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Abstract. A simple model incorporating demographic and epidemiological
processes is explored. Four re-parameterized quantities the basic demographic
reproductive number (Rd), the basic epidemiological reproductive number
(R0), the ratio (ν) between the average life spans of susceptible and infective
class, and the relative fecundity of infectives (θ), are utilized in qualitative
analysis. Mathematically, non-analytic vector fields are handled by blow-up
transformations to carry out a complete and global dynamical analysis. A
family of homoclinics is found, suggesting that a disease outbreak would be
ignited by a tiny number of infectious individuals.

1. Introduction. There is a long history of application of dynamical systems
to epidemiology beginning with the work of Ross (1911). Research in theoreti-
cal and mathematical epidemiology has expanded ever since (see Busenberg and
Cooke (1983), Anderson and May (1991), Hethcote (1999), Aparacio, Capurro and
Castillo-Chavez (2000), Brauer and Castillo-Chavez (2001), and Castillo-Chavez et
al. (2002a, 2002b)). The mathematical theory of epidemic models took off in the
1970s, when a large number of mathematicians involved in mathematical biology.
The approach was based on the work of Kermack and MacKendrick (1927, 1932),
two students of Ross, and on extensions of the work on vector-transmitted diseases
by Ross himself (1911). The work of Lajmanovich and Yorke (1976) on “general”
SIS multi-group models implied that general epidemic models were “robust” and
in some sense suggested that epidemics could be well understood. A basis for this
degree of optimism came from the fact that Lajmanovich and Yorke’s work (1976)
suggested “general” epidemiological models could be written as monotone systems
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where there is a simplifying rich theory. The general feeling at that time (and still
to some degree today) was that the spectral radius of the next generation operator
(Diekmann and Heesterbeek (2000)) associated with the differential equations that
modeled the epidemic completely characterized the dynamics. The qualitative dy-
namics of “general” epidemic models were reduced to the existence of a threshold
(spectral radius or basic reproductive number) that determines the stability and
existence of non-trivial equilibria.

The basic reproductive number R0 gives the average number of secondary cases
of infection generated by an initially tiny population of infectious individuals in a
population of mostly susceptibles. The basic reproductive number R0 < 1 implies
that the initial set of infectious individuals will not be able to replace themselves
before they die or recover and, consequently, the disease will not be able to suc-
cessfully spread or invade. In other words, the infectious-free state, an equilibrium
typically supported by epidemic models, is locally asymptotically stable. However,
this infectious free-state loses its local stability whenever R0 > 1. In fact, R0 > 1
“typically” signals the birth of a locally asymptotically stable endemic state where
the disease is always present. For many epidemiological systems it has been shown
that the local stability of these states is actually a global property. In other words,
R0 = 1 is the “tipping” point (threshold) that determines the existence and stabil-
ity of the endemic state. That is, often the dynamics are characterized by a global
transcritical bifurcation (see Hethcote (1999)).

However, the dynamics described above (global transcritical bifurcation) are not
generic but often the result of constrained dynamics. Most models assumed that the
population in question was constant. Multi-population models assumed that each
subpopulation also had a fixed number of individuals (Hethcote and Yorke (1984)).
Initial efforts to help in understanding the dynamics of HIV epidemics naturally
weakened these assumptions (see Castillo-Chavez (1988, 1989)). The removal of
these assumptions resulted (when appropriate) in more realistic epidemic models
with richer dynamics. For example, these systems have been shown to support
multiple equilibria and, in the process, raised some questions on the usefulness
of R0 (see Hadeler and Castillo-Chavez (1995), Feng et al. (2000), and van den
Driessche et al. (2002)).

The study of models with variable population size (which began in the early
1980s) due to demographic processes also illustrated the possibility of richer dy-
namics (see Hethcote (1999)). In the context of models with variable population
size, the view that the qualitative dynamics of such systems are controlled in spe-
cific ways by two thresholds began to emerge. The first threshold is a demographic
threshold Rd, the basic reproductive number for the demographic process. Basi-
cally, Rd > 1 implies that each founder individual (initially small population) leaves
more than one descendant on average before it dies. In this case the population
grows and prospers; that is, a critical mass of individuals for the disease to spread
may be supported. On the other hand, Rd < 1 implies that the population will
not survive (births will exceed deaths at the beginning of the process); that is, no
critical mass of individuals may be supported for the disease to spread. The sec-
ond threshold is the basic reproductive number R0 for the epidemiological process.
The processes (demographic and epidemiological) become coupled typically from
the effect a disease has on demography (disease-induced mortality). The “typical”
outcomes (see Hethcote (1999)) are as expected. For example, if the population
initially grows at least as fast as the disease (Rd > 1), then the disease will either
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die out if R0 < 1, or invade the population if R0 > 1; and the proportion of dis-
eased individuals may either reach a fixed level or vanish (see next section and for a
detailed cases see Song et al.(2002a, 2002b), Heiderich, Huang and Castillo-Chavez
(2002)). The work in this paper will exhibit additional possibilities.

Ecological models of predator-prey or parasite-host interactions and epidemio-
logical models share the same framework of modeling. For example, Hwang and
Kuang (2003) proposed the following ratio-dependent model of parasite-host inter-
actions for experimental epidemiology in a special case of m = 0:




dX
dt = r(X + θY )(1− c(X + Y ))− (µ + m)X − β XY

X+Y ,

dY
dt = −(µ + d)Y + β XY

X+Y .
(1.1)

Here X(t) and Y (t) represent respectively the densities of uninfected (susceptible)
and infected hosts at time t; r is the maximum per-capita birth rate of uninfected
hosts; c measures the per-capita density-dependent reduction in birth rate (1/c
is also called the carrying capacity if c 6= 0); β denotes the transmission rate
(the infection rate constant); µ is the natural mortality; θ is the relative fecundity
of infected host population, certainly 0 ≤ θ ≤ 1; d denotes the disease-induced
mortality; m is the per-capita emigration rate of uninfective that is not incorporated
in the original version of 1.1.

In the case m = 0 of model (1.1) Hwang and Kuang (2003) studied it as a
parasite-host model. Because system (1.1) is not analytical at the origin, it pos-
sesses some non-trivial and very important peculiarities of dynamics. In the work
by Hwang and Kuang (2003), model (1.1) was reduced by a single Briot-Bouquet
(blowing-up) transformation to a Gause-type model, and was completely investi-
gated. We show here that this Gause-type model is not equivalent to the initial
model. As a result, the investigation of model (1.1) at m = 0 in the previous work
was incomplete. Specifically, the existence of the most interesting elliptic sector (a
family of homoclinic orbits of the origin that are tangent to the x-axis) was missed.
The problem of analysis of the complicated singular point at the origin arises in
many ratio-dependent models and can be completely solved by two blowing-up
transformations, as was done, for example, by Berezovskaya et al. (2001).

Our model explored mathematically in this paper is a version of model (1.1) for
m ≥ 0 and θ = 1. A partial aim of our work is to present a complete investigation
of the model and to construct its phase-parameter portraits. We organize the
paper as follows: Section 2 introduces the basic model and provides some basic
rescaling of the system suitable for the further interpretations; section 3 studies
equilibria by the normal linearization approach; section 4 focuses on the topological
structure of trajectories around a particular equilibrium; in section 5 we present
the phase-parameter portraits of the model; section 6 gives the analysis of model
(1.1) dependently on parameter θ based on the investigation of the complicated
equilibrium at the origin; section 7 contains discussion and conclusions; finally,
proofs of some mathematical statements are given in the Appendix.

2. Model equations and primary results.

2.1. Model equations. In this paper, using as simple model as possible, it is
shown that the dynamics of epidemic models could be richer and unpredictable.

We introduce our model through the incorporation of variable population, disease-
induced mortality, and emigration into the classic model of Kermak and McK-
endrick (1927). The total population (N) is divided into two groups, susceptible
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Figure 1. Schematic parameter-phase portrait of the model (2.1)
with constant population size N .

(S) and infectious (I). The model describing the relations between the state vari-
ables is 




dS
dt = rN

(
1− N

K

)− βS I
N − (µ + m)S,

dI
dt = βS I

N − (µ + d)I,
(2.1)

where N = S+I is the total population size; the birth process incorporates density-
dependent effects through a logistic equation with the intrinsic growth rate r and
the carrying capacity K; and other parameters have the same meaning as in model
(1.1). Note that the growth rate of susceptibles is proportional to the total number
of infectious and susceptibles, so that infectious individuals (as well as susceptibles)
produce healthy susceptible offsprings.

If the disease is not present (I = 0), then model (2.1) reduces to the demographic
equation

dN

dt
= rN

(
1− N

K

)
− (µ + m)N.

This leads to the concepts of the basic demographic reproductive numberRd, which
is given by

Rd =
r

µ + m
.

It can be shown that if Rd > 1, the population grows while Rd ≤ 1 implies that the
population does not survive. The question of the successful invasion of the disease
is determined by the linearization of (2.1) around the infection-free state: that is,
around the equilibrium ((1−R−1

d )K, 0) which exists whenever Rd > 1.
The epidemic threshold, the basic reproductive number, is then computed as

R0 =
β

µ + d
.

Usually the disease will successfully invade when R0 > 1 but will die out if R0 ≤ 1.
If assuming constant population, the per-capita birth rate Λ = rN(1−N/K) is a

constant as we have seen in a number of epidemic models. Model (2.1) then has the
infection-free equilibrium A(K(1−R−1

d ), 0) forRd > 1 and the endemic equilibrium
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C(NR−1
0 , N(1 − R−1

0 )) for R0 > 1. The equilibrium A is globally asymptotically
stable when R0 ≤ 1 and the endemic C is globally asymptotically stable when
R0 > 1 (see Fig. 1). However, model (2.1) with variable population size N can
support an additional infection-free state, namely (0, 0). (We can continuously
extend the vector field of (2.1) to the origin.) The consideration of the dynamics
near this state leads to somewhat surprising results.

2.2. Rescaling and primary results. Rescaling the model (2.1) by letting

x = S/K, y = I/K, and t = τ/(µ + d)

leads to the rescaled system



dx
dτ = νRd(x + y) (1− (x + y))−R0

xy
x+y − νx ≡ P (x, y),

dy
dτ = R0

xy
x+y − y ≡ Q(x, y),

(2.2)

where R0 = β/(µ + d), Rd = r/(µ + m), and ν = (µ + m)/(µ + d). We proceed
to study the qualitative behavior of model (2.2) as a function of parameters. The
goal is to construct the phase-parameter portrait of system (2.2); that is, to divide
the parameter space into domains of qualitatively (topologically) different phase
behaviors. Though there are three parameters in model (2.2), we pay the most
attention to the dependence of qualitative peculiarities of the model solutions on the
epidemiological parameterR0 and demographic parameterRd under different levels
of the new parameter ν defined by the ratio of the average lifespan of susceptibles to
that of infections. Biologically, the feasible domain for model (2.2) is the triangular
region inside R+

2

Ω =
{
(x, y) ∈ R+

2 : 0 ≤ x + y ≤ 1
}

.

By examining the directions of vector field of system (2.2) on the boundary of
Ω, we can verify that Ω is positive invariant. Furthermore, if we assume that
x(t) + y(t) > 1 with x(0) + y(0) > 1 is true for all t > 0, then

d(x + y)
dt

= νRd(x + y) (1− (x + y))− νx− y ≤ −α(x + y), (2.3)

where α = min{1, ν} > 0. It follows from (2.3) that x + y approaches zero as
t →∞, which contradicts the assumption x + y > 1 for all t > 0. We, in fact, have
shown the following result.

Lemma 1. Any trajectory of system (2.2) starting within R+
2 but outside Ω will

enter into Ω in a finite time.

Hence, not only is Ω positive invariant, but it also is attractive to R+
2 . Lemma 1

also says that any global stability in Ω is essentially the global stability in R+
2 . We

henceforth do our mathematical analysis within the feasible domain Ω.
If we choose D(x, y) = 1/(xy) as a Dulac function, then

∂(PD)
∂x

+
∂(QD)

∂y
= −νRd

(
1− (x + y)

x2
+

1
x

+
1
y

)
< 0, (x, y) ∈ Ω

rules out the possibility of oscillations.

Lemma 2. For any parameter values of R0, Rd, and ν, there is not a closed tra-
jectory to system (2.2).

Since closed trajectories are impossible, equilibria play a key role in determining
the dynamics of the model. We shall analyze it in what follows.
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                                        a: νννν>1                                                b:  νννν<1 

Figure 2. Bifurcation diagram of a positive neighborhood of point
O in the (R0,Rd)- and (x, y)-planes together with a neighborhood
of axis u = y/x. AO is Rd = 1; OK Rd = (ν + R0 − 1)/ν;
and CO Rd = (ν − 1 + R0)/(νR0). When ν > 1 (see the left
figure), region (i) is a saddle sector, (ii) a attracting-node sector,
(iii) a saddle and repelling-node sector, and (iv) two saddle sectors.
When ν < 1 (see the right figure), regions (i), (ii), and (iii) are
the same as that of ν > 1. A new region named (v) represents the
elliptic sector.

3. Qualitative analysis of simple equilibria. There are three possible equilib-
ria: O(0, 0), A(1−R−1

d , 0), and C(x∗, y∗) where x∗ = 1/R0−(ν+R0−1)/(νR2
0Rd)

and y∗ = (R0 − 1)x∗.
Equilibrium O(0, 0) always exists. However, because neither P (x, y) nor Q(x, y)

are analytic at this point, the common approach of linearization to discuss the
structure and the stability of this equilibrium fails. This issue has not received
enough attention in the dynamical analysis of epidemic models, but that is not the
case in ecological models (for example, see Arditi and Ginzburg (1989), Kuang and
Beretta (1998), Berezovskaya et al. (2001), and Hwang and Kuang (2003)). The
structure of the equilibrium point O as a function of the parameters of the system
can be seen in Fig. 2. A discussion of how this figure was drawn is provided in
section 4.

The second equilibrium A(1 − R−1
d , 0) exists inside Ω only if Rd > 1. When

sloppy Rd = 1, A(1 −R−1
d , 0) coalesces with O(0, 0). The local stability of A can

be examined by the regular linearization approach, which is determined by the
epidemiological basic reproductive number R0. The Jacobian around A is

JA =
[
ν(1−Rd) ν(2−Rd)−R0

0 R0 − 1

]
,

hence, det(JA) = ν(R0 − 1)(1 − Rd) and trace(JA) = R0 − 1 + ν(1 − Rd). The
analysis of the corresponding linear system leads to proposition 1.

Proposition 1.

1) If Rd > 1, equilibrium A(1−R−1
d , 0) exists. It is a saddle if R0 > 1 while it

is a stable node when R0 < 1.
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2) The phase curves of the system which tends to A are of the form

y =
(
x− (1−R−1

d )
)
(1 + o(1))

R0 − 1 + ν(Rd − 1)
ν(2−Rd)−R0

. (3.1)

If A is a saddle, then formula (3.1) and x-axis (two pieces of positive x-axis cut at
A) set its separatrices.

The third potential equilibrium is C(x∗, y∗), where

x∗ =
1− 1/(νRd)

R0
− 1− 1/ν

RdR2
0

and y∗ = (R0 − 1)x∗.

C(x∗, y∗) exists if

Rd >
(1− 1/ν)
R0

+
1
ν

and R0 > 1 (3.2)

hold. C(x∗, y∗) lies in Ω once it exists because of

x∗ + y∗ = R0x
∗ = 1− (νR0 − 1)/(νR0Rd) < 1.

When R0 = 1 and Rd > 1, C(x∗, y∗) coalesces with A(1−R−1
d , 0).

The local stability of C(x∗, y∗) can be examined by a routine linearization even
though the algebra computations are tedious. The Jacobian of system (2.2) around
C(x∗, y∗) is given by

JC =

[
ν+R0−1
R0

− νRdR0x
∗ − ν − (R0−1)2

R0
(ν +R0 − 1)− νRdR0x

∗ − 1
R0

(R0−1)2

R0

1
R0

− 1

]
.

If (3.2) holds, det(JC) = ν(R0−1)(RdR0x
∗) > 0 and trace(JC) = −ν(R0−1)/R0−

(R0 − 1)2/R0 − νRdR0x
∗ < 0. Hence, C(x∗, y∗) is always asymptotically stable

whenever it exists.

Proposition 2. If conditions (3.2) holds, equilibrium C(x∗, y∗) exists; and it is
an asymptotically stable topological node.

The global stability of C(x∗, y∗) in R+
2 can be established by proposition 2,

Lemma 1, and Lemma 2.

Proposition 3. The positive equilibrium C(x∗, y∗) of system (2.2) is globally
asymptotically stable in R+

2 if (R0,Rd) falls in regions 3 and 4 for ν > 1 (Fig. 3)
and in region 3 for ν < 1 (Fig. 4).

4. Qualitative analysis of the equilibrium point O. The point O always lies
on Ω for any nonnegative parameter values but the vector field is not analytic at
O. It is natural to continuously extend the determination of system (2.2) into the
origin by changing the independent variable: τ → (x + y)τ . The new system is

dx

dτ
= P1(x, y) ≡ P (x, y)(x + y),

dy

dτ
= Q1(x, y) ≡ Q(x, y)(x + y).

Because the gradient of P1(x, y) at (0, 0) vanishes, the isocline dx/dτ ≡ νRd(x +
y)2(1− (x+y))−νx(x+y)−R0xy = 0 is a complicated curve in the origin. Hence,
the origin is a complicated equilibrium of system (2.2). The structure of trajectories
in a small neighborhood of O in Ω depends on parameter values; and it can change
in an essential way with a change of parameters. Structure of the point O as well
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Table 1. Boundaries of phase-parameter portrait.

equation property

AO Rd = 1 appearance/disappearance of A

OK Rd = ν−1+R0
ν for R0 > 1 topological structure of O changes

CA R0 = 1 for Rd > 1 appearance/disappearance of C

CO Rd = ν−1+R0
ν(θ(R0+1)+1) for R0 > 1 appearance/disappearance of C.

as the asymptotics of trajectories with (x, y) → O is shown in Figure 2, which is
described in Lemma 3.

Lemma 3. For different positive values of parameters R0, ν, and Rd there exist
five types of topologically different structures of the neighborhood of point O in Ω:

1) a saddle sector (region (i) in Fig. 2) possessing by separatrix y = 0 for pa-
rameter values Rd > (ν +R0 − 1)/ν and Rd > 1;

2) an attracting-node sector region ((ii) in Figure 2) containing a family of tra-
jectories with arbitrary constant C 6= 0 that tend to 0 as t →∞

y = Cx
R0−1

ν(Rd−1) (1 + o(1)) (4.1)

for parameter values 1 > Rd > (ν +R0 − 1)/ν;
3) a saddle sector (region (iii) in Fig. 2) having separatrix

y =
R0 − 1− ν(Rd − 1)

νRd
x(1 + o(1)) (4.2)

and repelling-node sector containing a family of trajectories given by (4.1) that
originate from O (i.e., it tends to O as t → −∞) if 1 < Rd < (ν +R0− 1)/ν
and ν ≥ 1, or if 1 < (ν +R0 − 1)/(νR0) < Rd < (ν +R0 − 1)/ν and ν < 1;

4) two saddle sectors (region (iv) in Fig. 2a) separated by separatrix given by
(4.2) for parameter values (ν +R0 − 1)/(νR0) < Rd < 1;

5) an elliptic sector (region (v) in Fig. 2b) composed by trajectories tending to O
as t →∞ (with asymptotics given by (4.2)) as well as with t → −∞ (family
given by (4.1)) if 1 < Rd < (R0 − 1 + ν)/(νR0).

An elliptic sector is defined as a family of homoclinics that contains no any
equilibrium. Using the version of the blow-up method associated with the Newton
diagram (Berezovskaya (1976, 1995)), Lemma 3 is proved in Appendix A.

5. Phase-parameter portraits. In this section we focus on the (x, y)- and
(R0,Rd, ν)-parameter portrait to system (2.2) that is obtained from the cuts on
the (R0,Rd)-plane generated by fixed values of ν. Four curves, AO, CA, CO,
and OK, partition the parameter space. Their equations are listed in Table 1.
The cut of the parameter portrait on the (R0,Rd)-plane essentially depends on the
value ν. The phase-parameter portraits in (x, y) and (R0,Rd)-planes for the two
cases of ν > 1 and ν < 1 are given in Figures 3 and 4. Curve AO corresponds
to the appearance or disappearance of equilibrium A. Equilibrium C(x∗, y∗) coa-
lesces with A(1 − R−1

d , 0) on R0 = 1 and Rd > 1 (on the curve CA). The values
Rd = (ν +R0 − 1)/(νR0) (on curve CO) correspond to the coalescing of point C
and O.
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Table 2. Parameter values in phase portraits of Figure 5.

1a 1b 2 3a 3b 4
R0 0.9 1.5 0.9 1.5 1.1 2.0
Rd 0.9 0.5 1.2 1.3 1.2 0.9

Table 3. Parameter values in phase portraits of Figure 6.

1a 1b 2 3a 3b 4
R0 0.3 1.8 0.9 0.7 1.1 2.0
Rd 0.5 0.8 3.0 3.0 3.0 3.0

The main result of our investigation is collected in Theorem 1.

Theorem 1. The space of nonnegative parameters (R0,Rd, ν) for system (2.2) is
subdivided into five domains of topologically different phase portraits belonging to
Ω. The cuts of parameter space corresponding to fixed values of ν are given in
Figure 3 for ν > 1 and Figure 4 for ν < 1. The boundary surfaces between domains
correspond to the following bifurcations for system (2.2):
AO distinguishes the appearance or disappearance of the equilibrium point A;
OK specifies the change of topological structure of the equilibrium point O;
CO and CA give rise to the appearance or disappearance of the equilibrium point

C.
If R0 = Rd = 1, system (2.2) is integrable and trajectories are of the form

(x + y)2 − y2 2ν − 1
2νy + cy2ν

= 0,

where c is an arbitrary constant.

If ν = 1, the equation for N has a close form dN/dt = RdN(1 − N) − N , and
Rd = 1 is the only critical value. If Rd < 1, O(N = 0) is asymptotically stable; if
Rd > 1 then A(N = 1 −R−1

d ) is asymptotically stable. Formally, curves CO and
AO are identical for ν = 1. The phase-parameter portrait consists only of regions
1, 2, and 3 (see Figures 3 and 4). Hence, if Rd > 1 the total population size tends
to 1−R−1

d , otherwise the population goes to extinction.
All boundary surfaces correspond to bifurcations of co-dimension one (the total

number of “connections” between parameters) in system (2.2). The lines of inter-
section or touching between the boundary surfaces correspond to bifurcations of
co-dimension two (see Kuznetsov (1995)). Figures 3 and 4 represent correspond-
ingly the three-dimensional parameter portrait of the system as a cross-section into
the (R0,Rd)-plane for ν > 1 and ν < 1.

Our theoretical analysis is confirmed by the numerical simulations. Some typical
phase portraits of the system can be seen from Figures 5 and 6. The parameter
values in these simulations are listed in Tables 2 and 3. We are particularly inter-
ested in the occurrence of a family of homoclinic trajectories (see Figure 8), which
occurs when the parameters are in domain 5 in Figures 4 and 7.

6. Exploration of parameter θ. The incorporation of parameter θ into model
(1.1) demographically marks susceptibles and infectives, the two epidemiological
units, in terms of their reproductive capability to the total population. Infected
individuals may reduce their reproduction because of, the illness or their offsprings
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may be quarantined (or removed) immediately from the population, thus decreasing
the recruitment rate into the population. If the disease has no impact on the repro-
ductive process, then θ = 1; if the disease leads to a complete loss of reproductivity

Table 4. Global attractor of system (1.1).

parameter globally asymptotic attractor

R0 < 1, Rd < 1 (0, 0)

R0 < 1 < Rd (1−R−1
d , 0)

1 < R0, ν+R0−1
ν(θ(R0+1)+1) < Rd (x∗θ, y

∗
θ)

1 < R0, 1 < Rd < ν+R0−1
ν(θ(R0+1)+1) , νθ < 1 (0, 0) (elliptic sector appears)

Rd < 1, 1 < R0, νθ < 1 (0, 0)

1 < R0, Rd < ν+R0−1
ν(θ(R0+1)+1) , νθ > 1 (0, 0)

of the infected individuals, or if new births born to them cease, are removed, θ = 0.
These two extreme situations are more important since it is hard to find a partial
loss of reproductivity or partial cessation of new births.

We have systematically studied the special case of θ = 1 in previous sections.
Although model (2.1) is a sub-model of (1.1), our results are general. Model (1.1)
is written in the form




dx
dτ = νRd(x + θy)(1− (x + y))− νx−R0

xy
x+y ≡ Pθ(x, y)

dy
dτ = −y +R0

xy
x+y ≡ Qθ(x, y).

(6.1)

Technically, all arguments about model (2.1) can be applied to model (1.1). We
briefly list the results here. Lemmas can be applied to model (6.1) no change. The
infection-free equilibrium of system (6.1) A(1 − R−1

d , 0) exists if Rd > 1; and the
endemic equilibrium C(x∗θ, y

∗
θ) with

x∗θ = (νRd(θ(R0 − 1) + 1)− (ν +R0 − 1))/(νR0Rd(θ(R0 − 1) + 1)), (6.2)

y∗θ = (R0 − 1)x∗θ (6.3)

exists if R0 > 1 and Rd > (ν +R0 − 1)/((θν(R0 − 1) + 1)). Similar to Lemma 3,
the phase-parameter portrait for system (1.1) is described in Lemma 4.

Lemma 4. For positive values of parameters R0, ν, Rd, and 0 < θ ≤ 1 there exist
five types of topologically different structures of the positive neighborhood of point
O described by Lemma 3 and shown in Figure 2. The boundaries AO and OK are
the same as in Lemma 3 and CO is Rd = (ν +R0 − 1))/(ν(θ(R0 − 1) + 1)) (see
Table 1). Accordingly Figure 2 shows the bifurcation diagram of O for νθ > 1 and
for νθ < 1.

Basing on Lemma 4 we can formulate Theorem 2 to system (6.1).

Theorem 2. The bifurcation diagram of system (6.1) with 0 < θ ≤ 1 is given in
Figure 3 for νθ > 1, in Figure 4 for νθ < 1, and additionally in Figure 7 for θ = 0.

Figure 7 gives a full description to the global dynamics of model (1.1) in the
case of θ = 0. Comparing Figure 7 with Figures 3 and 4, we can see that region 4
disappears, region 3 narrows, and, consequently, region 1 where the population
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Figure 3. Phase-parameter portraits of model (2.2) given as an
(R0,Rd)-cut of the positive parameter space (R0,Rd, ν) for arbi-
trary fixed changes in behavior, and their equations are listed in
Table 1.

Figure 4. Phase-parameter portraits of model (2.2) given as an
(R0,Rd)-cut of the positive parameter space (R0,Rd, ν) for arbi-
trary fixed value of ν < 1. The boundaries are the same as in
Fig. 3.
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goes to extinction, dramatically expands. This demonstrates that the reduction of
reproductivity of infected individuals will increase the likelihood of extinction of
the entire population. A full picture of the global dynamics of model (1.1) can be
found in Table 4.

7. Discussion and conclusions. A simple epidemic model is completely studied.
The selection and relevance of the model is not the key issue (albeit we will use
it to interpret our results) but rather the approach to the study of its dynamics
near O, the equilibrium where both the population and the disease die out (note
that this equilibrium is observed in populations where N grows exponentially; the
population here, however, is bounded). Hence, the main purpose is to highlight
the nature and richness of the dynamics near regions where the vector field is
not analytic, a common situation in epidemiological modeling that has not been
analyzed well.

Mathematically the qualitative behaviors supported by model (1.1) in response to
the changes of four dimensionless parameters R0, Rd, θ, and ν are well understood
from our investigation; that is, we study the qualitative nature of the dynamics as
a function of epidemiological, demographic, and “relative” removal parameters. As
can be seen from Table 4, there are three qualitatively different dynamics for all
possible parameter values.

1) Extinction of the population is realized for values in domain 1 (Fig. 3) and in
domains 1 and 5 (Fig. 4). This is observed for any initial ratio of the suscep-
tible and infectious subpopulations, since the O(0, 0) is a global attractor;

2) The disease dies out and the population recovers if the parameters are in
domain 2 of Figures 3 and 4; that is, the number of infectious vanishes as t
grows;

3) The invasion of the disease into the populations is successful if the parameters
are in domains 3 and 4 for ν > 1 (Fig. 3) and in domain 3 for ν < 1 (Fig. 4).

Comparing these results with those obtained for model (2.1) under a constant
population size (see Fig. 1) leads one to conclude that the dynamics of system (2.2)
near the equilibrium O(0, 0) is responsible for the “novel” dynamics. This novel
behavior takes place in the domains of extinction in Figures 3 and 4; that is, in the
regions where the origin is the only attractor.

Two additional important dynamics demonstrate “paradoxical” behaviors from
the model, which happens if the parameters fall in region 4 of Figure 3 and region
5 of Fig. 4.

Paradox one is that the total population survives, although the basic demo-
graphic reproductive number Rd is less than one. This is observed condition-
ally because we have to assume additionally ν = (µ + m)/(µ + d) > 1 and
Rd > (1+ (ν− 1)/R0)/ν. The migration of susceptibles plays a key role in making
ν = (µ + m)/(µ + d) > 1. It is noted that ν = (µ + m)/(µ + d) > 1 is equivalent
to m > d, meaning that the per-capita migration rate of susceptible populations
surpasses the death rate due to the disease. However, the basic demographic repro-
ductive number Rd cannot be too small. The lower bound for Rd to support this
paradox is (1 + (ν − 1)/R0)/ν.

The second paradox is that the total population goes extinct even for recruitment
of susceptibles Rd > 1. Again this is conditional because we need additionally to
assume ν < 1, 1 < R0, andRd < (1−(1−ν)/R0)/ν; that is, the migration rate m is
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Figure 5. Phase portraits of the model for ν = 1.8 > 1, (numer-
ation of domain corresponds to those in Fig. 3). Values of R0 and
Rd are given in table 2.
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Figure 6. Phase portraits of the model for ν = 0.2 < 1 (numera-
tion of domain corresponds to those in Fig. 4). Values of R0 and
Rd are given in table 3
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less then the disease-induced death rate d, but the basic demographic reproductive
number Rd must be bounded from above. The upper bound is (1− (1− ν)/R0)/ν.

The appearance of an elliptic attractor highlights the possibility of a disease
outbreak, even though the population is becoming extinct. The reason behind this
behavior is that the demographic and epidemiological processes support different
growth rates at the “beginning” of the epidemic. The fact that the epidemiological
process is faster than the demographic process leads to an increase in the number of
infections, even though the total (bounded) population will go eventually extinct.
This behavior, to the best of our knowledge, has never been reported in the context
of epidemiological models.

The role of parameter θ is included in theorem 2, which allows us to reveal the
implication of the fecundity of infectives and migrations. The threshold ν = 1 of
system (2.2) is replaced by the threshold θν = 1 for model (1.1). More specifically,
if θν > 1, then the disease dies out and population recovers in region 2 (R0 < 1);
and the disease successfully invades the population if the parameters are in regions
3 and 4 (R0 > 1) of Figure 3. If θν < 1, the whole population persists only if the
parameters are in domains 2 and 3 in Figure 4. The decreasing of θ leads to the
decreasing of domain 3 and in creasing of domain 5 (see Figures 4 and 7). Conse-
quently, the chance of a disease outbreak increases. The phase-parameter portraits
of models (2.2) and (6.1) are equivalent, so the principal qualitative behaviors of
these two models are the same.

If νθ ≤ 1 then the total population goes extinct, even if the demographic pa-
rameter Rd > 1 but with νRd ≤ (ν + R0 − 1)/(θ(R0 − 1) + 1) and R0 > 1. In
this parameter region the growth of susceptibles is observed for small initial values
of infectives. Both susceptibles and infectives increase initially, if the infected part
of the population is relatively small; then most of the population becomes infected
and the total population goes extinct. This plausible behavior of the model corre-
sponds to a family of homoclinics at the origin and is the same as in the case θ = 1.
Our analytical investigation has proved that the elliptic sector is realized for model
(1.1) with parameter values belonging to domain 5.

The case νθ > 1 realizes only if ν > 1 (that is, if the migration rate of is
relatively large). Paradoxically, in this case infectives and susceptibles can persist
even for demographic parameter Rd < 1 if we additionally assume νRd ≥ (ν +
R0 − 1)/(θ(R0 − 1) + 1) and R0 > 1.

An important ecological (and evolutionary) problem is to determine the neces-
sary and sufficient conditions under which a disease can regulate a population (see,
for example, Levin and Pimentel (1981), Anderson et al. (1988, 1989) and Song et
al.(2002)). The work on this question has not used models that include migration.
Our model can be thought of as an example of a system where individuals avoid
the disease by migrating to a disease-free habitat. The inclusion of disease-induced
mortality and migration can lead to the novel dynamics near the origin O.

It is our hope that the analysis of this example may influence the field of the-
oretical epidemiology, as has already occurred in the field of ecology, where these
model results have been used to explain the “paradox of biological control” (see
Arditi and Ginzburg (1989), Kuang and Beretta (1998), Berezovskaya et al.(2001),
and Hsu et al. (2001)).

Typically, two forms of incidence rates βSI and βSI/N are used to model most
epidemic processes. βSI (known as the mass action law) assumes that transmission
depends linearly on population size, while βSI/N assumes that infectives are
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Figure 7. The phase-parameter portrait of model (6.1) for θ =
0 given as an (R0,Rd)-cut of the positive parameter space
(R0,Rd, ν) for an arbitrary fixed value of ν. The boundaries have
the same sense as in Figures 3 and 4; and they are defined in Table
1.
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contacted at random (transmission is independent of N). The dynamics obtained
in model (2.2), where random mixing is assumed, are not supported under the
mass action law βSI. Other researchers have used βSαIγ (Liu et al. (1987,1986))
to model the incidence rate for a variety of reasons. The novel dynamics of this
paper cannot be obtained with these forms of the incidence rate either. Ruan and
Wang (2003) have recently introduced βSI l/(1 + αIh) to model the incidence rate
in a model without disease-induced death rate (an analytic vector field is generated
in this case). The dynamics in the model using this incidence rate have been
characterized by saddle-node, Hopf, homoclinic bifurcations, and possible multiple
limit cycles. However, although the dynamics are rich and interesting, we have
found no reasonable way of explaining an appropriate epidemiological setting for
this nonlinearity.
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Appendix A. Proof of Lemmas 3 and 4.

Proof. The proof of Lemma 4 is given first. System (6.1) (and its particular case
(2.2)) is analytical in all points of the plane (x, y) except the origin. The positioning
of its phase trajectories in the first quadrant can be defined from the following
polynomial system:




dx
dτ = νRd(x + θy)(1− (x + y))(x + y)− νx(x + y)−R0xy) ≡ P1(x, y),
dy
dτ = −y(x + y) +R0xy = (R0 − 1)xy − y2 ≡ Q1(x, y)

(A.1)

System (A.1) is transferred from (6.1) by rescaling x = cX, y = cY , and
dt = (x + y)/(µ + d)dτ . System (A.1) has a complicated equilibrium point at
the origin because both eigenvalues are equal to zero. We then perform a blow-up
transformation plus a rescaling to system (A.1) by

x = x, u = y/x, (A.2)

xdτ = ds (A.3)

This transforms R2
+ of the (x, y)-plane in a nondegenerate way, except for x = 0

into R2
+ of the (x, u)-plane and blows up the point O into the u-axis. Structurally,

the transformation y = ux leaves the pattern on the x > 0 half (x, u)-plane “qual-
itatively unchange.” On the x < 0 half plane, the pattern is reflected across the
x−axis and then the entire u−axis is collapsed into one point. This transformation
intends to break a complex equilibrium into several simple equilibria. Under the
transformations (A.2) and (A.3), we obtain the system





dx
ds = x(νRdθu

2 + (νRd(1 + θ)− ν −R0)u

+ν(Rd − 1))− νRdx
2(1 + θu)(1 + u)2

du
ds = −u(1 + u)(νRdθu− Z) + νRdxu(1 + θu)(1 + u)2,

(A.4)

where

Z = R0 − 1− ν(Rd − 1). (A.5)
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Table 5. Eigenvalues of (A.4) around O1 and K1

equilibrium λ1 λ2

O1 ν(Rd − 1) Z

K1
(νRd−1)R0−(ν−1)

νRd
−Z(Z+νRd)

νRd

System (A.4) has two feasible equilibria on the u-axis: O1(0, 0) and
K1(0, Z/(νRdθ)). The eigenvalues of the Jacobian matrix at these equilibria are
listed in Table 5. So, these equilibrium points are nondegenerate if

(νRdθ(R0 − 1)− Z)Z(Rd − 1) 6= 0.

The equilibria are classified into six qualitatively different combinations.
1) single saddle O1 if Rd > 1 and Z < 0 (Rd > (R0 − 1)/ν + 1);
2) single stable node O1 if Rd < 1 and Z < 0. These inequalities imply system

(R0 − 1)/ν + 1 < Rd < 1, which has solutions only if R0 < 1;
3) saddle O1 and stable node K1 if Z > 0, Rd < 1, and (−Z +νRdθ(R0−1)) <

0. These inequalities imply system: Rd < 1, Rd < 1 + (R0 − 1)/ν, and
νRd < (ν +R0 − 1)/(θ(R0 − 1) + 1), which has solutions R0 > 1, νθ > 1 as
well as R0 < 1, νθ < 1;

4) saddle O1 and saddle K1 if Z > 0, Rd < 1, and (−Z + νRdθ(R0 − 1)) > 0
that hold true for (R0−1+ν)/(ν(1+θR0−1)) < Rd < 1 and implies νθ > 1
for R0 > 1;

5) unstable node O1 and saddle K1 if Z > 0,Rd > 1, and (−Z+νRdθ(R0−1)) >
0. These inequalities hold for R0 > 1, (ν + R0 − 1)/(ν(θ(R0 − 1) + 1)) <
Rd < 1 + (R0 − 1)/ν;

6) unstable node O1 and stable node K1 if Z > 0, Rd > 1, and (−Z+νRdθ(R0−
1)) < 0 hold true for 1 < Rd < (R0 − 1 + ν)/(ν(1 + θ(R0 − 1))) and implies
νθ < 1 for R0 > 1.

To study the behavior of the system close to the y-axis, we should do a blow-
up transformation again by y = y and w = x/y with rescaling ydτ = ds. This
transformation is nondegenerate for all values of x and y except for y = 0, and the
point O blows up into the w-axes under this transformation. In terms of variables
w and y, we obtain the following system:





dw
ds = (w + 1)(−Zw + νRdθ)− νRdy(w + 1)2(w + θ),
dy
ds = y(−1 + (R0 − 1)w),

(A.6)

which has, on the w-axis, a feasible equilibrium K∗
2 (k∗2 , 0) with k∗2 = νRdθ/Z. It

turns out that it is not necessary to study points K∗
2 , because it corresponds to the

equilibrium K2 of system (A.4). If θ = 0, then O2(0, 0) is a “new” equilibrium that
is a saddle if Z < 0, and a stable node if Z > 0.

Behaviors of system (1.1) for θ = 1 in a positive neighborhood of axis u, and
behaviors of system (A.1) in a positive neighborhood of the complicated equilibrium
point O in the (x, y)-plane dependently on parameters R0 and Rd are shown in
Figure 2a for ν > 1 and Figure 2b for ν < 1.

It is easy to see from the eigenvalues that for νθ > 1 the bifurcation diagram of
point O is the same as the diagram for ν > 1 and θ = 1, as shown in Figure 2a,
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and for νθ < 1 it is the same as the diagram for ν < 1 and θ = 1, as shown in
Figure 2b.

The analysis of the case θ = 0 demands the mutual consideration of the positive
neighborhoods of axes for u and w. There are three possible type of structures: (1)
a saddle sector whose separatrices are u = 0 for v > 0 and v = 0 for u > 0 if the
parameters are Z < 0 and Rd > 1 (like (i) in Fig. 2); (2) a stable parabolic sector
if parameters Z < 0 and Rd < 1 (like (ii) in Fig. 2a); and (3) an elliptic sector
belonging to the positive quadrant (u, v) for Z > 0, Rd > 1, and −Z + νRdθ(R0−
1) < 0 implying νθ < 1 for R0 > 1 (like (v) in Fig. 2b).

Assembling the obtained results and returning to the initial variables x and y,
we obtain six different structures of the complicated point O in the first quadrant
of (x, y)-plane as shown in Figure 2. Two typical phase portraits of point O (the
cases (ii) presented in Figures 3 and 4) are topologically equivalent and differ only
in the asymptotes of characteristic trajectories. They should be pooled together in
the “unified” phase portrait. Therefore, there are only five topologically different
structures in a neighborhood of the equilibrium point O for nondegenerate cases.

This ends the proof of Lemma 4.
The above analysis also presents a possibility to show the asymptotics of trajec-

tories that tend to the equilibrium O (here we will consider only the case θ = 1).
Equilibrium K1(0, Z/(νRd)) of system (A.4) is inside the first quadrant if Z > 0.

It can be a saddle or a stable node. If K1 is a saddle (in the case (νRd−1)R0−(ν−
1) < 0), then the curve u = Z/(νRd)(1+ o(1)) is the asymptotics of the separatrix.
Therefore, the curve

y =
Z(1 + o(1))

νRd
x (A.7)

is a separatrix of the saddle sector of point O. If K1 is a node, then (A.7) shows
that asymptotics of trajectories tend to O.

Equilibrium O1 of system (A.4) can be a saddle or a node. If it is a node (it
happens if Z(Rd−1) > 0), then in the (x, u)-plane the family of trajectories having
the form of u = Cx(R0−1)/(ν(Rd−1)−1)+1(1 + o(1)) is tending to it (where C is an
arbitrary constant). In terms of x and y, this family is y = Cx(R0−1)/(ν(Rd−1))(1+
o(1)) which tends to (0, 0) as x → 0 (see Fig. 2). This completes the investigation
of point O in cases of nondegeneracy.

Finally, if Rd = 1 and R0 = 1, then Z = 0 and, consequently, system (A.6) is
reduced to

dw

dy
= −ν

(
w + 1

y
− (w + 1)3

)
,

which can be solved explicitly, as follows

w + 1 = ±
√

2ν − 1
c− νy−2ν+1

,

where c is an arbitrary constant. Proof of Lemma 3 is complete.
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