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Abstract. The purpose of this note is to mechanistically formulate a math-
ematically tractable model that specifically deals with the dynamics of plant-
herbivore interaction in a closed phosphorus (P)-limiting environment. The

key to our approach is the employment of the plant cell P quota and the Droop
equation for its growth. Our model takes the simple form of a system of two

autonomous ordinary differential equations. It can be shown that our model
includes the LKE model (Loladze, Kuang and Elser (2000)) as a special case.
Our study reveals that the details of ecological stoichiometry models really

matter for quantitative predictions of plant-herbivore dynamics, especially at
intermediate ranges of the carrying capacity.

1. Introduction. All organisms are composed of chemical elements such as car-
bon, nitrogen, and phosphorus. Although the relative abundance of these chemical
constituents is known to vary considerably among species and across trophic levels,
most ecological studies have until very recently ignored the sources and conse-
quences of this chemical heterogeneity. From theoretical perspectives, Lotka (1925)
and other early workers highlighted potential complications raised by having multi-
ple currencies in ecological dynamics, but most subsequent work has focused instead
on the dynamic implications of single currency (e.g., energy or carbon) models.
However, rapidly accumulating evidence suggests that the dynamic implications of
chemical heterogeneity among species deserve much more study than the subject
has yet received. This body of research, which is to date chiefly empirical in nature,
places major emphasis on the consequences of chemical heterogeneity among species
for consumer-resource dynamics and nutrient recycling in ecosystems. Such multi-
ple currency considerations enable simultaneous assessment of both food quantity
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and food quality. We refer to this approach as “ecological stoichiometry” (Elser et
al. 2000, Sterner and Elser 2002).

To complement and take advantage of the fast-growing empirical study of eco-
logical stoichiometry, a variety of stoichiometry-based population models have been
proposed and studied in recent years. These models vary from simple phenomeno-
logical two-dimensional resource-consumer models to more mechanistically formu-
lated systems consisting of dozens of ordinary differential equations. Simple phe-
nomenological two-dimensional resource-consumer models such as that of Loladze et
al. (2000, 2004) are mathematically tractable but lack convincing mechanistic basis
on the resource dynamics. In contrast, the more mechanistic but complex model
of Kooijman (2000) is mathematically intractable. Other models, such as those of
Andersen (1997) and Grover (2002), are of intermediate complexity and deal with
specific settings such as an open environment or assume that the stoichiometries
of all species are constant. In all these models, plant-herbivore interactions may
shift from a (+,−) type to an unusual (−,−) class. This leads to dynamics with
multiple equilibria, where bistability and deterministic extinction of the herbivore
are possible. The most noteworthy dynamics is the birth of bistability as a result of
large values of the carrying capacity (K), which divides the plant-herbivore phase
plane into two regions: one region with low-density but good-quality plants that
sustain high-densities of herbivores, the other region with high density but low-
quality plants that can sustain only low densities of herbivores(Loladze et al. 2000;
see also Van de Koppel et al. 1996). In general, expressing plant-herbivore in-
teractions in stoichiometrically realistic terms reveals qualitatively new dynamical
behavior.

The purpose of this note is to formulate a simple, mathematically tractable model
that provides a more mechanistic interpretation of the dynamics of plant-herbivore
interactions in a phosphorus (P)-limited environment. The key to our approach
is the employment of variability in the P content of the plants, using the Droop
equation for the plant’s growth. Our model takes the simple form of a system of
two autonomous ordinary differential equations. It can be shown that the model of
Loladze, Kuang, and Elser (2000), which we shall henceforth call the LKE model,
is simply a special case of our model.

To aid our model formulation and its comparison with the LKE model, it is
convenient to recall here the main LKE model assumptions. They are

A1. The total mass of phosphorus Pt in the entire system is fixed; i.e., the system
is closed for phosphorus.

A2. Phosphorus to carbon ratio (P :C) in the plant varies, but it never falls
below a minimum q (mg P/mg C); the herbivore maintains a constant P:C ratio,
denoted by θ (mg P/mg C).

A3. All phosphorus in the system is divided into two pools: phosphorus in the
herbivore and phosphorus in the plant.

Assumption (A3) essentially assumes that free phosphorus is immediately taken
by the plant. The LKE model takes the relatively simple form

dx

dt
= bx

(

1 −
x

min(K, (Pt − θy)/q)

)

− f(x)y,

dy

dt
= emin

(

1,
(Pt − θy)/x

θ

)

f(x)y − dy.
(LKE model)

where
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x is the density of plant (in milligrams of carbon per liter, mg C/l);
y is the density of herbivore (mg C/l);
b is the intrinsic growth rate of plant (day−1);
d is the specific loss rate of herbivore that includes metabolic losses (respiration)

and death (day−1);
e is a constant production efficiency (yield constant);
K is the plant’s constant carrying capacity that depends on some external factors

such as light intensity;
f(x) is the herbivore’s ingestion rate, which may be a Holling type II functional

response.
Note that

bx

(

1 −
x

min(K, (P − θy)/q)

)

= bxmin

(

1 −
x

K
, 1 −

x

(P − θy)/q

)

and

bx

(

1 −
x

(P − θy) /q

)

= bx

(

1 −
q

(P − θy) /x

)

. (1.1)

The left-hand side of (1.1) is a logistic equation, where (P −θy)/q is the carrying
capacity of the plant determined by phosphorus availability. The right-hand side
shows that it can be viewed as Droop’s equation (Droop 1973), where q is the
minimal phosphorus content of the plant and (P − θy)/x is its actual phosphorus
content.

2. Model formulation. Because our main purpose is to derive a mathematically
tractable stoichiometry-based plant-herbivore model in a closed environment, we
assume that the total amount of phosphorus in the system, Pt remains constant.
This is equivalent to assumption (A1) of the LKE model. We consider first that
only phosphorus (P) is limiting the growth of both plants and herbivores. Later, we
add the possibility that a second factor (such as carbon) limits their growth. Since
the stoichiometry of herbivores is relatively stable compared to the stoichiometry
of plants, we assume that the P:C ratio of the herbivore is a constant θ, as in
assumption (A2) of the LKE model. However, in the following, we will not assume
(A3), which is rather restrictive and not necessary for our model formulation.

If we let Pp, Pz and Pf be the phosphorus in plant, phosphorus in herbivore, and
the free phosphorus respectively, then Pt = Pp +Pz +Pf . Let x = x(t) be the plant
density, y = y(t) be the herbivore density, and Q = Q(t) be the plant’s cell quota
for P ; then Pp = Qx and Pz = θy. Hence

Pt = Pf + Qx + θy. (2.2)

In the following, we let q be the plant’s minimal cell quota for P , µm be the
plant’s true maximal growth rate, D be its death rate, and f(x) be the herbivore’s
ingestion rate (functional response). We use a variable-internal-stores model based
on the Droop equation that relates growth rate to the internal cell quota (Droop,
1973, 1974). This approach has been systematically studied by Grover (1991, 1997)
in the context of plant competition and used by many others (Andersen (1997),
Ducobu et al. (1998)). We then have the following equation for the plant growth:

dx

dt
= µm

(

1 −
q

Q

)

x − Dx − f(x)y. (2.3)

Following the notation of Loladze et al. (2000), we let e be the herbivore’s yield
constant, which measures the conversion rate of ingested plant into its own biomass
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when the plants are P rich (when Q ≥ θ), and d be the specific loss rate of herbivore
that includes metabolic losses and death. If the plants are P poor (when Q < θ),
then the conversion rate suffers a reduction, and it becomes eQ/θ. This approach
follows the Liebig’s (1840) minimum principle and is used in Loladze et al.’s (2000)
model formulation. We have the following growth equation for herbivore:

dy

dt
= emin

(

1,
Q

θ

)

f(x)y − dy. (2.4)

Finally, we need an equation governing the dynamics of Q, the plant’s cell quota
for P . We assume that Q’s recruitment comes proportionally from the free phos-
phorus (αPf ) and its depletion because of cell growth is µm(Q− q). This results in
the following simple equation

dQ

dt
= αPf − µm(Q − q). (2.5)

Since Q(0) ≥ q, mathematically, this ensures that Q(t) ≥ q for all t > 0.
Since the cell metabolic process operates in a much faster pace than the growth

of total biomass of either species, the quasi-steady-state argument allows us to
approximate Q(t) by the solution of

αPf − µm(Q − q) = 0, (2.6)

which takes the form of

Q =
αPf + qµm

µm

. (2.7)

This together with (2.2) yields

Pf =
µm

µm + αx

(

Pt − qx − θy

)

. (2.8)

Substituting (2.8) into (2.7) yields

Q = q +
α

µm + αx

(

Pt − qx − θy

)

. (2.9)

Substituting the above into (2.3) and applying some straightforward simplification
yields

dx

dt
= µmx

Pt − qx − θy

Pt + µmqα−1 − θy
− Dx − f(x)y. (2.10)

The above equation can be rewritten as

dx

dt
= µmx

(

1 −
qx + µmqα−1

Pt + µmqα−1 − θy

)

− Dx − f(x)y. (2.11)

To compare this equation to that of the LKE model, we rewrite the above equation
as

dx

dt
= (µm − D)x

[

1 −
x + µmα−1

[(µm − D)/µm][µmα−1 + (Pt − θy)/q]

]

− f(x)y. (2.12)

So far, we considered phosphorus only. At this point, we now introduce the pos-
sibility that carbon is also a potentially limiting factor. For simplicity, we assume
that if only carbon acquisition would limit the growth of the plant, then its popu-
lation dynamics can be described by the classic logistic equation. Applying Liebigs
minimum principle to phosphorus limitation versus carbon limitation of the plant
and the herbivore, we arrive at the following simple plant-herbivore model:
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dx

dt
= bx

[

1 − max

(

x

K
,

x + µmα−1

[(µm − D)/µm][µmα−1 + (Pt − θy)/q]

)]

− f(x)y,

dy

dt
= emin

(

1,
Q

θ

)

f(x)y − dy,

(2.13)
where we defined b = µm − D.

We note that, compared to the LKE model, this simple two-dimensional model
has a stronger mechanistic basis. The model parameters, such as α and µm, can be
directly obtained from physiological measurements.

3. Some special cases. The LKE model can be interpreted as a special case of
our mechanistic formulation. The assumption (A3) of the LKE model stipulates
that all phosphorus is in the herbivores and plants; that is, the concentration of
freely available phosphorus (Pf ) is zero. This is tantamount to saying that the
phosphorus uptake rate of the plants is extremely efficient. That is, α = ∞ or,
equivalently α−1 = 0. If, in addition, we assume that the plant death rate D is
negligibly small compared to its maximal growth rate, we may approximate the
value of (µm − D)/µm as 1. Indeed, if we assume α → ∞ and (µm − D)/µm ≈ 1,
our mechanistic model simplifies to the following form:

dx

dt
= bx

[

1 − max

(

x

K
,

x

(Pt − θy)/q

)]

− f(x)y. (3.1)

dy

dt
= emin

(

1,
Q

θ

)

f(x)y − dy. (3.2)

From equation (2.8), we notice that

Q =
1

µmα−1 + x
(Pt − θy + µmqα−1).

Hence, as α tends to ∞, we see that Q tends to (Pt − θy)/x. Notice further that

1 − max

(

x

K
,

x

(Pt − θy)/q

)

= 1 −
x

min(K, (P − θy)/q)
.

This demonstrates that the LKE model can be interpreted as a special case of our
mechanistic model, under the assumption that all phosphorus is taken up by the
plants and herbivores.

Another important implication of our model (2.13) is that the plant dynamics
reduces to a form that resembles the classical logistic equation when the herbivore
is absent and (A3) holds

dx

dt
= (µm − D)x

[

1 −
x

[(µm − D)/µm]Pt/q

]

. (3.3)

It should be pointed out here that we did not assume the population suffers from
a crowding effect explicitly. However, this crowding effect is implicitly provided by
the fact that the total nutrient in the system (here P ) is fixed, and individuals have
to compete for this resource. Observe that instead of the often-assumed carrying
capacity of the form Pt/q, here the carrying capacity has the expression of

K = [(µm − D)/µm]Pt/q. (3.4)
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Parameter Biological meaning Value Unit
Pt total phosphorus 0.025 (mg P)/l
e production efficiency in carbon term 0.8
b net growth rate of the plant 1.2 day−1

d herbivore loss rate 0.25 day−1

θ herbivore constant P/C 0.03 (mg P)/(mg C)
q plant minimal P/C 0.0038 (mg P)/(mg C)
c herbivore’s maximum ingestion rate 0.81 day−1

a half-saturation constant 0.25 (mg C)/l
µm plant’s maximal growth rate 1.2 day−1

α plant’s P uptake rate 10 day−1

K carrying capacity due to light 0.25-2.0 (mg C)/l

Table 1. Model parameters.

This says that although theoretically the environment may accommodate Pt/q
plants, the actual upper limit the plant biomass can attain is [(µm − D)/µm]Pt/q,
somewhat less than that. The reason the maximal carrying capacity Pt/q cannot
be reached in practice is that the death toll in a population keeps the population
below its potential maximum. In other words, it says that a population with a
relatively low death rate will likely amass more biomass than a population with a
relatively high death rate.

4. Dynamics along a productivity gradient. To end this short note, we pro-
vide some snapshots of the dynamics of model (2.13), where we choose the Monod
function as the functional response of the herbivores,

f(x) =
cx

a + x
. (4.1)

In our snapshot series, we varied the carrying capacity based on carbon (the pa-
rameter K). This might reflect, for instance, an increase in light supply, yielding a
higher photosynthetic carbon assimilation rate of the plants (see de Koppel et al.
(1996) for an empirical and theoretical investigation on herbivory patterns along a
productivity gradient). The parameter values are listed in Table 1 (except for D,
which is µm − b = 0), where we used the ones given in Loladze, Kuang, and Elser
(2000), which are estimated from Andersen (1997) and Urabe and Sterner (1996).
We used MATLAB release 12 for the computer simulations.

In Figure 1, solutions of model (2.13) are compared to that of the LKE model for
various values of carrying capacity K. Both models demonstrate similar qualitative
changes in the dynamics. As carrying capacity increases, the stable positive steady
state loses its stability through a Hopf bifurcation, and gives rise to a limit cycle.
Further increasing the carrying capacity will collapse the cyclic behavior through a
heteroclinic bifurcation and returns the dynamics to a simple steady-state behavior
where the herbivore has gone extinct because of the low food quality of the abundant
plants. Observe that in the cases when K is low or very high, our model and the
LKE model produce almost identical solutions (Fig. 1A and 1D). For intermediate
values of K, however, our model deviates quantitatively from the LKE model (Fig.
1B,C). It is here, in this intermediate region, where the mechanisms of P uptake
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Figure 1. Comparison of model (2.13) with the LKE model. So-
lutions of both models are started from x(0) = 0.5mg C/l and
y(0) = 0.2mg C/l with parameter values from Table 1.
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Figure 2. Bifurcation diagrams for the model (2.13) and the LKE
model with parameter values from Table 1.
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really matter. The bifurcation diagrams for both models (see Figure 2) further
confirm these observations.
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