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Abstract. We explore the dynamics of an epidemiological disease spreading

within a complex network of individuals. The local behavior of the epidemics is

modelled by means of an excitable dynamics, and the individuals are connected
in the network through a weighted small-world wiring. The global behavior of

the epidemics can have stationary as well as chaotic states, depending upon
the probability of substituting short-range with long-range interactions. We

describe the bifurcation scenario leading to such latter states, and discuss the
relevance of the observed chaotic dynamics for the description of the spreading
mechanisms of epidemics inside complex networks.

1. Introduction. During years, there has been an intense activity in the study
of epidemic outbreaks and disease spreading in complex networks. In particular,
attention has been centered inspecting networks sharing important topological fea-
tures, such as the small-world (SW) properties [1] and the scale-free (SF) degree
distribution [2], over which epidemiological models have been implemented [3, 4].
Many important results, such as the setting of a threshold for an epidemic outbreak
depend crucially on the statistical properties of the underlying network connectivity
distributions [5, 6].

Furthermore, it has been established that SW and SF properties well characterize
the structure of interactions in real-world networks of both artificial and natural
systems [5, 6, 7, 8, 9].

In this paper we study the dynamics of a spreading epidemiological disease in
a complex network of excitable units, whose wiring geometry is properly constructed
to model social connectivities between individuals, where short-range (nearest neigh-
bors) and long-range interactions between nodes are taken into account.

2. The local dynamics. The system under study is a network made of 1000 x1000
bi-dimensionally ordered sites. Each site (i, j) is associated with two dynamical
variables, an activator variable (ui,j) and an inhibitor variable (vi,j), obeying the
standard FitzHugh-Nagumo equations [10, 11]

∂ui,j

∂t
= −ui,j(a − ui,j)(1 − ui,j) − vi,j + Ci,j , (1)
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Figure 1. Three-dimensional graph of the receiving probability
pr(i, j) (see text for definition). The values of pr are normalized

so
∑1000

i,j=1 pr(i, j) = 1.

∂vi,j

∂t
= e ∗ ui,j . (2)

Here, a is the excitability threshold, and e a suitable real parameter. Further-
more, Ci,j represents the network coupling term acting on the (i, j) site, that will
be specified in the following. When choosing e = 0.0017 and a = 0.13, the local
dynamics is set within the excitable regime. In these conditions, and for C(i, j) ≡ 0,
each network unit stays in its stable stationary state (ui,j = vi,j = 0), until a finite
perturbation (of size exceeding a) in the variable u starts the evolution of an ex-
citable pulse. During the pulse, the variable u grows until reaching the right stable
branch of the null cline −ui,j(a− ui,j)(1− ui,j)− vi,j = 0, where an increase of the
variable v starts. When v is sufficiently high, the variable u begins to decrease, and
drops onto the left stable branch of the null cline −ui,j(a−ui,j)(1−ui,j)−vi,j = 0.
Finally, the whole dynamics relaxes back to the initial stationary state.

It is well known that one can distinguish among different phases during the
excitable dynamics [12]. Precisely, when the system is lying on the stationary state,
we are in a quiescent state, where the system is available to start the dynamics if
a proper perturbation is applied. In the following we will associate such a state
to the susceptible state of individuals. A second phase can be distinguished in the
totally refractory state, i.e. the state presented by the system for the whole period
in time in which the dynamics develops onto the right stable branch of the null
cline −ui,j(a − ui,j)(1 − ui,j) − vi,j = 0. Here, the system is practically insensitive
to perturbation of any size, and we will associate this state with the refractory
period of individuals during the evolution of their disease (the fact that an infected
individual cannot be further infected by the same disease). Finally, the recovery
dynamics toward the stationary state can be associated with a relative refractory
state, wherein another excitable pulse can be produced for perturbations larger
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Figure 2. Temporal evolution of the total number of infected
individuals N in the network for different values of the breaking
probability P . (a) P = 5 %; (b) P = 10 %; (c) P = 12 %. All
other parameters are specified in the text.

than the ones necessary in the stationary state. This relative refractory state well
mimics the recovery of individuals from diseases, modelling the fact that a single
individual recovering from a disease is somehow more robust (for a limited amount
of time) against a second infection process of the same disease.

3. The connectivity network. In order to proceed, we now have to specify the
network coupling term C(i, j) in Eqs. (1,2). In doing this, we want to model
a realistic social wiring connecting individuals susceptible of being infected by a
given disease.

We start by connecting each site diffusively with its nearest neighbors, that
implies C(i, j) = D(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j), being D a diffusion
coefficient (in what follows we set D = 0.13). This models the situation in which an
infected individual (u > a) can transmit the disease only to its nearest neighbors
individuals. In this condition, it is well known that an initial seed of excitation gives
rise to a transient dynamics characterized by a target excitation pattern, moving
toward the boundary of the two-dimensional system and eventually disappearing.
As a result, the only asymptotic behavior that can be expected in this case is a
situation where the epidemics disappears.

A more realistic description of social connections must account for the possibility
of an infected individual to transmit the disease also to other individuals located
far away from it, as it is the case of travelling individuals, that are moving between
very far away points of the network. This feature is accounted for by assigning to



52 F.S. VANNUCCHI AND S. BOCCALETTI

Figure 3. Upper row: Spatial pattern of the variable u for P = 10
%, corresponding to a maximum (a) and a minimum (b) of the os-
cillations reported in Fig. 2b. (c) Two-dimensional projection of
the time-delay embedding reconstruction of the attractor corre-
sponding to the dynamics of N for P = 10%. The time evolution
of the infected sites number (as it appears in Fig. 2b) is plotted
against its value delayed of an embedding time τ = 71, 7 units of
time. (d) Typical spatial pattern of the variable u for P = 5 %,
characterizing the almost constant temporal behavior reported in
Fig. 2a.

each one of the four original connections a probability 0 ≤ P ≤ 1 of being sub-
stituted with a connection with any other site of the network, in the very same
spirit of small-world wirings [1]. To make this long-range interaction process even
more realistic, we have further elaborated the structure of our network by differ-
entiating the receiving probability pr(i, j) of each site: when a local connection is
broken, it is substituted by a connection with a network site extracted from the
non-homogeneous probability distribution pr(i, j) reported in Fig. 1. This means
that there are more probable destinations for each travelling individual within the
network, as is the case for realistic social connections, where individuals travel
preferably toward a limited number of target places. This is at variance with the
original construction of small-world networks [1], where the probability pr(i, j) was
homogeneously taken within the network.
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With the above stipulations, we have performed a series of simulations of Eqs.
(1,2) at different values of P . Simulations were performed by means of a Runge-
Kutta integration scheme for the time evolution of the local dynamics, comple-
mented by a ”Crank-Nicholson” method [13] for the treatment of the diffusion
term C(i, j), with open boundary conditions. As for initial conditions, we have
initiated a localized seed of infected individuals (u > a) given by a Gaussian dis-
tribution centered at the site (i,j)=(200,700) and with a standard deviation of 10
network sites (this initial condition corresponds to setting a total of 0.12% of sites
in the infected state). The initial values of vi,j were taken at zero everywhere.
After a transient time of approximately 2 ∗ 106 Runge-Kutta integration intervals,
the whole dynamics entered the asymptotic regime and the corresponding results
were monitored.

4. Results and discussion. Relevant information on the dynamics of our sys-
tem can be gathered by monitoring the temporal evolution of the total number
of infected individuals N at different values of P . An individual is marked as in-
fected if the corresponding value of the u variable exceeds the excitability threshold
a = 0.13.

The results are shown in Fig. 2. For P = 0, our network is a standard excitable
media whose sites are diffusively connected. As we have already discussed above, an
initial seed in these conditions gives rise to a target pattern of infected individuals,
that affects the network only for a transient time, while asymptotically N(t) = 0.
As P increases, the system begins to support a self-sustained asymptotic dynamics,
leading initially to an almost constant value of N(t) (see Fig. 2a, obtained for
p = 0.05).

A further increase of P generates oscillations in the asymptotic dynamics of
N(t). For 0.09 < P < 0.11, these oscillations become very large in size and chaotic.
This is a remarkable result, since it resembles the common behavior of many real
epidemiological diseases having an almost cyclic behavior, in which periods where
the epidemics is almost totally removed alternates with other periods where very
large peaks in the epidemics are measured. An example of such situation is shown
in Fig. 2b, obtained for P = 0.1.

Finally, Fig. 2c shows the situation occurring at higher values of P where os-
cillations in N(t) are removed and an almost constant behavior is again set in our
network.

Other important information on the evolution of the spreading disease can be
obtained by inspecting snapshots of the spatial distribution of u at different times.
Precisely, Fig. 3a (3b) reports the spatial distribution of u inside the chaotic regime
(P = 10 %) occurring in correspondence to a maximum (a minimum) of the os-
cillations reported in Fig. 2b. Here, one clearly sees that the spatial structure of
the network shows coexistence of macroscopic domains of infected individuals with
other macroscopic domains of non-infected sites. This feature again realistically
models many situations where the epidemic outbreaks occur at a given time only in
specific geographical regions, whereas other geographical regions at the same time
appear to be unaffected by the disease. During the evolution of the system we
furthermore observe motion of the domain walls between infected and non infected
domains, as well as nucleation processes of diseases within domains of non infected
(susceptible) individuals.
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Figure 4. Bifurcation diagram of the observed network dynamics.
At each value of P (horizontal axis, in percent) all values of local
maxima and minima in the dynamics of the number N of infected
sites infected sites in the corresponding time series are reported in
the vertical axis.

In Fig. 3c we report the two-dimensional projection of the time-delay embedding
reconstruction of the attractor corresponding to the dynamics of N for P = 10%
(to be compared with Fig. 2b). In doing so, the time evolution of N is plotted
against its value delayed of an embedding time τ = 71, 7 units of time, highlighting
the chaotic nature of the dynamics. An exhaustive characterization of the chaotic
regime, including evaluation of Lyapunov exponents for the dynamics of N and
a detailed analysis of the corresponding domain motion and interactions, will be
reported elsewhere.

For comparison, Fig. 3d shows a typical spatial distribution of the variable u for
P = 0.05, characterizing the almost constant temporal behavior of N(t) reported in
Fig. 2a, and resembling the complex patterns that have been largely observed and
characterized in various standard excitable media in the presence of purely diffusive
coupling (such as in the case of ventricular fibrillation of a two dimensional cardiac
tissue [14] or in Belouzov-Zhabotinski chemical reactions [15]).

Finally, in Fig. 4 we show the bifurcation scenario of the observed network
dynamics. Precisely, at each value of P (reported in percent on the horizontal axis)
the different values of local maxima and minima in the corresponding time series
of N(t) are reported, showing the transition from an almost constant behavior
(P < 0.09) to chaotic oscillations (0.09 ≤ P ≤ 0.11) to again an almost constant
evolution (P ≥ 0.11).

In conclusion, we have reported the dynamics of a complex network of individuals
subjected to a developing epidemiological disease. The process of infection-recovery
from the disease has been modelled by means of an excitable dynamics, and the
connection between individuals has been accounted for by a weighted small-world
wiring. Our results indicate that the global behavior of the epidemics can have
stationary as well as chaotic states, depending upon the probability of substituting
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short-range with long-range interactions. Furthermore, the chaotic regime is char-
acterized by a spatial evolution of the epidemics wherein macroscopic domains of
infected and susceptible sites coexist and interact. We argue that many of these
features indeed resemble what is observed in realistic social networks during the
spreading mechanism of epidemiological diseases.
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