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Abstract. T-lymphocyte (T-cell) development constitutes one of the basic
and most vital processes in immunology. The process is profoundly affected
by the thymic microenvironment, the dysregulation of which may be the patho-

genesis or the etiology of some diseases. On the basis of a general conceptual
framework, we have designed the first biophysical model to describe thymo-

cyte development. The microclimate within the thymus, which is shaped by
various cytokines, is first conceptualized into a growth field λ and a differenti-
ation field µ, under the influence of which the thymocytes mature. A partial

differential equation is then derived through the analysis of an infinitesimal
element of the flow of thymocytes. A general method is presented to estimate

the two fields based on experimental data obtained by flow cytometric analysis
of the thymus. Numerical examples are given for both normal and pathologic
conditions. Our results are quite good, and even the time varying fields can

be accurately estimated. Our method has demonstrated its great potential for
the study of immunopathogenesis. The plan for implementation of the method
is addressed.

1. Introduction. T-lymphocytes perform a variety of important functions in im-
mune regulation. Constant production of mature T-cells depends upon continuous
seeding of the thymus by precursor cells from the bone marrow. The precursor cells
are initially CD3−CD4−CD8− (triple negative [TN]) and can be divided on the ba-
sis of additional cell surface markers, such as CD44, CD25, and c-kit expressions.
They mainly undergo T-cell receptor (TCR) gene rearrangement, rapidly followed
by CD3, CD8, and CD4 expression, giving rise to the major pool of CD4+CD8+

(double positive [DP]) cells. Most DP cells express complete TCR-αβ complexes,
through which they receive signals for positive or negative selection. Positively se-
lected cells then generate mature CD4+CD8− or CD4−CD8+ single positive (SP)
cells. For healthy adult mice, it has been estimated that it takes about 14 days to
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complete the TN stage [1, 2, 3], 3 to 4 days for the DP stage [4, 5], and 7 to 14 days
for the SP stage [6, 7, 8]. The entire process entails a series of membranous events
and interactions of cell membranes with cytokines and related substances that serve
to communicate environmental influences to the cells. Such environmental signals
serve to activate the respective genetic codes that modulate cellular reactions. Col-
lectively, the cytokines, stroma cells, and other tissue factors, which provide the
unique inductive role of the thymus, are termed the thymic microenvironment (T-
MEV).

The impairment of T-MEV will result in the disturbances in the delicate net-
work of cell proliferation and differentiation and finally will imbalance the system,
resulting in pathologic over- or under-representation of certain parameters. This
may result in clinical immunodeficiency or in progressive cell proliferation with ulti-
mate tumor development, as demonstrated in early experiments [9-16]. The theory
of dysregulative immunopathogenesis has been described in several previous publi-
cations [17-20] and was recently updated in a review paper [21]. According to this
concept, diseases, such as malignant lymphomas, aplasias, or autoimmune disorders
result from a disturbed balance of factors regulating cell differentiation, prolifera-
tion, and apoptosis. The theory does not contradict the current understanding of
a genetic basis (e.g., transformation and atypia of specific cells) for many diseases.
The genetic mutations may serve only as the etiology (causes) for some diseases,
whose pathogenesis (development) depends heavily upon the immunologic regula-
tions, or upon the T-MEV. The classic human example is infectious mononucleosis,
where the Epstein-Barr virus does cause genetic mutations (just as in Burkitt’s
lymphoma), yet one gets no lymphomas because there is no sufficient deficiency
in the immune system. Some evidences even suggest that the proliferation cells
causing lymphomas need not be atypical transformed cells but may be just normal
cells blocked in differentiation [18]. Therefore, immune dysregulation itself can lead
to some diseases.

The original aim of this study is to elucidate quantitatively the influence of the
T-MEV on the developing thymocytes, under physiologic and pathologic conditions.
One would expect that a direct approach would be to measure the faculties of T-
MEV: cell-cell interactions and cytokines. This, however, is impractical. Cell-cell
interactions are difficult to measure and quantify. More than seventy cytokines and
other tissue factors are known today [22], which in one way or another contribute
to the proliferation and differentiation of thymocytes. Even if it were practical to
measure all of them, their intensity distributions over the heterogeneous thymo-
cytes can hardly be determined (as we will soon demonstrate, the geometries of
the distributions are crucial to pathogenesis). Moreover, the intensity distribution
corresponds poorly to the actual effect of a cytokine on thymocytes, since different
thymocytes have different levels of expression of the cytokine receptor. To compli-
cate matters, most cytokines have both effects of proliferation and differentiation,
and it is impossible to decouple these by the cytokine measurements per se. Finally,
the combined effect of all cytokines cannot simply be summed up from individual
cytokine effects, because the action of cytokines are synergetic rather than additive
[23]. The cytokines act in concert, but the synergetic mechanisms are unknown.
All in all, these numerous, sporadic cytokines are very difficult to measure; their
combined effect should be determined in some other way.

These difficulties force us to think of an alternative: Can we measure thymocytes
instead? As products of the T-MEV, thymocytes must carry the information of the
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T-MEV. That is, the immune regulation entailed in the thymocytes is encoded in
the pattern of the thymic population distribution. It is thus possible to discern
the T-MEV and to infer immunopathogenesis through decoding the thymocyte
data. Mathematically, this kind of problem was termed the inverse problem [24]—
determining unknown causes based on observations of their effects rather than by
direct measurements of the causes. In this paper, the “cause” is summarized as
thymocyte growth and differentiation functions, and a method is presented for
determining them under physiologic and pathologic conditions.

Modeling of thymocyte development was first studied by Mehr et al. [25, 26,
27]. In their work, the temporal dynamics of four variables were simulated to
represent four roughly divided thymic compartments (TN, DP, CD4+ SP, and
CD8+ SP). However, the constituents of each compartment were undistinguishable,
as they were represented together as a single variable. Restricted by its structure,
Mehr et al.’s model has to modulate virtual effects of cytokines into only a few
indirect coefficients. In reality, the cell distribution and the cytokine intensity
distribution have rich geometries and great diversities that can be fully exposed
only by a continuous model. In brief, their model, because it is a discrete (or multi-
compartmental) one, is more suitable for tracking the macroscopic behavior of few
discrete, roughly divided cell populations; the thymus as a whole still remains as a
largely undefined black box. It is thus difficult to achieve our goal of revealing the
diversity within the thymus to such an extent that the etiology and pathogenesis
of some diseases can be elucidated.

Motions of continua, such as moving fluids and numerous other important phe-
nomena, are better described by partial differential equations (PDEs). As a subphe-
nomenon of hematopoiesis, which has been modeled by a PDE [28], thymopoiesis is
more suitably modeled by a PDE. In this paper such a model is developed. A gen-
eral method is also presented to determine the interactions between the developing
thymocytes and the T-MEV, whereby the immunopathogenesis of some diseases is
elucidated.

2. Basic (physiologic) model.

2.1. Model design. The whole cohort of thymocytes is considered in terms of
a continuous flow (in contrast to the discrete compartments) through the thymus
with ever-increasing maturity θ, originating as immature stem cells from the bone
marrow and ending as mature T-cells. Upon this continuous flow, a growth field
λ and a differentiation field µ are imposed, representing the combined influences
of all the cytokines (there are altogether about seventy effective cytokines in the
thymus [22]). The steady-state distribution of the cell number, ρ0(θ), is sustained
by the two orthogonal fields (see Figure 1). The dynamical model is derived from
the analysis of an infinitesimal element of the flow, s = ρ(θ, t) dθ, the growth of
which is described by

∂s

∂t
= λ(θ)s + I − E (1)

where

I = ρ(θ, t)µ(θ) −
∂ (ρ(θ, t)µ(θ))

∂θ

dθ

2
is the influx to s,
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E = ρ(θ, t)µ(θ) +
∂ (ρ(θ, t)µ(θ))

∂θ

dθ

2

is the efflux from s, ρ(θ, t) is the cell number distribution with respect to θ at time
t, µ(θ) = lim

∆t→0
∆θ/∆t is the differentiation field, λ(θ) = λp(θ)−λa(θ) is the growth

field, λp(θ) = lim
∆t→0

∆p/(s∆t) is the proliferation rate (p is the cycling part of s),

λa(θ) = lim
∆t→0

∆a/(s∆t) is the apoptosis rate (a is the dying part of s). Finally one

obtains

∂ρ(θ, t)

∂t
+

∂ (ρ(θ, t)µ(θ))

∂θ
= λ(θ)ρ(θ, t) (2)

with boundary conditions

ρ(0, t)µ(0) = I0,

where I0 represents the number of cells entering the thymus in a unit of time (one
day);

λ(0) = 0

(the progenitor cells enter the thymus at the cortico-medullary junction where few
stimulating thymic epithelial cells reside [3]; the cell death is also negligible [29]).

Here, θ is defined as the maturity that a thymocyte of a healthy animal has so
far achieved. It is quantitatively identified with the age of the cell (not the age
of the animal), defined as the elapsed time after the cell has entered the thymus.
For example, θ = 0 represents the maturity of cells that are entering the thymus.
These cells then mature and by day υ possess the maturity θ = υ. Following
from the definition, the differentiation field for the healthy state is normalized
and has the simple expression µ(θ) = lim

∆t→0
∆θ/∆t ≡ 1 (the maturity gained in

∆t days is quantitatively still ∆t). Although θ is defined in terms of the healthy
(physiologic) state, it can be used for pathologic conditions as well. In both cases,
θ = υ represents exactly the same level of maturation. However, for unhealthy
animals the age of the thymocytes of maturity υ has the expression t =

∫ υ

0
dθ/µ(θ),

which does not necessarily equal υ, because µ(θ) ≡ 1 may not hold. One should
bear in mind that maturity equals age only when the animal is healthy.

In what follows, we use the subscript 0 to denote quantities of the physiologic
state. We have µ0(θ) ≡ 1, and ρ(θ, t) = ρ0(θ), which is time invariant (the thymo-
cytes are in homeostasis). Equation (2) then reduces to

dρ0(θ)

dθ
= λ0(θ)ρ0(θ), (3)

with ρ0(0) = I0, λ0(0) = 0, which can be explicitly solved as

ρ0(θ) = I0 exp

{

∫ θ

0

λ0(α) dα

}

. (4)

The only unknown in Equation (3) is λ0(θ). The following steps will obtain λ0(θ).
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Figure 1. The steady-state distribution of thymocytes sustained
by a growth field λ and a differentiation field µ.

2.2. Experimental design. Various cytokines shape λ0(θ). To date these have
been difficult to determine because of their large number. However, the thymocytes,
upon which cytokines act, must carry the information of λ0(θ). Therefore, λ0(θ)
can be determined from thymocytes on flow cytometric analysis. The flow cytom-
etry is a specialized instrument that separates cell populations according to which
florescent probe they bind to and the intensity of that binding. It also determines
the cell number of each separated population [30]. After the thymus is harvested,
thymocytes in suspension are sorted by flow cytometry into N sets, according to a
given protocol of cell marker expression. The following three sets of data are then
obtained:

1. Cell numbers of each set S = [S1, S2, · · · , SN ] can be counted by the flow
cytometry. Si corresponds to the hatched area in Figure 2.

2. The mean proliferation rate of each set is as follows: λ
p

=
[

λ
p

1, λ
p

2, · · · , λ
p

N

]

.

Note that λ
p

i is the macroscopic version of the definition of λp (see Equation
(1)). The number of cycling cells in set i, represented by Pi, can be obtained
by flow cytometry that counts only the cycling cells that have been labeled
by, for example, bromodeoxyuridine.

3. The mean apoptosis rate of each set is as follows: λ
a

=
[

λ
a

1 , λ
a

2 , · · · , λ
a

N

]

.

Note that λ
a

i is the macroscopic version of the definition of λa (see Equation
(1)). The number of dying cells in set i, represented by Ai, can be obtained
by flow cytometry that counts only the dying cells that have been stained by,
for example, propidium iodide.

The data set is denoted by d = [S,λ]T , where λ = λ
p
−λ

a
. There are in total 2N

data.
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It should be noted that although the limit definition of λ
p

and λ
a

may still seem
too theoretical, in practice one can obtain them by taking advantages of other
known biological facts, such as those present in Equations (11) and (12).

2.3. Computation. First, λ0(θ) =
N

∑

j=1

ajfj(θ) is constructed in a space that is

spanned by basis functions fj(θ) (j = 1, 2, · · · , N), by which ρ0(θ) has the expres-
sion

ρ0(θ) = I0 exp







N
∑

j=1

aj

∫ θ

0

fj(α) dα







. (5)

Whittaker’s cardinal functions [31] fj(θ) = sinc (π(θ − j∆)/∆) are chosen as the
basis functions (∆ is the so-called Nyquist interval for which 3 is chosen in this
section). By this choice, the boundary condition λ0(0) = 0 automatically holds.

In the experimental design, the thymocytes have been divided into N sets. The
delimitations between these sets are, however, unknown in terms of the defined
maturity (although they are known in terms of cell-marker expression), which in-
troduces N additional parameters θ = [θ1, θ2, · · · , θN ]T (see Figure 2). Therefore,
in total we have 2N unknowns x = [a,θ]T , where a = [a1, a2, · · · , aN ]T is the
representation of λ0(θ). To relate the unknowns x to the data b, the following 2N
algebraic equations are established:

∫ θi

0

ρ0(θ) dθ =
i

∑

k=1

Sk, for i = 1, 2, · · · , N, (6)

∫ θi

θi−1

λ0(θ)ρ0(θ) dθ = λiSi, for i = 1, 2, · · · , N. (7)

Equation (6) is obvious. Equation (7) is identical with

λi =

∫ θi

θi−1

λ0(θ)ρ0(θ) dθ
∫ θi

θi−1

ρ0(θ) dθ
,

implying that the aggregately measured λi represents the growth rate averaged over
all the cells in set i. By substituting Equation (3) into Equation (7), one iteratively
obtains

Ri = I0 +

i
∑

k=1

λkSk, for i = 1, 2, · · · , N, (8)

where Ri denotes ρ0(θi) (see Figure 2). By replacing θ with θi in Equation (5), one
obtains

N
∑

j=1

aj

∫ θi

0

fj(α) dα − ln(Ri/I0) = 0, for i = 1, 2, · · · , N. (9)

Substituting Equation (5) into Equation (6),
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Figure 2. An illustration of parameters θ,R, and S. θ =
[θ0, θ1, · · · , θN ] is the set of delimitations between sets.
R = [R0, R1, · · · , RN ], where Ri represents ρ0(θi). S =
[S0, S1, · · · , SN ], where Si is the cell number of set i and equals
the hatched area.

I0

∫ θi

0

exp





N
∑

j=1

aj

∫ θi

0

fj(α) dα



 dθ −

i
∑

k=1

Sk, for i = 1, 2, · · · , N. (10)

Equations (9) and (10) will be used to obtain x by applying Newton’s method
[32], a standard root-finding method. The method operates iteratively and requires
that the initial value be sufficiently close to the actual solution; otherwise, the
convergence would be difficult to reach, especially for the present high-dimensional
case. A preliminary calculation is therefore necessary to localize the approximate
solution.
First approximation. From Figure 2, one sees that Si (hatched area) approxi-
mately equals the trapezoid θi−1θiRiRi−1, namely (θi − θi−1)(Ri + Ri−1)/2 ≈ Si.

Therefore, the approximated value θ(0) can be obtained according to θ
(0)
i = θ

(0)
i−1 +

2Si/(Ri−1 + Ri). Subsequently a(0) can be obtained from Equation (9), namely,
a = Q−1e, where e = [ln(R1/I0), · · · , ln(RN/I0)]

T , and Q is a N ×N matrix, with

Qij =
∫ θi

0
fj(α) dα.

Root finding. The obtained x(0) = [a(0),θ(0)]T is used as the initial value for
finding the root of Equations (9) and (10) (denoted by F (x) = 0 hereinafter).
Newton’s method is as follows:

Given x(0), for k = 0, 1, · · · , until convergence:
Solve: JF (x(k))δx(k) = F (x(k)),

Set: x(k+1) = x(k) − δx(k),
where

JF (x) =

[

Q L

M R

]
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is the Jacobian matrix associated with F (x),L = diag{λ(θ1), λ(θ2), · · · , λ(θN )}, M

is a N×N matrix with Mij =
∫ θi

0
ρ0(θ)

∫ θ

0
fj(α) dα dθ, and R = diag{R1, R2, · · · , RN}.

The computation of θ is also a process of calibration, by which the relation is
found between the theoretical maturity θ and the practical maturity (cell marker
expressions) used to demarcate the cells in the experiment. In future studies, if the
same θ values are used for computation, the same protocol must be used in the
experiment.

2.4. Numerical example. To give an example, we performed an extensive liter-
ature survey and found only one set of data [33] that appears sufficient. The data
were obtained from a healthy mouse and described only the TN stage. TN thymo-
cytes were divided into N = 6 sets, namely, CD44+CD25− (TN1), CD44+CD25low

(TN2), CD44+CD25high (TN3), CD44−CD25high (TN4), CD44−CD25low (TN5),
and CD44−CD25− (TN6). The cell numbers of each set, S = [S1, S2, · · · , S6], are

given. Instead of obtaining the proliferation rate λ
p

i (i = 1, 2, · · · , 6), these authors
measured the labeling index αi, that is, the percentage of the cycling cells in set
i (αi = Pi/Si). Fortunately, λ

p

i can be derived from αi, namely,

λ
p

i = lim
∆t→0

∆Pi

Si∆t
=

Pi

Si

lim
∆t→0

∆Pi

Pi∆t
= αiκ, (11)

where

κ = lim
∆t→0

∆Pi

Pi∆t
. (12)

Another version of Equation (12) is Ṗi = κPi, by which κ is deduced as ln 2/T ,
where T is the cycle time (the time required for cell doubling). For the great
majority of the cycling thymocytes, T is about 9 to10 hours [34]. We use T =
9.5 hours = 0.39583 days , whereby κ = 1.7511/ day is obtained. The rates of

apoptosis λ
a

i (i = 1, 2, · · · , 6) are not provided in [33]. However, the TN stage is
characterized by extensive expansion [35], and the apoptosis rate is much less than
the proliferation rate. Some studies (e.g., [29]) have shown that the baseline apop-
tosis level of the TN cells is indeed very low and can be ignored. However, at the
CD44−CD25high (TN4) stage, where the TCR β-selection takes place, apoptosis
was considerable and was estimated to be about 70 % of the corresponding prolif-
eration [33] or λ

a

4 ≈ 0.7λ
p

4. Other λ
a

i values (i = 1, 2, 3, 5, 6) are simply assumed as
0. For the present case of a normal, unmanipulated thymus, I0 was estimated to
be between 5 × 104 per day and 5 × 105 per day [34].

Following computation using a trial value I0 = 5 × 104 per day, x = [a,θ] is
obtained. In particular, the value of θ6 (represents the length of the TN stage) is
18.06— that is, close to 14, the generally accepted value [1, 2, 3]. By repetition of
the computation using a larger I0, θ6 can be accurately tuned to 14. The final result
is as follows: I0 = 8.075×104 per day, a = [0.0622, 0.367, 0.250,−0.276, 0.641, 0.177],
θ = [4.203, 4.768, 6.078, 12.324, 13.481, 14.000]. Figure 3 shows the obtained λ0(θ),
ρ0(θ) and the profile of the CD44 and CD25 expressions, where θ are shown as the
dotted lines. TN4 is the longest, which implies that some complex process may
be involved. Indeed, at this stage most of the cells display the hallmark of irre-
versible immunological commitment to the T lineage in the form of TCR β-gene
rearrangements [3, 33]. The process may generate out-of-frame TCR β-chains that
are unresponsive to stimulation; cells carrying such pre-TCR will subsequently die.
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Figure 3. Results of the base model. Figures a and b show λ0(θ)
and ρ0(θ), obtained with I0 = 8.075 × 104. Figure c shows the
expression profile of CD44 (thick line) and CD25 (thin line). The
dotted lines show the delimitations between sets.

This may well be the reason why λ0(θ) has a negative part in the TN4 stage as
shown in Figure 3a. Note that ρ0(θ)µ0(θ) has the physical meaning of the number
of cells passing through θ in a unit of time. As a benefit of our definition of θ,
this term reduces to ρ0(θ) and can be read directly from Figure 3b. For example,
one reads that each day 3 × 105 cells leave TN3 and enter TN4, and 9.05 × 105

cells per day leave the TN stage. From Figure 3c, one sees that upregulation and
downregulation of CD44 and CD25 are fast processes, as indicated by the short
periods of the TN2,3,5,6 stages.

3. Disturbed (pathologic) model I. Consider an abrupt disturbance of the two
fields in the thymus, namely, change λ0(θ), µ0(θ) to some unknown, time-invarying

λ̃(θ), µ̃(θ). As a consequence, the density distribution ρ(θ, t) gradually drifts from
the initial ρ0(θ) according to

∂ρ(θ, t)

∂t
+

∂ (ρ(θ, t)µ̃(θ))

∂θ
= λ̃(θ)ρ(θ, t), (13)

with the (left) boundary conditions ρ(0, t) = I0, λ̃(0) = 0, and µ̃(0) = 1 (the dis-
turbance is assumed to occur only within the thymus, which will not alter the left
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boundary), until a new equilibrium ρ̃(θ) is reached. In that case, ρ̃(θ) is governed
by

d (ρ̃(θ)µ̃(θ))

dθ
= λ̃(θ)ρ̃(θ). (14)

At the new equilibrium, the thymus is harvested, the suspended thymocytes are
divided into N sets according to the same protocol of cell-marker expression as the
normal study, and the data d = [S,λ]T are obtained by flow cytometric analysis.

Now the problem is how to determine the unknown λ̃(θ) and µ̃(θ) based on the
obtained data d. Sinceθ values have already been obtained in the normal study,
the 2N data can be used exclusively to obtain λ̃(θ) and µ̃(θ) through

∫ θi

0

ρ̃(θ) dθ =
i

∑

k=1

Sk, for i = 1, 2, · · · , N, (15)

∫ θi

θi−1

λ̃(θ)ρ̃(θ) dθ = λiSi, for i = 1, 2, · · · , N. (16)

For the sake of easy computation, we let

λ̃(θ)

µ̃(θ)
=

N
∑

j=1

bjfj(θ)

and

1

µ̃(θ)
= 1 +

N
∑

j=1

cjfj(θ);

1 must be added to satisfy the boundary condition 1/µ̃(0) = 1. The 2N unknowns
are thus x = [b, c]T . By substituting Equation (14) into Equation (16), one obtains

R̃i = I0 +
i

∑

k=1

λkSk, for i = 1, 2, · · · , N, (17)

where R̃i represents ρ̃0(θi)µ̃0(θi). On the other hand, from Equation (14),

ρ̃(θ)µ̃(θ) = I0 exp

(

∫ θ

0

λ(α)

µ(α)
dα

)

= I0 exp





N
∑

j=1

bj

∫ θ

0

fj(α) dα



 . (18)

Associating Equation (18) with (17) by replacing θ with θi, one obtains

N
∑

j=1

bj

∫ θi

0

fj(α) dα − ln(R̃i/I0) = 0, for i = 1, 2, · · · , N. (19)

Then, b = Q−1e is readily obtained, where e = [ln(R̃1/I0), · · · , ln(R̃N/I0)]
T , and

Q is as before. From Equation (18) one has

ρ̃(θ) =
ϕ(θ)

µ̃(θ)
= ϕ(θ)



1 +

N
∑

j=1

cjfj(θ)



 , (20)
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where ϕ(θ) = I0 exp





N
∑

j=1

bj

∫ θ

0

fj(α) dα



 is a known function now. Substituting

Equation (20) into Equation (15), one obtains

c = Ψ−1l, (21)

where Ψ is a N × N matrix with Ψij =
∫ θi

0
fj(θ)ϕ(θ) dθ, l = [l1, · · · , li, · · · , lN ]T

with li =

i
∑

k=1

Sk −

∫ θi

0

ϕ(θ) dθ. One subsequently obtains

µ̃(θ) =
1

1 +

N
∑

j=1

cjfj(θ)

,

λ̃(θ) =

N
∑

j=1

bjfj(θ)

1 +
N

∑

j=1

cjfj(θ)

,

ρ̃(θ) =
ϕ(θ)

µ̃(θ)
.

3.1. Numerical examples. Example I. The perturbed fields λ̃(θ) and µ̃(θ) are
prescribed and are shown as solid lines in Figure 4a and 4b in comparison to the
normal fields (dotted lines). The general tendency of the prescribed fields mimics
actual pathological conditions [12, 18]. Since no real experiment is available, the
following simulated experiment is performed to obtain the data set d = [S,λ]T .

Equation (13) is first integrated to obtain ρ(θ, t), which simulates the real cell
evolution. The result is shown in Figures 4c and 4d. One sees that at t = 20
(days) the steady state ρ̃(θ) has been reached. The θ-axis is divided into N parts
with θi = 14i/N, where i = 1, 2, · · · , N. One then calculates S and λ according to

Si =
∫ θi

θi−1

ρ̃(θ) dθ and λi =
∫ θi

θi−1

λ̃(θ)ρ̃(θ) dθ/
∫ θi

θi−1

ρ̃(θ) dθ.

Based on the data d = [S,λ]T only, we now test our method of estimating

λ̃(θ) and µ̃(θ), to see if the reconstructed ones mimic the prescribed ones. The
parameters b and c are computed according to Equations (19) and (21) (for the

Nyquist interval, ∆ = 14/N is chosen). The reconstructed µ̃(θ), λ̃(θ), and ρ̃(θ) are
shown in Figure 4e and 4f. Different colors represent different values of N . One sees
that all the reconstructions are accurate. The accuracy improves as N increases.

Example II.The example is shown in Figure 5. One sees that the reconstructions
are also accurate. For N = 6, the reconstruction is not as good near the peaks
around θ = 3. Fortunately as N increases, the reconstruction does become accurate.

4. Disturbed (pathologic) model II. In this section, we consider the gradual,
slow changes λ(θ, t) and µ(θ, t) that drive the evolution of ρ(θ, t) according to

∂ρ(θ, t)

∂t
+

∂ (ρ(θ, t)µ(θ, t))

∂θ
= λ(θ, t)ρ(θ, t), (22)
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Figure 4. Example 1 of the disturbed model I. (a, b) The dis-

turbed fields µ̃(θ) and λ̃(θ) (solid lines) in comparison to the normal
fields (dotted lines). (c) The evolution ρ(θ, t) sampled at discrete
times t = 4, 8, 12, 16, 20 days. (d) The entire ρ(θ, t) begins as ρ0(θ)

and ends at t = 20. (e, f) The reconstructed µ̃(θ) and λ̃(θ) in com-
parison to the original ones (in black). Blue, green, and red lines
represent results obtained with N = 6, 10, and 14, respectively.
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Figure 5. Example 2 of the disturbed model I. The reconstructed
µ̃(θ) and λ̃(θ) in (a) and ρ̃(θ) in (b) are shown in color and com-
pared with the original ones (in black). The blue, green, and red
lines represent the results obtained with N = 6, 10, and 14, re-
spectively.

with initial conditions ρ(θ, 0) = ρ0(θ), λ(θ, 0) = λ0(θ), µ(θ, 0) = µ0(θ), and bound-
ary conditions ρ(0, t) = I0, λ(0, t) = 0, µ(0, t) = 1. In this case, a steady state will
never be reached, since the driving forces always vary with time. However, if λ(θ, t)
and µ(θ, t) change slowly, the process is in the quasi-steady state ∂ρ(θ, t)/∂t ≈ 0,
which means that at any time τ the system state is approximately steady, and the
method of the last section can still be used to estimate λ(θ, τ) and µ(θ, τ).

Model 2 is more practical than model 1, since a fixed thymic microenvironment
is unlikely under pathologic conditions. Generally, the microenvironment drifts
slowly from normal (e.g., as caused by viral infection), which also drives diseases
slowly.

4.1. Numerical examples. The results of three examples (denoted by subscripts
1, 2, and 3) are shown in the left, middle and right columns of Figure 6. The
only differences among the examples are the change rates of ξ(θ, t) (ξ = λ and µ):
example 3 is two times faster than example 2 and six times faster than example 1
(∂ξ3/∂t = 2∂ξ2/∂t = 6∂ξ1/∂t).

By integrating Equation (22) with prescribed fields λ(θ, t) and µ(θ, t), the evolu-
tion ρ(θ, t) is first obtained. We estimate the varying fields at certain times tk(k =
1, 2, · · · ), typically multiples of 100. At these times the data d(tk) = [S(tk),λ(tk)]T

are generated according to

Si(tk) =

∫ θi

θi−1

ρ(θ, tk) dθ,

λi(tk) =

∫ θi

θi−1

λ(θ, tk)ρ(θ, tk) dθ
∫ θi

θi−1

ρ(θ, tk) dθ
,

for i = 1, 2, · · · , N = 20.
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Figure 6. Results of the disturbed model II. (ai, bi) show
∆µ(θ, tk) and ∆λ(θ, tk) of example i(i = 1, 2, 3). The dash-dotted
line is the zero-reference. The dotted (solid) lines are for the pre-
scribed (reconstructed) values. Different colors represent different
tk values, as defined in the legends.

With these data, the parameters b(tk), c(tk) are computed, and λ(θ, tk), µ(θ, tk)
and ρ(θ, tk) are reconstructed.

For a clear illustration we show in Figure 6

∆µ(θ, tk) = µ(θ, tk) − µ0(θ)

and

∆λ(θ, tk) = λ(θ, tk) − λ0(θ)

instead of µ(θ, tk) and λ(θ, tk) themselves. The dotted (solid) lines represent the
prescribed (reconstructed) values. One sees that the reconstructions are quite ac-
curate despite the fact that the system states are not strictly steady. The error of
example 3 is larger than those of examples 1 and 2, implying that the performance
degrades as the fields change faster.
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5. Discussion. T-cell development constitutes one of the basic and most vital
processes in immunology, the modeling of which is naturally of great significance.
A good conceptual framework is essential to reducing the enormously complicated
process to a realistic biophysical model that can provide insights leading to new
theory and discovery. In this article such a framework has been presented. The
key idea is the conceptualization of the microclimate (shaped by various cytokines)
within the thymus into two fields λ (growth) and µ (differentiation), which drive
the thymocyte development from different directions. The model has been fully
analyzed, and a method of estimating the two fields has been developed. The
method can accurately estimate variational fields, provided that they do not vary
too fast.

Although based mostly on simulated data, the study still has great practical
significance. On one hand, these simulated data have definite physical meanings and
are experimentally viable. On the other hand, the simulation study is a necessary
step to validate the method. Practically speaking, one cannot tell whether or not
the estimations are accurate, since no comparisons are available. In the simulation
study, the direct comparisons between the prescribed fields and the reconstructed
ones demonstrate the accuracy and the potential of the method in estimating the
real thymic microenvironment.

Suppose one is to study a diseased mouse. The following two-step procedure is
proposed:

Step 1. Use a healthy mouse for calibration and comparison. Its thymocytes are
sorted into N sets based on the expressions of some chosen cell markers (represented
by the fluorescence intensity values in flow cytometric analysis). After data collect-
ing and computation, x = [a,θ] is obtained. From a = [a1, a2, · · · , aN ], λ0(θ) is
constructed from and shall be used for comparison. For the computation in step 2,
θ = [θ1, θ2, · · · , θN ] shall be used.

Step 2. Now the diseased mouse is studied. The same criteria as in step 1 is used
to divide the cells into N sets in the experiment; the same θ = [θ1, θ2, · · · , θN ] as
in step 1 is employed in Equations (19) and (21) to obtain b and c. The disturbed
fields and the cell distribution are subsequently constructed.

Because of its commonality, step 1 should be standardized to avoid repeated
labors. A protocol should be carefully designed for cell pool division. By using a
large N , a very detailed landscape of the thymus can be obtained.

Suppose the TN part of the estimated fields are shown in Figures 6a1 and 6b1.
By comparison with λ0(θ) and µ0(θ), one immediately finds that the cells have
an elevated proliferation; the differentiation slows throughout the range, with the
severest block at θ = 10.8. Noticing that θ = 10.8 is within some set defined by, for
example, 0 < CD44 < 10, 200 < CD25 < 250, one determines that the differentiation
is mostly blocked at these particular cells. Apparently, a larger N implies a better
resolution. By viewing on a computer screen the movie of the two fields drifting
away from the normal ones, the etiology and pathogenesis of the disease can be
elucidated vividly. Without the theory, such detailed quantitative conclusions can
hardly be drawn; even the cell distribution ρ(θ) cannot be obtained. Indeed, the
raw data from the experiment are only discrete numbers.

Various publications of T-cell changes following cellular differentiation blocks
after oncogenic viral infection or chemical carcinogenesis indicate that the model
presented here can actually simulate known pathologic processes. Blocks in thymic
differentiation were demonstrated in mouse lymphomas induced by Grossvirus,
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Moloneyvirus, and nitrosobutylurea [11, 13, 14] and in the human T-cell prolif-
erative disorders Canale-Smith syndrome and HTLV-1 infection [36, 37]. By using
the present method, it is possible that in the future the etiology and the patho-
genesis of these diseases can be quantitatively characterized. The present model
thus appears to be a valuable tool for studying immunopathogenesis, including
lymphoma development.
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