals that could yield treatment optimality in terms of improving event-free and
overall survival, and lessening myelosuppression? Should a rest period be factored
into the overall treatment interval, and how long should this rest period be before
another treatment cycle begins?

In addressing such questions and relating our work to the clinical studies, we
reintroduce the treatment model proposed in [12]. At the time the model was
proposed, it was difficult to find work in the medical literature that could be used
to compare and validate the findings it engendered with regard to dose densification
as hypothesized by Norton and Simon [2]. We therefore used the work of Yamasaki
et al. [13], which even though did not investigate the concept of dose densification,
fell to some extent within our investigative framework of probing the effects of
growth factors in treatment. Recent work by Citron et al. [1] has made it possible
and imperative to revisit this model and place it in current relevant context. We
now reintroduce the treatment model based on the following assumptions:

1. Combinations of cytotoxic agents are delivered continuously to a patient
whose diagnosis indicates the existence of a rapidly expanding malignant pop-
ulation with a certain level of cell loss and a dominated normal cell population.

2. The normal and abnormal cells exist side-by-side and obey the processes of
Gompertzian growth. However, the malignant population interferes with and
inhibits the growth of the normal cell population.

3. The recovery of the normal cell population is stimulated with the infusion
of recombinant hematopoietic growth factors during the application of the
cytotoxic agents.

4. The regrowth rate of the normal cells due to the infusion and action of growth
factors is directly proportional to the quantity of normal cells available.

5. To limit damage to normal tissues from the drug insult, constraints are placed
on the concentration of drugs.

6. The cost of treatment that should be minimized is taken to be proportional
to the time interval of treatment. This cost involves the length of exposure
to cytotoxic agents and the period of hospitalization.

These assumptions engender a treatment-optimization model that considers can-
cer treatment as a formal optimization problem. This model derives from superim-
posing a chemotherapeutic regimen on a model that describes cancer and normal
cell growth kinetics in an environment in which account is taken of interactions
among the cells. Such interactions give rise to normal cell inhibition by an expand-
ing malignant population [14]. The model is as follows. Minimize

R
J= / gdt (1)
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subject to
dL Ly
7 =9 <1ogL> L — fL — ku(t)L, (2)
ﬂ:a log& N —bN — ¢NL — hu(t) N + G (t), (3)
dt N
N(0) = No, L(0) = Ly, (4)
with
Umin S U(t) S Umazx (5)
and

L(R) | L

IRk )
where the quantity L(t) represents the population of malignant cells at time ¢, the
quantity N (t) represents the population of normal cells at time ¢, the parameter g
is the fractional growth rate of the abnormal cells, f is their fractional death rate,
a is the fractional growth rate of the normal cells, b is their death rate, and c is
the degree of inhibition exercised by the malignant cells over the normal cells. The
quantities L4 and N4 are the carrying capacities of the abnormal and normal cell
populations, respectively. The constants Ly and Ny are the respective populations
of the malignant and normal cells at detection. Quantity u(¢) is an attribute or a
measure of the lethality and toxicity of the concentration of drugs per unit time,
G(t) is the regrowth rate of the normal cells due to the infusion and action of
recombinant hemopoietic growth factors and is represented in this case as G(t) =
rN, where r is a constant defined as the recovery rate per unit time of normal cells
due to the infusion of recombinant hematopoeitic growth factors. The parameter
k is the fraction of malignant cells that are killed by the drug insult and h is the
fraction of normal cells that are destroyed with the assumption that £k >> h. The
quantity R denotes the final time of treatment, [0, R] denotes the chemotherapeutic
time interval, and the parameter ¢ is a constant of proportionality that can be
defined as a penalizing factor if the treatment time is prolonged. Quantities Land N
denote the final populations of abnormal and normal cells, respectively, at the
end of treatment. It is expected that L will be small or negligible and N will
be large enough to guarantee and facilitate normal cell regrowth after treatment
is discontinued. The full details describing how this model is transformed and
analyzed, along with numerical estimates of the model parameters, can be found in
[12]. Here, with the objective of minimizing the treatment time interval described by
equation (1) in the spirit of the dose densification concept, a Hamiltonian function
is constructed and analyzed by adjoining a transformed version of equation (1) to
transformed versions of equations (2) and (3) to obtain the results described in
section 2.1.

2.1. Model predictions and clinical trials. Our aim at this juncture is to in-
vestigate the usefulness and relevance of the results generated by model system
(1)—(6) to the clinical verifications of the concept of dose densification [1, 3, 4],
with the goal of further validating the model predictions in this context and also
suggesting ways in which the clinical trials could be enhanced through treatment
optimization. From the analyses and simulations described in Figures 1, 2, and 3,
the model predictions and their resulting implications are as follows:
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. It is possible to achieve significant reductions in malignant cell numbers

through intensive treatment at reduced time intervals with high drug con-
centrations and addition of growth factors. This supports the conclusions
about dose densification in [1, 3, 4].

. The treatment outcomes when growth factors are used in intensive dose-dense

therapies (shown in Fig. 1) appear to have an edge over outcomes that employ
dose-dense treatments without growth factors (shown in Fig. 2). In Figure
1, normal cell recovery takes place during the active treatment period, while
in Figure 2 the recovery takes place toward the end of the patient’s period of
rest.

. Dose-dense treatment with growth factors enhances a better cell count dif-

ferential that favors normal cells over the malignant ones toward the end of
the treatment cycle. Figure 1 demonstrates a larger differential in cell counts
of normal over abnormal cells than Figure 2 does, toward the end of the
treatment cycle.

. An optimal treatment cycle produces two separate periods—an active dose-

dense treatment period and a rest period in which the patient is made to
rest before another course of therapy is admistered. The calculations yielded
35 nondimensional time units (approximately 27 days) for a single treatment
cycle in the case where growth factors are applied, where one nondimensional
time unit is equivalent to 0.772 days. Within this treatment interval, the
period of active dose-dense treatment was 22.42 nondimensional time units
(about 17.3 days). The rest period was 12.58 nondimensional time units
(about 9.7 days). Therefore, considering all things being equal to a first
approximation, a 2-week treatment period will consist of about 9 days of
active dose-dense treatment and a rest period of 5 days. In this same vein,
a 3-week treatment cycle will consist of about 13.5 days of active dose-dense
therapy and a rest period of 7.5 days.

. The simulations shown in Figure 3 indicate a situation in which the abnormal

cell population stays below a certain threshold beyond the rest period while
the normal population increases beyond this threshold, possibly due to the
effect of the growth factors on the normal population on one hand and to the
effect of dose-dense treatment on the malignant population on the other.

In specifically comparing and contrasting the clinical studies [1, 3, 4] to the model

design, predictions, and implications, assuming all things to be equal, the following
observations can be made:

1. Combinations of drugs are employed in the clinical studies, while in model

system (1)—(6) the drug combinations are essentially represented by the model
quantity u(t).

. The growth factors (filgrastim and G-CSF) that are used in the clinical in-

vestigations find their expression through G(¢) in model system (1)—(6).

. The growth factors applied in the clinical work are aimed at enhancing and

stimulating normal cell recovery, and this is captured by the presence of G(t)
in model equation (3). Even though growth factors are thought to stimu-
late the growth of abnormal cells and recruit them into active cycle, existing
supporting evidence for the presence of G(t) only in model equation (3) [15]
indicates that such cytokines may not necessarily cause this kind of malignant
stimulation.
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FIGURE 1. Intensive dose-dense treatment with infusions of
growth factors. The normal and abnormal cells go through a pro-
cess of decline during the period of active therapy. However, nor-
mal cell recovery begins during this period, leading to a domination
of the abnormal population during this active treatment period
and lasting through the rest period. In this simulation scheme
growth-factor support was started 2.5 nondimensional time units
after treatment began. The abscissa is measured in nondimen-
sional time units, and the ordinate represents the cell populations
measured on a logyg scale.
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FI1GURE 2. Intensive dose-dense treatment without infusions of re-
combinant hematopoietic growth factors. The normal and abnor-
mal cells go through a process of decline during the period of active
treatment, but even though the normal population begins to re-
cover, it remains dominated by the abnormal population. The
eventual domination gained by the normal cells over the abnor-
mal population takes place only toward the end of the rest period
and involves a relatively small advantageous differential. The ab-
scissa is measured in nondimensional time units, and the ordinate
represents the cell populations measured on a logg scale.
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F1GURE 3. Growth of the normal and abnormal cell populations
beyond the treatment cycle that involved the use of recombinant
hemopoietic growth factors. The normal cells evolve toward their
normal population level, while the abnormal cell population re-
mains below a certain threshold. The abscissa is measured in
nondimensional time units, and the ordinate represents the cell
populations measured on a logig scale.

4. Indications of the effects of the studies were measured by considering improve-
ments in disease-free survival and overall survival among patients, while the
model measured the effects of the treatment by looking at system dynam-
ics in the presence or absence of growth factors and system behavior beyond
the model-predicted treatment period. Improvements arising from the model
came from observing differentials in the normal and malignant populations
that were advantageous to normal cells.

5. By studying outcomes related to disease-free survival and overall survival
among patients, the clinical investigations recommended dose-dense treat-
ment over an arbitrarily chosen 2-week period instead of the standard 3-week
period. With the objective of minimizing the treatment period based on con-
straining system kinetics, the model predicted a specified time interval over
which to carry out dose-dense therapy.

6. Thus, from calculations, the model stipulates the division of the entire treat-
ment interval into a calculated period of active dose-dense therapy and a pe-
riod of rest before another treatment cycle is started. This is not considered
in the clinical studies.

7. Consequently, as mentioned earlier, to a first approximation, a 2-week dose
dense treatment period as recommended by the clinical studies could be short-
ened further through a model-predicted active dose dense therapy period of
9 days followed by a 5-day rest period.

Basically, the main findings of the clinical trials [1, 3, 4] were that the two-week
dose-dense approach could be considered as a viable treatment strategy for either
younger or older patients, compared to the standard treatment period of three
weeks. These suggest that treatment be carried out in shorter time intervals with
heavy doses of drugs in addition to growth factors. Thus, the clinical findings
support the model predictions and their implications in a broad sense. In this
context, the modeling approach situates and positions the clinical trials within a
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formal optimization framework in which a number of calculations and estimations
can be carried out before active treatment begins.

Comparing and relating the results of the clinical trials and the model, in re-
gard to the items listed above, the following points highlight predictions of model
system (1)—(6) that do not necessarily match the design and postulations of the
clinical studies but may be insightful and relevant to integrating such studies with
mathematical modeling techniques even before treatment begins.

1. The model suggests that the length of the entire treatment period that in-
cludes the time interval of active dose-dense treatment and the rest period
could be calculated granted that patient data on parameters such as growth
and death rates of the cell populations are known.

2. Determination of an approximate time to discontinue treatment when the
entire time course of treatment is estimated.

3. Knowledge of the time interval of neutropenia that can be estimated from the
time when the normal population begins to decrease because of drug insult
until the time point when it starts to rise, as can be observed from Figure 1.

4. A threshold below which the abnormal population could be kept for some
period of time to guarantee regrowth of the normal population, possibly before
another course of therapy, if necessary, is administered.

5. An interval of time beyond the rest period over which to wait before carrying
out any treatment of minimal residual disease.

6. Specification of the final populations of normal and abnormal cells to be
reached by the end of the rest period to ensure count recovery.

7. Knowledge of the cost of treatment.

Essentially, it is instructive to note from the clinical trials that dose-densification
protocols, as predicted by mathematical models [2, 12], may be advantageous to
cancer patients. Quite possibly, such protocols may gain superiority over others
and achieve wider applicability if carried out within a formal optimization setting,
as the modeling approaches suggest. Within such a framework, estimations of
time intervals for active dose-dense treatments and rest periods could be made in
circumstances where it is necessary to determine whether to carry out treatments
either over 2-week or 3-week cycles. It is safe to say at this juncture that the inherent
nature of cancer chemotherapy tends to point to conclusions of dose densification
over shorter treatment cycles. However, the underlying kinetic behavior of the
interacting cells, which serves as a constraint on treatment, needs to be continuously
understood. Therefore, it is imperative for us to keep improving our models as we
seek to make them more insightful and relevant to clinical investigations. To this
end, we introduce some new and expanded models of cell kinetic behavior in section
3.

3. Expanded models. In section 2, we related the clinical investigations [1, 3, 4]
to an existing model of cancer chemotherapy and used those studies to further
validate the predictions of the existing model. In the process, we also showed how
the clinical findings could benefit from a formal optimization approach. Obviously,
like any other models, the above model has certain limitations. One limitation is the
lumping together of all normal and malignant cells into single populations of cells
in the study of their kinetic behavior; this could blur some insights that might arise
if cell kinetics were studied in the various compartments and organs participating
in normal and abnormal hemopoiesis. In this section, we offer a way to begin
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addressing some of the model limitations by considering cell kinetic behavior in the
marrow and peripheral blood in an environment of malignancy in untreated and
treated cases. The proposed new model in the untreated case is as follows:

dL,, La
g~ “hmlos (Lm> (0 e o, "
dLy
S~ Ly — KLy,
a b )
dN,, Na .
- me10g<Nm) (g +h + jLm) N, 9)
dN,
dTb = hN,, — (I +nLy) N, (10)
Lm (O) = LmO; Lb (0) = LbOa Nm (O) = N77L07 Nb (0) = Nb0~ (11)

In the case of treatment, we introduce a chemotherapeutic regimen into model
system (7)—(11) to obtain the following model:

dLy, L4
dL
dTb = ¢L,, — kLy — qULy, (13)
dn, N
Ttm = fN,,log <N"‘) — (9 + h+ jLm) Ny — tUNy, + G(t), (14)
dn,
Tttb = YhN,, — (I +nLy) N, — sUNy, (15)
dU
— = o(t) — 1
o = v(t) = AU, (16)

L (0) = Lo, Ly (0) = Lpo, N (0) = Nimo, Ny (0) = Nio, U(0) = Up. (17)
In model systems (7)—(11) and (12)—(17), L., is the population of abnormal cells
in the bone marrow (BM) at time ¢, L 4 is the asymptotic bound on the population
of malignant cells in the marrow, L; is the population of abnormal cells in the
peripheral blood (PB) at time ¢, N,, is the population of normal cells in the BM,
N4 is the asymptotic bound on the normal cell population in the BM, and Nj is
the population of normal cells in the PB. The quantity G(t) represents the infusion
rate of recombinant hematopoietic growth factors at time ¢, and U(¢) represents
the concentration of a combination of cytotoxic drugs. It can also represent the
lethality or toxicity of cytotoxic drugs to normal and abnormal cells. Quantity v(t)
represents the infusion rate of the combinations of drugs. In the BM, parameters a
and f are the respective growth speeds of abnormal and normal cells, b and g are
respective loss rates of malignant and normal cells, ¢ and h are respective release
rates of abnormal and normal cells from the BM to the PB, j is the degree of
inhibition suffered by the normal cells due to their interaction with abnormal cells,
p is the fraction of abnormal cells that are killed because of drug action, and r is
the fraction of normal cells destroyed by the drug insult. In the PB, parameters e
and [ are the respective loss rates of abnormal and normal cells, n is the degree of
inhibition suffered by the normal cells due to their interaction with abnormal cells,
q is the fraction of abnormal cells destroyed by drug action, and s is the fraction of
normal cells that are killed because of drug toxicity. The quantity -y is an activation
factor arising from the growth factor stimulation. Parameter A represents the rate
of decay of drug concentration.
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Model systems (7)—(11) and (12)—(17) are new models that we have proposed in
an attempt to gain a deeper understanding of the cell kinetics and are predicated
on the following assumptions:

1. A process of hematopoiesis exists in the bone marrow that supports and
maintains the homeostatic level of cells in the peripheral blood.

2. A malignant population of cells emerges in the marrow and peripheral blood.

3. The malignant population interacts with and interferes with the normal pop-
ulation in the BM and PB.

4. Growth of normal and malignant cells in the BM follows a Gompertzian pro-
cess.

5. The PB does not experience cell growth but benefits from the release of normal
and malignant cells to it from the BM.

6. Cell loss takes place from the BM and PB.

7. Infusion of recombinant hemopoietic growth factors takes place at rates that
are proportional to the normal population in the bone marrow.

8. Stimulation of the BM by growth factors activates the rate at which normal
BM cells enter the PB.

9. Infusions of combinations of drugs take place continuously during the period
of active therapy.

3.1. Analytical results, parameter estimates, and simulations. An investi-
gation of the steady-state properties of the new model system (7)—(11) reveals that
it has four critical points. These are as follows:
. L,,=0,Ly=0,N,, =0, N, =0
Il L, = 0,L, = 0, N,y = Nae™®, Ny = (hNa/l)e™® where o = 22
L. L, = Lae P Ly = (cLa/k)e P N,, = Naye l9th+ila)/f

hkNAeﬁ—(g+h+J'LA)/f _ b4e
cnL a + kleP Whereﬂ ~  a

IV. L, = Lae P Ly, = (cLa/k)e P, N,y =0, N, =0
Among these critical points, steady states (III) and (IV) are stable to small

perturbations. Stability of equilibrium point (III) comes directly from the analysis
while that of point (IV) is determined from our work with data below. With
these, and considering the difficulties entailed in obtaining parameter values in this
area, we continue our studies by obtaining and inferring estimates of the model
parameters from existing work [12, 14, 16], which deals with the modeling of cancer
and its treatment under circumstances that are relevant to the investigations in
this work. The parameter and other values along with associated correction factors
used in this work are summarized as follows:

a =0.00396 £0.05 b=0.01925£0.06 ¢=0.286=+0.05 f=0.03333+£0.05

g=20.0715+£0.05 h=0.4771+0.05 k=.0124+0.06 [=.086=+0.05

p=044+0.2 q=04+0.2 r=0.1+£0.05 s=0.14+0.05

j=5x10"6 n=>5x10"6 Lys=30x10"2 Nyu=14x10"2

Parameters a, b, ¢, f, g, h, k, and [ are measured per hour, and parameters j

and n, which are chosen to be the same, are measured per 1,000 cells per hour.
Since negative values of the parameters are unrealistic, we must point out that the
range of values of the various parameters with the correction factor of 0.05 would
have lower limits of zero. Using the parameter estimates above, we computed the
numerical values of the steady states in (II)-(IV) above to obtain

b. L, =0,L, =0, N, = 583866 x 105, N, = 2.26248 x 10°

~

=
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FIGURE 4. Time evolution of the abnormal marrow and peripheral
blood cells. Upon emergence in the marrow and blood, these cells
increase their population in those compartments of the body so as
to dominate the normal marrow and peripheral blood cells. The
thick curve represents the abnormal marrow cells, and the thin
curve represents the abnormal peripheral blood cells. The abscissa
is measured in days, and the ordinate is multiplied by 107 cells.

c. L, = 1.64243 x 10°, L;, = 8.90089 x 10°, N,,, = 9.26383 x 1073°, N, =
1.09364 x 10736
d'. L, = 1.64243 x 10°, L, = 8.90089 x 10°, N,, = 0, N, = 0.

It can be observed clearly from (¢’) and (d’) that the numerical values coincide.
Therefore, the stable steady state that arises in the untreated case is one in which
there are almost no normal cells in the BM and PB. This means that these cells are
ultimately replaced by the abnormal ones, and this situation may become fatal if left
untreated. Steady state (I) is unstable and shows that a situation where there are
no cells is impossible. Steady state (II) or (b’) breaks down and is unstable showing
the dominance of abnormal cells in the disease state. We carried out simulations of
the untreated case by investigating the evolutionary dynamics of the normal and
abnormal BM and PB cells, respectively, as shown in Figures 4 and 5.

Figure 4 shows the increasing population of the abnormal cells in the BM and PB
in the untreated case, while Figure 5 shows the diminishing population of normal
BM and PB cells after some point in time. In Figure 5, the normal cells increase in
population over time so as to maintain a semblance of normal hemopoiesis, but this
increase is brought in check as the abnormal cells interfere with the development of
the normal BM and PB population of cells. Following the analysis and simulations
of the untreated case, we proceeded to study the simulations of model system (9)—
(14). The simulations were based on predictions from model system (1)—(6) and
results from the clinical studies of [1, 3, 4]. We investigated cell behavior in the
marrow and peripheral blood in an active treatment environment over a formal
period of 17 days by assuming various possible control strategies arising from work
with model system (1)—(6). Thus, specification of an explicitly defined objective
function adjoined to model system (9)—(14) was found to be unnecessary in the face
of the kinetics playing an important role in system evolution.

In studying dose densification in this context, it was assumed that at an intensive
level of treatment, U(t) could be taken to measure the maximum level of drug
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FIGURE 5. Evolutionary dynamics of the normal marrow cells
(represented by the thick curve) and peripheral blood cells (rep-
resented by the thin curve) in the untreated case. To maintain a
semblance of normal hemopoiesis when abnormal cells emerge, the
normal cells increase in their numbers but start to decrease after
some point, when the malignant populations in the marrow and
peripheral blood exercise appreciable interference in their growth.
The abscissa is measured in days, and the ordinate is multiplied
by 107 cells.
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FIGURE 6. Time evolution of malignant marrow and peripheral
blood cells upon introduction of dose-dense treatment. When
drugs are applied, the abnormal cells in the marrow (represented
by the thick curve) begin to decrease immediately toward low lev-
els, but the abnormal cells in the peripheral blood (represented
by the thin curve) temporarily experience a rise in their popula-
tion level because of enhancements they obtain from marrow cells
still entering the peripheral blood. This rise aborts when drug ac-
tion on the marrow and peripheral blood takes hold, leading to an
eventual decrease in these two cell populations. The abscissa is
measured in days, and the ordinate is multiplied by 108 cells.
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FIGURE 7. Evolutionary dynamics of normal marrow and periph-
eral blood cells in the dose-dense treatment case with growth fac-
tors. When dose-dense treatment is introduced, the normal mar-
row cells (represented by the thick curve) begin an instantaneous
process of decline to a low level, but their population starts to
rise toward the end of the treatment period because of the stim-
ulation they receive from growth factors. The normal peripheral
blood cells (represented by the thin curve) initially witness an in-
crease in their population because of the enhancements they get
from marrow cells entering this compartment. However, they go
through a decline after the point when drug action takes hold. To-
ward the end of the treatment period, their population starts to
rise because of growth-factor stimulation. The abscissa is measured
in days, and the ordinate is multiplied by 10% cells.

lethality or toxicity. Thus, U(t) was set equal to one. Simulations that yielded the
evolutionary dynamics of the BM and PB cells in the dose-dense treatment case
are shown in Figures 6 and 7. In Figure 6, we observe that upon introduction of
dose-dense treatment, the abnormal cells in the marrow (represented by the thick
curve) begin to decrease immediately toward low levels, but the abnormal cells
in the peripheral blood (represented by the thin curve) temporarily experience a
rise in their population level because of enhancements they obtain from marrow
cells that are still entering the peripheral blood. This rise becomes truncated when
drug action on the marrow and peripheral blood takes hold, leading to an eventual
decrease in these two cell populations. This decrease does not show any tendency
of recovery towards the end of the treatment period. The decrease down to a low
level happens around day 12, that is, before day 17.

In Figure 7, upon introduction of dose-dense treatment, the normal marrow cells
(represented by the thick curve) begin an instantaneous process of decline toward
a low level, but their population starts to rise toward the end of the treatment
period because of the stimulation they receive from growth factors. On the other
hand, the normal peripheral blood cells (represented by the thin curve) initially
witness an increase in their population because of the enhancements they get from
marrow cells entering this compartment. However, they go through a decline after
the point when drug action takes effect. Toward the end of the treatment period,
their population starts to rise because of growth-factor stimulation.
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4. Discussion and concluding remarks. As the search for the best treatment
strategies in cancer treatment continue, it is important to note that the work of
Citron et al. [1] shows that mathematical models have a significant role to play
in confronting the nagging and seemingly intractable problems posed by cancer as
a disease. It took a relatively long time for the postulates of Norton and Simon
[2] to be verified in the clinic. Nonetheless, by basing their clinical studies en-
tirely on the postulates of a mathematical model, Citron and his co-workers gave
further credibility to an area of scientific endeavor that holds enormous potential
for maximizing the benefits that would accrue from multidisciplinary collaboration
involving clinicians, biologists, mathematical biologists, and other scientists.

In this article, we found commonality between specific predictions of model sys-
tem (1)—(6) and the clinical findings of [1, 3, 4] and went on to enumerate other
model predictions that could be investigated in the clinic as part of the process
of placing the strategy of dose densification on firm theoretical and experimental
grounds as a viable strategy in the fight against cancer. We used the model and
its predictions to show that reduction of the treatment time from 3 weeks to 2
weeks could proceed along optimization lines in which 2 subintervals of treatment
could be estimated, should the entire treatment time be either 2 or 3 weeks. The
2 subintervals comprise an active treatment time interval and a rest period. In the
active treatment subinterval, the patient would receive combinations of drugs in
addition to growth factors, and the patient would rest during the inactive period
before another possible course of treatment. The simulations show that such a
strategy could provide beneficial outcomes to the patient and clinician.

Since the search for the best treatment strategies continues and given the rec-
ommendations that testing of the clinical findings should continue to establish ir-
refutable evidence in favor of dose densification and other strategies, it is impera-
tive to keep improving mathematical models alongside the clinical investigations to
provide further predictive insights. Therefore, we sought improvements to model
system (1)—(6) by introducing models that studied cell kinetic behavior in the mar-
row and peripheral blood in the untreated and treated cases. It is important to
point out that knowledge of cell kinetic behavior in cancer is essential to design-
ing and implementing treatment protocols. In analyzing model system (7)—(11),
the model predicted that there was essentially one stable steady-state set in which
abnormal cells populate and replace normal cells in the marrow, leading to a sit-
uation where no normal cells remained in the marrow and peripheral blood in the
untreated case. Simulations of the model supported this analytical prediction. The
simulations showed that normal cells may evolve toward levels aimed at present-
ing a semblance of hematopoietic normality but decline because of the presence of
malignant cells in these compartments of the body. The investigation of the dose-
dense treatment case with simulations of model system (12)—(17) over a formal
treatment period of 17 days showed that the bone marrow and peripheral blood
compartments could experience considerable depletions in normal and malignant
cell levels within a time span of about 10 days of aggressive treatment. However,
normal cell recovery in the BM and PB, at the expense of malignant cells, could be
guaranteed through stimulation by growth factors.

We must mention that many other important questions will be investigated with
our models in a sequel to this article, including, for example, the investigation of
system behavior when certain types of growth factors trigger dormant or resting
malignant cells into active cycle. One of our main aims in this discourse has been
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to further demonstrate the roles mathematical models can play in clinical trials,
and we hope to build on this through further model improvements. We believe
that mathematical models could be positioned at locations before, during, and
after treatment, when estimates of cell kinetic behavior, treatment times, drug
concentrations, and other quantifiable entities need to be obtained so as to inform
the treatment process.

Acknowledgments. My thanks to the anonymous referees whose helpful com-
ments aided in the revision of this paper.
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