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Abstract. A symmetrical cubic discrete coupled logistic equation is proposed
to model the symbiotic interaction of two isolated species. The coupling de-
pends on the population size of both species and on a positive constant λ, called

the mutual benefit. Different dynamical regimes are obtained when the mutual
benefit is modified. For small λ, the species become extinct. For increasing

λ, the system stabilizes in a synchronized state or oscillates in a two-periodic
orbit. For the greatest permitted values of λ, the dynamics evolves into a
quasiperiodic, into a chaotic scenario, or into extinction. The basins for these

regimes are visualized as colored figures on the plane. These patterns suffer
different changes as consequence of basins’ bifurcations. The use of the critical

curves allows us to determine the influence of the zones with different numbers
of first-rank preimages in those bifurcation mechanisms.

1. Dynamics of isolated species: The logistic model. Imagine an island with
no contact with the exterior. Living species there cannot migrate in search of a
new land with affordable resources. Thus, for instance, if initially the island has as
inhabitants a couple of rabbits, they will reproduce exponentially. This expansion
regime will colonize the whole island in a few generations. Hence, the island will
become overpopulated. At that point a new dynamical regime will be present, with
a natural population control mechanism because of the overcrowding.

If xn represents the population after n generations, let us suppose this variable is
bounded in the range 0 < xn < 1. The activation or expanding phase is controlled
by the term µxn proportional to the current population xn and to the constant
growth rate µ. Resource limitations bring the system to an inhibition or contracting

phase directly related to overpopulation. The term can denote how far the system
is from overcrowding. Therefore, if we take the product of both terms as the most
simple approach to the population dynamics, the model

xn+1 = µ xn(1 − xn) (1)
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gives an account of its evolution. This is the so-called logistic map, where 0 < µ < 4
in order to assure 0 < xn < 1. This discrete equation has been a subject of study
in the last century as a tool to be applied to the most diverse phenomenology [1]
or as an object interesting to analyze by itself from a mathematical point of view
[2, 3]. The continuous version of this model was originally introduced by Verhulst
[4] in the nineteenth century as a counterpart to the Malthusian theories of human
overpopulation.

When the growth rate is modified the dynamical behavior of the logistic equation
is as follows:

(i) 0 < µ < 1: The growth rate is not big enough to stabilize the popu-
lation. It will drop and the species will become extinct.
(ii) 1 < µ < 3: A drastic change is obtained when µ is greater than 1. A
non-vanishing equilibrium between the two competing forces, reproduc-
tion on one hand and resource limitation on the other, is now possible.
The population reaches, independent of its initial conditions, a fixed
value that is maintained in time.
(iii) 3 < µ < 3.57: A cascade of sudden changes causes the population
to oscillate in cycles of period 2n, where n increases from 1, when µ is
close to 3, to infinity when µ is approaching the critical value 3.57. This
is called the period-doubling cascade.
(iv) 3.57 < µ < 3.82: When the parameter moves, the system alternates
between periodical behaviors with high periods on parameter interval
windows and chaotic regimes for parameter values not located in in-
tervals. The population can be unpredictable although the system is
deterministic. The chaotic regimes are observed for a given value of µ
on sub-intervals of [0, 1].
(v) 3.82 < µ < 3.85: The orbit of period 3 appears for µ = 3.82 after a
regime where unpredictable bursts, called intermittences, have become
rarer until they disappear in the three-periodic time signal. As the
Sarkovskii theorem tell us, the existence of the period-3 orbit means,
that all periods are possible for population dynamics, although, in this
case, they are not observable due to their instability. What it is observed
in this range is the period-doubling cascade 3 · 2n.
(vi) 3.85 < µ < 4: Chaotic behavior with periodic windows is observed
in this interval.
(vii) µ = 4: The chaotic regime is obtained on the whole interval [0, 1].
This specific regime produces dynamics, that appears random. The dy-
namics has lost its determinism and the population evolves as a random
number generator.

Therefore, there are essentially three remarkable dynamical behaviours in this
system: the period-doubling route to chaos when µ is approximately 3.57 [5], the
time signal complexification by intermittence when µ is approximately 3.82 [6], and
the random-like dynamics when µ = 4.

2. Dynamics of two isolated species: A coupled logistic model. Let us
suppose now, under a similar scheme of expansion and contraction, that two sym-
biotic species (xn, yn) are living on the island. Each evolves following a logistic-type
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dynamics,

xn+1 = µ(yn) xn(1 − xn), (2)

yn+1 = µ(xn) yn(1 − yn). (3)

In this model, the symbiotic interaction between species causes the growth rate µ(z)
to vary with time. The interaction depends on the population size of the others
and on a positive constant λ that we call the mutual benefit. As the equations
show, we are thinking of a symmetrical interaction. Concretely, the particular
dynamics of each species is a logistic map whose parameter µn is not fixed, xn+1 =
µn xn(1 − xn), but which itself is forced to remain in the interval (1, 4). The
existence of a nontrivial fixed point at each step n ensures the nontrivial evolution
of the system [7]. The simplest election for this growth rate is a linear function
expanding at the interval (1, 4):

µ(z) = λ (3z + 1), (4)

with the mutual benefit λ being a positive constant. The study has discovered to
have sense in the range 0 < λ < 1.084. Thus, the model obtained to mimic the
dynamics of two isolated symbiotic species takes the form:

xn+1 = λ (3yn + 1)xn(1 − xn), (5)

yn+1 = λ (3xn + 1) yn(1 − yn). (6)

This application can be represented by Tλ : [0, 1]×[0, 1] → [0, 1]×[0, 1], Tλ(xn, yn) =
(xn+1, yn+1), where λ is a real and adjustable parameter. In the following we shall
write T instead of Tλ, as the dependence on the parameter λ is understood. Let us
observe that when yn = 0 or xn = 0, the logistic dynamics for one isolated species
is recovered. In this case the parameter λ takes the role of the parameter µ.

At this point we must comment that the different choices of µn give a wide
variety of dynamical behaviours. For instance, the application of this idea produces
the on-off intermittence phenomenon when is chosen random [8] or the adaptation
to the edge of chaos when µn is a constant with a small time perturbation [9].
Other systems built under this mechanism are models (a), (b), and (c) presented
in [7, 10]. Equations (5−6) correspond to model (a) of those works. Model (b) has
been studied in detail in [11], and a similar investigation of model (c) is presented
in [12].

In Sections 3 and 4, we study more accurately the model (5−6) from a dynamical
point of view. To summarize, we explain first the dynamical behavior of the coupled
logistic system (5−6). When λ is modified, this is as follows:

(i) 0 < λ < 0.75: The mutual benefit is too small to allow a stable co-
existence of both species and they will disappear.
(ii) 0.75 < λ < 0.86: A sudden change is obtained when λ is greater than
0.75. Both populations are synchronized to a stable non-vanishing fixed
quantity when the initial populations overcome certain critical values.
If the initial species are under these limits both will become extinct.
(iii) 0.86 < λ < 0.95: The system is now bi-stable. Each one of the
species oscillates out-of-phase between the same two fixed values. This is
a lag-synchronized state; that is, a stable two-period orbit. In this range,
there is still the possibility of extinction when the initial populations are
very small or close to the overcrowding.
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(iv) 0.95 < λ < 1.03: The system is no longer on a periodic orbit. It
acquires a new frequency and the dynamics is now quasiperiodic. Both
populations oscillate among infinitely many different states. Synchro-
nization is lost. There are in this regime periodic windows where the
system becomes lag-synchronized. Also, for initial populations nearly
zero and for λ < 1, the species can not survive.
(v) 1.03 < λ < 1.08: The system is now in a chaotic regime. It is char-
acterized by a noisy-like small oscillation around a synchronized state
with non-periodic unpredictable bursts. Periodic oscillations can be also
obtained for some particular values of the mutual benefit. Some other
initial conditions are not meaningful or interpretable in this scheme be-
cause the system is going outward from the square [0, 1] × [0, 1] and
evolves toward infinity. The system ”crashes.” This sudden ”damage”
is interpreted as some kind of catastrophe, provoking the extinction of
species.

Although the equations are formed by logistic-type components, the logistic ef-
fects have been lost and a completely new scenario emerges when they are coupled.
In this case, the symbiotic interaction causes the species to reach different sta-
ble states. Depending on the mutual benefit, the system can reach extinction, a
fixed synchronized state, a bi-stable lag-synchronized configuration, an oscillating
dynamics among infinite possible states, or a chaotic regime. We must highlight
in this model the phenomenon of synchronization in the periodic regime [13], the
transition to chaos by the Ruelle-Takens route [14], and the bursting events around
a noisy-like synchronized state in the chaotic regime [15]. All these behaviors are
caused by the symbiotic coupling of the species and are not predictable from the
properties of the individual logistic evolution of any of them. Moreover, this in-
teraction implies a mutual profit for both species. In fact, when µ < 1 one of the
isolated species is extinct, but it can survive for λ < 1 if a small number of individ-
uals of the other species is aggregated to the island. Hence, the symbiosis appears
to be well held in this cubic model.

3. Stable attractors: Symmetry and bifurcations. First, for the sake of clar-
ity, we summarize the dynamical behavior of model (1) when the mutual benefit λ
is inside the interval 0 < λ < 1.0843. The different parameter regions where the
mapping T has stable attractors are given in the next table. The meanings of all

INTERVAL NUMBER OF ATTRACTORS

ATTRACTORS

0 < λ < 0.75 1 p0

0.75 < λ < 0.866 2 p0, p4

0.866 < λ < 0.957 2 p0, p5,6

0.957 < λ < 1 2 p0, pair of invariant closed curves
1 < λ < 1.03 1 pair of invariant closed curves

1.03 < λ < 1.032 1 pair of weakly chaotic rings
1.032 < λ < 1.0843 1 symmetric chaotic atractor

(or frequency lockings)
Table 1. Unfolding of T as function of λ.
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these attractors are explained in the following subsections.

3.1. Symmetry. This model has reflection symmetry P through the diagonal ∆ =
{(x, x), x ∈ ℜ}. If P (x, y) = (y, x) then T commutes with P :

T [P (x, y)] = P [T (x, y)]. (7)

Note that the diagonal is T -invariant, T (∆) = ∆. In general, if Ω is an invariant
set of T , T (Ω) = Ω, so also is P (Ω), due to the commutation property: T [P (Ω)] =
P [T (Ω)] = P (Ω). It means that if {pi, i ∈ N} is an orbit of T , so is {P (pi), i ∈ N}.
In fact, if some bifurcation happens in the half plane below the diagonal, it occurs
in the above half plane, and vice versa. The dynamical properties of the two halves
of phase space separated by the diagonal are interconnected by the symmetry. Also
if the set Γ verifies P (Γ) = Γ, so is T (Γ). Then the T -iteration of a reflection
symmetrical set continues to keep the reflection symmetry through the diagonal. It
is worth noting that the square [0, 1]× [0, 1] is invariant for µ < 1, but not anymore
for µ > 1.

3.2. Fixed points, two-cycles, and closed invariant curves. We focus our
attention on bifurcations playing an important role in the dynamics, those hap-
pening in the interval 0 < λ < 1.0843. In this range, there exist stable attractors
for each value of λ, and it will make sense to study their basins of attraction;
that is, the initial populations leading to the each of the existing final asymptotic
configurations.

The restriction of T to the diagonal is a one-dimensional cubic map, which is
given by the equation xn+1 = λ (3xn + 1)xn(1− xn). The restriction of the map T
to the axes reduces to the logistic map xn+1 = f(xn) with f(x) = λx(1−x). Thus
the solutions of xn+1 = xn are the fixed points p0, p3, p4 on the diagonal and p1, p2

on the axes:

p0 = (0, 0),

p1 =

(

λ − 1

λ
, 0

)

,

p2 =

(

0,
λ − 1

λ

)

,

p3 =
1

3
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4 − 3

λ

)
1

2
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(

4 − 3

λ

)
1

2

}

,
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1

3
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(

4 − 3
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)
1

2

, 1 +

(

4 − 3
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)
1

2

}

.

For 0 < λ < 1, p0 is an attractive node. For all the rest of parameter values,
p0 is a repelling node. The points (p1, p2) exist for every parameter value, and
they are unstable for every value of λ. For 0 < λ < 0.75, p3,4 are not possible
solutions. When λ = 0.75, a saddle-node bifurcation on the diagonal generates
p3,4. For 0.75 < λ < 0.866, p3 is a saddle point and p4 is an attractive node. In
this parameter interval, the whole diagonal segment between p3 and p4 is a locus of
points belonging to heteroclinic trajectories connecting the two fixed points. The
point p4 suffers a flip bifurcation when λ =

√
3/2 ∼= 0.866. It generates a stable

period-2 orbit p5,6 outside the diagonal. These points are obtained by solving the
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quadratic equation λ (4λ + 3)x2 − 4λ(λ + 1)x + 1 + λ = 0. The solutions are as
follows:

p5 =

(

2λ(λ + 1) +
√

λ(λ + 1)(4λ2 − 3)

λ(4λ + 3)
,
2λ(λ + 1) −

√

λ(λ + 1)(4λ2 − 3)

λ(4λ + 3)

)

,

p6 =

(

2λ(λ + 1) −
√

λ(λ + 1)(4λ2 − 3)

λ(4λ + 3)
,
2λ(λ + 1) +

√

λ(λ + 1)(4λ2 − 3)

λ(4λ + 3)

)

.

For λ = 0.975, these period-2 symmetric points lose stability through a Neimark-
Hopf bifurcation. The set of points p5,6 gives rise to a period 2 set of two stable
closed invariant curves. These symmetric invariant curves grow in size when λ
increases into the interval 0.957 < λ < 1, and, for some values of λ, frequency
locking windows are obtained.

The period-2 cycles on the axes appear by a period doubling bifurcation, and
are found by solving the cubic equation: λ3x3 − 2λ3x2 + (λ3 + λ2)x + 1 − λ2 = 0.
They have existence for λ > 3. The solutions are

p7 =

(

(λ + 1) −
√

(λ + 1)(λ − 3)

2λ
, 0

)

↔ p8 =

(

(λ + 1) +
√

(λ + 1)(λ − 3)

2λ
, 0

)

,

p9 =

(

0,
(λ + 1) −

√

(λ + 1)(λ − 3)

2λ

)

↔ p10 =

(

0,
(λ + 1) +

√

(λ + 1)(λ − 3)

2λ

)

.

Observe that the restriction of the map T to the axes is the logistic map, so that
its dynamics gives rise to the well known cyclic logistic behavior on the axes, as
explained in section 1.

(a) (b)

Figure 1. (a) Attractive closed invariant curves for λ = 1.031. (b)
Enlargement of (a), where weakly chaotic rings limited by segments
of critical curves LCn can be observed.
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3.3. Transition to chaos. The two closed invariant curves approach the stable
invariant set of the hyperbolic point p4 on the diagonal when λ is slightly larger than
1 (fig. 1a). At first sight, for λ ∼= 1.029, the system still seems quasi-periodic, but
a finer analysis reveals the fingerprints of chaotic behavior. Effectively, a folding
process takes place in the two invariant sets (cf. [16]), which gives rise to the
phenomenon of weakly chaotic rings when the invariant set intersects itself (fig.
1b) (cf. [17] p.529). For λ ∼= 1.032, the tangential contact of the two symmetric
invariant sets with the stable set of the saddle p4 on the diagonal leads to the
disappearance of those two weakly chaotic rings. Just after the contact, infinitely
many repulsive cycles appear due to the creation of homoclinic points and a single
and symmetric chaotic attractor appears (fig. 2a). For 1.031 < λ < 1.0843, this
chaotic invariant set folds strongly around p4, and the dynamics becomes very
complex (fig. 2b). When the limit value λ = 1.084322 is reached, the chaotic area
becomes tangent to its basin boundary, the mapping iterates can escape to infinite,
and the attractor disappears by a contact bifurcation ([17], chap. 5). The time
behavior of the system can be seen in figures 3a, 3b, and 3c.

(a) (b)

Figure 2. (a) Symmetric chaotic attractor for λ = 1.0831. (b)
Complex folding process around p4 for same value of λ.

4. Basin fractalization. Let us now examine how the different initial populations
evolve toward an asymptotic stable state. This is exactly the problem of considering
the basins of the different attractors of model (5−6). For the sake of coherence, we
consider the square [0, 1] × [0, 1] as the source of initial conditions making sense in
our biological model; that is, in the map T . Basins constitute an interesting object
of study themselves. If a color is given to the basin of each attractor, we obtain
a colored figure, which is a phase-plane visual representation of the asymptotic
behavior of the points of interest. The strong dependence on the parameters of this
colored figure generates a rich variety of complex patterns on the plane and gives
rise to different types of basin fractalization. See, for instance, the work done by
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Gardini [18] and also by López-Ruiz and Fournier-Prunaret [11] in this direction.
It is now our objective to analyze the parameter dependence of basin fractalization
of model (5−6) by using the technique of critical curves.

(a) λ = 0.9 (b) λ = 1

(c) λ = 1.08

Figure 3. Asymptotic temporal behavior of the dynamics for dif-
ferent λ.

4.1. Definitions and general properties of basins and critical curves. The
set D of initial conditions that converge towards an attractor at finite distance when
the number of iterations of T tends toward infinity is the basin of the attracting set
at finite distance. When only one attractor exists at finite distance, D is the basin
of this attractor. When several attractors at finite distance exist, D is the union
of the basins of each attractor. The set D is invariant under backward iteration
T−1 but not necessarily invariant by T : T−1(D) = D and T (D) ⊆ D. A basin
may be connected or non-connected. A connected basin may be simply connected
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or multiply connected, which means connected with holes. A non-connected basin
consists of a finite or an infinite number of connected components, which may
be simply or multiply connected. The closure of D includes also the points of the
boundary ∂D, whose sequences of images are also bounded and lie on the boundary
itself. If we consider the points at infinite distance as an attractor, its basin D∞ is
the complement of the closure of D. When D is multiply connected, D∞ is non-
connected, the holes (called lakes) of D being the non-connected parts (islands) of
D∞. Inversely, non-connected parts (islands) of D are holes of D∞ [17].

In section 3, we explained that the map (5−6) may possess one or two attractors
at a finite distance. The points at infinity constitute the third attractor of T . Thus,
if a different color for each different basin is given we obtain a colored pattern in
the square [0, 1] × [0, 1] with a maximum of two colors. In the present case, the
phenomena of finite basins’ disappearance have their origin in the competition
between the attractor at infinity (whose basin is D∞) and the attractors at finite
distance (whose basin is D). When a bifurcation of D takes place, some important
changes appear in the colored figure representing the basins, and, although the
dynamical causes cannot be clear, the colored pattern becomes an important visual
tool to analyze those changes.

Critical curves are an important tool used to study basin bifurcations. They
were introduced by Mira in 1964 (see [3] for further details). The map T is said to
be noninvertible if points exist in state space that do not have a unique rank-one
preimage under the map. Thus the state space is divided into regions, called Zi,
in which points have i rank-one preimages under T . These regions are separated
by the so called critical curves LC, which are the images of the curves LC−1. If
the map T is continuous and differentiable, LC−1 is the locus of points where the
determinant of the Jacobean matrix of T vanishes. When initial conditions are
chosen to both sides of LC, the rank-one preimages appear or disappear in pairs.
(See the glossary for technical terms used in this work.)

4.2. Critical curves and Zi - regions of T . In our case, the map T defined in
(5−6) is noninvertible. It has a non-unique inverse. As we know, LC = T (LC−1).
LC−1 is the curve verifying | DT (x, y) |= 0, where DT (x, y) is the Jacobean matrix
of T . It is formed by the points (x, y) that satisfy the equation

27x2y2 + 3x2y + 3xy2 − 6x2 − 6y2 − 8xy + x + y + 1 = 0. (8)

Hence, LC−1 is independent of λ parameter and is quadratic in x and y. It can be
seen that LC−1 is a curve of four branches, with two horizontal and two vertical

asymptotes. The branches LC
(1)
−1 and LC

(2)
−1 have as horizontal asymptote the line

y = 0.419 and the vertical asymptote in x = 0.419. The other two branches, LC
(3)
−1

and LC
(4)
−1 , have the horizontal asymptote in y = −0.530 and the vertical one is

the line x = −0.530. The values 0.419 and −0.530 are the roots of the polynomial
factor, 27x2 +3x−6, that multiplies the term y2 in equation (8). It follows that the

critical curve of rank-1, LC(i) = T (LC
(i)
−1), i = 1, 2, 3, 4, consists of four branches.

The shape of LC and LC−1 is shown in figures 4a-4b. LC depends on λ and
separates the plane into three regions that are locus of points having 1, 3, or 5
distinct preimages of rank-1. They are named by Zi, i = 1, 3, 5, respectively (figure
4b). Observe that the set of points with three preimages of rank-1, Z3, is not
connected and is formed by five disconnected zones in the plane. Let us note that
has the reflection symmetry through the diagonal: P (LC−1) = LC−1. Then every
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(a)

x n

y n  

L C (1 ) 

L C (2 ) 

L C (3 )

L C (4 )

          λ  =  0 .4  

Z 1  

Z 3

Z 3  

Z 3  

Z 5  

Z 3  

P 0

(∆ )  

 

(b)

Figure 4. (a) Critical curves LC
(i)
−1, i = 1, 2, 3, 4. (b) Critical

curves LC(i), i = 1, 2, 3, 4, for λ = 0.4. Observe the different Zj-
zones, j = 1, 3, 5.

critical curve of rank-(k+1), LCk = T k+1(LC−1), will conserve this symmetry:
P (LCk) = LCk .

We see in figure 4b that the four-branched LC-curve divides the diagonal ∆ in
five intervals. If we know the number i of preimages of rank-1 of each segment on
the diagonal, the number of preimages of rank-1 of each Zi-zone of the plane is also
determined. This calculation has been performed in [11]. The number of rank-1
preimages of a point (x′, x′) on the diagonal can be summarized in the following
table: The coordinates of the points marking the frontier between the different Zi-

INTERVAL x′ < x′

2d x′

2d < x′ < x′

2h x′

2h < x′ < x′

1d x′

1d < x′ < x′

1h x′ > x1h

NUMBER OF 3 5 3 1 3
PREIMAGES

Table 2. Number of T -preimages of a point (x′, x′) on the diagonal.

zones on the diagonal are x′

1d
∼= 0.65λ, x′

2d
∼= −0.1λ, x′

1h
∼= 4λ, and x′

2h
∼= 0.44λ.

For example, the origin p0 is always in the Z5-zone. It is located into the interval
limited by x′

2d and x′

2h. In fact, its preimages are (1, 1), (−1/3,−1/3) and p0

itself on the diagonal, and (1, 0) and (0, 1) out of the diagonal. According to the
nomenclature established in [17], the map (5−6) is of type Z3−Z5 ≻ Z3−Z1 ≺ Z3.

4.3. Types of basins in T. Depending on λ, three different types of patterns are
obtained in the square [0, 1]× [0, 1]. We proceed to present them and to explain the
role played by critical curves in the bifurcations giving rise to the third basin type.
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(a) (b)

Figure 5. (a) One-colour basin for λ = 0.45. The only attractor
is the origin. (b) Fractal pattern of islands when the whole plane
is considered as a source of initial conditions.

4.3.1. Extinction of Species, 0 < λ < 0.75. In this regime, any given initial pop-
ulation evolves toward the extinction. The mutual benefit is too small, then it is
not possible the surviving of the species. Then, all initial conditions tend to zero
under iteration of T . A pattern of only one color is obtained (fig. 5a).

If we regard the behavior of T in the whole plane ℜ2, D undergoes an interesting
bifurcation consisting of the transition from a connected to a non-connected basin
(fig. 5b). It takes place when λ increases from λ ∼= 0.39 to λ ∼= 0.61. When D
becomes non-connected, it is made up of the immediate basin D0 containing the
single attractor p0 and infinite small regions without connection (islands). This
disaggregation is the result of infinitely many contact bifurcations, which are ex-
plained in [11]. Such phenomena can be also found in some quadratic Z0−Z2 maps
[19].

4.3.2. Extinction or Non trivial Evolution of Species, 0.75 < λ < 1. A sudden
change affects the basin for λ = 0.75. A second attractor p4 appears and a ball of
initial conditions is attracted by this synchronized state. When 0.75 < λ < 0.86, the
coexistence between both species can reach a non-null stable value in this regime.
All the rest of initial conditions on the square [0, 1] × [0, 1] continue to shrink to
the origin, then go extinct. The basin is a two-colour pattern (fig. 6a). When
0.86 < λ < 0.95, p4 bifurcates to a two-periodic orbit and the system becomes now
a lag-synchronized oscillation. The colour corresponding to this last state has gained
space on the zero state in the two-colour pattern (fig. 6b). When 0.95 < λ < 1
, synchronization is finally lost and the system becomes quasiperiodic. Only the
corners of the square [0, 1] × [0, 1] lead to extinction in the two-color pattern (fig.
6c). If we regard the total basin in ℜ2, D seems to be formed by the square
D0 ≡ [0, 1] × [0, 1], which contains the attracting set at finite distance and four
small like-triangled regions linked to the square by four narrow arms. These arms
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(a) (b)

(c) (d)

Figure 6. (a) Basin for λ = 0.8. The two colors correspond to the
basins of the two existing attractors: the synchronized state on the
diagonal and the origin. (b) For λ = 0.9, the central colored ball in
the square is the basin of a 2-periodic orbit. (c) For λ = 0.98, the
central colored area is the basin of two attractive closed invariant
curves. (d) Pattern of the basin in the whole plane. It is formed
by the square (0, 1) × (0, 1) , which contains the attractors, and
four small like-triangle regions linked to the square by four narrow
arms for λ = 0.9.

shrink when λ approaches 1, and disappear for λ = 1 when the origin p0 undergoes
a transcritical bifurcation. The main part of D is then a disconnected pattern
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of five components: the square D0, a triangle-shaped component located in a Z3

neighborhood of the vertex point (−1/3,−1/3) (preimage of rank-1 of the point
p0), and the three triangle-shaped regions that are preimages of rank-1 of the latter
component (fig. 6d).

4.3.3. Non-trivial Evolution or Catastrophe of Species, 1 < λ < 1.0843. A new
phenomenon takes place in this range of the parameter. Some initial conditions
can give rise to an evolution that surpass the boundaries of the square [0, 1] ×
[0, 1] and tends to infinity. We interpret this behavior as some kind of internal
catastrophe (war, epidemics, etc.) leading to extinction. Although we are aware of
its disconcerting meaning, this would imply that an internal catastrophe can follow
in this model as a consequence of the population start from some particular initial
conditions. All the rest of the initial conditions bring the system to a quasiperiodic
state when 1 < λ < 1.03 or to a chaotic dynamical regime when 1.03 < λ < 1.0843
(fig. 7(a-d) and fig. 8(a-b)). Therefore, a two-color basin is also obtained in this
range of λ parameter.

In a more detailed form, the basin bifurcations happen as follows. Points (1, 0)
and (0, 1) cross through LC(2) when λ = 1. When λ > 1, it makes two regions
appear, S1

1 and S1
2 , inside [0, 1] × [0, 1], which are part of D∞ and are located

in a Z3 zone (fig. 7a). The square is no longer invariant by T. The rank-one
preimages of S1

1 and S1
2 , -respectively S−1

1 and S−1
2 - are two new semicircular

regions and intersect LC
(2)
−1 . They are located in the vicinity of points (1, 0.5) and

(0.5, 1), preimages of (1, 0) and (0, 1) (fig. 7a,7b). When λ increases, the two
semicircular zones of D∞, S−1

1 and S−1
2 , located in the immediate basin D0 ≡

[0, 1] × [0, 1], in the neighborhood of points (1, 0.5) and (0.5, 1), grow in size. For
λ > 1.0801, the basin undergoes a contact bifurcation. D∞ crosses through LC(2)

and two bays (headlands of D∞), H01 and H02, are created in a Z3 area (fig. 7c).

Their rank-1 preimages, H
(1)
01 and H

(1)
02 , are holes (lakes) intersecting LC

(2)
−1 into

the middle Z3-region. Rank-1 preimages of the latter holes generate four new lakes

in D0, H
(21)
0i and H

(22)
0i , i = 1, 2. Preimages with increasing rank give rise to an

arborescent sequence of lakes. The accumulation points of this infinite sequence
of holes are the two unstable foci p5,6 and their rank-1 preimages inside the basin.

When λ ∼= 1.0806, H
(21)
01 and H

(21)
02 cross through LC(2) (fig. 7d). This new

contact bifurcation is the germ of a new arborescent and spiraling sequence of lakes
converging towards the same accumulation points. When λ increases values, new

holes intersect LC(2) and give rise to new holes crossing through LC
(2)
−1 and new

sequences of lakes converging towards the unstable foci p5,6 and their preimages.
Because the preimages have a finite number of accumulation points, the structure
is not fractal. A similar phenomenon has been found and studied in Z0 −Z2 maps
[20]. When λ increases (λ ∼= 1.0835 ), the chaotic attractor, which is limited by
arcs of LCn curves, is destroyed by a contact bifurcation with its basin boundary
(fig. 8a). A new dynamical state arises. The infinite number of unstable cycles and
their rank-n images belonging to the existing chaotic area before the bifurcation
define a strange repulsor that manifests itself by chaotic transients (fig. 8b). For
λ ∼= 1.085, the basin pattern disappears definitively.

5. Conclusions. One-dimensional and two-dimensional mappings are simple mod-
els that have been extensively studied as models of population dynamics [1, 21], as
ingredients of other more complex systems [22, 23], or as independent objects of



320 R. LÓPEZ-RUIZ AND D. FOURNIER-PRUNARET

(a) (b)

(c) (d)

Figure 7. (a) Basin for λ = 1.03. One color corresponds to basin
of the attractive invariant curves and the other one to basin of
infinity. (b) Detail of basin and weakly chaotic rings for λ = 1.03.

(c) For λ = 1.0803, first rank holes H
(1)
(01) and H

(1)
(02) (and higher

rank preimages holes) of the bays H(01) and H(02), respectively.
(d) New arborescent sequence of holes created from the crossing of

H
(21)
(01) and H

(21)
(02) with LC(2) for λ = 1.082.

interest [17]. Specifically, different two-dimensional coupled logistic maps are found
in the literature of several fields, such as physics, engineering, biology, ecology, and
economics [24, 25, 26, 27, 28].
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(a) (b)

Figure 8. (a) Chaotic attractor and its basin for λ = 1.083. (b)
Chaotic transient for λ = 1.0838.

The models scattered in the literature on the three main types of population
interaction, that is, predator-prey situation, competition, and mutualism among
species, are usually stated as quadratic equations [29]. In this work, we have rein-
terpreted a cubic two-dimensional coupled logistic equation, which was proposed
in reference [7], as a discrete model to explain the evolution of two symbiotically
interacting species. The symbiotic interaction between both species is population-
size dependent and is controlled by a positive constant λ that we call the mutual

benefit. Depending on λ, the system can reach extinction due to the small mutual
benefit or the lack of resources, it can stabilize in a synchronized state or oscil-
lates in a 2-periodic orbit for intermediate λ or it can evolve in a quasiperiodic
or chaotic regime for the greatest λ. In this last scenario, initial conditions also
lead the system to extinction. This kind of extinction could be interpreted as an
internal catastrophe caused, for instance, by political decisions or by a deficient
health provision system in the case of human society, and not, in general, by the
exhaustion of resources. Another remarkable property of the model is that when
µ < 1 one of the isolated species is extinct, but it can survive for λ < 1 when it
interacts symbiotically with one of the other species. Then, symbiosis seems to be
well held in this model.

Different complex color patterns on the plane have been obtained when the
mutual benefit is modified. If 0 < λ < 0.75, all the dynamics is attracted by
the origin and a one-color pattern is found. When 0.75 < λ < 1, the dynamics
can settle down in two possible attractors and the basins are now characterized by
two colors. Finally, if 1 < λ < 1.0843, the two-color basins result from the two
possible asymptotic states: a quasiperiodic or chaotic finite distance attractor and
an additional one located at infinity.

Critical curves have been used to understand the basin bifurcations found in this
system. Hence, common features with those present in the simplest and well-studied
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case of Z0−Z2 maps are now more evident for this map of Z3−Z5 ≻ Z3−Z1 ≺ Z3

type. A detailed study of the different fractalization mechanisms for the whole
range of λ parameter for a similar coupled logistic equation was performed in [11].
The rich dynamics and the complex patterns produced on the plane in this model
are controlled by a single parameter, in this case, the mutual benefit between the
interacting species.
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GLOSSARY

INVARIANT: A subset of the plane is invariant under the iteration of a map if
this subset is mapped exactly onto itself.

ATTRACTING: An invariant subset of the plane is attracting if it has a neigh-
borhood every point of which tends asymptotically to that subset or arrives there
in a finite number of iterations.

CHAOTIC AREA: An invariant subset that exhibits chaotic dynamics. A typical
trajectory fills this area densely.

CHAOTIC ATTRACTOR: An attracting chaotic area.
BASIN: The basin of attraction of an attracting set is the set of all points that

converge toward the attracting set.
IMMEDIATE BASIN: The largest connected part of a basin containing the at-

tracting set.
ISLAND: Non-connected region of a basin, which does not contain the attracting

set.
LAKE: Hole of a multiply connected basin. Such a hole can be an island of the

basin of another attracting set.
HEADLAND: Connected component of a basin bounded by a segment of a crit-

ical curve and a segment of the immediate basin boundary of another attracting
set, the preimages of which are islands.

BAY: Region bounded by a segment of a critical curve and a segment of the
basin boundary, the successive images of which generate holes in this basin, which
becomes multiply connected.

CONTACT BIFURCATION: Bifurcation involving the contact between the bound-
aries of different regions. For instance, the contact between the boundary of a
chaotic attractor and the boundary of its basin of attraction or the contact between
a basin boundary and a critical curve LC are examples of this kind of bifurcation.
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