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Abstract. We formulate a dynamic mathematical model that describes the

interaction of the immune system with the human immunodeficiency virus
(HIV) and that permits drug “cocktail” therapies. We derive HIV therapeu-
tic strategies by formulating and analyzing an optimal control problem using

two types of dynamic treatments representing reverse transcriptase (RT) in-
hibitors and protease inhibitors (PIs). Continuous optimal therapies are found

by solving the corresponding optimality systems. In addition, using ideas from
dynamic programming, we formulate and derive suboptimal structured treat-
ment interruptions (STI) in antiviral therapy that include drug-free periods
of immune-mediated control of HIV. Our numerical results support a scenario
in which STI therapies can lead to long-term control of HIV by the immune
response system after discontinuation of therapy.

1. Introduction. Significant progress has been made in the treatment of human
immunodeficiency virus (HIV) infected patients, resulting in improved quality of
life and greater longevity. Because of advances in available drug treatments and
their combination in “drug cocktails,” many patients maintain low viral load and
safely high T-cell counts for months or even years.

More than twenty FDA-approved anti-HIV drugs are currently available, most
falling into one of two categories: reverse transcriptase (RT) inhibitors and protease
inhibitors (PIs). Hijacking a CD4+ target cell is a crucial part of the viral life cycle,
as HIV uses a host cell to replicate itself and thus proliferate. RT inhibitors prevent
HIV RNA from being converted into DNA, thus blocking integration of the viral
code into the target cell. On the other hand, protease inhibitors affect the viral
assembly process in the final stage of the viral life cycle, preventing the proper
cutting and structuring of the viral proteins before their release from the host
cell. Protease inhibitors therefore effectively reduce the number of infectious virus
particles released by an infected cell. While antiretroviral treatment regimens are
sometimes augmented by other types of drugs that enhance the effect of anti-HIV
treatment, bolster the immune system, or reduce side effects, our current effort
focuses on representatives of the two main classes - RT inhibitors and PIs.

The most prevalent treatment strategy for acutely infected HIV patients is highly
active antiretroviral therapy (HAART), which uses two or more drugs. Typically
these drug cocktails consist of one or more RT inhibitors and a protease inhibitor.
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Despite the great success of these multi-drug regimens in reducing and maintaining
viral load below the limit of detection in many patients, their long-term use comes
with substantial complications. Patients taking these drugs experience many phar-
maceutical side effects, some grave, which sometimes lead to poor adherence. Typ-
ically HIV (a retrovirus) mutates and produces resistant strains no longer sensitive
to drug therapy, resulting in the need to change drugs or even the inability to find
pharmaceuticals that provide effective treatment. In addition, high drug cost and
complicated pill regimens make effective HAART use burdensome for some patients
and impossible for others who have limited access to anti-HIV drugs.

Concerns about the long-term use of antiretroviral therapy strongly motivate the
consideration of optimal schemes for its use. There is also evidence that cytotoxic
T-lymphocytes (CD8 immune effector cells) and other immune responders are key
players in determining viral load set-points. Their prevalence and strength are also
believed to be correlated to the rate of disease progression, thus further motivating
investigation of treatment strategies that aim to boost adaptive cellular immune
responses [21, 26]. One such strategy is structured treatment interruption (STI), a
regimen in which patients are cycled on and off therapy [4, 13, 17]. An STI offers
the patient relief from arduous drug therapy. During treatment interruptions, viral
load typically rebounds to a high level, consequently stimulating or reactivating an
adaptive immune response. In some remarkable cases, repeated stimulation in this
manner has even enabled patients to maintain immune control of the virus in the
absence of treatment [18].

A number of studies have been conducted to explore the benefits of STIs, but
the protocols used and results vary widely. For a concise summary of clinical
STI studies, including protocols and results, we refer the reader to [3], in which
the authors use a mathematical model to understand these varied outcomes by
exploring different treatment schedules and initiation times as well as host fac-
tors including strength of immune responses. Some STI studies have used a fixed
length, prescribed interruption schedule, while others used viral load and T-cell
measurements from patients to decide when to interrupt or resume therapy (see,
for example, [24, 17]). There is currently no consensus on which treatment strate-
gies or interruption schemes are optimal. One way to explore optimal schemes is
in the context of a mathematical model for HIV infection. In our efforts we in-
vestigate such optimal therapy strategies using a system of ordinary differential
equations (ODEs) that model HIV infection dynamics, in conjunction with both
continuous and discrete control theory. Among our results, we demonstrate that
with this model we can determine and simulate optimal treatment schemes in which
a patient moves from a virus-dominant to an immune-dominant state.

The paper is organized as follows. In Section 2, we describe the mathemati-
cal model we use. Our formulation of the control problem and the corresponding
optimality system that characterizes the (continuous) optimal control solution is
described in Section 3. Numerical results obtained from using a gradient method
to solve the optimality system are presented in Section 4. However, our optimal
control problem makes two unrealistic demands on the controllers. First, we assume
that treatment protocol can be changed in a continuous manner, whereas in practice
treatment alterations can only be made periodically (for example, weekly). Sec-
ondly, as discussed previously, continuous therapy is difficult to maintain for long
periods because of unintended side effects and possible emergence of drug resistance
associated with suboptimal adherence. The complications resulting from life-long
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and continuous treatment emphasize the need for alternatives. In Section 5, we
formulate and derive optimal STI treatments to control HIV and limit drug expo-
sure. Numerical results illustrating the effectiveness of this dynamic and discrete
therapeutic strategy are given.

2. Optimal multidrug therapies: Model formulation. A wide variety of
mathematical models have been proposed to study various aspects of HIV dynamics
as well as effects of anti-HIV therapeutic agents. For example, Callaway and Perel-
son [7] examined several models to gain insight into the mechanisms responsible for
sustained low viral loads. Wein et al. [25] developed a model to track the dynamics
of uninfected and infected CD4+ T-cells and viral loads while allowing for virus
mutations. Agur [2] focused on the tradeoff between the toxicity and efficacy of
chemotherapy through cell cycle drug protocols. The paper by Bajaria et al. [3]
presented numerical simulations of STI based on a mathematical model represent-
ing CD4+ T-cell counts and viral loads in two physiological compartments: blood
and lymph tissues. Kirschner and Webb [15] developed a model to study timing,
frequency, and intensity in the chemotherapy of AIDS.

The model we use to demonstrate the optimal treatment of HIV infection is
adapted from the model used in [1], where the authors investigated single drug
(RT inhibitor only) control. The system of ODEs describing the compartmental
infection dynamics is given by

Type 1 target: Ṫ1 = λ1 − d1T1 − (1 − ǫ1)k1V T1

Type 2 target: Ṫ2 = λ2 − d2T2 − (1 − fǫ1)k2V T2

Type 1 infected: Ṫ ∗

1 = (1 − ǫ1)k1V T1 − δT ∗

1 − m1ET ∗

1

Type 2 infected: Ṫ ∗

2 = (1 − fǫ1)k2V T2 − δT ∗

2 − m2ET ∗

2

Virus: V̇ = (1 − ǫ2)NT δ(T ∗

1 + T ∗

2 ) − cV

−[(1 − ǫ1)ρ1k1T1 + (1 − fǫ1)ρ2k2T2]V

Immune effectors: Ė = λE +
bE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kb

E

−
dE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kd

E − δEE,

(1)

with specified initial values for T1, T2, T ∗

1 , T ∗

2 , V and E at time t = t0. This model
includes the key compartments observed in clinical data sets available to us: tar-
get cells (uninfected Ti and infected T ∗

i , cells/ml), free virus (V, copies/ml), and
immune response (CTL E, cells/ml), as well as the time dependent drug efficacies
ǫ1, ǫ2. The model describes two co-circulating populations of target cells, poten-
tially representing CD4+ T-lymphocytes (T1) and macrophages (T2). We omit
explanation of the source and death rates for these cell populations and rather fo-
cus our discussion on the interactions particularly relevant to drug treatment and
STI scenarios. We discuss the model in the context of its representations of three
methods for controlling infection: (1) reverse transcriptase inhibitors, (2) protease
inhibitors, and (3) host adaptive immune responses. For a more detailed discussion
of this model, see [7, 1].

The terms involving kiTiV represent the infection process wherein infected cells
T ∗

i result from encounters between uninfected target cells Ti and free virus V .
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The key difference between the two cell populations is in the infectivity rates k1

and k2, which could represent the difference in activation requirements for these
types of cells. The model admits the possibility of multiple (ρi) virions infecting
each target cell. In the infectivity terms, the drug efficacy ǫ1(t) models an RT
inhibitor that blocks new infections and is potentially more effective in population
1, (T1, T

∗

1 ), than in population 2, (T2, T
∗

2 ), where the efficacy is fǫ1(t). We consider
0 ≤ a1 ≤ ǫ1(t) ≤ b1 < 1, so a1 and b1 represent minimal and maximal drug efficacy,
respectively, and f ∈ [0, 1].

Both types of infected cells produce free virus particles. We assume that the
two types produce the same number, NT , of free viral particles during a typical Ti

cell life span. The control term ǫ2(t) represents the efficacy of protease inhibitors.
Thus, the productivity, NT , is reduced to (1−ǫ2)NT where 0 ≤ a2 ≤ ǫ2(t) ≤ b2 < 1.
We do not add a compartment to explicitly model the production of virus rendered
non-infectious by the PIs.

Finally, infected cells T ∗

i may be cleared by the action of immune effector cells
(cytotoxic T-lymphocytes, or CTLs), denoted by E. While the majority of the

model is adapted from [7], the dynamics for the immune response, given by the Ė
equation, are as suggested by Bonhoeffer, et al. [4]. The joint presence of infected
cells and existing immune effector cells stimulates the proliferation of additional
effector cells. In addition, the third term in the Ė equation represents immune
impairment at high virus load. CTL detect and lyse infected cells, thus killing
them, so their action is represented by the terms miET ∗

i (infected cells die at rate
miE, dependent on the density of immune effectors). Inclusion of immune effectors
reflects the belief that they have a crucial role in the context of STIs, and we will
later show treatment strategies that boost them to the point of immune control.

The mathematical model (1) contains many parameters that must be assigned
before numerical simulations can be carried out. In specifying model parameters, to
the greatest extent possible we employ values similar to those reported or justified
in the literature. The definitions and numerical values for the parameters are
summarized in Table 1 and are principally extracted from the Callaway-Perelson
[7] and Bonhoeffer, et al. [4] papers.

Our model choice is in part motivated by its admission of multiple stable steady
states or equilibrium points. This qualitative feature enables us to model more
accurately patients such as the “Berlin Patient” [18], who interrupted treatment
twice and then controlled viral infection without further need for drugs, or some
of those referenced by the extensive STI literature summary offered by Bajaria, et
al. [3], which points to examples in which some patients have developed immune
responses sufficient to control infection, whereas in others the virus rebounded and
again devastated the immune system. For example, in a study of HAART discon-
tinuation [22], three of six patients successfully suppressed plasma virus for four to
more than twenty-four months after stopping treatment. These patients exhibited
comprehensive and strong HIV-specific immune responses, which are believed re-
sponsible for containment of the infection. Other patients failed to contain virus at
all. Rosenberg, et al. reported on eight subjects in an interruption study [23]. Five
of the eight subjects remained off therapy, maintaining viral loads of less than 500
copies/mL for five to nine months. These subjects exhibited increased CTL and
T-helper cell responses. When studying the STI scenario, the mathematical model
for HIV infection used must be able to represent these different outcomes.
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Par. Value Units Description

λ1 10,000 cells
mL·day

target cell type 1 production (source) rate

d1 0.01∗∗ 1

day
target cell type 1 death rate

ǫ1 ∈ [0, 1) – efficacy of reverse transcriptase inhibitor
ǫ2 ∈ [0, 1) – efficacy of protease inhibitor
k1 8.0 × 10−7 mL

virions·day
population 1 infection rate

λ2 31.98 cells
mL·day

target cell type 2 production (source) rate

d2 0.01∗∗ 1

day
target cell type 2 death rate

f 0.34 (∈ [0, 1]) – treatment efficacy reduction in population 2
k2 1 × 10−4 mL

virions·day
population 2 infection rate

δ 0.7∗ 1

day
infected cell death rate

m1 1.0 × 10−5 mL
cells·day

immune-induced clearance rate for population 1

m2 1.0 × 10−5 mL
cells·day

immune-induced clearance rate for population 2

NT 100∗ virions
cell

virions produced per infected cell
c 13∗ 1

day
virus natural death rate

ρ1 1 virions

cell
average number virions infecting a type 1 cell

ρ2 1 virions
cell

average number virions infecting a type 2 cell

λE 1 cells
mL·day

immune effector production (source) rate

bE 0.3 1

day
maximum birth rate for immune effectors

Kb 100 cells
mL

saturation constant for immune effector birth
dE 0.25 1

day
maximum death rate for immune effectors

Kd 500 cells

mL
saturation constant for immune effector death

δE 0.1∗ 1

day
natural death rate for immune effectors

Table 1. Parameters used in model (1). Those in the top sec-
tion of the table are taken directly from Callaway and Perelson.
Parameters in the bottom section of the table are adapted from
those in Bonhoeffer, et al. The superscript ∗ denotes parameters
the authors indicated were estimated from human data, and ∗∗

denotes those estimated from Macaque data.

Other authors have considered similar mathematical models with the use of STI
to transfer the system between locally stable equilibria or steady states represent-
ing “unhealthy” (high viral setpoint, small immune responses) versus “healthy”
endpoints for the patient. Bonhoeffer, et al. [4] explore a model including unin-
fected target cells, actively and latently infected target cells, and immune response.
They provide qualitative analysis including conditions on the model equilibria that
will produce each of the two possible outcomes. Wodarz and Nowak [26] analyze
a model with compartments for uninfected and infected T cells and cytotoxic T
lymphocyte precursors (memory) and effector immune cells. They include analytic
expressions for the possible model steady states as well as analytic conditions on
the model parameters that indicate which of the equilibria will be stable.

A general analytical analysis of our model (1)’s steady states and their local sta-
bility is challenging because of the form and number of the nonlinearities. However
we are still interested the model’s ability to exhibit multiple locally asymptotically
stable steady states, so we calculate the steady states and perform a standard lin-
earization and eigenvalue analysis of the model, given the numerical values of the
parameters specified above.
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Letting x = (T1, T2, T
∗

1 , T ∗

2 , V, E) denote the vector of model states, we may
represent the model (1) as

dx(t)

dt
= f(t, x; q), (2)

where f(t, x; q) is the right side of the ODE system and q is the vector of model
parameters listed in Table 1. Given the parameter values in Table 1, we invoke
Maple to solve f(t, x; q) = 0 for the steady states (equilibria) x̄k. We next calculate
the Jacobian matrix (matrix of partial derivatives of the right sides of the differential
equations with respect to the state variables):

∂f(t, x; q)

∂x
=

[

∂fi(t, x; q)

∂xj

]

of the ODE system. We set ǫ1 = ǫ2 = 0, since we are interested in stability for the
off-treatment steady state values. The Jacobian matrix is
















−d1 − k1V 0 0 0 −k1T1 0
0 −d2 − k2V 0 0 −k2T2 0

k1V 0 −δ − m1E 0 k1T1 −m1T
∗

1

0 k2V 0 −δ − m2E k2T2 −m2T
∗

2

−ρ1k1V −ρ2k2V NT δ NT δ −c − ρ1k1T1 − ρ2k2T2 0
0 0 A6,3 A6,4 0 A6,6

















,

where

A6,3 = A6,4 =
bEKbE

(T ∗

1 + T ∗

2 + Kb)
2 −

dEKdE

(T ∗

1 + T ∗

2 + Kd)
2 ,

and

A6,6 =

(

bE

T ∗

1 + T ∗

2 + Kb

−
dE

T ∗

1 + T ∗

2 + Kd

)

(T ∗

1 + T ∗

2 ) − δE .

Substituting a computed steady state x̄k for x in this Jacobian matrix, we obtain
the ODE system dynamics linearized about the equilibrium x̄k. Linear ODE theory
guarantees that if the eigenvalues of this matrix all have negative real parts, the
equilibrium x̄k is locally asymptotically stable.

Given the specified parameters, the model (1) exhibits three physical steady
states and several non physical steady states (omitted here) of which one or more
state variables are negative. There is a locally unstable equilibrium

T1 = 1000000, T2 = 3198, T ∗

1 = 0, T ∗

2 = 0, V = 0, E = 10,

which represents an uninfected patient, as well as two locally stable equilibria for
an infected patient in the absence of treatment. These stable steady states are as
follows:

“unhealthy”: T1 = 163573, T2 = 5, T ∗

1 = 11945, T ∗

2 = 46, V = 63919, E = 24;

“healthy”: T1 = 967839, T2 = 621, T ∗

1 = 76, T ∗

2 = 6, V = 415, E = 353108.

Here the “unhealthy” steady state corresponds to a dangerously high viral set point,
depleted T-cells, and minimal immune response, whereas the “healthy” steady state
represents immune control of the viral infection and restoration of T-cell help. Our
current work includes consideration of optimal strategies for effecting a transfer
between these steady states.

The existence and local stability of these equilibria (and indeed the size of their
domains of attraction) of course depend on the values of the parameters chosen.
Across a population, the parameter values will vary to represent different host
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factors and host-virus interaction rates. For example, the infectivity rates k1 and
k2 are crucial determinants of the viral load set point. If they are reduced to
10% of their values in the table, the only stable equilibria are those corresponding
to the uninfected scenario (that is, clearance of the virus) and one nonphysical
steady state. If host immune responsiveness to infection is increased only by setting
bE = 0.4, the lone stable steady state is

T1 = 983080, T2 = 1015, T1s = 38, T2s = 5, V = 215, E = 377553,

and the immune system controls the persistent viral infection without further treat-
ment. Lori, et al. [19] describe variation across patients in length of time until and
strength of viral rebound when studying patients with STI. The dependence of the
model behavior on crucial parameters and their subsequent estimation for individ-
uals may help us predict not only these variations and those in the studies cited
above, but also the expected responses to a specific treatment protocol.

In summary, the discussions above and subsequent results in this paper pro-
vide support for the following plausible scenario (depicted in Fig. 1) with respect
to the response (and its variability across patients) of HIV patients to treatment
protocols. Patients may possess multiple locally asymptotically stable equilibrium
states Ei(q), which depend on individual patient parameter values q. The corre-
sponding regions or domains of attraction Ni(q) for these equilibria also depend on
the individual patient’s parameter values. When undergoing treatment (HAART),
whether continuous or STI, the patient’s system may be moved from one domain
of attraction to another. Since the regions of attraction (as well as the rates of at-
traction) vary across populations (the inter-individual variability mentioned above
for existence and stability of equilibria), the same treatment protocol may very well
produce different outcomes (for example, strength of and length of time until viral
rebound after treatment discontinuation) in different patients.

N  (q)2

����

E  (q)2

���
���
���
���

���
���
���
���

N  (q)1

��
��
��
��E  (q)1

��
��
��

��
��
��

Figure 1. E1(q): “unhealthy” locally asymptotically stable equi-
librium point with its domain of attraction N1(q); E2(q): “healthy”
locally asymptotically stable equilibrium point with its domain of
attraction N2(q); (- - -) uncontrolled trajectory; (—) controlled
trajectory.

A type of intra-individual variability (perhaps a misnomer here) may also play a
role since the equilibria (and their regions of attraction) may depend on latent or
unmodeled parameters that change within the patient with respect to time or state
of health. This may manifest itself in the perceived variability of both critical time
for initiation of HAART and patient response to discontinuation. Model simula-
tions as well as analytical studies can assist in conceptual understanding of such
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phenomena where clinical and experimental investigations exploring these issues
are often difficult if not impossible to pursue.

3. Control formulation. Together with the mathematical model described by
equation (1) for HIV dynamics, we consider a control problem with the objective
function given by

J(ǫ1, ǫ2) =

∫ t1

t0

[QV (t) + R1ǫ
2
1(t) + R2ǫ

2
2(t) − SE(t)] dt, (3)

where ǫ1 and ǫ2 are the control variables representing RT inhibitors and PIs, re-
spectively. The parameters Q, R1, R2 and S are weight constants for the virus,
controls inputs, and immune effectors, respectively. The second and third terms in
(3) represent systemic costs of the drug treatments (that is, severity of unintended
side effects as well as treatment cost). The case when ǫ1(t) = b1 represents maximal
use of RT inhibitors and ǫ2(t) = b2 represents maximal use of protease inhibitors.
The objective function (3) expresses our goal to minimize both the HIV population
and systemic costs to body while maximizing immune response. Therefore, we seek
an optimal control pair (ǫ∗1, ǫ

∗

2) such that

J(ǫ∗1, ǫ
∗

2) = min{J(ǫ1, ǫ2)|(ǫ1, ǫ2) ∈ U}

subject to the system of ODEs (1) and where U = {(ǫ1, ǫ2)| ǫi is measurable, ai ≤
ǫi ≤ bi, t ∈ [t0, t1], for i = 1, 2} is the control set.

A number of researchers have used a control theoretic approach to formulate
and study dynamic drug therapies for HIV-infected individuals. However, these
investigators based their studies on other types of mathematical models for HIV
dynamics and/or on different objective functionals. For example, the studies in
[6, 8, 14] for optimal control of the chemotherapy of HIV used an objective func-
tion based on a combination of maximizing CD4+ T cell counts while minimizing
the systemic cost of chemotherapy. Joshi [11] considered two different treatment
strategies (controls) in a mathematical model consisting of only two states: unin-
fected CD4+ T cells and viral loads. His controls represent immune boosting and
viral suppressing drugs. Another deterministic control problem, proposed by Wein
et al. [25], is based on a finite number of virus strains and allows mutations from
one strain to another. Because of the high dimensionality of the control problem,
the authors resort to an approximate method, which employs perturbation meth-
ods in conjunction with ideas from dynamic programming to derive a closed form
dynamic therapeutic policy. Using numerical simulations, they demonstrated a
dynamic strategy that reduces the total free virus, increases the uninfected CD4+

count, and delays the emergence of drug-resistant strains. A similar study by Kutch
and Gurfil [16] involves optimal control of HIV infection to derive an optimal drug
administration scheme that may be useful in increasing patient health by delaying
the emergence of drug-resistant mutant viral strains. Feedback control in HIV-1
populations is explored in [5]. There the authors considered several methods of
stable control of the HIV population using an external feedback control term that
is analogous to the introduction of a therapeutic drug regimen. The feedback con-
trol, based on periodic sampling of viral load and lymphocyte counts, uses a target
tracking approach. Using this regimen design, they showed that once the virus is
controlled to very low levels the drug dosage can be reduced proportionately. Under
such circumstances, side effects of therapy may also be mitigated.
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Here we use an open loop control formulation to treat both continuous and STI
control of the system (1) with the cost functional (3).

3.1. The optimality system. We begin this section by noting that the existence
of an optimal control pair can be obtained using a result from Fleming and Rishel
[9]. That is, it is rather straightforward to show that the right sides of the equation
(1) are bounded by a linear function of the state and control variables and that
the integrand of the objective function (3) is concave on U and is bounded below.
These bounds give one the compactness needed to establish existence of the optimal
controls using standard arguments given in [9].

We now proceed to compute candidates for optimal controls. To this end, we
apply the Pontryagin Minimum Principle and begin by defining the Lagrangian
(which is the Hamiltonian augmented with penalty terms for the constraints) to
be:

L(T1, T2, T
∗

1 , T ∗

2 , V, E, ǫ1, ǫ2, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

= QV + R1ǫ
2
1 + R2ǫ

2
2 − SE + ξ1

(

λ1 − d1T1 − (1 − ǫ1)k1V T1

)

+ξ2

(

λ2 − d2T2 − (1 − fǫ1)k2V T2

)

+ξ3

(

(1 − ǫ1)k1V T1 − δT ∗

1 − m1ET ∗

1

)

+ξ4

(

(1 − fǫ1)k2V T2 − δT ∗

2 − m2ET ∗

2

)

+ξ5

(

(1 − ǫ2)NT δ(T ∗

1 + T ∗

2 ) − cV

−[(1 − ǫ1)ρ1k1T1 + (1 − fǫ1)ρ2k2T2]V
)

+ξ6

(

λE +
bE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kb

E −
dE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kd

E − δEE
)

−w11(ǫ1 − a1) − w12(b1 − ǫ1)
−w21(ǫ2 − a2) − w22(b2 − ǫ2),

(4)

where wij(t) ≥ 0 are the penalty multipliers satisfying

w11(t)(ǫ1(t) − a1) = w12(t)(b1 − ǫ1(t)) = 0 at ǫ1 = ǫ∗1

and

w21(t)(ǫ2(t) − a2) = w22(t)(b2 − ǫ2(t)) = 0 at ǫ2 = ǫ∗2.

Here (ǫ∗1, ǫ
∗

2) is the optimal control pair yet to be found. Differentiating the La-
grangian with respect to state variables, T1, T2, T ∗

1 , T ∗

2 , V, and E, respectively, we
obtain the following equations for the adjoint variables ξi :

ξ̇1 = −
∂L

∂T1
, ξ̇2 = −

∂L

∂T2
, ξ̇3 = −

∂L

∂T ∗

1

, ξ̇4 = −
∂L

∂T ∗

2

, ξ̇5 = −
∂L

∂V
and ξ̇6 = −

∂L

∂E
.
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Using the Lagrangian expression (4), we can obtain in a rather straightforward
manner the adjoint differential equations

ξ̇1 = −
{

ξ1[−d1 − (1 − ǫ1)k1V ] + ξ3(1 − ǫ1)k1V − ξ5(1 − ǫ1)ρ1k1V
}

ξ̇2 = −
{

ξ2[−d2 − (1 − fǫ1)k2V ] + ξ4(1 − fǫ1)k2V − ξ5(1 − fǫ1)ρ2k2V
}

ξ̇3 = −
{

ξ3(−δ − m1E) + ξ5(1 − ǫ2)NT δ

+ξ6

( bEEKb

(T ∗

1 + T ∗

2 + Kb)2
−

dEEKd

(T ∗

1 + T ∗

2 + Kd)2

)}

ξ̇4 = −
{

ξ4(−δ − m2E) + ξ5(1 − ǫ2)NT δ

+ξ6

( bEEKb

(T ∗

1 + T ∗

2 + Kb)2
−

dEEKd

(T ∗

1 + T ∗

2 + Kd)2

)}

ξ̇5 = −
{

Q − ξ1(1 − ǫ1)k1T1 − ξ2(1 − fǫ1)k2T2 + ξ3(1 − ǫ1)k1T1

+ξ4(1 − fǫ1)k2T2 + ξ5

(

− c − (1 − ǫ1)ρ1k1T1 − (1 − fǫ1)ρ2k2T2

)}

ξ̇6 = −
{

− S − ξ3m1T
∗

1 − ξ4m2T
∗

2

+ξ6

( bE(T ∗

1 + T ∗

2 )

T ∗

1 + T ∗

2 + Kb

−
dE(T ∗

1 + T ∗

2 )

T ∗

1 + T ∗

2 + Kd

− δE

)}

and ξi(t1) = 0 for i = 1, · · · , 6.

(5)

Next, we may differentiate the Lagrangian L with respect to ǫ1 to obtain

∂L

∂ǫ1
= 2R1ǫ1 + (ξ1 − ξ3 + ρ1ξ5)k1V T1 + (ξ2 − ξ4 + ρ2ξ5)fk2V T2 − w11 + w12 = 0.

Solving for the optimal control we obtain

ǫ∗1 =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2 + w11 − w12

2R1
.

To determine an explicit expression for the optimal control without w11 and w12,
we consider the following three cases:

(i) On the set {t|a1 < ǫ∗1(t) < b1}, we have w11(t) = w12(t) = 0. Hence the
optimal control is

ǫ∗1 =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R1
.

(ii) On the set {t| ǫ∗1(t) = b1}, we have w11(t) = 0. Hence

b1 = ǫ∗1 =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2 − w12

2R1
,

which implies that

−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R1
≥ b1

since w12(t) ≥ 0.
(iii) On the set {t| ǫ∗1(t) = a1}, we have w12(t) = 0. Hence

a1 = ǫ∗1 =
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2 + w11

2R1
,

which implies that

−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R1
≤ a1



DYNAMIC MULTIDRUG THERAPIES FOR HIV 233

since w11(t) ≥ 0.

Combining these three cases, the optimal control ǫ1 is characterized as

ǫ∗1 = max
(

a1,min
(

b1,
−(ξ1 − ξ3 + ρ1ξ5)k1V T1 − (ξ2 − ξ4 + ρ2ξ5)fk2V T2

2R1

))

. (6)

Using similar arguments, we also obtain the following expression for the second
optimal control function

ǫ∗2 = max
(

a2,min
(

b2,
ξ5NT δ(T ∗

1 + T ∗

2 )

2R2

))

. (7)

The optimality system consists of the state system (1) coupled with the adjoint
system (5) with the initial conditions and terminal conditions together with the
expressions (6) and (7) for the control functions.

4. Numerical results: Continuous optimal therapy. We point out that (as is
standard in such formulations) initial conditions are specified for the state system
(1), whereas terminal conditions are specified for the adjoint system (5). There-
fore the optimality system is a two-point boundary value problem, which we solve
numerically using a gradient method. The state system with initial conditions is
solved forward in time using initial guesses for the controls and then the adjoint
system with terminal conditions is solved backward in time. The controls are up-
dated in each iteration using the formulas (6) and (7) for optimal controls. The
iterations continue until convergence is achieved. For further discussion of this iter-
ative method, we refer the interested reader to [10]. The parameters used in solving
the optimality system are those summarized in Table 1. Treatment was simulated
for 400 days.

We simulate early infection by perturbing the “uninfected” unstable steady state,
introducing one virus particle per ml of blood plasma and very low levels of infected
T-cells. That is, we take initial conditions T1(0) = 106, T2(0) = 3198, T ∗

1 (0) =
10−4, T ∗

2 (0) = 10−4, V (0) = 1 and E(0) = 10. We bound drug efficacies by a1 = 0,
a2 = 0, b1 = 0.7 and b2 = 0.3. Since the magnitudes of the virus population, drug
treatment functions, and immune effector population in the objective function (3)
are on different scales, we balance them by choosing weighting values Q = 0.1,
R1 = 20000, R2 = 20000, and S = 1000.

The optimal control function pair is depicted in Fig. 2. We determine the system
behavior under this regimen by simulating the state equations (1). These optimal
solutions, together with non-optimal solutions corresponding to no drug treatments
(that is, ǫ1 = ǫ2 ≡ 0) and with fully efficacious persistent treatment using both RT
inhibitors and protease inhibitors (that is, ǫ1 ≡ 0.7 and ǫ2 ≡ 0.3), are presented in
Fig. 3 for comparison.

As depicted in Fig. 2, the shapes of the two control functions are nearly identical.
Perhaps the most intriguing observation from this figure is the STI-like character-
istics of the optimal dynamic therapies. In particular, both drugs taper off around
the thirtieth, one hundredth, two hundredth, and three hundredth days. Conse-
quently, the virus (V ) and infected target cells (T ∗

1 and T ∗

2 ) counts are relatively
high around those days (Fig. 3). This high virus load, in turn, stimulates the
immune effectors (E) to boost immune responses.

From Fig. 3, we observe that the population of uninfected T1 cells corresponding
to the optimal control pair approaches the population of uninfected T1 cells with
full treatment of both drugs at the end of the time period. Moreover, the virus
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Figure 2. Optimal control pair with Q = 0.1, R1 = 20000, R2 =
20000, and S = 1000. The label ǫ1 represents RT inhibitors, and
ǫ2 represents protease inhibitors.

load with the optimal control pair is maintained at low levels except at the one
hundredth, two hundredth, and three hundredth days and is even smaller at the
four hundredth day due to the high immune effectors (E). This happens even
though both optimal control functions are very close to zero at the four hundredth
day.

Indeed, our initial numerical results are very promising. They show the potential
to design optimal therapeutic options that minimize the total viral load, increase
the uninfected CD4+-T cell counts, and boost immune response while allowing
patients very brief drug holidays. However, optimal continuous therapy is not
practical since in a clinical setting treatment can only be altered at intervals. In
the next section, we derive optimal HIV therapeutic strategies that provide clinical
benefits similar to those of the continuous treatment while allowing for supervised,
or structured, treatment interruption.

5. Optimal STI therapies. In this section we consider optimal control of viral
load through drug structured treatment interruptions (STIs). More precisely, we
consider optimal STI control to determine the best schedules in which patients are
put on and off therapy over predefined periods of time.

Here we assume the (time discretized) controls ǫ1 and ǫ2 have vector forms (that
is, are discrete resulting from being either on or off each day) and consist of only 0
or bi in each component. If a component of a control vector is 0, it indicates drug
treatment is off on that day and if it is bi, it indicates full drug treatment is on.
Since we consider a drug treatment strategy over 900 days, the size of each control
vector is 1 × 900. The set of all such control vectors is denoted by Λ. The goal is
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Figure 3. Optimal solutions (−); solutions (−−) with fully effi-
cacious treatment of both drugs (i.e., ǫ1 ≡ 0.7 and ǫ2 ≡ 0.3); and
solutions (−·) with no treatments of both drugs (i.e., ǫ1 = ǫ2 ≡ 0)
of early infection: Q = 0.1, R1 = 20000, R2 = 20000, and S =
1000.

to seek the optimal control vector pair (ǫ∗1,ǫ
∗

2) satisfying

min
ǫ1,ǫ2∈Λ

J(ǫ1, ǫ2) = J(ǫ∗1, ǫ
∗

2)

subject to the state system (1) and where J(ǫ1, ǫ2) is defined by (3).
Since the number of elements of the set Λ is finite, the existence of an optimal

control vector pair is guaranteed. We could use a crude direct search approach [1]
involving simple comparisons to find the optimal STI control pair. That is, we could
begin by selecting any pair from the set Λ and then solving the state system using
this pair as controls. We would next select another pair from the set Λ and again
solve the state system using the pair as controls. Upon comparing the values of
objective functional J , we select the control pair corresponding to the smaller cost
functional value. If we iterate this strategy over all possible pairs from the set Λ, we
obtain the optimal control vector pair, ǫ∗1 and ǫ∗2. However, this strategy to obtain
the optimal STI control pair leads to a large number of cost functional evaluations
and hence a large number of solutions to the state system (1). In our example, the
number of cost functional evaluations would be (2900)2 since each control vector is
a 1 × 900 vector. This makes this approach computationally infeasible.

Seeking therefore to reduce the number of iterations, we consider several ideas
to accomplish this goal. One is to consider five-day segments instead of one-day
segments as above. This is more reasonable from a practical point of view since it
is not clinically feasible for drug strategies to allow change with a daily frequency.
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Figure 4. Optimal STI control pair in early infection. The label
ǫ1 represents RT inhibitors and ǫ2 represents protease inhibitors.

For five-day segments, the size of each control vector is reduced to 1 × 180 from
1 × 900. However the reduced number of iterations is (2180)2, which is still quite
large.

One approach to further alleviate this computational burden is to consider sub-
periods of the given period such as [0, 30], [0, 60], [0, 90], [0, 120], · · · , [0, 900].
This approach, which is similar to the underlying idea for dynamic programming,
is discussed and used in [1], where only single drug therapies are considered. We
shall refer to this simply as the “subperiod method.” In this method, we find an
optimal STI control pair, (ǫ∗1,1, ǫ∗1,2), over the first subperiod, [0, 30], using the
reduced iteration technique (five-day segments) as above. Since the size of ǫ∗1,1

and ǫ∗1,2 is 1 × 6 (for five-day segments over thirty days), optimal solutions can be

obtained very quickly (with only (26)2 = 4096 iterations). In the second step, we
consider our control vectors over the period [0, 60] as follows:

ǫ2,1 = [ǫ∗1,1, ⋆, ⋆, ⋆, ⋆, ⋆, ⋆] and ǫ2,2 = [ǫ∗1,2, ⋆, ⋆, ⋆, ⋆, ⋆, ⋆]

where ⋆ is 0 or bi. That is, we fix the [0, 30] optimal STI pair, ǫ∗1,1 and ǫ∗1,2 , as the
first six elements of the controls, ǫ2,1 and ǫ2,2, respectively, and iterate ǫ2,1 and ǫ2,2

to find the last six elements of each control that make an “optimal” STI control
pair, (ǫ∗2,1, ǫ∗2,2), over the period [0, 60]. In this case, the number of iterations is

also just (26)2 = 4096, so we can obtain it quickly. We repeat this process to find
an “optimal” STI control pair, (ǫ∗3,1, ǫ∗3,2), over [0, 90], (ǫ∗4,1, ǫ∗4,2), over [0, 120], and
so on. The STI control pair obtained over the whole period [0, 900] is ǫ∗1 = ǫ∗30,1

and ǫ∗2 = ǫ∗30,2. It should be emphasized that the STI control pair, ǫ∗1 and ǫ∗2, is now
only suboptimal. However, we observed in [1], where only single drug therapies were
considered, that this subperiod approach yielded a suboptimal STI therapy that
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Figure 5. STI control solutions (−), solutions (−·) with no treat-
ments of both drugs (ǫ1 = ǫ2 ≡ 0), solutions (−−) with fully
efficacious treatment of both drugs (ǫ1 ≡ 0.7 and ǫ2 ≡ 0.3) in
early infection over the period [0, 900]. Q = 0.1, R1 = 20000,
R2 = 20000, and S = 1000.

produces results that are reasonable approximations to those for a fully efficacious
continuous therapy as well as to those for an optimal STI therapy in some examples.

We again simulate early infection by introducing one virus particle per ml
of blood plasma; that is, T1(0) = 106, T2(0) = 3198, T ∗

1 (0) = 10−4, T ∗

2 (0) =
10−4, V (0) = 1 and E(0) = 10. And we also use a1 = 0, a2 = 0, b1 = 0.7
and b2 = 0.3. Using the subperiod method, a suboptimal STI control pair and
associated solutions are depicted in Fig. 4 and Fig. 5, respectively. We note that
PI therapy is interrupted more than RT inhibitors, especially between the three
hundredth day and the five hundredth day. Notable features include that the virus
load remains less than 103 and the population of uninfected T1 cells recovers from
the effects of HIV after around the six hundredth day even though both drugs are
discontinued at that time. This is due to a very strong immune response. We
notice that both drugs are interrupted around the fiftieth and three hundredth
days. These interruptions cause extremely high virus load, and, in turn, lead to
more infected T ∗

1 and T ∗

2 cells at those times. Immune response is thus stimulated
and augmented particularly through these interruptions. This is a good example
of moving a patient from an early infected state to a healthy state of immune con-
trol. The interplay of the viral load and immune response in the model reflects the
immune stimulation described in the treatment interruption literature discussed in
the introduction.
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We turn next to an example of moving between the model’s two stable equilibria
as discussed in earlier sections. In other words, control functions can be found that
move an HIV-infected individual between the steady states, rather than from the
infected initial condition. We consider using the “unhealthy” stable equilibrium as
the initial condition for model (1) over the time interval [0, 750] (that is, T1(0) =
163573, T2(0) = 5, T ∗

1 (0) = 11945, T ∗

2 (0) = 46, V (0) = 63919 and E(0) = 24) in
order to demonstrate that an “unhealthy” stable equilibrium can be moved to a
“healthy” stable equilibrium via a suboptimal STI. The suboptimal STI control pair
and its associated solutions are depicted in Fig. 6 and Fig. 7, respectively. The
phase plane diagram displaying virus versus immune effectors is shown in Fig. 8. We
see that the populations of virus and immune effectors are shifted from “unhealthy,”
which exhibits high virus and low immune effectors, to “healthy,” which has low
virus and high immune effectors. Indeed using the control theory paradigm in an
HIV-therapeutic setting, our modeling efforts clearly suggest the possibility that
STI used in an optimal way will lead to immune boosting and subsequent control
of viral load without the need for drugs. So in addition to predicting the dynamics
and outcomes of patients like the “Berlin patient” mentioned above, we can derive
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Figure 6. Optimal STI control pair over the time interval [0, 750].
The label ǫ1 represents RT inhibitors and ǫ2 represents protease in-
hibitors. Simulation results are obtained using the initial condition
T1(0) = 163573, T2(0) = 5, T ∗

1 (0) = 11945, T ∗

2 (0) = 46, V (0) =
63919, and E(0) = 24.
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Figure 7. STI control solutions (−), solutions (−·)with no treat-
ments of both drugs (ǫ1 = ǫ2 ≡ 0), solutions (−−) with fully effi-
cacious treatment of both drugs (ǫ1 ≡ 0.7 and ǫ2 ≡ 0.3) over the
period [0, 750]. The initial condition is T1(0) = 163573, T2(0) =
5, T ∗

1 (0) = 11945, T ∗

2 (0) = 46, V (0) = 63919, and E(0) = 24.
Q = 0.1, R1 = 20000, R2 = 20000, and S = 1000.

optimal (or suboptimal) schemes to leverage immune responses in achieving similar
desired outcomes.

6. Concluding remarks. We have formulated a dynamic model with compart-
ments including target cells, infected cells, virus, and immune response that is
subject to multiple (RT inhibitor- and PI-like) drug treatments as control inputs.
For certain ranges of the parameters, the uncontrolled model possesses multiple
locally asymptotically stable steady states. We then applied techniques and ideas
from open loop control theory and dynamic programming to derive continuous and
suboptimal STI therapy protocols. In particular, we used the “subperiod method”
introduced in [1] for therapies involving a single drug to develop results for drug
“cocktails.” We have demonstrated that one can use the resulting suboptimal STI
strategies to move the model system from an “unhealthy” locally stable region of
attraction to a similar “healthy” one in which the immune response is dominant
in controlling the viral levels. This illustrates one possible scenario by which STI
therapies could lead to long-term control of HIV after discontinuation of therapy.
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