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ABSTRACT. A basic task in understanding the neural mechanism of learn-
ing and adaptation is to detect and characterize neural interactions and their
changes in response to new experiences. Recent experimental work has in-
dicated that neural interactions in the primary motor cortex of the monkey
brain tend to change their preferred directions during adaptation to an external
force field. To quantify such changes, it is necessary to develop computational
methodology for data analysis. Given that typical experimental data consist of
spike trains recorded from individual neurons, probing the strength of neural
interactions and their changes is extremely challenging. We recently reported
in a brief communication [Zhu et al., Neural Computations 15, 2359 (2003)] a
general procedure to detect and quantify the causal interactions among neu-
rons, which is based on the method of directed transfer function derived from
a class of multivariate, linear stochastic models. The procedure was applied
to spike trains from neurons in the primary motor cortex of the monkey brain
during adaptation, where monkeys were trained to learn a new skill by moving
their arms to reach a target under external perturbations. Our computation
and analysis indicated that the adaptation tends to alter the connection topol-
ogy of the underlying neural network, yet the average interaction strength in
the network is approximately conserved before and after the adaptation. The
present paper gives a detailed account of this procedure and its applicability
to spike-train data in terms of the hypotheses, theory, computational methods,
control test, and extensive analysis of experimental data.

2000 Mathematics Subject Classification. 62H20, 62P10.
Key words and phrases. neural learning, neural interaction, primary motor cortex, multivariate
analysis, directed transfer function, Granger causality.



2 L. ZHU, Y.-C. LAI, F. C. HOPPENSTEADT, AND J. HE

1. Introduction. Learning is among the most important functions of the brain.
As the brain acquires a new skill and adapts to new circumstances, structural and
dynamical changes may occur in the corresponding parts of the brain. Depend-
ing on the nature of the new knowledge or skill, the group of neurons responsible
for the learning can vary. Broadly speaking, for a given task, specific networks
(or subnetworks) of neurons are responsible for learning and adaptation. Under-
standing how the network characteristics, such as the connecting architecture and
coupling strength among neurons, change in response to learning and adaptation is
of paramount importance and interest. Among the many existing studies on neu-
ral mechanisms for learning and adaptation, motor learning is of primary interest
because of the relative ease in accessibility to controlled experimental studies. A
wealth of evidence suggests that motor learning involves many areas of the brain,
among them the cerebellum and the basal ganglia [1, 2] which are traditionally
believed to be limited to motor control at the subcortical level, the motor cortex
[3, 4] which mainly plans and controls movement, the sensory cortex, and other
association areas [5].

In this paper, we focus on the primary motor cortex (M1), believed to be respon-
sible for voluntary movements. M1 contains several subdivisions, corresponding to
movements of major body parts such as arms, legs, or the face. Each subdivision
has an internal network with the capabilities to respond to, to learn, and to con-
trol a rich variety of functions. Recent studies on human and nonhuman primates
[6, 7, 8, 9] demonstrate that M1 is plastic, indicating the dynamic and adaptive
nature of the area. At the level of single neurons, a recent work [4] explored changes
in individual neurons in response to motions in preferred direction, concluding that
two classes of neurons in M1 coexist and interact with each other to provide the
functions of motor learning and operations. In addition, these neurons also carry
the memory necessary for learning and controlling the movement. Neurons in M1
are apparently connected in a sophisticated manner. Because of the ubiquitous
presence of neural plasticity, it is reasonable to hypothesize that neural interac-
tions are also responsible for learning and organizing specific movements. Yet to
our knowledge, little has been done to explore the interactions among neurons in
M1 and how they change to learn a specific type of movement and to adapt to new
conditions. The aim of this paper is to characterize, quantitatively, interactions
among M1 neurons and how they change in response to movement perturbations
in a series of controlled experiments with monkeys.

Our analysis is based on constructing a class of linear stochastic models, namely
the multivariate autoregressive (MVAR) models, from recordings of a group of
neurons in M1 during learning and adaptation, and on computing the associated
directed transfer functions (DTFs) in the frequency domain. The reasons we choose
to work with linear, stochastic models are the following. Traditionally, nonparamet-
ric methods based on correlation measurements and spectral-coherence analysis are
popular for probing the neuronal interactions [10, 11, 12]. These methods deal with
a pair of recordings from different neurons over a relatively long period, and they
pose several difficulties. First, focusing on the long-term behavior of two neurons
without taking into account influences from other neurons will inevitably classify
any detectable interaction as direct, while typically indirect interactions can take
place between any pair of neurons. Second, the methods require stationarity, which
cannot hold over a long period of time in typical experiments. Third, nonparametric
methods usually yield no information about the direction of the interaction between
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the pair of neurons, as the spectral coherence computed from correlation is inde-
pendent of whether the coupling is forward or backward. Recently, spike pattern
classification methods [13, 14, 15] were proposed to measure interactions among
neurons from spike trains. These methods are based on evaluating the statistical
significance of spike patterns across channels and time. The patterns that occur
more frequently than random coincidence are called unitary events [13, 14, 15]. The
interactions among involved neurons are presented by the spike patterns. Although
appealing, these methods are very sensitive to non-stationarity and changes in fir-
ing rate, making it difficult to distinguish results from statistical artifacts. The
MVAR [16, 17, 18] and DTF methods [19, 20, 21, 22] that we will use are justified
by the reasonable and practical assumption that neural recordings can be regarded
as a result of an intrinsically stochastic process. These methods have proven to be
powerful for analyzing multichannel neural recordings [19, 20, 21, 18, 22].

The neural recordings used in our construction of the linear MVAR model and
subsequent computation of DTF's are spike trains from neurons in M1 of a monkey,
which are typically short and sparse. It is necessary to preprocess the data so that
the MVAR model can effectively approximate the stochastic process that generates
the spike trains. We propose a method to achieve this by converting the spike trains
into continuous-time signals of the instantaneous spiking rate. Then, by measuring
the average coupling strength based on the concept of Granger causality [23] and
DTFs, we can assess the changes in neural interactions in a quantitative manner.
Our main findings are (1) learning and adaptation typically result in significant
temporal changes in the interactions among neurons, (2) these changes occur both
in the direction and the strength of coupling, (3) the average coupling strength over
the network of neurons involved increases during the learning but returns to the
original level after adaptation, which is naturally expected based on consideration
of factors such as energy conservation, and (4) the connecting architecture of the
network is typically altered after adaptation. A brief report on part of this work
appeared recently [24].

Neural activities in the brain are undoubtedly nonlinear. Naturally, one might
ask why we choose to focus on linear methods to address the learning and adapta-
tion problem in M1. Like linear methods, nonlinear methods can be classified as
nonparametric and parametric. A popular class of nonparametric method is non-
linear time-series analysis based on the assumption that the underlying dynamical
system generating the time series is deterministic and therefore the corresponding
phase space, the space in which all dynamical trajectories live, can be reconstructed
by using a proper embedding method [25, 26, 27]. Two limitations, which at present
appear to be fundamental, hamper the use of the nonlinear embedding method for
neural data. They are noise and the intrinsic high-dimensionality of the underlying
dynamical system that generates the neural activities, as the embedding method
can yield meaningful information only for relatively noiseless data and for systems
of low dimensionality [27]. For neural data that contain a large number of spikes, a
method of constructing embedding by using interspike time intervals was proposed
[28, 29, 30]. However, for the task we face, the neural recordings typically consist
of trains that contain very few spikes, for which the interspike-interval embedding
method is apparently not applicable. Mutual information is also widely used to
measure the association between two spike trains. Use of the information measure-
ment is motivated by the idea that the responsible parts of the nervous system,
such as visual pathways, may be modeled as communication channels. Irrespective
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of the validity of this idea, mutual information methods also face difficulties, such
as the required large data sets that might be obtained from experiments. Para-
metric methods, on the other hand, utilize nonlinear modeling such as artificial
neural networks and fuzzy-logic models to identify the underlying nonlinear system
and to estimate the interactions among neurons, which is promising; however, the
methods are largely empirical and generally more difficult to deal with than linear
methods. For instance, in the artificial neural-network approach, the number of
adjustable parameters can be enormously large. Our philosophy is that, given a
set of neural data that are typically noisy and short, the linear method should be
considered first, at least for the purpose of gaining insights. Often such an ex-
ploration can lead to meaningful results. Indeed, as we will demonstrate in this
paper, by carefully preprocessing the input data and selecting model parameters,
the MVAR/DTF-approach can yield a rich amount of information that can help us
better understand the functional changes in the neural interactions during learning
and adaptation. Application of nonlinear parametric models such as artificial neural
networks to the problem addressed in this paper should, however, be investigated.

2. Material and methods.

2.1. Behavioral experiments and data collection. The experimental subject
is a rhesus monkey trained to perform behavioral movements according to instruc-
tions. The Institutional Animal Care and Use Committee at Arizona State Uni-
versity approved the behavioral paradigm, surgical procedures, and general animal
care. A typical experiment setting consists of eight targets with lightened push-
buttons located at the vertices of a 13 cm cube, as shown in Figure 1. In the center
of the cube is an additional target. Each trial begins with the illumination of the
central target (center-on). The monkey is trained to push and hold the button
on the central target until a randomly selected target at a vertex is illuminated,
at which time the monkey is supposed to reach out to the new target. The time
allowed for the monkey to accomplish the reach-out movement is 750 milliseconds.
Typically, a monkey’s reacting time (the time required for the monkey to release the
central button and reach a vertex target) is about 200 milliseconds. A successful
trial requires that the monkey reach the vertex target and push the button in time
less than 600 milliseconds.

To assess the neural behavior in M1, four 16-channel arrays of microelectrodes
are chronically implanted in the pre- and post-central arm areas. Extracellular
potentials are recorded on a 96 channel MAP (Plexon, Inc., Dallas, TX), allowing
us to isolate up to four units on a single electrode on line, with waveform discrim-
ination. A threshold crossing marks the occurrence of an action potential (spike),
and spike times from all active channels are recorded in a data file along with the
behavioral event times (for example, the center-release time), allowing us to sepa-
rate the internal cognitive periods of the brain. In what follows, we will focus on
neural recordings during the time period from target-on to center-release, during
which M1 undergoes a planning process for voluntary movements.

To test the monkey’s ability to learn and to adapt, at the behavioral level per-
turbations are applied to disturb the monkey’s already well-trained reaching-out
movement. To apply the perturbation, a string is attached to the monkey’s wrist
and a brief pulling force, lasting for 75 milliseconds is delivered through the string.
Before the surgery, the monkey was first trained to perform unperturbed trials suc-
cessfully, without the string attached. Then electrodes were implanted. After one



CAUSAL INTERACTIONS DURING LEARNING 5

4

7
5 2
3 8
6 1
perturbation
direction

FIGURE 1. Targets and perturbation force field. The eight targets
are located at the vertices of a 13 cm cube.

week of post-surgical recovery, the monkey was attached to the string during all
experiments, no matter whether the perturbation was applied. The experiments
began with four-week unperturbed trials. The average trajectory on the last day of
unperturbed trials is shown in Figure 2 (the trajectory with ‘0’). From day one, the
perturbation force was applied. At the beginning, the perturbation force tended to
significantly displace the monkey’s arm motion from its normal, unperturbed tra-
jectory. After about one week, the monkey could compensate for the perturbation
in a fairly predictable way [31], which can be seen by comparing the trajectories on
days 1 and 8 in Figure 2(a).

(@) (b)

15

FIGURE 2. The hand trajectories toward target 4. The numbers
indicate the experiment date; for example, ‘1’ indicates the first
day of perturbed trials. Each trajectory shown here is averaged
over all the trials during one day. The thick curves correspond to
perturbed trials, and the thin curves to unperturbed trials.

2.2. MVAR model and its validity. The analysis method is based on MVAR,
modeling and the concept of Granger causality. Suppose multichannel time series
X(n) = [z1(n),x2(n),...,za(n)]T are generated from a stochastic system or a
deterministic system of high dimensionality under the influence of strong noise.
The current state is determined by the linear combination of K previous states
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and uncorrelated white noise N(n) = [n1(n),na(n),...,na(n)]7, if the time span
between the previous and current state is not too large. In MVAR modeling, X(n)
is written as

X(n) =Y A(l)-X(n—1)+N(n), (1)
k=1

where A(l)’s (I =1,...,K) are M xM coefficient matrices, K is the model order,
and the noisy vector N(n) characterizes the modeling error.

For a finite data set, increasing K, or the complexity of the model, can always
reduce the modeling error N(n) in general. However, if K is too large, overfitting
may occur for a finite data set. A common approach to avoid overfitting is to use
some information measure, which in general is a loss function with the complexity
penalty. That is, a penalty is applied if K is too large (the model is too complex).
The value of K at which the information measure achieves a minimum is regarded
as optimal. Here, we use the Akaike’s final-prediction-error (FPE) measure [32] to
find optimal value of K, which is defined as
N+ Na @)
Nx - NA
where N, is the number of data samples, N4 is the number of model parameters
(Ng < Np), and E = (1/N,) 22[21 N2(n) is the average of error squared. The
second term in Equation (2) is the complexity penalty, which tends to zero as N,
approaches infinity.

Equation (1) is a linear model, and hence it can represent exactly noiseless
linear systems for a suitable choice of K. In principle, it can also be used to model
nonlinear or chaotic systems if the coefficient matrices are not constant but depend
on the state of the system and K is sufficiently large (typically K should be at least
twice as large as than the dimension of the dynamical invariant set in the phase
space that generates the observed time series [25, 26]). Dealing with such a situation
is difficult. While the underlying dynamical system generating the observed neural
activities is undoubtedly nonlinear [33, 34, 35], its dimensionality may be so high
that, effectively, it cannot be distinguished from a linear stochastic process [36].
Our central hypothesis then is that, practically, the neural dynamics of the brain
can be described by linear stochastic models such as Equation (1).

Another issue concerns the stationarity of the stochastic process. Notice that the
MVAR model defined by Equation (1) is time invariant, which requires that the time
series X (n) be stationary. Strictly speaking, a stochastic process is stationary if its
statistical properties are invariant in time. In practice, stationarity in a wide sense
is convenient. A stochastic process X (n) is called wide-sense stationary (WSS) if
its mean is constant and its autocorrelation depends only on ¢ = n; — nas:

E{X(n)} = n 3)
E{X(n+c)X(n)} = R(c).
Two stochastic processes X;(n) and Xo(n) are called jointly WSS if each is WSS
and their cross-correlation depends on ¢ only:
E{Xi(n+¢)Xa(n)} = Rx,x,(¢). (4)

Thus, in the wide sense so described, it is suitable to model multichannel time se-
ries X(n) by Equation (1) if each channel is WSS and all channels are jointly WSS.
However, in our experiment, during the reaching-out movement, the monkey’s brain

FPE= N,InE+ N, In
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performs a cognitive task, which may be sensitively influenced by various distur-
bances from the environment. The state of the brain may thus change rapidly
in time, which in turn, results in changes in the firing rate, in the pattern of the
neurons, and likely in the functional interactions between neurons as well. In re-
ality, neural recordings are thus nonstationary. While the stationarity of recording
from individual channels may be improved by making E{x(n)} and R(0) constant
(that is, by subtracting mean and dividing by standard deviation for each point
in the time series), computationally it is hard to improve the joint stationarity.
Nonetheless, if the interactions among neurons in different regions, reflected in the
recordings from different channels, are approximately invariant or slowly varying
over a short time period on which the analysis is focused, the cross-correlation func-
tions can be assumed to be approximately time-invariant. This is the reason we
focus on the short period from target-on to center-release in our analysis. The un-
derlying assumption is that over this time interval, the interactions among neurons
change little with time.

2.3. Directed transfer function. In Equation (1), the signal from the jth chan-
nel at time n can be explicitly written in terms of the signals from all other channels
at a set of earlier times as
K K
zi(n) =Y AjpWarn =D +...+ Y AjuDzar(n —1) +n;(n). (5)
=1 1=1
In Equation (5), if the presence of the past signal from the ith channel can help
reduce the modeling error n;(n) in the signal xz;(n) of the jth channel, the ith
channel is said to be causal to the jth channel [19]. That is, if Aj;(1) (I =1,...,K)
are not zero, statistically there is a causal influence from channel ¢ to channel j.
Performing Fourier transform of Equation (1) yields

X(f) = A7) - N(f) = H(f) - N(f), (6)
where X(f) and N(f) are the Fourier transforms of X(n) and N(n), respectively,
and the matrix A(f) is given by

K
A(f) = ,ZA(l)e*jZﬂfl7
=0

with A(l = 0) = —I (I being identity matrix). The inverse matrix A~1(f) = H(f)
is the transfer-function matrix of the system in the frequency domain. Kaminski
and Blinowska [19] define the DTF from the ith channel to the jth channel as

Hi(HP
S ([ Him(f)I?

To demonstrate the power of DTFs in characterizing the mutual interactions or
couplings among neurons, we consider an artificial network consisting of five neu-
rons, as shown in Figure 3. The details of the computational model for the network
will be described in Section 3. Here we just illustrate the behavior of the computed
DTFs. The DTFs for a pair of neurons (2 and 3 in Figure 3), are shown in Figure 4.
In the assumed network configuration, there is a unidirectional interaction between
the two neurons in the sense that there is an influence from neuron 2 to neuron 3,
but not the other way around. This feature is correctly reflected in the DTFs, as
shown in Figures. 4(a) and 4(b), where we see that the transfer function DTF35( f)

DTF(f);i = (7)
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ly

FIGURE 3. An example illustrating the use of DTFs. There are five
neurons: four connected and one isolated. All neurons are driven
by independent external stimuli- independent bandpass noise in
the simulation. The mutual interactions among the neurons are
explicitly reflected by the values of the DTFs, as we have demon-
strated using a numerical model (see Section 3 for details).

@) (b)

0 50 100 0 50 100
f f

FIGURE 4. Directed transfer functions between neuron 2 and 3
shown in Figure 3.

has a pronounced peak around f = 10Hz (indicating a significant influence from
neuron 2 to neuron 3), while the value of the function DTFy3(f) is close to zero for
almost all frequencies, signifying the lack of a substantial influence from neuron 3
to neuron 2, as should be.

From Figures. 4(a) and 4(b), we see that a convenient quantity to characterize
the interactions among neurons is

/O " DTR(f)d,

which is the total area under the transfer function and can be regarded as propor-
tional to the “energy” transfer, or the direct coupling, from one neuron to another.
Motivated by this consideration, we define the direct coupling strength from neuron
7 to neuron j as

Cyi = /O DTF,(f)df. (8)
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Equivalently, one can make use of the coefficient matrices A(l) in the time domain
to define the coupling strength [22], as follows:

YL, A% ()
S S A% ()

Cji = (9)
where 0 S Cji S 1.

The above definition of the coupling strength Cj; is meaningful only in the
statistical sense. To test whether the computed values of the coupling strengths
are statistically significant, it is necessary to conduct a null-hypothesis test. In
this regard, the surrogate data method[37, 22] is convenient. For a set of given
time series, its surrogate is generated by random shuffling of these recorded signals
among themselves so that any functional interactions among them are destroyed
while the energy of the original signals is maintained. Then the distribution of the
coupling-strength measurement, F'(x) = Probability(C' > x), can be empirically
obtained by using a large number of independently shuffled surrogate data sets.
For a given significance level o (= 0.05 used in this study), the causal influence
from channel i to j is said to be significant if F(Cj;) < . The relative coupling
strength can be evaluated as Cj; — C%;, where Cf; is the averaged coupling strength
from channel ¢ to channel j based on the DTFs computed from the surrogate signals.
2.4. Dealing with short, sparse spike trains. The method described in Sec-
tions. 2.2 and 2.3 to detect the causal interactions among neurons by using mul-
tichannel, simultaneous observations applies directly to continuous-time signals. If
the recorded signals are long and relatively stationary, it is straightforward to apply
MVAR modeling and consequently to measure the coupling strength. For nonsta-
tionary signals, it may be necessary to preprocess the data to reduce the influence
of nonstationarity, such as removing the time-varying average from the data, divid-
ing it into a set of short but relatively stationary segments, or both. In situations
where only short time series are available, MVAR modeling requires an ensemble
of such data sets. It is generally more desirable to have one MVAR model to fit all
available data sets than to have one model for each data set and then to average
the model results, as the MVAR model obtained from a short time series may be
unstable in the sense that the eigenvalues of the transfer matrix may fall outside
the unit circle in the complex plane.

Our neural recordings are even worse than merely short, because they are not
continuous-time time series but spike trains, which can be regarded as coming from
a point process. That is, the recorded information is a set of ordered times at which
spikes occur, as follows:

to <t <ty <..<t,<..

To apply a multivariate time-series analysis, one must convert the sequence of times
into a continuous-time waveform [38]. A standard technique is to construct

v(t) = 32 6(t — ta) (10)

and then pass x(¢) through a low-pass filter, or to convolve z(t) with a kernel func-
tion to remove high-frequency components [20, 22], generating a continuous time
series more suitable for MVAR modeling and also capable of yielding the phase
information of the spike train. Such a preprocessing is useful if the spike train con-
tains a large number of spikes and the recordings are relatively stationary. We note
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that for multichannel recordings, the relative phase, or the relative timing of spikes
among different channels, is the only information from which neural interactions
may be extracted. The relative timing is related to the temporal-coding hypothesis
in neuroscience [39].

The neural data from our experiments contain only a sparse set of spikes, the
number of which is typically so small that the aforementioned standard preprocess-
ing method becomes unsuitable. Here we propose a general method to deal with
short, sparse spike trains so that the MVAR modeling can be applied. The basic
idea is to convert a spike train into time series of instantaneous firing rate. This is
motivated by the two popular hypotheses in neural coding: rate modulation coding
and temporal coding. Typically, the firing rate of a single neuron can be related
to behavioral events, such as response to an external stimulus or a motor move-
ment. Because of the sensitivity of the neural activity on small disturbances, even
for the same movement and under the same external condition, the pattern of the
instantaneous firing rate may change. While one may compute the mean discharge
profile by averaging neural responses over many trials, comparison of these profiles
from different neurons will yield little information about the neural interactions,
because the averaging process destroys fine temporal correlation among the signals.
Since large populations of neurons are involved simultaneously in any behavioral
movements, the temporal structure of spike activity should influence the function of
neural assemblies and thus provide coding information as well. That is, both rate
and temporal information will be important for assessing the interaction among
neurons. In a recent work [40], Riehle et al. demonstrated that synchronization of
spiking activity (temporal coding) and modulation of discharge rates (rate coding)
may represent two independent computational strategies used by the brain.

The instantaneous discharge rate in fact contains information about the tem-
poral coding. As such, the rate profile and the original spike train code the same
temporal firing behavior of the neuron. Consider, for example, integrate-and-fire
neurons. If the firing threshold is known, the instantaneous firing rate can be con-
verted into a spike train, and vice versa, without loss of information. In particular,
the phase information is preserved. Fluctuations in the instantaneous firing rate
reflect the irregularity in the occurrences of spikes, so a coherence measure between
two instantaneous firing-rate time series can yield information about the causal
interactions between the two neurons. Since the instantaneous rate profile can be
regarded as a continuous-time signal, multivariate time-series analysis techniques
can be applied readily.

Our procedure in constructing a continuous rate-function from a spike train
consists of three steps, as shown in Figure 5. First, the instantaneous firing rate is
approximated by the inverse of the interspike interval. To illustrate this, consider
three successive spikes occurring at times ¢;,_;, ¢;, and ¢;41, respectively. There
are two interspike intervals: 7,1 = t; — t,_1 and 7, = t;41 — t;, giving rise to the
following rate function:

N ]-/Ti—l for t;_1 <t <t
T(t)_{ ]./’7'1 for t; <t <tiy1. (11)

Secondly, a small time interval T is chosen to yield the instantaneous integrated
rate

) t+0T
Fit) = / r(t)dt, for tiy <t < tip, (12)
t



CAUSAL INTERACTIONS DURING LEARNING 11

where 07T is much smaller than the mean interspike interval T'. For a train containing
N spikes, N —2 such functions fi(t) (i = 2,..., N —1) can be computed. The third
step is to smooth out these functions in time, yielding a continuous-time rate signal.
The temporal property of the rate signal obtained this way lies somewhere between
those of the mean rate profile and the original spike train, with 67" as the parameter
for adjusting the relative weights of the two. Although varying 07, insofar as it
is smaller than 7', will generally not affect the result, we find that, empirically,
choosing 6T to be a fraction of T (say T'/4) is proper.

f(n=i)
1 TxTzl
@ DR t
i
o L,
1

FIGURE 5. Construction of a continuous-time rate signal from a
spike train. (a) Original spike train. The averaged firing rate
during each interspike interval (e.g. 71) is taken to be the inverse
of the interval (e.g. 1/71). (b) Forming a time series with sampling
period 0T, where f(n = i) is the area of shaded region in (a). (c)
The resulting continuous-time rate signal, after low-pass filtering
(FIR with cutoff frequency equal to 0.2 of the Nyquist frequency).

3. Results. In this section, we apply MVAR modeling and coupling-strength mea-
surement to estimate the neural interactions from short, sparse spike trains. To
gain confidence in the applicability of our method to realistic neural recordings, we
first study a small artificial neural network consisting of five interacting, Hodgkin-
Huxley type neurons, as shown in Figure 3. We then report results from monkey
M1 neurons during learning and adaptation.

3.1. Benchmark testing using a model network of Hodgkin-Huxley type
neurons. In this network, each neuron is modeled by the following set of ordinary
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differential equations [41]:

%/ = —(17.81 +47.58V + 33.8V?)(V — 0.48) (13)
—26R(V +0.95) + I — kg(V — Esyn),

%f _ %[—R +1.20V +0.79 + 3.3(V + 0.38)2],

T = oSSm0 -9

% = Tslyn (=g + 1),

where Sgn(z) is the sign function, V' is membrane potential, R is the recovery
variable, and f is an intermediate variable for synaptic potential g. The first two
equations characterize the dynamics of the membrane potential, which are the sim-
plified version of the Hodgkin-Huxley equations for mammalian cortical neurons.
The last two equations govern the dynamics of the synaptic potential. All synapses
in the network have the same coupling strength k, and Ej,, is the synaptic equi-
librium potential. In our simulation, we choose the synapses to be excitatory by
setting Esy, = 0 and k& > 0, although choosing inhibitory synapses by setting
negative values for E,y, and k does not affect our results on detecting the inter-
actions between the neurons. In Equation (13), 7y, is the time constant of the
synaptic potential, Vj,. is the membrane potential of the presynaptic neuron, €2 is
the threshold for postsynaptic conductance changes, and I is the sum of external
stimuli, excluding the one from the presynaptic neuron. Independent low-pass fil-
tered random noise is used to mimic external stimuli for different neurons. Typical
waveforms of I are shown in Figure 6. Briefly, the membrane potential V.. of the
presynaptic neuron is coupled to that of the postsynaptic neuron V', through an
excitatory or inhibitory synapse with time constant 7.

We integrate Equation (13) using a standard routine (fourth order Runge-Kutta)
with k& = 2. Figure 7 shows the action potentials from the five neurons for one
stimulus. On average, each neuron fires about 16 to 30 spikes during the period of
one trial. While the data obtained from simulations are continuous-time signals, to
mimic the situation in real experiments on monkeys, we convert them to spike trains
by recording the time position of each spike and then using our procedure based
on the instantaneous firing rate to reconvert the spike trains into continuous-time
signals. We perform the same procedure for 100 independent trials. To improve
the stationarity, the ensemble mean is subtracted and the data set is normalized by
the standard deviation. An MVAR model is constructed from the resulting data.
The FPE criterion gives the optimal model order of eight. Using the procedure in
Equation (9), we obtain the coupling-strength matrix C. Similarly, we can obtain
the matrix of a surrogate data set. For the null-hypothesis test, we repeat this
process 100 times and obtain the empirical distribution of the coupling-strength
measurement for each connection. A significance test gives the final estimation of
the network coupling architecture, as shown in Figure 8. As expected, neuron 5 is
isolated from the rest of the network, neurons 1 and 2 are bidirectionally coupled
and there is no direct interaction between neurons 3 and 4, which are driven by
neuron 2. The simulation indicates the presence of a small amount of coupling
from neurons 4 to 2, which seems to contradict the original coupling configuration.
However, considering the fact that this energy leakage occupies only a very small
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time (ms)
FIGURE 6. Typical waveforms of external stimuli or low-pass fil-

tered independent noise used to drive the Hodgkin-Huxley neurons
in our simulation.

0 500 1500 2000

time (ms)
FIGURE 7. Simulated action potentials from five neurons in the
Hodgkin-Huxley network model for k = 2.

portion of the total coupling energy (less than 5% in this example), we find that
the result actually agrees with the original network architecture reasonably well.
Figure 8 indicates that the coupling strength measure C'j; can be used to estimate
the network structure and the directions of interactions among neurons. Can it be
used to assess the changes in interaction strength? Figure 9 shows how the coupling
strength measure C}; of each connection changes as the assumed coupling strength
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@@/

FicURE 8. The estimated coupling architecture of the network
with significant interactions, where 100 trials with & = 2 and the
significance level @ = 0.05 are used. The arrows indicate the di-
rections of coupling and the thickness of lines signifies the relative
coupling strength.

k is increased from 1 to 4. For each value of &k, 100 independent trials are used for
estimating Cj;. Apparently, the estimated coupling strength reflects these changes.
While C}; gives the strength of individual connections, the summation of Cj;, ¥C,
gives the estimation of the coupling-strength level of the whole network. Figure 10
shows that XC increases with k, indicating that our procedure can detect correctly
the change in neural interactions.

3.2. Analysis of neural recordings from M1 during adaptation. In all trials
of an experimental session (typically lasting for about one day), the same population
of active neurons (about 30~50) are recorded simultaneously. A total of 44 M1
neurons are considered for this study. For each target, the number of trials is
between 20 and 80. Our interest lies in how the neural interactions evolve during
adaptation. Let Day 1 denote the first day of perturbed trials, or the first day
of adaptation. That is, on Day 0, monkeys have already been well trained on
unperturbed reaching-out movements. At the beginning of the perturbed trials, a
monkey’s reaching-out movement tends to be delayed significantly. However, after
one week’s training on perturbed trials, the monkey appears to have learned how
to compensate for the perturbation and can finish the movement in a time about
the same as that for the unperturbed trials, indicating that adaptation has taken
place, which is also suggested by Figure 2. The typical patterns of changes in
firing rates of individual neurons are shown in Figure 11, which was obtained from
the responses toward target 4. It also appears that the changing patterns from
different targets are similar for the same neuron during the adaptation. Among
the 44 neurons, the firing rates of about 36% (16/44) of neurons were found to be
fairly constant during pre-adaptation days, while the ones of the others were not.
During the adaptation, the firing rates of about 18% (8/44) of neurons were found
to have increased; 30% (14/44) increased first and then returned to their original
values; 11% (5/44) decreased; 11% (5/44) decreased, increased, and then returned
to their original values; 27% (12/44) showed no clear trend.

Figure 12 shows the average number of spikes during one trial. There are ap-
parently large variations in the firing rate for different targets. In addition, some
neurons appear to be very active (for example, firing more than 10 spikes in one
trial), while others are not. For statistical reliability, we select 17 active neurons
and group them into three sets for the purpose of cross validation. The first set
consists of eight neurons that fire actively through the experiments on all the days.
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FIGURE 9. Estimated coupling strength of individual connections
versus the assumed coupling strength k. Specifically, there is a mu-
tual interaction between neurons 1 and 2, so the estimated values
of C19 — 5, and Cy1 — C5; tend to increase as k is increased. The
interaction between neurons 2 and 3 is unidirectional (2 — 3), so
the estimated coupling C3; — C3, increases with k, but Ca3 — Cs4
remains near zero, and so on. Neuron 5 is isolated, so there is no
appreciable change from zero in its coupling with other neurons,
as expected.

0.5
0.4
0.3

2C

0.2

0.1

1 2 ¢ 3 4

FIGURE 10. The estimated coupling-strength level averaged over
the entire network, XC', versus the assumed coupling k.
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The second set consists of six neurons (four are also in the first set), which also
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F1GURE 11. The changes of firing rates from six typical neurons
in M1 across adaptation days. The firing rates are averaged over
trials on target 4 during the time period from target-on to center-
release.

60

301 1

average number of firings in one trial

:OJL[. (O N .hu]lhl[

0 10 20 30
neuron

FIGURE 12. The average number of spikes during one trial on Day
0. There are 32 neurons actively firing on this day. The eight bars
for each neuron correspond to eight targets.

fire actively throughout the experimental period. The third set varies on differ-
ent days and consists of eight neurons that fire most actively on each day. For
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each set on each day, the recorded spike trains are first preprocessed. The result-
ing data are then used to construct an MVAR model, and the coupling matrices
are computed. Null hypothesis tests are performed to find statistically significant
connections based on the empirical distributions obtained from the surrogate data.

0.0000 0.0000 0.0004 0.0000 0.0001 0.0000 0.0000 0.0005
0.0000 0.0000 0.0000 0.0011 0.0071 0.0000 0.0012 0.0084
0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0332 0.0011 0.0000 0.0000
0.0236 0.0000 0.0014 0.0000 0.0000 0.0003 0.0000 0.0000
0.0809 0.0000 0.0565 0.0070 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0053 0.0000 0.0000 0.0000 0.0000 0.0006

0.1

4 —
neuron 2 2 neuron

FIGURE 13. Interactions among eight neurons in motor cortex.
Upper panel: The estimated coupling-strength matrix, where C*
is from surrogate data. The diagonal elements are excluded. If
Ci; < Cjj, then it is replaced by zero. Lower panel: Graphic
representation of the matrix C — C*.

Figure 13 shows the estimation of typical interactions between eight neurons in
M1, where (a) lists the 8 x 8 coupling matrix, and (b) is a graphic representation
of the coupling matrix, excluding the diagonal elements. The peaks in (b) indi-
cate relatively strong interactions among the corresponding neurons. The changes
of interactions between some arbitrarily selected pairs of neurons in Set 1 during
adaptation are shown in Figure 14 (a~h) (trials for target 7) and in Figure 15 (a~h)
(trials for target 8). These observations provide direct evidence that adaptation is
accompanied by synaptic change, which may occur rather quickly. These observa-
tions also support the suggestion that M1 is the site for memorizing motor skills,
and learning can result in the build-up of an internal neural network in M1. A ques-
tion is then whether the synaptic modification during adaptation tends to modify
only slightly the connecting architecture of the neural network established during
the learning process in unperturbed trials or to change the architecture totally (i.e.,
reorganization of the interaction paths). Figures 14 (j~1) (trials for target 7) and
15 (j~1) (trials for target 8) show the architectures of the eight-neuron network
on three days. We see that on the time scale of days, adaptation tends to change
the interacting architecture within the network in a substantial manner, suggesting
that the internal network of neurons in M1 is very flexible. Probably the strategy
employed by the brain for adaptation in response to external perturbations is to
reorganize the neural network. Results on other sets of neurons also support this
observation (e.g., Set 2 on trials with target 4, as shown in Figure 16). Here we
have investigated only a very small set of neurons, while learning and adaptation
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in general may involve many neurons in M1 and in other regions of the brain as
well. However, the neurons from which spike trains are recorded are randomly se-
lected, so the 17 active neurons used in our analysis may constitute a reasonable
representation of the entire population of the involved neurons in M1. We thus
expect our observation of the change of the architecture of the neural network to
be meaningful.

0.4 (a) 2—1 0.01 (b) 12 0.04 (c) 4—-3
0 S - 0 \/\ 0 /\\w
0.01 (d) 3—4 0.04 (e) 65 0.4 (f) 5—6
©
’ /\
0 *k 0 ——= 0 . *
0.06 (9) 87 0.04 (h) 7—8 3 (i) ZC

FIGURE 14. For trials with target 7. The eight most active neu-
rons (Set 1) are investigated. (a~h) The estimated changes in
coupling strength of individual connection during adaptation. The
connections shown here are arbitrarily selected. (i) The changes in
coupling-strength level of this eight-neuron network during adap-
tation. (j~1) Estimated network architecture for Days 0, 7 and 11
respectively, where the arrows indicate the directions of coupling
and the thickness of lines signifies the relative coupling strength.

The overall changes of interaction level of the eight neurons in Set 1 for targets
7 and 8 are shown in Figures. 14 (i) and 15 (i). The general observation is the
following: Although the directions and the coupling strength of neural interactions
can change during the adaptation (as shown in Figures 14, 15, 16), the overall
coupling level after the adaptation returns to the same level as before the adapta-
tion. Results with other targets and more neurons, as shown in Figure 17, indicate
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FIGURE 15. Results of neurons in Set 1 from trials with target 8.
(a~1) The same as in Figure 14 except (k), which is for Day 8.

that the restoration of the coupling strengths after adaption appears to be the rule
governing the change in neural interactions during adaptation.

4. Discussion. In this study, we have analyzed spike trains generated by M1 neu-
rons from a monkey during reaching-out movements in a controlled environment.
Once the skill has been learned, physical perturbations are applied to the monkey’s
arms during the movements so that its brain has to make adjustment to adapt to
the perturbations. At first, the monkey’s movements are shaky and delayed, but
after a few days during which adaptation takes place, it can perform almost the
movement as quickly as before. These processes of learning and adaptation tend to
cause changes in the neural network in two ways.

First, during adaptation the synaptic strengths (or the coupling strengths) among
neurons change and thus new dynamics take over in the network of neurons. Our
analysis, based on a multivariate time-series technique, can reveal these synaptic
strength changes in a direct way, indicating that the neurons in M1 take part in
the establishment of the new dynamics. At the beginning of adaptation, the inter-
actions among neurons tend to be strengthened. The result of stronger coupling
strength among the neurons in a network is a way to have faster response to input
stimulus for the whole network. That is, the increased coupling strength enables
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FIGURE 16. Results obtained from a set of six neurons (Set 2) on
trials with target 4. (a~h) Estimated network structure on dif-
ferent days. The thickness of lines signifies the relative coupling
strength. (i) All possible connections (regardless of their strengths)
among these six neurons by superposing the results from 14 differ-
ent days.

the monkey to respond to the external perturbation more quickly. The expense,
however, is more energy consumption due to the increased coupling. Continuous
training can still slightly improve the performance of the reaching-out movement.
After adaptation, the overall coupling strengths among neurons return to the orig-
inal level, which means less energy consumption for performing the task.

Second, our analysis reveals that the connecting architecture of the neural net-
work tends to change significantly as a result of adaptation. Perhaps, to achieve
fast response, changing the architecture may be better then increasing the coupling
strength. For instance, Lago-Fernindez et al. showed [42] that a few long-range,
short-cut type connections can produce significantly faster response and coherent
oscillations in the network. We can imagine that, at the beginning of the adap-
tation, after failure of several rounds of trials, the monkey must concentrate more
on its arm’s movement. (After the learning period, this movement may become
a routine.) This attention shift results in stronger coupling strength. During a
successful adaptation, the brain learns not only to adjust the synaptic weight but
more important, to establish some long-range synapses. Initially the long-range
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FiGURE 17. Estimated coupling-strength level across adaptation
days. Results are obtained from 17 neurons.

weights may be weak, but they can become stronger, which is analogous to the case
where short-cut type connections are created so that better performance is achieved
[42]. Tt is possible that this learning process never stops, and over-training can al-
ways change the interactions among neurons. The above observation also indicates
that good performance and energy efficiency are goals of the adaptation. While
good performance was enforced by food rewards to the monkey, energy efficiency is
achieved by the nature of the learning mechanism of the brain.
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