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ABSTRACT. The reemergence of tuberculosis (TB) from the 1980s to the early
1990s instigated extensive researches on the mechanisms behind the transmis-
sion dynamics of TB epidemics. This article provides a detailed review of the
work on the dynamics and control of TB. The earliest mathematical models de-
scribing the TB dynamics appeared in the 1960s and focused on the prediction
and control strategies using simulation approaches. Most recently developed
models not only pay attention to simulations but also take care of dynamical
analysis using modern knowledge of dynamical systems. Questions addressed
by these models mainly concentrate on TB control strategies, optimal vacci-
nation policies, approaches toward the elimination of TB in the U.S.A., TB
co-infection with HIV/AIDS, drug-resistant TB, responses of the immune sys-
tem, impacts of demography, the role of public transportation systems, and the
impact of contact patterns. Model formulations involve a variety of mathemat-
ical areas, such as ODEs (Ordinary Differential Equations) (both autonomous
and non-autonomous systems), PDEs (Partial Differential Equations), system
of difference equations, system of integro-differential equations, Markov chain
model, and simulation models.

1. Introduction. Tuberculosis (TB) is a disease that affects human and animal
populations. Ancient Egyptian mummies show deformities consistent with tuber-
cular decay [20, 23]. TB was probably transmitted from animals to humans in areas
where agriculture became dominant and animals were domesticated. The growth
of human communities probably increased the recurrence of TB epidemics leading
to its currently overwhelmingly high levels of endemicity in some developing na-
tions. McGrath estimates that a social network of 180 to 440 persons is required to
achieve the stable host pathogen relationship necessary for TB infection to become
endemic in a community [58]. Historically the terms phthisis, consumption and
white plague were used as synonym for TB.

TB was a “fatal” disease. In earlier times, some physicians refused to visit the
late-stage TB to keep their reputation. TB was responsible for at least one billion
deaths during the nineteenth and early twentieth century and the leading cause of
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human death for centuries. Today, “only” 3 million deaths worldwide are attributed
to TB every year. World Health Organization’s (WHO) data shows that most cases
of TB are in developing countries. Twenty three counties in East Asia and Africa
account for over 80% of all cases around the world [84].

It was not clear how TB was transmitted until Robert Koch’s brilliant discovery
of the tubercle bacillus in 1882 (Koch also identified the cause of anthrax). He
identified Mycobacterium tuberculosis as the causative agent of TB. The tubercle
bacilli live in the lungs of infected hosts. They spread in the air when infectious
individuals sneeze, cough, speak or sing. A susceptible individual may become
infected with TB if he or she inhales bacilli from the air. The particles containing
Mycobacterium tuberculosis are so small that normal air currents keep them airborne
and transport them throughout rooms or buildings [83]. Hence, individuals who
regularly share space with those with active TB (the infectious stage of the disease)
have a much higher risk of becoming infected. These bacilli become established
in the alveoli of the lungs from where they spread throughout the body if not
suppressed by the immune system.

The hosts’” immune responses usually limit bacilli multiplication and, conse-
quently, the spread that follows initial infections. About 10% of infected individuals
eventually develop active TB. Most infected individuals remain as latently infected
carriers for their entire lives. The average length of the latent period (noninfectious
stage) ranges from months to decades. However, the risk of progression toward
active TB increases markedly in the presence of co-infections that debilitate the
immune system. Persons with HIV co-infections progress faster towards the active
TB state than those without them [68].

Most forms of TB can be treated. Effective and widespread treatment for ac-
tive and latently infected individuals has been available for about five decades.
Streptomycin is still used today to treat TB but in combination with pyrazinamide.
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FIGURE 1. Annual new cases of TB in the United States from 1953
to 2000. Data taken from [22].



DYNAMICAL MODELS OF TUBERCULOSIS AND THEIR APPLICATIONS 363

Isoniazid and rifampin are thought to be the most effective in the fight against
M. tuberculosis. The widespread introduction of antibiotics reduced mortality by
70% from 1945 to 1955 in the U.S.A. albeit most major reductions in TB mortality
rates had already been achieved before their introduction [4, 29, 54]. Latent TB
can be handled with isoniazid but treatment is effective only if applied for at least
six months. Active cases must be treated for nine months with multiple drugs (iso-
niazid, rifampin, pyrazinamide) and complex regimens. Treatment covers over 95%
of the cases in the U.S.A. despite its high cost [85]. Antibiotic-resistant strains are
easily generated when treatment is not completed. The consequences of incomplete
treatment may be serious [15]. Lack of treatment compliance has serious conse-
quences due to its dramatic impact on the evolution of antibiotic resistant strains
[49]. The expenses associated with treatment programs for those with active TB are
so high that their effective implementation is out of the reach for most developing
nations.

As shown in Fig. 1, the mortality associated with TB in the U.S.A. continues to
exhibit a downward trend. The annual case rate of TB had been declining steadily
but raised slightly in the 1980s and early 1990s in the U.S.A.. The change in this
trend had been labeled as a period of TB reemergence. TB reemergence over the
past decade and a half has challenged existing prevention and control TB programs
in developing nations.

In this paper, we review some of the literature associated with TB models and
their theoretical impact—particularly those aspects where the authors or their col-
laborators have contributed. Some results appearing in this paper by Song and
Castillo-Chavez have not been published.

The paper is organized as follows. Section 2 introduces the notation that we try
to use throughout the manuscript. Section 3 reviews some of the earliest known
TB models. Section 4 deals with the exploration of the impact of various epidemi-
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FIGURE 2. TB mortality of the United States from 1860 to 2000.
Data taken from [78, 79].
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ological factors as well as the role of close and casual contacts on TB dynamics.
section 5 looks at the impact of demography on TB dynamics. In section 6, we
review some cell-based models for TB transmission at the immune system level. A
Markov chain model on TB projections is described in section 7. Models dealing
with TB control strategies are discussed in section 8. A model dealing with the role
of public mass transportation on TB evolution and control is reviewed in section 9.
Finally, a list of challenges associated with modeling TB dynamics is outlined.

2. Notation. The population of interest is divided into several compartments
(classes, categories, or subpopulations) dictated by the epidemiological stages (host
statues). For the most part, in the context of TB, four or five epidemiological
stages are identified (see Table 1). We shall do our best to denote these subclasses
using uniform symbols as we discuss a multitude of models. Tables 1 and 2 list
the definitions and symbols (subpopulations and parameters) that we try to use.
If it is necessary to subdivide a population into subpopulations, subscripts will be

TABLE 1. Symbols and definitions of subpopulations

symbol name definition
S Susceptible | not infected but susceptible to infection
E Exposed infected but unable to infect others (latent or carrier)
I Infectious | active-TB infections, i.e., he/she can infect others
T Treated | treated (from latent-TB or active-TB infection)
V Vaccinated | possibly reduced susceptibility to TB

used to distinguish them. For instance, Iy and I, represent the drug-sensitive and
drug-resistant infectious TB classes, respectively. Active TB, case TB, index TB,
mature TB, open case, and lesion case all mean active-TB infectious case here.
We use 8 to measure of the likelihood of transmission or the “force” of infection.
However, the meaning of 3 or its interpretation often changes from model to model.

3. Early dynamical models. The first model for the transmission dynamics of
TB was built in 1962 by Waaler [81], the chief statistician of the Norwegian Tuber-
culosis Control Services. Waaler divided the population into three epidemiological
classes: noninfected (susceptible), infected non-cases (latent TB), and infected cases
(infectious). He formulated the infection rate as an unknown function of the num-
ber of infectious individuals. He used a particular linear function to model infection
rates in the implementation of his model. The incidence (new cases of infections per
unit time) was assumed to depend only on the number of infectious. Furthermore,
the equations for the latent and infectious classes were assumed to be uncoupled
from the equation for the susceptible class. The central part of this model is given
by the following linear system of difference equations:

Eip1 = E +aly +eEy — do By — gEy, (1)
Liy1 =1 + gBE; — d3l; — ek, (2)
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TABLE 2. Symbols and definitions of parameters.

symbol explanation
A recruitment rate
g transmission rate (meaning varies)
c average number of contacts per person per unit time
k per-capita regular progression rate
I per-capita natural mortality rate
d per-capita excess death rate due to TB
0 per-capita treatment rate for recently latently-infected
1 per-capita treatment rate for latently-infected
ro per-capita treatment rate for actively-infected
w per-capita progression rate for early latent-TB progression

where the incidence rate al; is proportional to the number of infectious; e is the
per-capita progression rate from latent-TB to infectious-TB cases; g is the per-
capita treatment rate (treated individuals will become members of latent-TB class
again.); ds is the per-capita death rate of the latent-TB class; and d3 is the per-
capita death rate of the infectious-TB class. Using data from a rural area in south
India for the period of 1950 to 1955, Waaler [35] estimated the parameters of this
linear model to be a = 1,e = 0.1,dy = 0.014, g = 0.10085, d3 = 0.07. Because the
eigenvalues all have norms close to 1 (1.04), Waaler predicted that the time trend
of TB is unlikely to increase (it may decrease, albeit slowly). This linear model
did not model the mechanics of transmission. However, the parameters, estimated
from a specific area in India, set useful ranges for the estimation of parameters in
developing nations.

Brogger developed a model [10] that improved on Waaler’s. Brogger not only
introduced heterogeneity (age) but also changed the method used for calculating
infection rates. The infection rate in Brogger’s model was a combination of linear
and nonlinear infection terms. In fact, it was given by the term 8S(1—Z + Z %),
where Z was an adjusting parameter used to differentiate between normal infection,
superinfection, and direct leaps (within a very short period, an uninfected individual
becomes a lesion case or an active-TB case). Two extreme cases were covered in
the model: Z = 1 making the incidence be 65%, the familiar version of today,
and, Z = 0 giving an infection rate proportional to the number of susceptibles.
The prevalence % was used to adjust all flow rates including those from infected
to open cases. This was not surprising as Brogger wanted to use prevalence as an
indicator of the effectiveness of control policies. His aim was to compare different
control strategies that included finding and treating more cases, the utilization of
vaccination, and mass roentgenograph. The data of two WHO/UNICEF projects in
Thailand from 1960 to 1963 were used to estimate the parameters incorporated into
his model. Brogger chose those parameters that “best” fits available data. Control
strategies (additional new parameters) were “squeezed” into the model. Simulations
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were run and comparisons made to evaluate the value of different strategies of TB
control programs. This model did not formulate clearly the relationship between
infection rate and prevalence. ReVelle classified this important relationship in 1967.

Using Brogger and Waaler’s model as a template, ReVelle introduced the first
nonlinear system of ordinary differential equations that models TB dynamics [63,
64]. In modeling the infection rate, he did not follow the typical mass action law,
given by the bilinear function 55T of Kermack and McKendrick [47]. It was ReV-
elle who first, at least in the context of TB dynamics, rigorously explained why the
infection rate depends linearly on the prevalence using the probabilistic approach
that is common today (homogeneous mixing). The form 35 % for the infection rate
is found in most epidemic models used today. Mathematically it is well known that
if the total population size N remains constant over time or if it asymptotically
approaches a constant then the use of an infection rate proportional to ST does not
change the qualitative properties of the model. However, when modeling epidemics
for developing countries, as Revell did with his model, 5.5 % seems a more appropri-
ate form of modeling the infection rate. ReVelle modeled TB dynamics via a system
of non-linear differential equations but he ignored population structure. Nine com-
partments were introduced in Revell’s nonlinear model. The total population was
governed by the Malthus model because he wanted to apply it to developing na-
tions. Making projects (in Waaler’s words “time trend of tuberculosis”) was not
Revell’s main theme. In fact, his main objective seemed to be associated with the
evaluation and implementation of control polices and their cost. He developed an
optimization model and used it to select control strategies that could be carried
out at a minimal cost. It is worth to mention that Waaler also developed a model
in 1970 that would minimize the cost of alternative tuberculosis control measures
[82].

All dynamical models prior to Ferebee’s work were motivated by the study of
TB in developing nations. The two data sets used were from Thailand and India.
No specific model seems to have been developed for the U.S.A.. Ferebee, associate
chief of the research section of the Public Health Service Tuberculosis Program
of U.S.A., changed this trend. She set up a discrete model, based upon a set of
simple assumptions, to model the dynamics of TB in the U.S.A. [34]. She used
the same compartments as Waaler did, that is, susceptible, infected and infectious.
The basic time unit was a year. Hence, within one year, new infected people
would become infectious and contribute to the pool of new infected, namely, some
individuals would move from the susceptible to the infected class and from the
infected to the infectious class within a year. Ferebee described her algorithm,
methods of estimation of relevant parameters, and the number of infected people in
the U.S.A.. The results showed that the number of new cases would decrease, but
slowly, if vaccination were not applied to the US population. It is worth mentioning
that the estimation of demographic parameters was solely based on the 1963 US
data. Despite its shortcomings, this work indeed gave the first rough estimate and
forecast of TB cases in the U.S.A.. She stated that her assumptions were checked for
consistency with bits and pieces of information obtained from a variety of sources.
These assumptions have since played an important role theoretically and practically
in the context of TB. In other words, the first US study “defined” an appropriate
parameter range. We shall outline underlying assumptions:

i. There are 25 million infected individuals and 125 million susceptible;
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ii. The per-capita progression rate from infected to infectious is k3 = 1/625 per
year;

iii. Primary infected people exhibit a higher per-capita progression rate in the first
year (ko = 1/12); that is, one out of every 12 new infections will progress to
the infectious stage during the first year;

iv. Each new infectious individuals will infect 3 people;

v. No significant additional death is ascribed to tuberculosis.

Her assumption ko >> ki has directed model simulations and constructions. This
assumption has been recently incorporated via the inclusion of additional compart-
ments for fast TB and slow TB (see section 4.1).

Earlier mathematical models for TB transmission were developed mostly by
statisticians. Their approach followed a pattern: build a mathematical model for
TB transmission; with help from a data set, estimate parameters; find numerical
solutions; and predict or make inferences about the relative value of alternative con-
trol strategies. There was no qualitative analysis of the models, and the long-time
behavior (asymptotic properties) of the models was also not studied.

The continuous decline of TB incidence in developed nations and the introduction
of effective antibiotics suggested that elimination of active TB in developed nations
was possible. This view may have been the main reason why there was almost no
theoretical work on TB dynamics from the 1970s to the early 1990s. The story
has changed over the last decade because of the reemergence of TB (new outbreaks
in the U.S.A. and in many developed nations). In the following sections we shall
review some of the most recent models and the theoretical results.

4. Intrinsic mechanics of transmission.

4.1. Slow and fast routes. The initially exposed individuals (infected individu-
als) have a higher risk of developing active TB. With time passing, those individuals
still face the possibility of progressing to infectious TB, but the rate of progression
slows down. In other words, the likelihood of becoming an active infectious case
decreases with the age of the infection. Bearing this in mind, several researchers
constructed a series of dynamical models for TB progression and transmission in
scenarios that took these factors into consideration [6, 7, 8, 19, 32, 60]. We shall
review some of this work. In the simplest model (that we know), the population
of interest is partitioned into three epidemiological classes: susceptible, latent, and
infectious. The infection rate given by SSI (using the mass action law) is divided.
A portion pBSI gives rise to immediate active cases (fast progression), while the
rest (1 — p)BST gives rise to latent-TB cases with a low risk of progressing to ac-
tive TB (slow progression). The progression rate from latent TB to active TB is
assumed to be proportional to the number of latent-TB cases, that is, it is given by
kE, where k ranges from 0.00256 to 0.00527 (slow progression). The total incidence
rate is pBSI + kE. The version in [6] is given by following system:

ds
@ A _3ST—
i BST — pS, (3)
dE
P (1 —p)BSI — kE — pE, (4)
dI

— pBSI + kE — dI — ul, (5)

dt



368 C. CASTILLO-CHAVEZ AND B. SONG

where the parameters are defined in Table 2. The qualitative dynamics of model
(3-5) are governed by the basic reproductive number

A g k

Ro—p +d+<1 p),uu+k:' (6)
This dimensionless quantity measures the average number of secondary infectious
cases produced by a “typical” infectious individual in a population of susceptibles at
a demographic steady state. The first term in (6) gives the new cases resulting from
fast progression while the second those resulting from slow progression. Sensitivity
and uncertainty analysis were carried out. Simulation results showed that TB
dynamics were quite slow for acceptable parameter ranges. Waaler’s model also
supported slow TB dynamics [81]. Model (3-5) requires that p be known a priori
(it is not allowed to change) and, the R derived from the model depends linearly
on population size. A model that removes these restrictions is reviewed next.

4.2. Variable latent period. Instead of assuming exponential distribution of la-
tency period, Feng studied a model with an arbitrary distribution for the latency
period [31]. To describe this model, we let p(s) be a function representing the pro-
portion of those individuals exposed s units of time ago and who, if alive, are still
infected (but not infectious) at time s. The removal rate of individuals from the E
class into the I class 7 units of time after exposure is given by —p(7). Hence, the
total number of exposed individuals from the initial time ¢ = 0 to the current time
t, who are still in the E class, is given by the integral

/ " BeS(s) L

while the number of individuals who develop infectious TB cases from 0 to ¢, who
are still alive and in the [ cl:auss7 is given by the double integral

/ / BeS(s) L e~ (ntr)(r= s)( p(T — s)e *(“”ﬁd)(t*ﬂ) dsdr.

The following system of 1ntegro—diﬁerential equations is used to model TB dynamics
with a variable latent period:

(s) p(t — s)e*(““”(t*‘q)ds

%:A—US%—,US—FHE-I-TQL (7)
B(t) = Bolt) + / o) ]ﬂ((i))p(t — 8ol gy )
/ / () —(utri)(r—s) (713(7 N 5)6*(u+rz+d)(t77)> dsdr
+ Ipe™ “+’”2+d)t +I (t), (9)
N=S+E+I,

where 0 = (c is the force of infection per infective; 1 and ro are the per-capita
treatment rates for the E class and I class, respectively; u is the natural mortality
rate; d is the per-capita death rate due to TB; Ey(t) denotes those individuals in the
E class at time ¢ = 0 who are still in the latent class at time ¢; I(¢) denotes those
individuals who are initially in the E class who have moved into class I and still
alive at time ¢; and Ipe~ (#Fm2F+dt with Iy = I(0) represents those individuals who
are infectious at time 0 who are still alive in the I class at time . Mathematically,
it is assumed that Fy(t) and Io(t) have compact support.
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FIGURE 3. Bifurcation diagram for model (10-15) when ¢ = 0.
In region I, the disease-free equilibrium is globally asymptotically
stable; in regions II and IV, one of strains disappears; and III
represents the coexistence region.
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FIGURE 4. Bifurcation diagram for model (10-15) when ¢ > 0.
The coexistence of the two strains is impossible.
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The introduction of an arbitrary distribution of latency period did not change the
qualitative dynamics of TB; that is, a forward bifurcation diagram characterizes
the dynamics of the last model (7-9).

4.3. Multiple strains. Incomplete treatment, wrong therapy, and co-infection
with other diseases, for instance, HIV, may give rise to new resistant strains of
TB (multiple drug resistant, or MDR strains). Form First Lady Eleanor Roosevelt
was one of the victims of MDR TB [24, 62]. Models that include multiple strains
of TB have been developed [7, 15, 17]. A recently published two-strain TB model
include drug-sensitive and drug-resistant strains [15, 17]. Hence, two subclasses of
latent and infectious individuals are required. The subscripts s and r stand for
drug-sensitive and drug-resistant types. The model is given by the following set of
equations:

ds I I,
- A - ﬁsCSN - ,BrCSN — pS, (10)
dFE, I, I,
= eSS — — —~ - 1

dt BSCSN (/14 + ks)Es TlsEs +pr2sls ﬁSCEst (1 )
dl

dt = ksEs - (p, + ds)Is - r23137 (12)
dT I I,

i 1—p— — A - _

dt TlsEs + ( p q)r23 ﬁsCTN BTCTN MT7 (13)
dE, I,
W - qT2sIs - (M + k'r)Er + ﬁTC(S + Es + T)Nv (14)
.

dt =k B, — (M + dr)Im (15)

N=S+E,+I,+T+E, +1,.

It can be seen from Equation (15) that the treatment rate for the I, class is equal
to zero, meaning that TB due to this strain is not treatable by current antibiotics.
The proportion of treated infectious individuals who did not complete treatment is
p+q. The proportion p modifies the rate at which they depart from the latent class;
qrosls gives the rate at which individuals develop resistant-TB due to their lack of
compliance with TB treatment. The proportion of successfully treated individuals
is 1 — p — ¢q. The dimensionless quantities

( Bsc+pr2s ) ( ks )
Ri=
ptds+r2s ) \p+ ks +ds

_ ﬁrc kr
R = <u+dr) <u+kr>

give the basic reproductive number of strains j, where j = 1,2. The asymptotic
behavior of model (10-15) is determined by R;. Fig.s 3 and 4 show the bifurcation
diagram for this two-strain model. These diagrams shows that naturally resistant
and natural types can co-exist, albeit the region of coexistence is small (region IV
in Fig. 3). Furthermore, in [15] it was shown that antibiotic-induced resistance
results in the substantial expansion of the region of coexistence. In fact, regions
IV and III become a single large region of coexistence. In other words, antibiotic-
induced resistance guarantees the survival of resistant strains. A two-strain model
that incorporates the effects of multiple drug resistance can also be found in [7].

and
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4.4. Multiple strains and variable latent period. A model that considers both
multiple strains and variable latent period is proposed by Feng [33]. Drug-resistant
and drug-sensitive strains are modeled, but only the age of the infection with drug-
sensitive strain is considered. They introduce a function p(6) as the proportion of
the sensitive-strain that are active at infection-age 6 to distinguish active TB and
inactive TB. The model does not make a difference between active and inactive TB
for the drug-resistant strain because after acquiring drug-resistent TB, an individual
dies quickly. Consequently for the drug-resistant strain they only count active TB.
The total population is divided into three classes: susceptible (S(t)), infections
with drug-sensitive strain (I5(¢)), and infections with drug-resistant strain (I,.(¢)).
Letting i5(0,¢t) be the infection-age density of infected individuals with the drug-
sensitive strain at time ¢, the model framework takes the following system:

ds I? I, “
T b(N)N — (,u + ﬂlcﬁ + ﬂgcﬁ> S(t)+ (1 —r)raIy, (16)
(9 0 .
i5(0,t) + (1 —r+gr)rep(8) + n+d1) is(0,t) =0, (17)
ot 69
dr,
at _5205— = (p+d2) Iy + qrra1y, (18)
is(0,t) = BlcS—S, (19)
where I%(t) = fo s(0,t)df is the total number of active TB of drug-sensitive

strain; I4(t) = fo 9 t) d9 the total number of infected individuals with drug-
sensitive TB (both latent TB and active TB are included); b(N) the per-capita

0.8
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FiGURE 5. Backward bifurcation diagram when exogenous rein-
fection is included in model (20-23). When Ry < R, the disease-
free equilibrium is globally asymptotically stable. However, when
Rp < Ro < 1, there are two endemic equilibria. The upper ones
are stable, and the lower ones are unstable.
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birth rate into the population; N(¢) = S(t) + Is(t) + L.(¢) the total population size;
The disease-induced mortalities for drug-sensitive TB and drug-resistant TB are
denoted by d; respectively. It is assumed that a fraction r of the treated individuals
with the drug-sensitive strain does not recover due to incomplete treatment, and
the remaining fraction 1 — r is successfully treated and become susceptible again.
It is also assumed that a fraction ¢ of those who do not finish their treatment will
generate drug-resistant TB and the remaining fraction 1 — ¢ of them will keep as
infectious.

Model 16-19) shows “that nonantibiotic-induced coexistence is possible but rare
for naturally resistant strains, while coexistence is almost the rule for strains that
result from the lack of compliance with antibiotic treatment by TB-infected indi-
viduals” [33].

4.5. Exogenous reinfection. Immediately after primary infection, an infected
individual, on average, has a higher risk of progression (becoming an infectious
case). Infected individuals who do not become infectious within a short time period
may still develop active TB via exogenous or endogenous reinfection or both. To see
the impact of exogenous reinfection on the dynamics of TB, we discuss the model
(see [32]) given by the following set of equations:

% =A— 505% — S, (20)
% = ﬁcS% — pﬁcE§ —(u+k)E+ oﬂcT%7 (21)
% :pﬁcE% +kE — (u+r+d), (22)
% =r] — aﬂcT% —uT (23)

N=S+E+I1+T.

The term pﬁcE% models exogenous reinfection, that is, the potential reactivation
of TB by continuous exposure of latently-infected individuals to those who have
active infections.

The dynamics generated from model (20-23) are “surprising” as they show that
Ro = 1 is not always the key threshold. We introduces a method that deals with
bifurcation problem arising from this model as well as more general epidemic models
in the following subsection.

4.6. An approach to determine the direction of the bifurcation at Ry = 1.
For the most part, in epidemic models, there are two distinct bifurcations at Ro = 1
forward (supercritical) and backward (subcritical). A forward bifurcation happens
when R crosses unity from below; a small positive asymptotically stable equilib-
rium appears and the disease-free equilibrium losses its stability. On the other
hand, a backward bifurcation happens when Ry is less than unity; a small positive
unstable equilibrium appears while the disease-free equilibrium and a larger positive
equilibrium are locally asymptotically stable. Epidemiologically, a backward bifur-
cation “says” that it is not enough to only reduce the basic reproductive number
to less than one to eliminate a disease and that when R crosses unity, hysteresis
takes place. This phenomenon that probably was first found in epidemiological
models by Huang et al. [45] in 1992 in a study of an HIV/AIDS model has now
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become common. (Huang et al. identified it as a subcritical bifurcation.) Recent
studies with models supporting backward bifurcations include those of Hadeler and
Castillo-Chavez in a variable core group model [41]; Dushoff et al. [30] in models for
fatal diseases; Feng et al. [32] in a TB model with exogenous reinfection; and Kribs-
Zaleta and Velasco-Hernandez [50] in a model with vaccination. Most recently, van
den Driessche and Watmough [27, 28] have shown the existence of this behavior in
epidemic models with delay while Castillo-Chavez and Huang have done the same
for models with age-structure [18].

Center manifold theory has been used to decide the local stability of a nonhy-
perbolic equilibrium (linearization matrix has at least one eigenvalue with zero real
part) [14, 37, 86]. We shall describe a theory that not only can determine the lo-
cal stability of the nonhyperbolic equilibrium but also t settles the question of the
existence of another equilibrium (bifurcated from the nonhyperbolic equilibrium).
This theory is based on the general center manifold theory. To describe it, consider
a general system of ODEs with a parameter ¢:

d

d—f:f(x,@, f:R" xR —R" and f € C3(R" x R). (24)
Without loss of generality, it is assumed that 0 is an equilibrium for System (24)
for all values of the parameter ¢, that is

£(0,¢) =0 for all ¢. (25)
THEOREM 4.1. Assume

Al: A=D,f(0,0) = (gj: (0, 0)) is the linearization matriz of System (24) around
J
the equilibrium 0 with ¢ evaluated at 0. Zero is a simple eigenvalue of A and
all other eigenvalues of A have megative real parts;
A2: Matriz A has a nonnegative right eigenvector w and a left eigenvector v cor-

responding to the zero eigenvalue.
Let fi, be the kth component of f and

a= En v w-w-ﬂ(O 0) (26)
L kWyg ]6aci8xj 9 )
kyi,j=1
- & fi
b= k%ﬂvkwi 92,0 (0,0). (27)

The local dynamics of (24) around O are totally determined by a and b.

i. a>0,b>0. When ¢ <0 with |¢p| < 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < ¢ < 1, 0 is unstable and
there exists a negative and locally asymptotically stable equilibrium,;

ii. a<0,b<0. When ¢ <0 with |¢p| < 1, 0 is unstable; when 0 < ¢ < 1, 0 is
locally asymptotically stable, and there exists a positive unstable equilibrium;

iii. a>0,b<0. When ¢ <0 with |¢| < 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ <K 1, 0 is stable, and a
positive unstable equilibrium appears;

iv. a < 0, b > 0. When ¢ changes from negative to positive, 0 changes its sta-
bility from stable to unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

The results of Theorem 4.1 are summarized in Table 3. Huang et al. [45] and
Dushof et al. [30] initially decomposed the center manifold and found out that the



374 C. CASTILLO-CHAVEZ AND B. SONG

sign of a can be used to determine the direction of the bifurcation. In doing so,
they computed the Taylor expansion of f(x, ) only on its state variables. Van den
Driessche and Watmough [28] used a Taylor expansion on the state variables and
the parameter ¢ in the analysis. Let us sketch our proof below.

Proof. Let £¢ and £° be the generalized eigenspaces of A for the zero eigenvalue and
all other eigenvalues, respectively. It follows from the center manifold theory that
the center manifold W€ is one dimensional, and R" = £°¢ ® £°. We parameterize
the center manifold by ¢(¢) and decompose it into £¢ and £%, that is,

We = {e(t)w+ h(e,d) : v-h(c,d) =0,]|c| < co,c(0) =0}, (28)

where ¢(t) € £° and h(c,¢) € £°. Because the center manifold is tangent to £°
at the origin, h(c, @) is a higher order term (h(c, ) has at least order 2). It also
follows by the invariance of the center manifold under the flow that

elt)w + hle,0) = Flelthw + (e, 6),6). (29)

Applying Taylor expansion to the right-hand side of (29) at (0,0) and noticing that
h(c, ¢) is of higher order, we obtain that

fle(tyw + h(c,¢),¢)
= f(O’O) + Da:f(O’ 0)((C(t>w + h(C, ¢>) + D¢f(070)¢

4 5 (1 @ (ew + hle,))) (D2, (0, 0))(ew + he, )
+¢(D34f(0,0))(cw + h(c, 9))
+ %(bQ (D?Wf((), 0)) + higher order term ,

where D2 is the Hessian matrix; I,, is the identity matrix of order n; ® is the
Kronecker product. Using

£(0,0) = Dy f(0,0)c(t)w = Dy £(0,0) = D, f(0,0) = 0

and the fact that ch(c, ¢) is of higher order, we simplify the above expansion for f
as (higher order terms are dropped)

f = (Dephie.d) + (I u) (DL fw + co(D2yf . (30)

Multiplying both sides of (29) by v and using the fact that v-h = 0 and vD,, f(0,0) =
0, we finally obtain the following equation for c(t):

dc 2

C 2 2
7 = 5 VUn ®w)DZ, fwt cpuD3y fu
e 02 fy. Z" O fr
= — vkwiwj% + Ve W; ] C¢
2 it 0z;01; et 0x;0¢
= gc2 + boe.
Namely,
de a o
g b 31
p 2c + boc (31)

Obviously, at ¢ = 0 a transcritical bifurcation takes place in Equation (31). The
bifurcation diagram is shown in Table 3. O



DYNAMICAL MODELS OF TUBERCULOSIS AND THEIR APPLICATIONS 375

TABLE 3. Summary of Theorem 4.1. In the bifurcation diagrams,
the vertical axis represents equilibrium points z*, and the horizon-
tal axis is the parameter ¢. Solid lines and dashed lines symbolize
stable (S) and unstable (U), respectively.

a and b stability of 0 | stability and sign of x* diagram
¢<0, S ¢<0,2*>0, U
@>0,6>0 $>0, U 6>0,z<0, S | N
¢<0, U ¢<0,2*>0, S
¢<0,5<0 ¢>0, S ¢>0,2<0, U

¢<0, S $<0,2"<0, U
a<0,b>0 $>0, U 6>0,2°>0, S

¢<0, U ¢ <0,2*<0, S
a>0,0<0 6>0 S 60250 U |

REMARK 1. The requirement that w is nonnegative in Theorem 4.1 is not necessary.
When some components in w are negative, we still can apply this theorem, but one
has to compare w with actual the equilibrium because the general parameterization
of the center manifold before the coordinate change is

W ={xg+ c(t)w+ h(c,0) : v h(c,¢) =0,|c| < co,c(0) =0}

provided that xq is a nonnegative equilibrium of interest (Usually z¢ is the disease-
free equilibrium). Hence, xo — @ > 0 requires that w(j) > 0 whenever xo(j) = 0.
If xo(j) > 0, then w(j) need not be positive.

COROLLARY 4.1. When a > 0 and b > 0, the bifurcation at ¢ = 0 is subcritical
(backward).

Applying Corollary 4.1 to model (20-23), we give a rigorous proof that model
(20-23) undergoes a backward bifurcation. We do it in a rather simple case 0 =1
though when o # 1 the arguments are identical. Let ¢ = (¢ be the bifurcation
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parameter. Introducing 1 = S+ T, o = E, x3 = I, the System (20-23) becomes

d.’l?l r1x3

dt (bl‘l + T2+ I3 at T ( )
dxo 123 T2T3

2 _ - (it k)ws = fo, 33
T (k+k)z2 = fo (33)
dl’g o3

= p¢w1+x2+x3+ o — (u+r+d)xs = fs, (34)

with Ry = 1 corresponding to ¢ = ¢* = %]‘:HW. The disease-free equilibrium
is [zF = %, x5 =0, x5 = 0]. The linearization matrix of system (32-34) around the

disease-free-equilibrium when ¢ = ¢* is

—p 0 —¢"
Dyf =10 —(k+np) o*
0 k —(p+r+d)
It is clear that 0 is a simple eigenvalue of D, f. A right eigenvector associated with
0 eigenvalue is w = [—%7 z, ﬁ]’, and the left eigenvector v satisfying v-w = 1
. k r—+d k+ +r+d . .
isv=10, (k+;f);f(;;r)+d)7 (ECJF#’ﬂ&Jr:M))]. Algebraic calculations show that
82 * 82 *
oh o aept, TR
O0x20x3 x5 Oxs x5

Pfs ¢ 9% f

d12015  La} 0100

The rest of the second derivatives appearing in the formula for ¢ in (26) and b in
(27) are all zero. Hence,

St (A k)
i k((k4+p) + (p+7r+d)) W pt+r+d))’

k
(k+p)+(p+r+d
We collect these results in the theorem below:

b= wvows = )>0.

THEOREM 4.2. If p > py = %(1—1— ﬁ), the direction of the bifurcation of

system (32-34) (or system (20-23)) at Ro =1 is backward.

Model (20-23) exhibits totally different behavior as it supports multiple stable-
steady states via a backward bifurcation (subcritical bifurcation). The results are
counter-intuitive. that is, when the basic reproductive number Ry = ﬁﬁ <
1, the disease-free equilibrium is only locally stable. The system supports multiple
endemic equilibria (see Fig. 5). The results of this model reveal how hard it may
be to eliminate TB if exogenous reinfection is important. Vynnycky and Fine have
also incorporated reinfection in their non-autonomous and linear PDE model (see

section 8).

4.7. Generalized households. Both close and casual contacts may give rise to
infections. Individuals having lengthy exposure may have a substantially higher
risk of infection than those having only casual contacts with active-TB cases. For
thousands of years, no one knew that TB was an infectious disease. In the nine-
teenth century, doctors in western Europe and the United States thought that
TB was hereditary because it often ran in families. After Doctor Koch identified
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FIGURE 6. Flow chart of the basic cluster model.

the pathogen responsible for TB, it became clear that prolonged contacts with an
active-TB case might generate new infections. In fact, now it is known that most
new infections are due to close contacts. The case of a teacher-librarian with active
TB who infected the children in her classroom but not the children who visited the
library [61] supports the incorporation of differences between casual and close con-
tacts in the investigation of TB dynamics at the population level. The report of the
Asian tourist who infected at least 6 airline passengers while travelling to and from-
and within-the United States further supports this view [49, 46]. In fact, in 1998,
WHO declared that flights more than 8 hours may expose passengers and crew to
TB infections [59]. Hence, distinguishing the type of contacts in the transmission
of TB is important. Aparicio and colleagues proposed a new dynamical model that
incorporated close and casual contacts [2]. They focused on the active-TB cases
within their social networks (family members, officemates, classmates, any persons
who have prolong contacts with an index case). This “new” epidemiological unit,
called the generalized household or the epidemiologically active cluster, was used
to study the transmission dynamics of TB. We describe the approach next. The
population is partitioned into TB-active clusters and TB-inactive clusters. Once
one member of an inactive cluster develops active TB, the whole cluster becomes
an epidemiologically active-TB cluster. Specific contacts within each epidemiologi-
cally active cluster are not modeled, it is assumed that the risk of infection within
an epidemiological active cluster just depends on the “life” of the cluster, that is,
on the average length of TB’s infection period distribution. The flow chart for the
basic cluster model is shown in Fig. 6. Letting Ny = S5 + Fs, the model equations
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are
B (481 + 2k, (35)
% — 3S) — VB + %nkEz, (36)
dd—? =A—pSe+~51 — %nkE% (38)
% — By — (u+ k) Es f]—znkEg. (39)

The basic reproductive number for this model is

on k
(B+7) (n+k)

It can be seen that Rg depends nonlinearly on the parameter 8 (risk of infection on
an epidemiologically active cluster of size n) and linearly on the average generalized
household size, n.

Song et al. [71] further developed the basic cluster model (35-39) via the incor-
poration of casual contacts. An extended version of the cluster model for the TB
transmission that includes the close and casual contacts is given by the following
nonlinear system:

Ro =

S

L (pBn) )81+ SNk — (L= p)F S, (40)
L = DB)S) — 9B+ kB + (1= )P 8, (41)

% = KBy — I, (42)
% :A—,uSg—i—'yS1—;—anEg—(l—p)ﬁ*NI_nSQ, (43)
% =B — (p+k)Ey — %nkEz +(1 - p)ﬁ*Ni 52 (44)

Here (3 is assumed to depend on the average cluster size n; p denotes the average
fraction of time spent by the source case within his/her generalized household; and
1—p, the average fraction of time spent by this source-case outside the cluster. The
rate of infection within clusters becomes p3(n)S, while the rate of infection outside
is (1-p)B* NI_n (S1+S2), where N is the total population size, and N —n represents

the average total number of individuals outside the cluster. Hence, (1—p)s* NI_ ~51
gives the number of new infections per unit time in the N; population, that is, the
incidence from S; to E;. The term (1 — p)ﬁ*ﬁSg gives the incidence from S
to F5. There are no new cases of active TB within each epidemiologically active
cluster, and consequently, the infection rate is p3(n)S;. The generation of new
cases from casual contacts is modeled in the typical way. When p = 1 and S(n)
is a constant, the extended cluster model (40-40) becomes the basic cluster model

(35-39). The basic reproductive number associated with the generalized cluster
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model is

pB(n)n
pB(n) +7

Ro(n) = ( (45)

RS

vy K-n) (u+tk)

where K = % is the asymptotic carrying capacity of the total population.

Two specific forms of B(n) are discussed below:

Case 1. In the first case, we consider that 3(n) is a piecewise-defined continuous
function that is,

B(n) = {ﬂo for n < np,

% for np, < n < ny,

where ny, is the critical cluster size after which 3(n) begins to decrease, and nys is
an upper bound for cluster size. Consequently,

Bon B*

Ro(n) = {(Ppﬁo;H +( _p)g )(u+kk) for n <nr,
= x e

(p%—jr'y =05 x=) g fornzne.

Since the maximum cluster size n); is significantly smaller than the carrying capac-
ity K, then L ~ 1, Whenever n < ny, Rg increases linearly with cluster size, and

Qo =~ pgﬁ_‘f_anr (1- p) Ifn >ng, Qo= pglﬁj_’;ﬂ/ +(1 fp)ﬁ—*i which levels off

at the value pﬁ L4 (1-— p)) . Hence, an increase in n translates an increase in TB

transmission but the i 1ncrease is non-linear. Initially, this increase is almost linear
but as n becomes larger the rate of increase decreases, because the time spent by an
infectious individual per contact cancels out increases in cluster size. Hence, Rq(n)
is bounded by a constant value, and this bound limits the size of TB prevalence.

Case 2. The second case assumes (3(n) to be inversely proportional to n (that
is, B(n) = %) It can be seen from 45 that Rg(n) is the sum of contributions from
both the within and out of cluster new secondary cases of infection. The ratio E(n)
of within to between cluster contributions is given by

v6ip  n(K —n)

Bn) = KpB*(1—=p) (pPr +n)

Function E(n) increases with n and reaches its maximum value at n* = - \/1+ —

B
Hence,n* here defines the optimal cluster size; that is, the value maximizes Wlthin
cluster transmission.

Singular perturbation theory and multiple time scales techniques are used to
study the global dynamics of the cluster models [71]. Since the average infectious
period (about 3—4 months) is much shorter than the average latent period, which
has the same order as the host population, two different time scales can be identified.
Time is measured using the average latency period 1/k as the unit of time (that is,
7 = kt). Variables Sy and Es are re-scaled by (2, the total asymptotic population

size (Q = A)' N; could be re-scaled by €2 instead, it is re-scaled by the balance factor

ﬁJWQ The rescaling formulae are z; = %2 , Ty = Q LY = 5:” %1 Yo = B}:'y %1 ,and
B+

Y3 = = é These new re-scaled variables and parameters are non-dimensional.
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The re-scaled model equations are given by
d:z:l

_ _ _ e S

e B(1—z1)+ (1 —m)y e (46)
92 4 )y — (14 B)ws —n i (47)

dr Y2 2 T+ 7o

diy X122

@ 48
“dr lernxl—i—xg’ (48)
W2 gy — (1= )y 40— (19)
6dT _myl my2 n.’L’1+$2’

d
e =y — (1= m)ys, (50)

where € = B—-k%v’ m = % < land B = %. The terms in right-hand side of system
(46-47) all have the same order of magnitude whenever ¢ < 1. Therefore, y;, yo,
and y3 are fast variables and x; and x5 are slow variables. Hoppensteadt’s early
theorem [44] help us to show the global stability of the endemic equilibrium when
€ is small. A Liapunov function and a Dulac function are selected to establish the
global stability of the disease-free equilibrium. Hence, a global forward bifurcation
(see Fig. 7) characterizes the dynamics of the cluster models.

global transcritical

bifurcation

1 R,

FI1GURE 7. Global forward bifurcation diagram for the TB models.

5. Models with density dependent demography. Demography plays an im-
portant role in the transmission dynamics of TB since the average rate of pro-
gression from infected (non-infectious) to active (infectious) TB is very slow. In
fact, the average latent period has the same order of magnitude as the life-span
of the host population. Two distinct demographic scenarios are studied. In the
first, exponential growth is observed over a long time scale, and in the second ex-
ponential growth is observed over a short time scale (quasi-exponential growth).
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Consequently, three different recruitment rates are used in the study of dynamical
models for TB transmission with demography: constant recruitment rate (A) [15],
linear recruitment rate (rN) [74], and logistic recruitment rate (rN(1—N/K)) [74].
The general model is given by

ds I

E—B(N)—ﬁcsﬁ—uﬁﬂ (51)
dE I LT
E;—&ﬁﬁ—%u+k+mﬂﬂﬂhiﬁ, (52)
dl

E:k;E—(u—&-d—i—rz)I, (53)
dT 1

== mE +rol — 6,CTN — uT, (54)

N=S+E+I+T,

where the recruitment rate B(N) includes the three demographies described above,
namely, 7N, rN(1 — N/K), and A. The basic epidemiological reproductive number

is given by
k Be
Ro = 55
0 (u+r1+k><,u+7“2+d) (5)

However, this non-dimensional number is not enough to characterize the dynamics
of model (51-54).

5.1. Linear recruitment rate. Currently, most deaths caused by TB represent
a small proportion of the deaths for most populations, in other words, d is often
insignificant. Therefore, a linear recruitment rate B(N) = rN with reasonable r
values is likely to support exponential growth on a TB-infected population. The
use of a logistic recruitment rate B(N) = rN(1 — N/K) to model the demography
in general is also likely to result in logistic growth for the total population N in the
presence of TB. To simplify our analysis, we further assume that the infected and
reinfected proportions are equal 3’ = 3. The use of the variables, N, E and I, is
enough. Hence, model (51-54) reduces to:

dN

— = B(N) = uN —dI, (56)
dE I

o = PN —E-Dw = (p+k+r)E, (57)
dI

o =RE—(utdtr)l (58)

We shall consistently use the following compressed notation m, =r +ry + d,n, =
r+r+kmy, =p+ro+d,n, =p+ri+k, and o = Be to simplify the discussions.

First, we study the dynamics of model (56-58) with B(N) = rN. That is, it
is assumed that the total population exhibits exponential growth in the absence
of TB (the net growth rate of the population, in the absence of the disease, is
r— ). Total population size increases exponentially if » > p, and remains constant
if r = p. The case where r < p is trivial. Hence we assume that » > u. In
the presence of TB, the total population may (theoretically) decrease exponentially
even when r > pu if d is large enough; that is, technically, a fatal disease can impact
population growth (see also May and Anderson, [57]; Busenberg and Hadeler [11]).
Realistic examples of situations where a disease has or is likely to to have an impact
on the demographic growth can be found in the work on myxomatosis [51] and on
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HIV [1, 56]. Three non-dimensional threshold parameters Rg, R1, and Ro provide
a full characterization of the possible dynamical regimes of system (56-58) under
the various demographic regimes. The basic reproductive number

o k
Ro = , 59
0 (,u+r2+d)<u+r1+k> (59)

gives the average number of secondary cases produced by a typical infectious indi-
vidual during his/her entire life in a population of mostly susceptibles. It is implied
from Rg < 1 that the infected populations goes to zero, while Ry > 1 implies that
the infected populations grows (initially) exponentially (together with the total
population N). In this last case, there are two possibilities: N grows faster than I,
or N does not grow faster than I. In the first case, the fraction u = % approaches
zero as time increases, and the additional threshold parameter

o k
R1<r+r2+d>(r+r1+k> (60)

plays a role; that is, R discriminates between the last two possibilities. If Ry < 1,
then tlimu = 0, while R; > 1 implies that hmu > u* > 0. Our assumption

r > p implies that Ry > R is true. If the mfectlous (I) population changes faster
than the total population (N) then (a fatal) disease can drive the population to
extinction (even when R; > 1). The threshold parameter that decides this last
situation is given by

Ro=_F (61)

2 du* ’

where u* is a positive constant (independent of 1 (see (67)); that is, Ro determines
whether or not the total population size grows exponentially. In fact, population
size would decrease exponentially (from TB) only if Ro < 1. System (56-58)
is homogeneous of degree one, and hence, it can support exponential solutions
[39, 40]. However, we are interested in the global dynamics rather than the linear
(local) stability of the homogeneous systems. Global analysis requires the rewriting
of system (56-58) using the projections u = £, v = £. The equations for u, v are
given by the following quadratic system:

du

o = meu + kv + du?, (62)
d
d_: =ou—nv+ (d—o)uv — ou?. (63)

Note that both u and v are independent of IV and u. The subset
Q={(u,v) € Rf|lu+v <1}

is positively invariant. To further simplify the quadratic system (62—-63), we intro-
duce the new variables & and y and re-scale time ¢. Specifically, we let

d kd ny
- - = (m, )t 64
T (mr+nr)2(ku+v) T =(m, +n,) (64)
The re-scaled system is

d
== —rty+a?, (65)

d
y_ z(ay + azy + azx), (66)

dr
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where

myn.(R1 — 1) d—o n, —k

—, a2 = =0c—r.
(my +n,)?

In the new system, {2 becomes

Ny dk n. —k
0 = Rf| ——az<y< r
! {(J;,y)e 2|mr+nrx_y_ (my +ny)? +mr+nrx

ayp =

which is positively invariant under the flow of system (65-66). Transformation 64
not only reduces the number of parameters but, more importantly, it fixes the hor-
izontal isocline and decomposes the vertical isocline into a degenerate quadratic
curve. Under the standard classification of Ye et al. [87], system (65-66) is a
quadratic system of the second type. The following two theorems characterize the
dynamics of system (65-66), and hence of system (62-63).

THEOREM 5.1. For system (65-66) with r > u, the trivial equilibrium (0,0) is
globally asymptotically stable if Ry < 1. Furthermore there exists a unique positive
equilibrium that is globally asymptotically stable if Ry > 1.

The standard classification of planar quadratic differential systems rules out the
existence of closed orbits or limit cycles. (Other approaches can be used to draw
the same conclusion, for example, see Busenberg and van den Driessche [12]; Lin
and Hethcote [53]. The full structure of system (56-58) is provided in Theorem 5.2
below:

THEOREM 5.2. Consider system (56-58) and assume that r > pu:
i. If Rg <1, then (00,0,0) is globally asymptotically stable.

I
il. IfR1 <1< Ry, then (00, 00,00) is globally asymptotically stable and tlim N
— 00
E
0, tlggo N 0.
iii. If 1 <Ry < Ry, then

1 E
(a). (0,0,0) is globally asymptotically stable and tlim N = u*, tlim N v*
when Ro < 1,
1 E
(b). (00, 00,00) is globally asymptotically stable and tlim N u*, tlim N =

v* when Re > 1, where

ot = Zldme £ ) —omy + B+ V0 (67)
2d(o — d)(ko — m,n,)
ot = my(ay + az + AY?) — 2aydu*?
2ask ’
§ = [d(m, +n,) — o(m, + k)]? + 4d(oc — d)(ko — m,n,.),

A= ((12 + a3)2 + 4ayas > 0.

Hence, whenever Ry < 1 the disease dies out while the total population increases
exponentially. Although the disease spreads (that is, the number of infected grows
in total number) when Ry < 1 < Ry, the proportions % and % approach zero. One
can observe from the case 1 < R; < Ry that disease-induced mortality can lead
to the extinction of a population that would otherwise increase exponentially (a
fatal disease can indeed regulate a population). Note that R is positive since u* is
positive and independent of ;. We also have established that when r < pu, (0,0,0)



384 C. CASTILLO-CHAVEZ AND B. SONG

1 E
is globally asymptotically stable even though tlirglo i u* and lim N = v* when

t—oo
I E
Ri1 > 1, and Ry < 1 implies that tlim N = O,tlim v = 0. Note that R; < Ry

whenever r > u. Theorem 5.2 provides a complete characterization of the dynamic
structure of model (56-58). The global dynamics are shown in Fig. 8. Here, we
provide the proof that the disease-free equilibrium is a global attractor.

F\)l
r=
N - O
{ N- 0 (R,<1)
N — u” | ~oo (R,>1)
1
| 50
o I/N -0
I/N -0
RO

1

F1GURE 8. Bifurcation diagram for linear recruitment rate.

Proof. The disease-free equilibrium is (*=#,0,0). It is straightforward to show that
the endemic equilibrium is unique whenever Ry > 1 and R5 > 1 and the disease-
free equilibrium is locally stable whenever Ry < 1. Here, we only need to establish
the global stability of the disease-free equilibrium under the assumption Ry < 1.
Let f(t) = vE(t) + 201(t), where v = \/(m, — n,)? + 4ko + m,, — n,. It suffices
to show tlirgof(t) =0.

d)  dE() . dI(t)
a Ta TP

< A(1(E) — mpE() + 20 (BE(E) — muI (1)
= 20k — yn,)E(t) + (yo — 20m,,)1(t)

= (o I + (§ — mp)201(0)

V(my —n,)? +dok — (my, +ny)
— () + 201(0) . )
- - ki) ()

V(my —n,)? +dok +my, +ny,
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This actually produces a differential inequality on the function f(¢); that is,

df (t 1-R
IR U _Ro) (1), (68)
V(i —nu)? + dok +my + ny,
. _ (1-Ro)
It follows that tlgglof(t) = 0 from N v > 0 and Ry < 1. If

Ro = 1, f(t) no longer decays exponentially, but it still vanishes as time goes to
infinite. We estimate the derivative of f(¢) again as follows:

YO _ om0
< —oy(E+1)I
< —qIf(t), where ~ = W ~o.
Hence, f(t) is a decreasing function and
F(t) < f(0)e~ 7 Jo It (69)

Ifliminf,_ I(t) > 0, then ilim f(t) = 0 by (69), which yields tlim I(t) = 0 from the
t— 00 oo

definition of f(t). Hence, liminf, ,. I(t) = 0. It follows that liminf,  E(t) =0
from the fluctuation lemma of Hirsch et al. [43] and Proposition 2.2 by Thieme [77].
Consequently, liminf, . f(t) =0 and flim f(t) = 0 because f(t) is decreasing. O

5.2. Logistic recruitment rate. When logistic recruitment rate B(N) = rN(1—
N/K) is considered in model (51-54), the dynamics become determined by R and

r

- kK Ro1°
1t AR R,

*

Rj

For system (51-54), if Rg < 1, the disease-free equilibrium is a global attractor;
if Rp > 1 and R5 > 1, there exists a unique endemic equilibrium that is globally
asymptotically stable under some assumptions. Hence, a global forward bifurcation
describes the dynamics if Ry > 1 (see Fig. 7). To show the global stability of
the endemic equilibrium, an equivalent monotone system to the original one was
identified and a strong version of the Poincaré-Bendixon theorem applied. Further
when the disease dies out, the decay is of exponential form with a rate proportional
to Ryo — 1. Particularly, interesting dynamics are observed when 1 < Ry and
R5 < 1. Under these conditions, only the disease-free equilibrium is supported. One
cannot study the stability of the disease-free equilibrium by the regular linearization
approach since the vector field at the origin is not analytic. Simulations, however,
strongly suggest that the disease-free equilibrium is a global attractor. A summary
of the results obtained for this model can be found in Table 4. Feng et al. [31]
obtained the global forward bifurcation in the case where the recruitment rate is a
constant A.

6. Cell-based models: Battle within a host. The study of TB dynamics
within an individual host is also within the realm of epidemics on populations
of cells. We review some of these models in a rather superficial way as our work
may find applications in immunology.
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TABLE 4. Summary of the model with logistic recruitment rate.

expressions criterion trajectories
Ro= G arims) | Ro<1 | lim E(): Tim I():O
thm N(t) =
R1 = (ﬁ)(m) Ri1 <1< TRy hm E(t) = hm I( )=0
thm N(t) =
RSZW 1<Ri<Rp| lim N(t)=0
o T*g t—o00
t—oo t—)oo
N*=1-Ry " Jim N(f) = N
B = M (1-RgN* | 1< Ri < Ro thm E(t) = E*
I = gbr( RGN | 1<Ry | Jim I(t) =1I"

6.1. Co-infection with HIV. Co-infection of TB and HIV has been considered to
be the main cause for the reemergence of TB in the U.S.A.. Here we review a model
for the dynamics of TB and HIV at the cell-level. Four populations are considered
in a host who has HIV and TB. The model assumes that the compartments are the
lymph tissues [48]. Letting T'(t) be the armed CD4" and CD8" T cells; M(t) the
macrophage population; H(t) the HIV population; and Ty(¢) the M. tuberculosis
population, the model equations of Kirschner [48] are

dT H+T,
=0.5 0.5 —— T T —mHT 70

o er+ 1+H —prd + 717 <C+H+Tb) T L, (70)
dM 2 1
E:/sz(MO_M)_’YQMH+TmMH+TMMTb’ (71)
dH

_dt == H(Nl’le + NQhUM) - H(’Y?,T + ’74M) - ,U,hH, (72)
dTy

o= 1, To(K — Ty) — Ty — To(vsT + v M), (73)

where e is the source rate of T cells in the absence of infection; es is the rate of
change in the T-cell supply; M represents the equilibrium value for the macrophage
population; N7 and Ny are the numbers of new viral particles produced by an
infected T cell and macrophage, respectively; 73 is the rate at which CD8% T cells
kill the virus; 4 is the rate at which macrophages kill the virus; T cells clear M.
tuberculosis at rate 75; macrophages clear M. tuberculosis at rate vg.

In constructing this model, the growth rate of T cells is of Michaelis-Menten type,
CEE?T;, , the growth of TB is of Logistic type, r1, Ty, (K —T}), and all interactions are
characterized by the mass action law. Model (70-73) undergoes local transcritical
and Hopf bifurcations. Bistable equilibria are also found in some ranges of param-
eter space. The selection of u7, and r7, as bifurcation parameters helps establish
the existence of a local transcritical bifurcation. This cell-based model supports
the hypothesis that the presence of TB worsens the clinical picture of HIV-infected
individuals and that HIV helps activate TB infections. It also strengthens the view
that TB treatment for HIV/TB infected individuals is essential.
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6.2. Multiple levels of macrophages. Another cell-based model involving
macrophages, T cells, and M. tuberculosis was proposed by Mathematical and The-
oretical Biology Institute students in 1996 [42]. The function modeling the engulfing
of bacteria by macrophages is characterized by three distinct stages: M, normal
stage (before encountering bacilli), M; inactive stage (containing bacilli but inac-
tive), and My active state (activated by the help of T cells). M. tuberculosis is
measured by the bacilli density in the blood of a host. The equations are

dM,
0 = Ay — Mo — eMTy,
dt
dM-
71 = €M0Tb — aTM1 - (,um +g)M1)
dM,
—2 = aTM; — iy, Mo,
ar T HmAn
dT
== Ar + oT M, — prT,
dT,
W =T VT (N + gD

where i, is the natural death rate of the macrophage population and g the burst-
ing rate that results from the proliferation of bacilli inside the cytoplasm of a
macrophage. If an inactive macrophage dies of natural causes, it releases N bacilli
(on average); if it dies of bursting, then g bacilli are released. Usually, we assume
g > N. Encounters of T cells with inactive macrophages stimulate the replication
of T cells, which is modeled by the term rAM;T. An exponential growth rate for
bacilli is assumed in the absence of macrophages. The total dynamical analysis for
this model has not been completed.

7. Geographic distribution. A stochastic Markov chain model was proposed to
study the impact of various geographic factors. Debanne et al. [25] constructed
a multivariate Markovian model to project the distribution of TB cases across the
U.S.A. by state, race and ethnic group. In their simulations, the transition proba-
bilities from susceptible to infected are estimated via the annual risk for infection.
Similar to the basic reproductive number, a contagious parameter is used to define
the average number of susceptible infected by an infectious case [75, 76]. The effect
of HIV is considered as an exogenous input. Because there is a high degree of uncer-
tainty for the value of most parameters (only lower and upper bounds of parameters
are available), a sensitivity analysis is conducted. The selection of parameters are
used mostly to calibrate the model to data. The initial state (1980) was computed
using inverse iteration (difference equations) back to the time when the actual data
were available. The same model framework was applied to different racial and eth-
nic groups and different states by choosing appropriate parameters. Simulations
results showed that TB cases change from state to state as well as among racial
and ethnic groups. These simulations were put together and gave a picture of TB
trends for the whole nation. Results showed that from 1980 to 2010 TB cases in
the U.S.A. experienced an intermediate increase followed by a continuing decline.
For instance, by 2010 the TB rate would be 4.6 per 100,000. This figure is higher
than the expected case rate required to meet the CDC’s goals.
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8. Control strategies. A variety of dynamical models are proposed to study TB
vaccination and elimination strategies. Our new results are included in subsec-
tions 8.3 8.4, and 8.5.

8.1. Vaccination. A TB vaccine called BCG (Bacillus of Calmette and Guerin)
has been available for many decades, but its effectiveness in preventing TB is con-
troversial [67]. Results of field trials of the vaccine have differed widely. Some
indicates protection rates as high as 70% to 80%, while others indicates the vac-
cine is completely ineffective in the prevention of TB. We review three models with
vaccinations, including an age-dependent model.

Two vaccine models, preexposure and postexposure, are proposed by Lietman
and Blower [52]. In constructing their models, the susceptible and latent classes are
divided into unvaccinated and vaccinated subclasses, specified by subscripts v and
v, respectively. Preexposure vaccinations only vaccinate newborns at a proportion
C with probability of success q. The immunity provided by vaccination is not
permanent, leading to an expected effective vaccination time @ that should be less
than the average life-span. The formula for fast progression is the same as in model
(3-5) and slow progression rates in this model are assumed to be dependent on
the number of infectious via two general functions k,(I) and k,(I). The model
equations are

% = (1 - Cq)A — BuSul + @S, — pSa, (74)
di” = CgA — BuS,I — &S, — Sy, (75)
d(ft“ — (1= pu)BuSul — k(D) By — pEu, (76)
e (1 p)8ST k(DB — pE,, (77)
% = puBuSul + puBuSel + ky(I)Ey + ky(I)E, — (d+p+19)I.  (78)

Postexposure vaccinations only apply to the individuals with latent TB. A third
subclass of the latent-TB class is added to represent the waned state of vaccination
for those with latent TB. The model equations for postexposure vaccinations are

as,

— = A= BST—pS., (79)

dE,
dt = (1 _p)ﬁSI - ku(I)Eu - /fLEu - (/bEm (80)
E

ddt” = ¢E, —wE, — k,()E, — pE,, (81)
E.

dd_tw =wE, — ky(I)Ey — uE,, (82)
dl
= = pASI+ ku(DEy 4 ko(I)Ey + k(I Ey — (d+ p +72)1. (83)

An interesting property of models (74-78) and (79-83) lies in their ability to identify
distinct vaccination strategies for different nations that wish to eliminate TB. For
developed countries, where the prevalence of latent TB is low, only a preexposure
vaccine with treatment of active TB would be necessary. For developing nations
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where the prevalence of latent TB is high, a combination of preexposure and post-
exposure vaccine with treating active TB would be the most effective strategy. One
must with care deal with these results, particularly for developing countries with
rapidly expanding populations, as the models have no real demography.

BCG vaccination is age-dependent. The impact of BCG vaccination may be bet-
ter assessed with the use of age-structured models. In fact, age has been included
in most simulation models [10, 25, 34]. A linear partial differential equation model
for TB transmission is proposed by Vynnycky and Fine [80]. They include both
endogenous and exogenous reinfection in the model, plus the effects of BCG vacci-
nation. There is no contact structure for the general population in this model. The
infection and reinfection rates are modeled as explicit time-dependent linear func-
tions (piecewise linear function). Numerically, the Euler method is applied to solve
the corresponding linear non-autonomous PDE model. Parameters are estimated
using data from across the world. Some parameters are estimated from the best fit
required by the use of least squares methods. Their target populations are those of
England and Wales, where HIV is not a significant factor. Hence, HIV is excluded
from the model. Results from their model showed that ARI for age groups 0-15
years, 16-19 years and 20 years above are 4%, 9% and 14%, respectively.

To search for an optimal strategy for TB vaccination, another dynamical model
including age structure, contact structure, and vaccination is proposed by Castillo-
Chavez and Feng [16]. The model includes five subpopulations: susceptible (s),
vaccinated (v), latent (1), infectious (), and treated (j). Their model is given by
the following system of PDEs:

(% + %) s(t,a) = —pB(a)e(a)B(t)s(t,a) — pla)s(t,a) — v(a)s(t, a), (84)

(% + ) o) = wla)s(t, @) — pla)olt,a) — 5(a) Bt (1 a), (85)
<% + % I(t,a) = B(a)c(a) B(t)(s(t,a) + aj(t, a) + dv(t, a))

— (k+ p(a))i(t. ), (86)
<% + %) i(t,a) = Kl(t,a) — (r + p(a))i(t, ), (87)
(% + aﬁ) j(t,a) = rilt, a) — 05(a)C(a) B(t)(t,a) — pla)j(t,a), (88)

c(a)n(t,a’)
foo c(u)n(t, u)du’
s(t,0) = A, wv(t,0)=1(¢t,0)=1i(t,0) =j(¢0) =0,
5(0,a) = 50(0')7 v(0,a) = vo(a), 1(0,a) =lo(a),
( )*ZO( )a ](Oaa)_jO( )

Parameter A is the birth rate; p(a) is the age specific per-capita natural death rate;
B(a) is the age-specific (average) probability of becoming infected through contacts
with infectious individuals; ¢(a) is the age-specific per-capita contact/activity rate;
o and ¢ represent the reduction in risk of infection due to treatment and vaccination,
respectively (0 < o, 0 < 1); k is the per-capita rate of progression to active TB;
r is the per-capita treatment rate; and (a) is the per-capita vaccination rate. In

p(t,d') =
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addition, p(t, a,a’) gives the “probability” that an individual of age a has a contact
with an individual of age a’ given that the individual of age a had a contact with

a member of the population. The infection force is B(t) = Ooo Z((tt ‘;,))p(t a,a’)da’;

p(t,a,a’) = fof(c(lj% describes the contact structure corresponding to propor-
tionate mixing [13]; and n(t,a) = s(t,a) + v(t,a) + (¢, a) + i(t,a) + j(t,a) is the
total population density.

The basic reproductive number Ry can be calculated following the next gen-
eration operator approach [26]. Let S(§) denote demographic steady state of the
population in the absence of disease; A(7,&,n) denote the expected infectivity of an
individual who was infected 7 units of time ago while at age n; (that is, A(7,&,n)
denotes the average infectivity that can be exercised on an uninfected individual
at age £ provided the uninfected population finds itself at the steady demographic
state S(£))). Under the special assumption of proportionate-mixing [13]; that is,
A(r,&,m) = f(§)g(r,n), the basic reproductive number R is

Ro —// (r,m)S(n) f(n)drdn. (89)

The demographic steady state (the state where the infection is absent) of the
system is given by the following nonuniform age-distribution:

n(a) = Ae ™, s(a) = Ae " Fy(a),
oa) = e (1 - Fy(@), 1=i= =0,
where
Fla) = e Jon)s  F (q) = e~ Jo v,
The probability that an individual of age o + 7, who was infected 7 units of time

ago, is still in class ¢, is given by

y(1,a) = / ke~ (ke =(rtm(T—w) gy —. K(7)e FT
0

where

K(r) = . f k(e*’” —e ). (90)

Thus the expected infectivity is given by

A(r,a,a) = Bla)e(a)p(a +7) nV(f; >)

where p(a) = (a)/ 5 ¢ u)du. Letting A(7,a,a) = f(a)g(r, ), where
f(a) = Bla)c(a ) and g(T, a) = p(a —|— T)y(T, ) /n(a + 1), (89) leads to the com-
putation of the reproductive number associated with the vaccination strategy 1.
Namely,

o(t) = / h / " o+ 7)B(@)e(a)K (r)Vy(a)drda,

where Vy(a) = Fy(a)+6(1 — Fy(a)) < 1, and K(7) is given by (90). Hence, in the
absence of a vaccine; that is, whenever ¢(a) = 0 the above formula reduces to

Ro = /00 /oop(a + 7)8(a)c(@) K(7)drda.
o Jo
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Whenever the basic reproductive number R(¢) < 1, the disease-free steady state
is globally stable provided that the total susceptible population has reached the
demographic steady state n(a).

Two optimization problems are proposed: if the goal is to bring R (1)) to less
than a pre-assigned value then find the vaccination strategy v (a) that minimizes
the total cost associated with this goal (reduced prevalence to a target level); if
the budget is a fixed cost then find the vaccination strategy (a) that minimizes
Ro(w); that is, that minimizes the prevalence. They found two possible optimal
strategies, one-age strategy vaccinating the susceptible population at exactly age
A; and two-age strategy vaccinating part of the susceptible population at exactly
age A; and the remaining susceptible population at a later age As. The optimal
strategies (one or two ages) also depends on the data, particularly on the type of
cost function used.

8.2. Treatment of latent TB. Earlier models (prior to the 1970s) targeted the
evaluation of control strategies of TB [10, 63, 81, 82|, such as vaccination strategies.
However, these “optimal” strategies have not worked well toward the elimination
of TB globally or even regionally. The reasons behind the lack of success of these
policies are debatable. Either these strategies have not been applied by the policy-
makers or they are not truly “optimal”. For instance, although 12% of GNP of
the U.S.A. is spent on health care [5], the amount spent on prevention is very
small. WHO estimates that if the amount of aid spent on TB treatment programs
could be increased from 15 to 100 million dollars yearly, then 1.2 million deaths
could be avoided every year [65]. That is, the death toll would be reduced by over
30%. This leaves the far-reaching question of what are the best strategies for the
complete elimination of TB. Part of this work shows that the focus should include
control measures in the latent-TB class. The reason is simple. The huge pool
of latent-TB patients is a timebomb or reservoir of infection [62]. Forces or new
diseases that compromise the immune system may lead to new TB outbreaks, as it
has occurred with HIV. Mathematical models that stress the importance of treating
individuals with latent TB are introduced by Blower [88] and Castillo-Chavez and
Song [73]. Adding an early latent class and long-term latent class into the model
(3-5) generates the following system:

ds
e ) 1
- BSI — uS, (91)
dE
dE
2 = (1= pwEr — (k+p+m)Es, (93)
dI
E:pcuEH—k:E—(u—l—cH—rg)I- (94)

Early latent-TB individuals progress to active TB at the rate pw and to long-term
latent TB at the rate (1 — p)w; long-term latent-TB individuals develop active
TB at the rate k; and treatment rates are 1o, r1, and ro for early latent TB,
long-term latent TB, and active TB, respectively. This two-stage latent TB model
distinguishes the risk of progression to active TB for primary infections and long-
term infections, which is consistent with the fact that p = 0.05 >> k = 0.00256.
(One has seen this in Ferebee’s assumptions in section 3.) Model (91-94) allows one
to explore the role of treating early latent-TB cases. Results from this two-stage
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latent TB model show that treatment of 25% of early latent-TB cases together with
treatment of 80% of active-TB cases may result in the elimination of TB.

8.3. Elimination of TB in the U.S.A.. A comprehensive and executable model
that leads to TB elimination in the U.S.A. is proposed by Song [72, 73]. Collecting
public TB and demographic data for the U.S.A. for the past half century, a model
of non-autonomous systems of ordinary differential equations is used to fit U.S.A.
tuberculosis incidence over the past five decades. It is shown that tuberculosis in
the U.S.A. may be controlled to the point of meeting CDC’s criterion of one case
per million, but only by the year 2020. This goal may be accomplished only if at
least 20% of latently-infected individuals are treated. The effect of HIV/AIDS after
1983 is included in the analysis via a variation of our model that incorporates a
function that accelerates TB progression over a window of time. It is shown that
TB’s case rate may be controlled despite increases in the rate of TB progression
due to HIV. From the census and projection data, the total population size N ()
is included in the model as an external input. Two latently-infected classes are
introduced, primary latent/exposed class (L) and a permanently latent class (Ls).
A non-autonomous ODE model with two latent classes and the incorporation of
HIV stands

T =BV ~ L~ Lo = 1) i — () k- +p+ AL (95)
% = pLy — (u(t) + 7o + A(t)) Lo, (96)
KLy + AW+ L) — (u(1) + 1) + 7)1, (97)

where A(t) has the form:

Alt) = oy (t — 1983)@2e @3 (t=1983)%0 if 1983 < ¢,
10 otherwise.

Here «; is constant to be determined via simulations. N(t), now assumed to be
independent of the disease, is a known “external” input to the epidemiological
model. The values of N(t) are in fact input from extrapolated published U.S.A.
demographic data. The transmission rate § is assumed to be a constant; k, TB’s
activation rate, is also assumed to be constant; r; (i = 1,2,3), the treatment rates
defined before, are also assumed to be constant; p is the rate at which primary
latent-TB cases become permanent latent-TB cases; and p(t) and d(t) are functions
of time. Estimates for some of these parameters are listed in Table 5. Fig. 9 shows

TABLE 5. Estimated parameters of TB transmission for the U.S.A..

parameter I6] c k 1 T r3 p

estimation 0.22 10 0.01 | 0.05 | 0.05 | 0.65 0.1

that for the selected parameter ranges, the progression rate function A(t) fits the
data very well. That is, the fit successfully captures the past history of TB in the
U.S.A.. The values of 1y = ro = 0.05 means that in the past only 5% of latently-
infected individuals got treated per year. The treatment of 100% of active-TB
cases per unit time (r3 = 1, instead of 0.65) is insufficient to reach CDC’s goal (see
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Fig. 10). However, treatment of more latently-infected individuals, for instance,
raising 1 and 7o to 20% per year, would help reach CDC’s target of 1/1,000,000
in a more reasonable period of time (see Fig.s 10 and 11 ). Fig. 12 illustrates the
effect of HIV on the control of TB. It is clear that HIV delays the achievement of
CDC’s goal but has no permanent impact on

the long-term persistence of TB. However, prolonging TB’s “survival” enhances
the likelihood of its evolution, a situation that is not explored here. We have
introduced the impact of HIV/AIDS on TB progression during the past two decades
via a temporary perturbation on the distribution of TB progression times. Our
selection of this perturbation is driven by our desire to fit active-TB data since our
primary goal is to look at not the coevolution of co-infections but at HIV/AIDS
co-infections on the ability of the U.S.A. to meet CDC’s target by 2010. Our model
suggests that if emphasis is placed on treating at least 20% of the latently-infected
individuals then CDC’s target may be met by 2020. Our model also shows that re-
emergence of diseases that compromise the immune system (or recurrent outbreaks)
would make it very difficult to control TB unless treatment emphasis is put on the
earlier (non-detectable) stages of TB disease.

Theoretically sufficient conditions for TB extinction and persistence are derived
in terms of upper limits and lower limits of the mortality functions for the non-
autonomous model. We place this mathematical result in subsection 8.5

8.4. Regression approach. To partially back up our conclusions from a statis-
tical viewpoint, we use regression to study the trend of new TB cases each year.
We let the number of new cases be the response variable, denoted by Y, and time
be the predictor, denoted by X. As can be seen from Fig. 1, the scatter plot of
annual new cases Y versus year X appears to be exponential. Intuitively, a loga-
rithmic transformation is taken on the response variable. The quadratic regression

TN ‘== predicted values
6- ‘“ - data

new cases
[}
T
»
L

1 L L L L
1950 1960 1970 1980 1990 2000
year

FIGURE 9. New cases of TB and data.
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FIGURE 10. r; = r9 = 5%. CDC’s “TB elimination” cannot be
achieved by 2020.

r1=r,=20%
10 ‘
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CDC's goal

case rate per million

year

FIGURE 11. 1 = 79 = 20%. CDC’s “TB elimination” can be
achieved by 2020.

is turned out to be the best fit. The regression equation
logY = 11.3970 — 0.0597X + 0.0006X 2, (98)

is the best fit. Fig. 13 shows the fitted curve, 90% confidence bands, and 90%
prediction bands.
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FiGure 12. Impact of HIV. The lower curve represents no HIV
effect; the upper curve represents the case rate when HIV is in-
cluded; both are the same before 1983. Dots represent real data.
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FIGURE 13. Quadratic regression logY vs. X. Dots are the real
data. Confidence bands and prediction bands are included.

The quadratic regression model turns out to be appropriate after the regression
assumptions are verified. Consequently, we can use Equation (98) to predict the
number of new cases in the near future. The results shows that the predicted case
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rate in 2010 is 7.1659/1, 000, 000. The same rate from our deterministic model (95—
97) is 5.2952/1,000,000. Both figures draw the same conclusion; that is, CDC’s
goals for TB elimination are unrealistic within the proposeed time horizon.

8.5. Asymptotic behavior of the non-autonomous model. An asymptotic
analysis of model (95-97) is carried out and the results are discussed [72] in this
section since they play a role in the parameterization of the model. The analysis
helps establish a criterion for disease persistence (that is, a threshold condition)
which must be met by the parameterized model. The long-term behavior of our
system is determined by the asymptotic property of the functions N(¢), u(t), and
d(t). The following theorem characterizes such behavior.

THEOREM 8.1. Assume that Uminfi_oopu(t) = poo, liminfiood(t) = do, and
limsup;—oopi(t) = p, limsup;,od(t) = d*.

i. If R = (kwm’;wp) (#ﬁfmm) <1 then lim Ly(t) = La(t) = Jim I(t) =

it I R = (e ) (i ) = 1 then limsup oLy () > 0,

limsup;—0oL2(t) > 0, and limsup;—.ooI(t) > 0.

Proof. We will use the following equalities, which are straightforward in real anal-
ysis. Whenever lim A exists, the following limit equalities hold:

limsup(A + B) = lim A + limsupB,

liminf(A + B) = lim A + liminf B,

limsup(AB) = lim AlimsupB,

liminf(AB) = lim Alimin f B.
The proof is based on the fluctuation lemma [43] and its extension by Thieme
(see Theorem 2.3 in [77]). Applying Theorem 2.3 from [77] to Equations (95) and
(97) directly, one obtains that 0 < BI°° — (o + k + 71 + p)LT° and kL <
(oo + doo + 73)I%°. Tt follows that SI>® > W(uo@ + doo + 73)I%°; that
is, I <k+uook+r1+p uochgooJrra — 1) = I*(Roc — 1) > 0. Since Ry < 1 and I(¢) is
bounded, it follows that I*° = 0. A similar argument results in L> = 0. The first
part of the theorem is proved.

It is not difficult to show that limsup;,.cL1(t) = 0 if and only if

limsup;.ooI(t) = 0. For instance, the fact that limsup;.I(t) = 0 implies
limsupL;(t) = 0 is verified below. From Equation (95), we obtain

t—o0

dL
d—tl < BI = (u(t) +k+r1+p)Ly.

It follows from the comparison principle that
Ll(O) + f(;t ﬂ](s)g.ﬁf(H(T)+k+7‘1+p)d'rd$
Ly(t) < . '
ejo (w(r)+k+ri+p)dr

Hence,
BI(t)elo (W) Hhtritp)dr

(1(t) + k + rp)efo (D) FhmiFp)dr

lmsupt— 0oL (t) < limsups— oo

BIG)
,u(t) +k+ri+p

= limsup;— 00
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The same argument can be used to show that limsup; ..oL1(t) = 0 im-
plies limsup; ,ool(t) = 0. It is also clear that limsup;...L1(t) = 0 implies
limsup;—o0La(t) = 0 from Equation ( 96). Two case are handled separately:
Case 1: If kLy(t) > (u(t)+k+ry +p)I(t) holds for all t > 0, then 4 > 0 directly
implies lim sup/(t) > 0;
t—oo

Case 2: If kL1 (t) < (u(t) + k4 r1 + p)I(t) holds for all ¢ > 0, then
limsup/(¢t) > 0. The case 2 is proved by contradiction. Suppose limsup; oI (t) =

0, then
— >[f—%5|(N{t)—-———————— =T —1Ly—1
dt = 6N(t) ( ®) k 2
_ () +d(t) +rs)(u(t) +k+11 4 p)
k
> (5 (> +d )+r3)](€u +k+m +p)>1+o(1)
_ W= )”3)](;‘ FREEP) (oo L1y 4o(1) > 0, for t > 1.
This implies that limsupL;(t) > 0, which contradicts the assumption

t—oo
limsup;—ooI(t) = 0. Trajectories of system (95-97) cannot intercept kL;(t) =
(u(t) + d(t) +r3)1(t) infinitely many times if I(t) — 0 as t — oo, because &1 > 0
when kLq(t) = (p(t) +d(t) + r3)I(t) whenever R> > 1. Therefore, limsupl(t) =0
t—oo
implies that either kL1 (t) > (u(t) +d(t) +73)I(t) or kLi(t) < (u(t) +d(t) +r3)I(t)
holds eventually. Hence, limsup!(t) > 0.
t—o0

When p(t) = p and d(t) = d (both constant), R>® = R, = Ry gives the classical
basic reproductive number

1 k
R =
0 ﬂ(/ﬁ—d—krg) (k—HH—rﬁ—p)

where 3 is the effective contact rate; m is the effective infectious period; and

m is the proportion of primarily-infected individuals who make it to the
active stage.

The theorem provides conditions for differentiation of the two important bio-
logical states: disease elimination or persistence for this non-autonomous system.
These thresholds are helpful not only in verifying the reasonableness of published
parameters but also in the selection of reasonable ranges of unknown parameters.
Our model generalizes the results established for related autonomous systems by
Feng et al. [31] and Song et al. [74].

O

9. TB transmitted by public transportation. In Argentina, the TB incidence
rate in the 1990s was 42/100,000 of the population, but this value was misleading
since in the inner city of Buenos Aires it was 160/100,000 (four times higher than
the national average). Buenos Aires has 12 million people, and 9.2 million passen-
gers are carried by the bus system, accounting for 82% of the movement in public
transportation [19]. A specific model targeting the population (in Buenos Aires)
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that incorporates the impact of public transportation (buses) has been developed
by Castillo-Chavez et al. [19].

The city is divided into N neighborhoods. Each neighborhood is further sub-
divided according to whether or not an individual frequently takes a bus. Type I
individuals are those who seldom take buses or do not take them at all while type
IT individuals are those who frequently take buses. An individual of any type falls
into one of four epidemiological groups at any time susceptible (5), infected but
not infectious (F), infectious (I), and treated (7).

Type I and type II individuals have different levels of activity, which are modeled
by the contact rates C} and C?, where i indexes the neighborhood. The mixing
structure of the population is driven by the bus system, which depends on the
average time spent on the bus by the type I members of each neighborhood. To
describe the model, let Q7 = S7 + EY + I + T/ be the total number of individuals
of type-j in the ith neighborhood, j = 1,2. The following parameters are required:

a; = per-capita average contact rate of type I individuals in neighborhood i;

b; = per-capita average contact rate of type II individuals in neighborhood i;

o0; = per-capita rate of getting off the bus by type II individuals in neighborhood %;
p; = per-capita rate of boarding a bus by type II individuals in neighborhood 3.

Then,

% = average time on a bus by a type II person;
—Li_ = probability of staying in the bus (type II person);
- = probability of staying off the bus (type II person).

Proportionate mixing is assumed [13]. The mixing probabilities are calculated using
the above definitions.

pil — a:iQ;

g aiQl+b; 74— Q7
v pito; i
same neighborhood ;

by —2—Q7

P_12 — pito; ©i
L a;Q+b; pij_’di Q?
viduals within the same neighborhood 4;

is the mixing probability of type I individuals within the

is the mixing probability between type I and type II indi-

21 Q7 ; . . o
P = oo ﬁ)i T (Pij‘ai) is the mixing probability between type II and type

I individuals within the same neighborhood ¢;

by =2 Q7 )
22 _ pito; @i o . . s T
P~ = P} o (pi +Ui) is the mixing probability between type II individuals
in the ith neighborhood;
by Q2 )
i2j2 = Leites T (p‘ﬁ_"m) the mixing probability between type II individ-
g; 2 ) )
b, ,
Z ( ‘pi+oi Ql)

i=1
uals in the ¢th neighborhood and type II individuals in the jth neighborhood.
N
These mixing probabilities satisfy P! + P!2 =1 and P?! + P22 + Z PZ =1
j=1
The recruitment rate A] vary across neighborhoods and types. The natural
mortality rate p is assumed to be identical for all neighborhoods and all epidemi-
ological groups. Treatment rates r;, progression rate k;, and the loss of immunity
rate (treated person becomes susceptible again) a; depend on the neighborhood
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but not on the types. The model equations are

dS] i j j

dtl =Aj = Bj(t) — pS] + o T}, (99)
dE? , ,
T B (t) — (n+ ki) EY, (100)
dr] j j

o = B - (p+ri+d)E], (101)
dT? , .

Tl riB] — (u+ai)T7, (102)

Q=S +E +1+T1/,
where i = 1,2,3,..., N, and j = 1,2. The superscripts refer to the type and the
subscripts index neighborhoods. The equations of type I and type II populations
and the population across neighborhoods are coupled by the incidence rates B} (t)
and B?(t), where

2 o0;
B(t) = B;,C}LS; <P11 Iil + pl2 L pitoi )
7 7 1 o2} 2 1 _0i
Qi + Q5% Qi + Q75535

1 12 2 Pj
BAt)= g8 (P i pm Tinde oin Ly pmlmin
i ( ) ﬁz i M Ql + Qz pq—‘;01 Ql —+ Q’L p704’_107 Z ] ?P;ljr]trj

This research found that the larger the difference of prevalence between neigh-
borhoods, the larger the basic reproductive number. After estimating the relevant
parameters, it was found that on average 100 people enter and leave the bus hourly,
and that one TB infection per 1,000 travelers was generated per hour of travel. Us-
ing another model they found bus travel could be responsible for about 30% of new
cases of TB [9, 19]. They also found that variations in TB transmission were most
sensitive to transmission within the transportation system.

10. Questions and conclusions.

10.1. An old prediction. In the context of TB control, the importance of Ry was
established in 1937, more than two decades before the introduction of first dynam-
ical model for TB [36]. W. H. Frost, an epidemiologist at John Hopkins University,
addressed the fundamental role of the reproductive number in the following way:

“However, for the eventual eradication of tuberculosis it is not necessary
that transmission be immediately and completely prevented. It is necessary
only that the rate of transmission be held permanently below the level at
which a given number of infection spreading (i.e., open) cases succeed in
establishing an equivalent number to carry on the succession. If in succes-
sive periods of time, the number of infectious hosts is continuously reduced,
the end-result of this diminishing ratio, if continued long enough, must be
extermination of tubercle bacillus.”.... “This means that under present
conditions of human resistance and environment the tubercle bacillus is
losing ground, and that the eventual eradication of tuberculosis requires
only that the present balance against it be maintained.” [36]
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TB is a slow disease, and therefore, the basic reproductive numberRy plays a
fundamental role in the study its dynamics and control. Its role (transcritical bifur-
cation) goes well with the observed downward trend of TB mortality and incidence
rates. In fact, it suggests that R is “moving” downward as parameters (naturally)
change. Mathematically, the results are not surprising, because the models used
are modifications of the frameworks developed by Kermack and McKendrick [47]
and Ross [66].

10.2. Challenging questions. We have collected a number of dynamical models,
the results, and insights that have generated in the study of TB dynamics. The
historical evolution of dynamical models of TB follows a common pattern in biology
from linear to nonlinear, from one strain to multiple strains, from homogenous to
heterogeneous, from deterministic to stochastic, from empirical to theoretical (and
vice versa). The models are given by system of difference equations, differential
equations (ODEs and PDEs), integro-differential equations, and Markov chains.
Although we have seen a remarkable progress in the development of a theoretical
framework for the study of the dynamics of TB and other epidemiological processes,
there many interesting and challenging topics and questions remain. A partial list
includes

i. Immigration
All models “essentially” assume closed populations, ignoring the effects of im-
migration. Immigration is probably the critical factor in the generation of new
TB cases. In the U.S.A. alone, over 40% of total new cases have been among
immigrants in the past few years.

ii. Race and ethnicity
There is evidence showing that case rates of TB are different among different
groups of people. These changes may be related to variations in susceptibility
to the tubercle bacilli. We have seen a complex Markov chain model that
takes this into account. However, more work is required if we are to better
understand the role of race and ethnicity in disease dynamics.

iii. Genetics
The major reduction on TB mortality rates was achieved long before the in-
troduction of antibiotics. Can this reduction be explained, at least partially,
by the evolution of human susceptibility? Recent work by Aparicio et al. [4]
provide a good start. The work on HIV and genetics by Hsu Schmitz [69, 70]
suggests valuable approaches.

iv. Sanitarium
The sanitarium waxed and waned historically. It played a critical role in iso-
lating and curing active-TB cases when antibiotics were not available. Models
that incorporate the role of isolation on TB control are rare. Frost concluded
that it could delay the number of cases [36].

v. Global dynamics
Theoretically, we characterized the global dynamics of a few models. For most
models, the characterization of their global dynamics remains an open question.
Multiple strain models, like (10-14) and models with fast and slow progression,
like (3-5) should be further analyzed.

vi. Time dependence
The case of time-dependent coefficients is not only more realistic but often nec-
essary [73]. Time-dependent parameters lead to the study of non-autonomous
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models. To study the long-term behavior of models with time-dependent co-
efficients, threshold values (like the basic reproductive number) need to be
further developed. Obviously, the classic approach for computing the basic re-
productive number is not helpful [26]. We found upper and lower limits for the
persistence and eradication of TB, but it seems hard to get the sharp thresh-
old explicitly. The methods of averages by Ma et al. [55] may be helpful in
the study of this problem. Time-dependent models provide a useful way of
connecting parameters to data. The work of Aparicio et al. [4] shows this
conclusively.

Mean latent period

The distribution of the latent period is unknown as well as its mean. Knowledge
of the shape of this distribution seems critical for control. The results of Feng
et al. [31] have shown that it may not have an important qualitative role, but
it certainly plays a critical quantitative role.
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