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Abstract. In this paper, we investigate the role of topology on synchro-
nization, a fundamental feature of many technological and biological fields.
We study it in Hindmarsh-Rose neural networks, with electrical and chemical
synapses, where neurons are placed on a bi-dimensional lattice, folded on a
torus, and the synapses are set according to several topologies. In addition
to the standard topologies used in other studies, we introduce a new model
that generalizes the Barabási-Albert scale-free model, taking into account the
physical distance between nodes. Such a model, because of its plausibility
both in the static characteristics and in the dynamical evolution, is a good
representation for those real networks (such as a network of neurons) whose
edges are not costless. We investigate synchronization in several topologies;
the results strongly depend on the adopted synapse model.

1. Introduction. Many real systems can be modelled as complex networks. Sev-
eral examples can be found: at a social level, the simplest network is the organiza-
tion of people; nations can organize themselves at a political and economic level,
where global economy is a network of national economies, in turn composed of
networks of markets, which are themselves networks of producers and consumers;
networks of routers (as the Internet); networks of Web pages (as the World Wide
Web); networks of the diffusion of energy in living organisms, in infrastructures
created by humans, or in many physical systems; and networks of neurons (as the
brain) [1]. It is important not only to understand how networks arise and develop
but also to investigate their properties and their dynamical behavior. As for dy-
namical behavior, synchronization, being a common feature of many dynamical
systems [1], has been studied in many applications, such as coupled damped and
forced pendulums [2] or arrays of Chua’s circuits [3]. Recent studies have devoted
particular attention to the development of two main branches: the first analyzing
how spatial diversity can give rise to significant improvements in the synchroniza-
tion process [4, 5, 6, 7, 8, 9] and the second considering the effect of the topology
of the network of coupled systems on the dynamical behavior [10, 11, 12, 13]. It
has been shown, in fact, that a systems’s structure affects its function [14] and
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influences the way in which information is exchanged; for instance, it influences
the spread of disease and, in Internet, the tendency for routers to move towards
synchrony [15].

The research concerning synchronization has been inspired mostly by biology [16,
17], from the flashing of fireflies to the chirps of crickets, from the wave propagation
in the heart to information processing of neurons. In particular, the study of the
dynamics of a neural network is a central topic for many sciences, since the primary
aim is a complete and satisfactory representation of the physiology of the neuron
system, even to design artificial biologically inspired systems. Synchronization of
neural networks is important because it underlies several behaviors, such as learning
and generation of rhythmic movements for motor control.

However, we are so far from having an in-depth knowledge of either the mech-
anisms of the neuronal activity or the real structure of a neural network that re-
searchers must restrict their analysis either to very accurate topologies or to very
accurate neuron models [18].

In this paper, we choose a compromise solution that considers an intermediate
level of accuracy both for topological and neural models: we investigate the role of
topology on a bi-dimensional surface of Hindmarsh-Rose neurons coupled by means
of electrical or chemical synapses.

The analyzed topologies belong to two different classes: static (where the number
of nodes and edges is constant in time) and dynamical (where at each time step a
new node and some edges are added).

Different neural networks, characterized by different topologies and different
synapses, have been compared and characterized by means of both static parame-
ters, which take into account only the structure, and dynamic parameters, which
take into account the temporal evolution of the state variables of neurons.

Among the parameters shown to analyze the networks, we have also included a
cost parameter with a two-fold aim: on one side it allows one to take into account the
role that physical distance plays in the formation of new synapses (edges) between
neurons (nodes); on the other it can be a fundamental parameter for the design of
artificial neuron networks.

In section 2, we present a quick review of recent developments in network mod-
elling, and we define a new generalization of the Barabási-Albert model, based on
the plausible hypothesis that physical distance between nodes in a network is a
fundamental parameter in the process of links formation. In section 3, we describe
the Hindmarsh-Rose neuron and the models we used to represent the electrical and
chemical synapses. In section 4, we introduce the parameters we used to evaluate
synchronization and energetic costs. In section 5, we present some results with
electrical and chemical synapses, comparing the topologies that we use according
to the previously applied parameters. Finally, in section 6, we draw a conclusion.

2. Topological models. A generic network is a graph G, in which the N nodes
represent the basic component of the network and the K edges represent an in-
teraction between them: for example, in the Internet [19], nodes are routers and
edges are physical connections between them; in a neural network [10], nodes are
neurons and edges are synaptic connections between them. We represent a network
through its adjacency matrix A = (aij), whose element aij is 1 if there is an edge
connecting nodes i and j, and 0 otherwise. The network is undirected and has an
average degree (number of first neighbors of each node) equal to < k >= 2 ·K/N .
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To characterize the topological properties of networks, we use two parameters,
as defined in [20]. The first is the characteristic path length L:

L(G) =

∑
i 6=j∈G dij

N(N − 1)
, (1)

where dij is the length of the shortest path connecting nodes i and j. A small value
of L indicates good global properties of the network.

The second parameter is the clustering coefficient C, defined as:

C(G) =
∑

i∈G Ci

N
, (2)

with

Ci =
number of egdes in Gi

ki · (ki − 1)/2
, (3)

where ki ·(ki−1)/2 is the total number of possible edges in Gi, which is the subgraph
of the first neighbors of the node i. A large value of C is an index of good local
properties, because it indicates that there are many connections between nodes
belonging to the same neighborhood.

These structural properties do not take into account that in real networks con-
nections between nodes may have a cost related to the physical distance between
the nodes [21]. To evaluate how much the building cost of a network is, we in-
troduce a new parameter. This is the structural cost of the network as the total
physical length of the edges present in the system defined as follows:

Cost(G) =
∑

i,j∈G

aij · lij , (4)

where aij is the element ij of the adjacency matrix and lij is the Euclidean distance
between nodes i and j.

2.1. Brief summary of topological models. In this section, we summarize the
main properties of the topological models investigated in this paper. We consider
nodes placed on a bi-dimensional surface with periodic boundary conditions so that
the surface is a torus and edge effects are avoided.

The first topology is the well-known regular lattice. Nodes are placed in a regular
way, forming a grid, and each of them has the same number of edges; that is the
same degree. Because the connections are only local, communication between two
distant nodes can occur only by means of many other intermediate nodes. Hence,
the characteristic path length L for the lattice is high. Local connections, on the
contrary, make the network clustered, leading to high values of C.

The Erdös-Rényi (ER) random graph [22] is the most investigated graph in the
literature. It starts from an initial condition of N nodes and no edges and then K
edges are added between couples of randomly selected nodes. Because nodes are
chosen at random, they will not have the same number of edges, as in the case of a
lattice, and the degree will have a Poissonian distribution. The ER model has good
global properties. In fact, the characteristic path length, increasing slowly with N ,
is quite small even in a fairly large network. On the other hand, it has poor local
properties, having a low clustering coefficient.

Lattice and ER graph are based on two opposite concepts: the former on reg-
ularity and the latter on randomness. However, real-world networks are neither
completely regular nor completely random [20], but stay in between. Starting
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from this consideration, Watts and Strogatz developed the small-world model. The
Watts-Strogatz model (WS) starts from an initial condition of a regular graph (a
regular lattice, in our case), and one edge at a time is considered: with probability
p, it is cut at an extremity and reconnected to a randomly selected node (rewiring).
The model thus ranges from the regular lattice (p = 0) to the random graph (p = 1).
Watts and Strogatz showed that it is sufficient to rewire a small number of edges
(i.e., a small value of the probability p sufficies) in order to have small L and large
C, i.e. both good global and local properties.

One of the main drawbacks of the WS model is that because of the rewiring
process, the network can become non-connected. To avoid this situation, Newman
and Watts [23] have developed a new model in which edges are simply added with
probability q. The Newman-Watts (NW) model ranges from the regular lattice
(q = 0) to the fully connected network (q = 1).

All the networks presented above show a high homogeneity in the node degree.
Nevertheless, many real-world networks [19, 24] are not so democratic, showing a
power-law P (k) ∼ k−γ with an exponent γ that usually ranges between 2 and 3.

To meet the requirement of plausibility in the degree distribution, Barabási and
Albert [25] have developed a model that, starting from an initial condition of a
network of few nodes [26], dynamically evolves according to growing (at each time
step a new node is inserted into the network) and preferential attachment : the new
node is connected to m already existing nodes [27] with a probability proportional
to the degree of those nodes. The probability that the new node i is connected to
the node j is given by the following relation:

Π(j) =
kj∑

h∈G kh
, (5)

where kh is the degree of node h.

2.2. Generalized Barabási-Albert (GBA) scale-free model. Although the
Barabási-Albert (BA) model is a good representation for a huge variety of real-
world networks, it cannot reproduce the characteristics of those systems in which
edges are not costless (e.g., power grids or neural networks). To overcome this
problem, we introduce a new generalization of the BA model for networks with a
precise spatial arrangement. Initial condition and growing process are the same
of the BA model, previously described. The only difference in comparison with
the original BA model is that now in the preferential attachment we take into
consideration the physical distance between nodes, stating that the probability for
an edge to be constructed is inversely proportional to a power of the distance. The
probability for a new node i to be connected with an already present node j is

Π(j) =
kj

lbij
· 1∑

h∈G
kh

lbih

, (6)

where kh is the degree of node h, lih is the Euclidean distance between nodes i
and h, and b is an exponent that weights the distance in comparison with the
degree. The greater the exponent b is the greater the importance of distance (in
comparison with the degree) in the model evolution. Of course, a value of b = 0
leads to the original BA model. An example of a GBA network with N = 196
nodes and < k >= 4 is shown in Figure 1.

Because the network topology is introduced here for the first time, we briefly
provide a further characterization of the network. The properties of a network
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Figure 1. Generalized Barabási-Albert scale-free model with
N = 196 nodes, average degree < k >= 4 and exponent b=3. We
show the bi-dimensional view on the left and the three-dimensional
view on the right.

with a larger number of nodes have been investigated. In Figure 2, the cumulative
degree distribution P (k) is plotted in a log-log scale for nine different values of the
exponent b, for networks with N = 10, 000 nodes and average degree < k >= 8.
For small values of this parameter b (up to b = 3), the degree distribution preserves
the power-law decay typical of the BA model. However for values of b larger than
3, the degree distribution is no longer scale-free, and the network tends toward
homogeneity: in the original BA model (b = 0), the most connected node has a
huge number of links (almost 400), while with an exponent b = 4, the highest degree
in the network is reduced to about 90.

Though the exponent γ of the power-law varies with the number of nodes present
in the network, it seems to saturate for large networks. For low values of the
parameter b (up to b = 3) –that is i.e. for those values for which the power law
is better preserved– we have not found wide variations of the exponent γ, which
ranges between 2.5 and 3.0.

To characterize the model introduced here, we have calculated the characteristic
path length L, the clustering coefficient C, and the structural cost, as functions of
the exponent b for networks with N = 10, 000 nodes and average degree < k >= 8
(see Fig. 3).

The results show that the characteristic path length is almost unaffected by in-
creasing b, if compared to the range of variation from the totally connected network
(for which L ≈ 0.03 · L(Lattice)) to the regular lattice. On the contrary, the in-
creasing weight of the distance in the preferential attachment, causes a significant
improvement of the clustering coefficient that, starting from the 0.03% for b = 0,
saturates for b ≈ 8 at about 98% of the corresponding value for a regular lattice.
Moreover, as far as we increase the exponent b, long-range connections are ham-
pered and, consequently, the cost decreases: moving from b = 0 to b = 4, it is
reduced from about thirty-two times to about two times the cost of the lattice.

In Figure 4, we show how the characteristic path length L scales with the size N
of the network, for the GBA model with an exponent b = 3. The results are typical
of the small-world effect: L grows with the logarithm of the size (L ∼ ln N).

Therefore there is a region, with b nearly equal to 3, for which we have a network
with scale-free degree distribution, low characteristic path length that scales with
the logarithm of the size, and high clustering. Other generalizations of the BA
model with such properties have been defined in the literature (e.g., in [28, 29]).
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Figure 2. Cumulative degree distribution (in log-log scale) of the
generalized Barabási-Albert model with N = 10, 000 nodes and
< k >= 8, for nine different values of the exponent b.

These models, however, do not take into account the physical distance between
nodes, which in most real cases is an important parameter in the network evolution.
For instance, in a neural network, it is more likely that a neuron connects to nearby
neurons. Our model takes into account this phenomenon, weighting its importance
with the exponent b. For b > 2, the GBA model also meets the requirements of low
cost, which is fundamental for real-world networks.

2.3. Brief comparison of topologies. In this section, we briefly compare the
models introduced above by means of the characteristic path length, the clustering
coefficient, and the structural cost (see Table 1). For this static analysis, all the
networks are built on a grid of N = 10, 000 nodes and have an average degree
< k >= 8. In accordance with [20], we have found that the regular lattice has
high clustering (the 43% in comparison with the fully connected graph) and high
characteristic path length (33.34); in contrast, the ER random graph has very low
clustering (only the 0.06% in comparison with the fully connected graph) and low
characteristic path length (4.66). It is worth noting that the ER model has a high
cost (about 32 times greater than the cost of the lattice), because of the presence
of many long-range connections.

The WS and NW small-world models (with probability p and q respectively equal
to 0.08 and 0.0001) stay in between, preserving the high clustering of the lattice,
at the expenses of a small increase of the characteristic path length, compared to
the ER. Moreover, the cost of the WS and NW models is about six to nine times
the cost of the lattice.

The values of the probabilities p for the WS model and q for the NW model have
been set in order to have low characteristic path length, high clustering, and low
cost.

As far as the BA and the GBA models are concerned, it is evident that, for
increasing values of the exponent b, the characteristic path length increases very
slowly. This is widely counterbalanced by the growth of the clustering coefficient
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Figure 3. (a) Characteristic path length L (in blue) and clustering
coefficient C (in green) for the GBA model with N = 10, 000 nodes
and average degree < k >= 8, as a function of the exponent b.
(b) Structural cost as a function of the exponent b in the same
condition as the top graph. Plotted quantities are divided by the
corresponding quantity of the regular lattice with the same number
of nodes and edges.

(which grows by a factor 24 from b = 0 to b = 3) and by the cutback of the cost
(which is reduced by a factor 8 from b = 0 to b = 3).

In Table 1 the first models (lattice, ER, WS, and NW) are static, while the last
ones (BA and GBA) are dynamic. The two networks that show a good compromise
between L, C, and cost are the WS and the GBA. Particularly for the latter model,
the optimal value of the exponent b is between 3 and 4. In the following, b = 3 will
be used, because for this value the power-law degree distribution is better preserved.
The WS has a characteristic path length and clustering coefficient higher than the
GBA with b = 3. The GBA, however, being a dynamical model, is a more plausible
representation of real-world networks.
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Figure 4. Characteristic path length for the GBA model with an
exponent b = 3, as a function of the size of the network. The
average degree is < k >= 8.

Table 1. A comparison between different topologies (see text for details).

L C cost/cost (lattice)
Lattice 33.34 0.430 1.00
ER 4.66 0.0006 31.68
WS p=0.08 5.86 0.260 5.79
NW q=0.0001 5.08 0.286 8.77
BA 3.88 0.007 31.69
GBA b=3 4.78 0.168 3.96

3. The neural model. In the previous section, we have discussed the topological
aspect for the representation of a neural network. In this section, we describe both
neurons and synapses models, used in this paper.

3.1. The Hindmarsh-Rose neuron. In the literature, there are two different
approaches to the problem of neuron modelling [30]:

• the former describes the ionic transportation processes in details;
• the latter aims at the characterization of the input-output relation for a cer-

tain number of physical measurable quantities.

In the first category, most models draw inspiration from the original Hodgkin-
Huxley formalism [31], that describes a nonlinear dependence of the ionic perme-
ability of the membrane from the membrane potential.

In the second category, the category of phenomenological models, the Hindmarsh-
Rose neuron [32] is one of the most investigated. In the following, we will use this
model, for which a single neuron is represented as a system of three ordinary dif-
ferential equations:
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Figure 5. Time series for the membrane potential of Hindmarsh-
Rose neuron (variable x).





dx(t)
dt = y(t) + a · x2(t)− b · x3(t)− z(t) + I + Isyn

dy(t)
dt = c− d · x2(t)− y(t)

dz(t)
dt = r · [s · (x(t) + e)− z(t)],

(7)

where x is the membrane potential, and y and z represent respectively the fast
and slow ionic channel dynamics. The parameters values have been chosen as in
[10], to obtain a chaotic behavior (a = 3, b = 1, I = 3.281, c = 1, d = 5, r = 0.0021,
s = 4, e = 1.6). An example of a time series for the membrane potential x is
reported in Figure 5, which shows the typical bursting process.

Regarding the modelling of the synapse, it consists of two parts: the pre-synaptic
terminal and the post-synaptic site, which may be located on the axon, soma, or
dendrite of the nerve cell [18]. In the following sections, we will consider two
different types of synapses: electrical and chemical. In both cases, the synaptic
current Isyn is added to the right-side of the first differential equation of Equation
(7).

3.2. Electrical synapse. The electrical synapse is based on the diffusion process,
and is modelled as a resistance. For a particular node j, the synaptic current
depends on the diffusion coefficient and on its own and its neighbors’ membrane
potential [10]:

Isyn,j(t) = D ·
∑

i∈G

aij · (xi(t)− xj(t)), (8)

where D is the diffusion coefficient.
In this kind of synapse, the delay is negligible and the electrical coupling results

in the levelling of membrane potential. The electrical synapse is uncommon in the
cortex of evolved animals.

3.3. Chemical synapse. The chemical synapse is the place where electrical sig-
nals coming from the axon of the presynaptic neuron are transduced in chemical
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signals (in the synaptic cleft) and then again in electrical signals to travel in the
dendrite of the postsynaptic neuron. Such a process can take place because of par-
ticular chemical intermediaries called neurotransmitters. When a presynaptic event
occurs, a certain quantity of neurotransmitters is released in the synaptic cleft. The
neurotransmitters spread quickly in the synaptic channel towards the postsynaptic
site, where they form a chemical bond with the postsynaptic receptors. This gives
rise to the increase of the conductance of the synapse, and hence to the presence
of a post-synaptic current. The postsynaptic current Isyn is, therefore, directly
proportional to the percentage of receptors bound with neurotransmitters [30]:

Isyn,pre−>post(t) = gsyn,pre−>post(t) · [Esyn − xpost(t)] (9)

gsyn,pre−>post(t) = gsynMax · rpre−>post(t) (10)

rpre−>post(t) =





[rpre−>post(t0)− r∞] · e(t−t0)/τr + r∞ if t0 < t 6 t0 + τ

rpre−>post(t0 + τ) · e−β·(t−t0−τ) if t > t0 + τ
(11)

r∞ =
α · Tmax

α · Tmax + β
(12)

τr =
1

α · Tmax + β
, (13)

where gsyn(t) is the actual conductance of the synapse at time t; gsynMax is the
maximum conductance of the synapse (i.e. when all postsynaptic receptors are
bound with neurotransmitters); r(t) is the percentage of receptors bound with neu-
rotransmitters (see Fig. 6); t0 is the time at which the pre-synaptic event occurs,
τr is a characteristic time constant; Tmax = 1 is the maximum concentration of
neurotransmitters at time t0; α, β, and τ are parameters that we have fixed re-
spectively as α = 2, β = 1, and τ = 2; and Esyn is the synaptic reversal potential
(equal to 1.52 for an excitatory synapse and -1.36 for an inhibitory synapse), which
is the value of the membrane potential for which no synaptic current flows in the
ionic channel. Due to an electrical-chemical transduction, the chemical synapse
introduces a delay, that is not constant for real neural networks [18]. The chem-
ical synapse, unlike the electrical one, is directed, in the sense that a preferential
direction exists in the information flux. Hence, if communication between nodes i
and j can occur in both directions, it is because of the presence of two different
uni-directional synapses, each with its parameters and its actual conductance.

4. Dynamical analysis parameters. In this section we present some parame-
ters, that, together with the structural cost (Equation (4), will be useful for com-
paring the performance of each network.

4.1. Synchronization index. To evaluate the degree of synchronization of a sys-
tem made of coupled units, we use the synchronization index σ [33]. Let matrix A
collect in its rows all the N signals generated by the N subunits of the system and
let C(NxN) = A · AT be the covariance matrix. The synchronization index takes
into account the eigenvalues of C (the squares of the singular values of the matrix
A). If all the signals are uncorrelated, all the singular values will be non-null. If
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Figure 6. Percentage r(t) of receptors bound with neurotrans-
mitters as a function of time t. Time t0 corresponds to the time of
a pre-synaptic event.

all the signals are identical, we will find that only one singular value is different
from 0; that is the rank of the matrix C is equal to 1. Of course if signals are
similar but not identical, we will find very small but not null singular values. The
synchronization index is thus defined at a certain percentage ξ, as the minimum
number m of eigenvalues, whose sum is greater than a percentage of the trace of C:

σ(ξ) = min m |
m∑

i=1

λsort
i > ξ · Tr(C), (14)

where λsort
i is the i-th largest eigenvalue of the covariance matrix C.

If we have N neurons (and then N signals), this index varies in the range from 1
(when all signals are synchronized) to [ξN ] + 1 (when there is not synchronization)
and gives information about the total number of different dynamics present in the
system. In the following, we will consider the synchronization index to the 95%,
because N = 196, 1 ≤ σ(0.95) ≤ 187.

4.2. Average power consumption. Another important parameter here intro-
duced is the average power consumption in information exchange.

In analogy with electrical systems, the average power consumption is defined in
two ways, depending on the particular synapse model used. In the case of electrical
synapses, we define the average power consumption Pm(t0, t1) from time t0 to time
t1 as:

Pm(t0, t1) =
∑

i 6=j∈G

1
t1 − t0

·
∫ t1

t0

aij ·D · 1
lij
· [xi(t)− xj(t)]2dt (15)

with
1

Rij
= aij ·D · 1

lij
, (16)

where Rij represents the resistance between nodes i and j, aij is the element ij
of the adjacency matrix, and lij is the physical distance between nodes i and j.
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Figure 7. Synchronization index color maps as functions of the
diffusion coefficient D for three networks with electrical synapses
with different topology but fixed average degree < k >= 4. The
structural cost (divided by the cost of the regular lattice) of the
different networks is reported as well.

The average power consumption for the electrical synapses strictly depends on
the differences of potentials xi − xj . For instance, if from time tn the system is
perfectly synchronized (i.e., xi(t) = xj(t) for each i and j and for t > tn), the
average power consumption Pm(tn, +∞) is null.

The average power consumption for the case of chemical synapses is instead
defined as

Pm(t0, t1) =
∑

i 6=j∈G

1
t1 − t0

·
∫ t1

t0

aij · gsyn,ij(t) · [Esyn − xj(t)]2dt, (17)

where gsyn,ij is the synaptic conductance between nodes i and j and Esyn is
the synaptic potential. The average power consumption for chemical synapses, as
defined here, considers only a localized dissipation, that does not takes into account
the length of axons and dendrites.

5. Dynamical effects of topology on synchronization. The previous sections
have focused on topologies and neural models as well as static and dynamical anal-
ysis parameters. This section addresses the topology effects on the synchronization
of Hindmarsh-Rose neural networks.

The analysis has been carried out in two parts: the first describes the results
obtained with electrical synapses and the second describes the results obtained
with chemical synapses. In both cases, we have considered networks with N = 196
nodes.

5.1. Neuron networks with electrical synapses. First we compare the results
of static topologies with the fixed average degree < k >= 4 as a function of the
diffusion D. We have chosen the average degree < k >= 4, because we thus
can distinguish more clearly the effects of different topologies. With greater val-
ues of < k > in all the models, the number of edges increases, leading toward a
fully connected network and thus hampering a clear differentiation of the effects of
topologies.

In Figure 7, we report the synchronization index maps and the structural cost
for various topologies (regular lattice, Erdös-Rényi random graph, Watts-Strogatz
small-world model with p = 0.08). The maps are realized in 64 colors (from blue to
red) in a scale of 128 values of the synchronization index (from 1 to 128), and thus
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each color represents two values. As shown in section 4.1, the synchronization index
ranges from 1 to 187, but we are not interested in distinguishing and representing
values greater than 128, because they indicate the absence of synchronization. The
results show that, for the region of low values of the diffusion coefficient (up to
D = 0.1), none of the networks considered is able to synchronize. Therefore, in
the following, we will neglect this region. For higher values of D, instead, the
synchronization index σ becomes an interesting parameter for comparison.

The regular lattice, with its good local properties, reaches a minimum value
σ = 3 for a diffusion coefficient D = 0.9. Although this means that the system
has not reached a perfect synchronization, it shows a good synchronization for
low-frequency behavior (bursts are simultaneous, spikes are asynchronous). This
is evident in Figure 8, in which each subfigure is constituted by two parts. In
the upper part, we report a color map for the N signals (corresponding to the N
neurons of the network) as functions of time t. Colors range from blue to red for
increasing values of the membrane potential x. In the lower part, we report three
time series, corresponding to the output of three different neurons of the network.

The ER graph, with its good global properties, reaches very low values of the
synchronization index σ. It means that in a network with electrical synapses, global
properties weight more than local ones. Nevertheless, the ER graph costs more than
five times the cost of the lattice.

The WS model produces an even better synchronization. It demonstrates that
though global properties weight more than local ones, they are both fundamentally
important for synchronization. Moreover, the WS model (for the chosen value of
p = 0.08) has a structural cost much lower than the ER graph. The WS model is
an optimal choice, for synchronization with the constraint of low-building cost.

To investigate how the choice of the rewiring probability p affects synchroniza-
tion, structural cost, and power consumption, we have chosen a value of the diffusion
coefficient (D = 0.3) leading to an imperfect synchronization dynamics. Figure
9 shows the three above mentioned quantities as functions of the probability of
rewiring. The upper part of the figure shows that there is an intermediate wide
range of the probability p for which the synchronization index is lower than the
extreme cases of regular lattice (p = 0) and random graph (p = 1), confirming that
both local and global connectivity help synchronization. As expected, because a
greater rewiring introduces a greater number of long-range connections, the struc-
tural cost monotonically rises with p. Average power consumption follows almost
the same trend of the synchronization index σ but depending on the square of the
differences of membrane potentials, it is more sensitive to absolute differences of
the potential.

An optimal choice for this model seems to be p ' 0.08, because of the low
synchronization index, the low cost, and the modest average power consumption
[34].

The analysis presented above is centered on a fixed value for the average degree
(< k >= 4). Now we take into consideration the NW model, for which < k >= 4
is only the initial condition, and the average degree grows with the probability q of
adding new edges. In Figure 10, we show the synchronization index σ color maps
for different values of q. As expected, the system perfectly synchronizes when it
is totally connected, because of the high coupling between all the neurons, at the
expense of a very high cost (hundreds of times greater than the cost of the lattice).
For the much smaller value of q = 0.08, we have found almost the same performance
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Figure 8. Space-time maps for three networks with electrical
synapses. (a) Regular lattice; (b) Erdös-Rényi random graph; (c)
Watts-Strogatz small-world model with a probability of rewiring
p = 0.08.

as the totally connected network, but with a cost reduced by a factor of more than
100. Nevertheless, the cost is still too high. To obtain a cost comparable with
the topologies investigated above, we have to reduce the probability q up to the
value 0.01. For this value, we obtain an average degree < k >' 6 and a cost that is
almost four times the cost of the lattice with < k >= 4. In this case, for high values
of the diffusion coefficient, we reach the perfect synchronization (see Fig. 11).

Furthermore, we have fixed a value of the diffusion coefficient (D = 0.1) and
studied the synchronization index, the average power consumption, and the struc-
tural cost as functions of the probability q of adding edges (see Fig. 12). The results
show that if the low structural cost is not a pressing requirement, the optimal value
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Figure 9. Synchronization index (in the upper part), structural
cost and average power consumption (in the lower part) for the WS
model as function of the probability of rewiring p. Limiting cases,
that is, regular lattice (p = 0) and ER random graph (p = 1), are
also considered.

Figure 10. Synchronization index color maps as functions of the
diffusion coefficient D for the NW model with electrical synapses
for three different values of the probability q. The structural cost
(divided by the cost of the regular lattice) of the different networks
is reported as well.

of q is about 0.08, because of the perfect synchronization and the very low average
power consumption.

The analysis presented above has shown the different behavior of static network
models. Now we study the effects that the dynamical network models have on
synchronization.
In Figure 13, we show the synchronization index color maps for the BA and the GBA
with the exponent b = 3. It is evident that the slight decrease in synchronization
for the GBA (see also Fig. 14) is counterbalanced by the structural cost, which is
much lower than that of the BA model.

Comparing static and dynamical models, the WS model with p = 0.08, though
having a cost lower than that of the GBA, has a higher average power consumption
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Figure 11. Space-time maps for the Newman-Watts model with
D = 0.9 and with electrical synapses, for three different values of
the probability q. (a) q = 0.01; (b) q = 0.08; (c) q = 1.0.

and the same degree of synchronization for high values of the diffusion coefficient
(see Fig. 15).

We take into consideration an intermediate value of the diffusion coefficient (D =
0.3) and investigate the properties of the GBA model as functions of the parameter
b (see Fig. 16). The synchronization index and the average power consumption
increase with the exponent b. Nevertheless, this increase is widely counterbalanced
by the remarkable reduction of the cost in the region around b = 3, which seems to
be a suitable region.

5.2. Neuron networks with chemical synapses. In this section, neurons have
been coupled by using chemical synapses as in Equations (9)–(13) with a value
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Figure 12. Synchronization index (in the upper part), structural
cost and average power consumption (in the lower part) for the
Newman-Watts small-world model with electrical synapses as func-
tion of the probability q of adding edges.

Figure 13. Synchronization index color maps as a function of
the diffusion coefficient D for a BA (in the upper part) and a
GBA network with b = 3 (in the lower part) with fixed average
degree < k >= 4 and with electrical synapses. The structural cost
(divided by the cost of the regular lattice) of the different networks
is reported as well.

of Esyn = 1.52 (excitatory chemical synapses). In Figure 17, we show the syn-
chronization index maps for five different topologies as functions of the maximum
conductance gsynMax. The results are quite different from those obtained with the
electrical synapse. The lattice is the topology that reaches the lowest values of the
synchronization index. The ER random graph, on the contrary, cannot reach a
value smaller than 16. Coherently, the WS model, being similar to the lattice but
with some long-range connections (typical of the ER), shows values of the synchro-
nization index σ that are slightly greater than those of the lattice. In Figure 18,
the membrane potential of the N = 196 neurons is reported for the lattice, the ER
graph, and the WS models.

The two types of synapses behave differently because the synchronization degree
seems to play a different role in each type. In the electrical synapse, the diffusive
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Figure 14. Space-time maps for two different networks with elec-
trical synapses. (a) BA model and (b) GBA model for an exponent
b = 3, both with D = 0.9.

effect tends to equalize the potential of connected neurons, independently of the
number of neighbors. In the use of chemical synapses, the net input a neuron
receives from synaptic neurons emitting synchronized spikes is proportional to the
number of connected units (and thus to its degree). Hence, for chemical synapses,
if all the nodes in a network have the same degree (as in the case of the lattice),
synchronization will be enhanced; if different nodes have different degrees (as in
the case of the ER random graph), synchronization will be hampered.

It is not surprising that the BA and the GBA models can reach values of the
synchronization index lower than those of the ER. In fact, though these networks
(having a wide range of variation in the degree of synchronization), are very het-
erogeneous, it should not be forgotten that many nodes have the same low degree
[35]. It is the existence of these nodes that helps synchronization.

In Figure 19, the synchronization index and the average power consumption are
plotted for all the analyzed networks. It is worth noting that the two topologies
that show better synchronization (lattice and WS) have an optimal value of the
maximum conductance gsynMax = 0.8, for which the synchronization index is min-
imal. In fact, further increasing the conductance not only produces an increase of
the average power consumption, but also deteriorates the synchronization degree.

An analogous behavior is shown in Figure 20 for the same models, but with an
average degree < k >= 8. The only difference is that the optimal value of the
maximum conductance gsynMax for the lattice and the WS model is reduced to 0.4.
As further confirmation, we compare, in Figure 21, the synchronization index and
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Figure 15. (a) synchronization index and (b) average power con-
sumption for five different topologies with N=196 nodes, average
degree < k >= 4, and electrical synapses as functions of the diffu-
sion coefficient D.

the average power consumption for the lattice with average degrees < k >= 4 and
< k >= 8.

6. Conclusions. In this paper we have analyzed the synchronization of Hindmarsh-
Rose neural networks with two different types of synapse. We have studied such
networks, placing the neurons on a two-dimensional grid with periodic boundary
conditions, and connecting them according to the topologies of regular lattice,
Erdös-Rényi random graph, Watts-Strogatz or Newman-Watts small-world mod-
els, and BA scale-free network. Moreover, we have developed a new model, based
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Figure 16. Synchronization index (in the upper part), structural
cost and average power consumption (in the lower part) for the
GBA model with electrical synapses as functions of b.

Figure 17. Synchronization index color maps as functions of the
maximum conductance gsynMax for five networks with different
topology but fixed average degree < k >= 4, with chemical
synapses. From the top: regular lattice; Erdös-Rényi random
graph; Watts-Strogatz small-world model with a probability of
rewiring p = 0.08; BA model; and GBA model, with exponent
b = 3.

on a generalization of the BA scale-free network that, taking into account that the
edges formation is more likely between nodes with a short physical distance, seems
more plausible for the characterization of a neural network. Such a model is char-
acterized by a low characteristic path length as random graphs, and high clustering
and a scale-free distribution and thus is particularly relevant since it conjugates
both the features of a scale-free model and of a small-world network. For these
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Figure 18. Space-time maps for three different networks with
chemical synapses, with maximum conductance gsynMax = 0.4.
From the top: regular lattice; Erdös-Rényi random graph, Watts-
Strogatz small-world model with p = 0.08.

reasons, the new model can be applied to many other cases in which the dynamical
evolution of the network is fundamental. Moreover, these characteristics have also
been found to be very useful for the synchronization property of the network.

The analysis has been carried on by using numerical simulations. To further
validate the results, the approach based on the so called master stability function
[36], which has been successfully applied in many other cases [37, 11], can be used
and will be addressed elsewhere. However, its application is restricted to the first
part of the work. In fact, in the case of chemical synapses the coupling is neither
linear nor static as required by the master stability function approach.

The results reported in this paper underline that in neuron networks synchro-
nization depends strictly on the kind of synapse used in the networks. In the case of
electrical synapses, the models that show a better trade-off between high synchro-
nization and low structural and energetic costs are those with good global and local
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Figure 19. Synchronization index and average power consump-
tion as functions of the maximum conductance gsynMax for: lat-
tice, Erdös-Rényi random graph, Watts-Strogatz small-world with
p = 0.08, BA and GBA models.

properties: among the static networks, the WS models and among the dynamical
ones, the GBA models. On the contrary, in the case of chemical synapses, there
is no real trade-off, because the lattice, thanks to its regularity, is the network
with the best synchronization, lowest structural cost, and lowest average power
consumption.

Moreover, we have developed a new methodology for the investigation of static
and dynamical properties of neural networks, using some well-known parameters
and introducing some new definitions. Such a methodology, used here to evaluate
the effects of topology on Hindmarsh-Rose neural networks, is quite general and
can be easily extended to in-depth studies of more realistic neural models, and to
a possible design of artificial neural networks.
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Figure 20. Synchronization index and average power consump-
tion as functions of the maximum conductance gsynMax for lat-
tice, Erdös-Rényi random graph, Watts-Strogatz small-world with
p = 0.08, BA and GBA models in the case of < k >= 8 and
chemical synapses.
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[29] K. Klemm and V. M. Egúıluz, Growing scale-free networks with small-world behav-

ior. Phys. Rev. E 65 (2002) 057102.
[30] M. Bove, M. Grattarola, G. Massobrio, M. Giugliano, and S. Martinoia. Dynamics of net-

works of biological neurons: simulation and experimental tool in Neural Network
System Techniques and Applications, Algorithms and Architectures - vol. 1, Leondes, CT
ed., Academic Press, San Diego, (1998), pp. 401–423.

[31] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. 117 (1952) 500–544.

[32] J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled
first order differential equations. Proc. R. Soc. London Ser. B 221 (1984) 87–102.

[33] L. Fortuna, M. La Rosa, D. Nicolosi, and G. Sicurella, Spatio-temporal dynamics towards
self-synchronization index. Proc. of the XII Int. IEEE Workshop on Nonlinear Dynamics

of Electronic Systems, Évora, Portugal, 2004.
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