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Abstract. Benzene (C6H6) is a highly flammable, colorless liquid. Ubiqui-

tous exposures result from its presence in gasoline vapors, cigarette smoke, and

industrial processes. Benzene increases the incidence of leukemia in humans

when they are exposed to high doses for extended periods; however, leukemia
risks in humans subjected to low exposures are uncertain. The exposure-dose-

response relationship of benzene in humans is expected to be nonlinear because
benzene undergoes a series of metabolic transformations, detoxifying and ac-
tivating, resulting in various metabolites that exert toxic effects on the bone

marrow.
Since benzene is a known human leukemogen, the toxicity of benzene in the

bone marrow is of most importance. And because blood cells are produced
in the bone marrow, we investigated the effects of benzene on hematopoiesis
(blood cell production and development). An age-structured model was used

to examine the process of erythropoiesis, the development of red blood cells.
This investigation proved the existence and uniqueness of the solution of the

system of coupled partial and ordinary differential equations. In addition, we
formulated an optimal control problem for the control of erythropoiesis and
performed numerical simulations to compare the performance of the optimal
feedback law and another feedback function based on the Hill function.

1. Introduction. Benzene is a ubiquitous environmental pollutant and is a com-
ponent of both cigarette smoke and automobile emissions [30, 32]. It has also been
a widely used solvent and a precursor for many synthetic materials [14]. Benzene
is used in manufacturing products such as pesticides, drugs, detergents, lubricants,
and rubber [26]. Chronic exposures to benzene result in a variety of blood and bone
marrow disorders in both humans and laboratory animals [11, 16]. High-level ben-
zene exposures have resulted in increased incidence of acute myelogenous leukemia
in humans. Although the leukemogenicity of benzene has not been proven in rats
or mice, benzene has been demonstrated to induce solid tumors in those species
[20, 21].

Benzene exposure has long been a health concern for humans. During World War
II, workers who were exposed to benzene exhibited signs of vitamin C deficiency
[24]. In a nationwide investigation of benzene poisoning in China from 1972 to
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1987, workers in small factories, especially in shoe manufacturing, had an incidence
of aplastic anemia 5.8 times higher than the general population; the exposure levels
were estimated to be between 50 and 350 ppm [29].

Much work has been done through the years on benzene dosimetry in rodents.
Physiologically based pharmacokinetic (PBPK) modeling seeks to incorporate known
physiological parameters, such as body weight, organ volumes, and blood-flow rates
in particular tissues, as well as known partition coefficients obtained through exper-
imentation. These models also represent uptake and metabolism by considering the
chemical and physical processes that are occurring in the body. A PBPK model
was developed that predicts tissue concentrations of certain metabolites in mice
based on exposure using metabolic parameters obtained in vitro [5, 6]. Since in

vitro metabolic parameters are also available for humans, the model could then be
extrapolated to humans for risk assessment.

Since benzene is a known human leukemogen, the toxicity of benzene in the
bone marrow is of greatest importance. Therefore, we analyzed and studied the
hematopoietic cell response to benzene intoxication. Hematopoiesis is the process
by which stem cells residing primarily in the bone marrow, spleen, and liver prolif-
erate and differentiate into the major types of blood cells [2]. Erythrocytes, whose
primary function is to deliver oxygen to the tissues, are by volume the largest
component of the hematopoietic system [12] and are the blood cells that are most
sensitive to benzene toxicity [27]. The control of erythropoiesis is governed by the
hormone erythropoietin (EPO), which is released in the bloodstream based on a
negative feedback mechanism that detects partial pressures of oxygen in the blood.

Since erythrocytes are the blood cells most sensitive to benzene toxicity, in this
study we developed a modified age-structured model for the regulation of ery-
thropoiesis that includes a death rate term for cell loss due to benzene exposure
[2, 3, 18, 19, 17]. We considered the response of the system after exposure by assum-
ing initial cell depletion. This age-structured model has two major classifications of
cells: precursor cells and mature cells. The precursor cells are structured by their
maturity level, relative to their hemoglobin content; the mature red blood cells are
structured by age. Theoretical issues, as they relate to the existence and unique-
ness of solutions of partial differential equations were also investigated. An optimal
control problem was then formulated to determine the optimal feedback mechanism
by which the renal oxygen sensors detect low levels of oxygen in the blood and trig-
ger the release of the hormone EPO. The system of coupled ordinary and partial
differential equations from the age-structured model was formulated in the weak
form that provides natural means for the mathematical and numerical analysis as
well as for the control formulation and synthesis. A finite element method was used
to reduce the infinite dimensional system to an approximate system of ordinary
differential equations for numerical studies as well as for determining the optimal
feedback laws.

The organization of this article is as follows. We begin in section 3 by examining
an age-structured model for erythropoiesis, which permits incorporation of ben-
zene toxicity into the death rate term. In sections 4 and 5, issues of existence and
uniqueness are considered for this system of coupled partial and ordinary differen-
tial equations as well as the positivity of the solutions. We write the system in the
weak form in section 6 and then consider the finite element formulation in section
7. Several numerical studies were carried out in section 8 to study the hematopoi-
etic response to toxicity. We also determined an optimal form for the feedback
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mechanism by considering a tracking problem to regulate the normal number of
red blood cells in the body in section 9. Section 10 includes concluding remarks
and discussion of future work.

2. Physiology of hematopoiesis. Hematopoiesis is the process by which stem
cells residing primarily in the bone marrow, spleen, and liver proliferate and dif-
ferentiate into the major types of blood cells, including erythrocytes, platelets,
neutrophils, and macrophages [2] (see Fig. 1). The blood is composed of liquid
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Figure 1. Schematic of cell lineage.

blood plasma and cellular elements suspended in the plasma [12]. The cellular
elements make up 40% of the total blood volume; the major categories of cellu-
lar elements are erythrocytes (red blood cells), leukocytes (white blood cells), and
thrombocytes (platelets) [12]. The largest (by volume) hematopoietic system pro-
duces the erythrocytes, whose primary function is to deliver oxygen to the tissues
[12], which are believed to be the hematopoietic cells most sensitive to benzene
[27]. Hemoglobin is the principal constituent of mature erythrocytes; it binds with
oxygen in the lungs and releases the oxygen in the tissues [12].

Cells in the erythropoietic system can be divided into three types: stem cells,
progenitor cells, and dividing and maturing cells. Stem cells have a large nuclear-
cytoplasmic ratio and under normal conditions are not in the cell cycle [23]. Pro-
genitor cells comprise 1% of the total hemopoietic population and are the transit
population of stem cells [23]. They expend their energy in production of matur-
ing progeny and have little or no capacity to self-generate. The two major classes
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of progenitor cells in the erythroid lineage include Erythroid Burst-Forming Units
(BFU-Es) and Erythroid Colony-Forming Units (CFU-Es). BFU-Es are a self-
sustaining population that show minimal signs of differentiation but respond to the
appropriate hormone to accelerate proliferation in response to physiological needs
[23]. CFU-Es form small colonies that are the equivalent of one of the subclones
of a multicentric colony formed by BFU-Es, and they are not self-sustaining [23].
Dividing and maturing cells are the majority of cells present in hemopoietic tissues
[23]. The least mature of these cells have considerable proliferation capacity, but
this capacity is not strictly fixed; it is dependent on the level of stimulation exerted
by relevant growth factors [23]. These cells eventually mature to a postmitotic
stage, after which no further cell division is possible [23]. We note that the cells
in each succeeding compartment (stem, progenitor, dividing/maturing) are more
numerous than in the preceding compartment [23].

Within erythrocyte maturation, the most immature cell belonging to the ery-
throcyte series is the proerythroblast [10]. The stages of cells can be distinguished
by increasing levels of hemoglobin [2]. Once cells become reticulocytes, they stop
dividing and mature by increasing their hemoglobin content [2]. Reticulocytes lose
their nuclei and become mature erythrocytes [2].

The control of erythropoiesis is governed by the EPO, which is an acidic gly-
coprotein as well as a poor antigen, that stimulates red blood cell production [9].
It is produced primarily in the kidneys, with 90% of EPO being secreted by renal
tubular epithelial cells when blood cannot deliver oxygen [12]. Thus, EPO acts by
controlling the rate of differentiation of bone marrow cells and is released in the
bloodstream based on a negative feedback mechanism that detects partial pressures
of oxygen in the blood. It has a relatively short half-life, creating a rapid response
to the changing conditions in the body [2, 31].

The appropriate form of the function that might represent this feedback of EPO
is unknown. Previously, a Hill function has been used; this function is often used to
represent enzyme kinetics but it has no physiological basis. We use control theory
to formulate a tracking problem in which we seek an optimal form of the feedback
which causes the release of EPO such that the body produces the cells necessary
to maintain the normal level of red blood cells in the body.

3. Model development. With its many stages of development, and because cells
in differing stages have different properties, erythropoiesis lends itself naturally to
age-structured modeling [2, 3, 18, 19, 17]. Since it is known that erythrocytes are
the blood cells most sensitive to benzene toxicity, in this study a modified age-
structured model for the regulation of erythropoiesis that included a death-rate
term for cell loss due to benzene exposure was developed. More specifically, the
concentrations of phenol and hydroquinone, which are two of benzene metabolites,
in the richly perfused tissues (which includes the bone marrow) found from the
PBPK model could be used as time-course inputs to the age-structured model
through precursor-cell death-rate term [5, 6]. At this point though, we assumed a
constant death rate from benzene toxicity.

The following model is based on work by Jacques Bélair, Michael Mackey, and
Joseph Mahaffy [2, 3, 18, 19, 17]. A list of abbreviations and symbols used in
the model can be found in the appendix. This age-structured model has two major
classifications of cells: precursor cells p(t, µ) and mature cellsm(t, ν). The precursor
cells include progenitor cells, dividing cells, and reticulocytes; the mature cells are
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the erythrocytes in the circulating blood. The precursor cells are structured by
their maturity level µ, relative to their hemoglobin content; the mature red blood
cells are structured by age ν. The concentration of the hormone EPO is given by
E(t). We denote the velocity of maturation of precursor cells by V (E), while the
rate of aging of mature cells is given by W . The birth rate of precursor cells is
given by β(µ) and α(t) is the death rate; the death rate of mature cells is given by
γ(ν). The number of cells recruited into the proliferating precursor population is
proportional to the concentration of EPO; S0 is the constant of proportionality. A
basic schematic of the model is given in Fig. 2, which is similar to the one used in
Bélair et al. [2].
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Figure 2. Schematic of erythropoiesis model.

We begin by deriving the equation for the precursor cells. First we make the
following assumptions:

1. The maturity of any individual cell is dynamically described by

dµ

dt
= V (E(t)).

We make a further simplification and assume that for this model V (E(t)) = 1.
Thus,

dµ

dt
= 1,

which means

µ = t+ t0.

For our particular case, this means µ = t but in general this is not the case.
If V (E(t)) were not equal to 1, µ would be given by some function of E(t).

2. All maturity levels of precursor cells have the same death rate

α(t) = α0 + kCC
PH
R (t)CHQR (t),

where CPHR (t) and CHQR (t) are the concentrations of phenol and hydroquinone
respectively in the richly perfused tissues containing the bone marrow, which
are obtained from the PBPK model described in [5] and [6]. Here we make
the simplifying assumption that α is constant.
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3. The birth rate is dependent upon maturity level

β(µ) =

{

β µ < µD
0 µ ≥ µD

,

where β is a nonnegative constant and µD is the point at which all cell division
stops but the cell continues to mature.

4. There is a level of least maturity and a level of greatest maturity (0 = µ0 ≤
µ ≤ µF ).

5. The number of precursor cells at the smallest maturity level is equal to the
number of stem cells being recruited into the precursor cell population, which
is proportional to the concentration of EPO in the system. Thus,

p(t, 0) = S0E(t).

6. The number of precursor cells at the greatest maturity level is equal to the
number of mature cells at the smallest age level:

p(t, µF ) = m(t, 0).

Let PT (t) be the total population of precursor cells at time t. We will use the
following notation to represent the population of precursor cells from maturity level
a to b at time t1:

PTa,b(t1) =

∫ b

a

p(t1, ψ)dψ.

Under the previously stated assumptions, let us now derive the equation which
represents the precursor cells by examining the flux balance. This is given by:

rate of change in population in the maturity interval (a, b)
= rate of cells entering the interval - rate of cells leaving the interval

+ birth rate term - death rate term.

Letting the interval be [µ, µ+ ∆µ], and using flux balance, we obtain

∂

∂t

∫ µ+∆µ

µ

p(t, ξ)dξ

= 1 × p(t, µ) − 1 × p(t, µ+ ∆µ) +

∫ µ+∆µ

µ

β(ξ)p(t, ξ)dξ −

∫ µ+∆µ

µ

αp(t, ξ)dξ

where the maturity rate is assumed to be 1. Divide by ∆µ and take the limit as
∆µ approaches 0. We find

∂

∂t
p(t, µ) = −

∂

∂µ
p(t, µ) + [β(µ) − α]p(t, µ). (1)

From assumptions previously given, we have the boundary condition given by

p(t, 0) = S0E(t). (2)

In a similar manner to that for the precursor-cell equation and under similar
assumptions, with the exception that birth only occurs at the smallest age and is
equal to the number of precursor cells that have reached full maturity µF , we find
that the population of mature cells is represented by:

∂m(t, ν)

∂t
+
∂m(t, ν)

∂ν
= −γm(t, ν), 0 < ν ≤ νF (3)

m(t, 0) = p(t, µF ). (4)

We note that µF < νF .
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Finally, the equation for EPO depends on the following biological properties:

rate of change of concentration of EPO in system
= − decay rate of EPO × concentration of EPO

+ feedback of EPO released from kidneys.

Here, we represent EPO by the following equation:

dE

dt
= −kEE + f(m)(t), (5)

where kE is the decay rate of EPO and f(m)(t) is the feedback function, which is
usually assumed in the form of a Hill function in the current literature:

f(m)(t) =
a

1 +K [M(t)]
r , (6)

where a,K > 0 and

M(t) =

∫ νF

0

m(t, ν)dν (7)

is the total number of mature cells. The Hill function is often used to approximate
rates in enzyme kinetic problems, but it has no physiological basis in this particular
context [2].

Thus, the model is represented by the following system of equations:

∂p(t, µ)

∂t
+
∂p(t, µ)

∂µ
= [β(µ) − α]p(t, µ), 0 < µ ≤ µF (8)

∂m(t, ν)

∂t
+
∂m(t, ν)

∂ν
= −γm(t, ν), 0 < ν ≤ νF (9)

dE

dt
+ kEE = f(m)(t) (10)

p(t, 0) = S0E(t) (11)

p(t, µF ) = m(t, 0) (12)

p(0, µ) = p0(µ) (13)

m(0, ν) = m0(ν) (14)

E(0) = E0, (15)

where p0(µ) and m0(ν) are nonnegative continuous functions for all µ and ν re-
spectively, and α, γ, kE , S0, and E0 are nonnegative constants. We will show in
section 5 that m0(ν) as a nonnegative function will guarantee that M(t) is nonneg-
ative, thereby alleviating the possibility of a singularity in f(m)(t).

4. Existence and uniqueness. In this section, we establish the existence and
uniqueness of solutions to our mathematical model given by Equations (8) through
(15). Indeed, our approach follows the ideas in [28], which reduce structured pop-
ulation models to delay differential equations. However, it should be noted that
the governing system of Equations (8) through (15) describing our mathematical
model is different from the equations studied in [28].

Since Equations (8) and (9) are linear, first-order hyperbolic partial differential
equations, we will use the method of characteristics to find a solution for each of
the partial differential equations and then use these to rewrite the nonlinear term
in the ordinary differential equation.
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Consider the equation

pt(t, µ) + pµ(t, µ) = [β(µ) − α]p(t, µ) (16)

p(0, µ) = p0(µ)

p(t, 0) = S0E(t).

Let P (s) = p(t(s), µ(s)), where s is a parameterization in t− µ space. Then

dP (s)

ds
=

d

ds
p(t(s), µ(s))

=
∂p

∂t

dt

ds
+
∂p

∂µ

dµ

ds
. (17)

If
dt

ds
= 1 (18)

dµ

ds
= 1, (19)

then Equation (16) can be rewritten as

dP (s)

ds
= [β(µ(s)) − α]P (s),

which can be solved using separation of variables to find the solution

P (s) = P (0)e
∫

s
0
[β(µ(ψ))−α]dψ. (20)

The solution to Equations (18) and (19), given by

t(s) = s+ t(0)

µ(s) = s+ µ(0),

defines the characteristic lines along which the solution given by Equation (20) is
valid. Fig. 3 depicts these characteristics, where the regions of solution p(t, µ) are
divided by the curve t = µ, which passes through (0, 0).

In region S1, where t ≤ µ, our solution is determined by our initial condition,
(0, µ(0)). Thus we have

t(s) = s

µ(s) = s+ µ(0),

which gives us
µ(s) = µ(0) + t(s).

Now, using our initial condition in Equation (20), we find

P (0) = p(t(0), µ(0))

= p(0, µ− t)

= p0(µ− t).

Therefore, for (t, µ) in S1,

p(t, µ) = p0(µ− t)e
∫

t
0
[β(µ(s))−α]ds.

For (t(s), µ(s)) ∈ S2, where t > µ, the solution is dominated by the boundary
condition. Here,

t(s) = s+ t(0)

µ(s) = s.
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Figure 3. Regions of solution of p(t, µ).

Thus,

t(0) = t− µ.

In addition, for (t(s), µ(s)) ∈ S2, we have

P (0) = p(t(0), µ(0))

= p(t− µ, 0).

Therefore, our solution for (t, µ) in S2 is given by

p(t, µ) = S0E(t− µ)e
∫

µ
0

[β(s)−α]ds.

Thus, the solution of Equation (16) is given by

p(t, µ) =

{

p0(µ− t)e
∫

t
0
[β(µ(s))−α]ds t ≤ µ

S0E(t− µ)e
∫

µ
0

[β(s)−α]ds t > µ.
(21)

Similarly, we find that the solution of

mt(t, ν) +mν(t, ν) = −γm(t, ν)

m(0, ν) = m0(ν)

m(t, 0) = p(t, µF )

is given by

m(t, ν) =

{

m0(ν − t)e−γt t ≤ ν

p(t− ν, µF )e−γν t > ν.
(22)

Fig. 4 summarizes the dependence of the solution of m(·, ·) on the initial and
boundary condition and on the function E(·). This figure suggests that, for estab-
lishing existence and uniqueness to the mathematical model given by Equations (8)
through (15), we need to split the time domain into four intervals: [0, µF ], [µF , νF ],
[νF , νF + µF ], and [νF + µF , tF ] where tF > νF + µF .
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Figure 4. Regions of solution of m(t, ν).

From the expression for M(t) we have, for 0 ≤ t ≤ µF ,

M(t) =

∫ νF

0

m(t, ν)dν

=

∫ t

0

m(t, ν)dν +

∫ νF

t

m(t, ν)dν

=

∫ t

0

p(t− ν, µF )e−γνdν +

∫ νF

t

m0(ν − t)e−γtdν. (23)

Dividing the integral in this manner is motivated by Fig. 4. Now consider the
integral

∫ t

0

p(t− ν, µF )e−γνdν,

which, for 0 ≤ t ≤ µF , is given in terms of p0(·) as
∫ t

0

p(t− ν, µF )e−γνdν =

∫ t

0

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν.

Therefore,

M(t) =

∫ t

0

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν +

∫ νF

t

m0(ν − t)e−γtdν (24)

for 0 ≤ t ≤ µF . Thus, f(m)(t) depends only on known parameters and given initial
functions p0(·) and m0(·). That is, f(m)(t) depends explicitly on t and will be
denoted by f(t) for t ∈ [0, µF ]. This will hold for f(m) assumed in the form of a
Hill function as in Equation (6) or for any other form of f as long as the dependence
of f on m is only through the total number M of mature cells as given in Equation
(7).
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Therefore, the equation for E(t) depends only on the known initial conditions
of the partial differential equations. Note that the differential equation for E(t) is
now linear with a continuous forcing term

d

dt
E(t) = −kEE(t) + f(t). (25)

Therefore, the solution E(t), 0 ≤ t ≤ µF , exists and is unique, since f(t) is a
continuous function [4]. Thus, by the method of characteristics, we have a unique
solution for p(t, µ) and m(t, ν) for t ∈ [0, µF ].

Now consider µF < t ≤ 2µF , where we assume 2µF ≤ νF . Here,

M(t) =

∫ νF

0

m(t, ν)dν

=

∫ t−µF

0

m(t, ν)dν +

∫ t

t−µF

m(t, ν)dν +

∫ νF

t

m(t, ν)dν

=

∫ t−µF

0

p(t− ν, µF )e−γνdν +

∫ t

t−µF

p(t− ν, µF )e−γνdν

+

∫ νF

t

m0(ν − t)e−γtdν

=

∫ t−µF

0

S0E(t− ν − µF )eβµD−αµF −γνdν

+

∫ t

t−µF

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν

+

∫ νF

t

m0(ν − t)e−γtdν

= S0e
βµD−αµF −γ(t−µF )

∫ t−µF

0

E(w)eγwdw

+

∫ t

t−µF

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν

+

∫ νF

t

m0(ν − t)e−γtdν. (26)

Since p0(·) and m0(·) are known, let

h(t) =

∫ t

t−µF

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν +

∫ νF

t

m0(ν − t)e−γtdν.

Thus, we can write

M(t) = S0e
βµD−αµF −γ(t−µF )

∫ t−µF

0

E(w)eγwdw + h(t).
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We now differentiate M(t), obtaining

d

dt
M(t) = −γS0e

βµD−αµF −γ(t−µF )

∫ t−µF

0

E(w)eγwdw

+S0e
βµD−αµF −γ(t−µF )E(t− µF )eγ(t−µF ) + h′(t)

= −γS0e
βµD−αµF −γ(t−µF )

∫ t−µF

0

E(w)eγwdw

+S0e
βµD−αµFE(t− µF ) + h′(t)

= −γ [M(t) − h(t)] + S0e
βµD−αµFE(t− µF ) + h′(t)

= −γM(t) + S0e
βµD−αµFE(t− µF ) + ĥ(t), (27)

where ĥ(t) = γh(t) + h′(t). Thus, for t ∈ [µF , 2µF ], where 2µF ≤ νF , the method
of characteristics replaces the age-structured population equations for p and m

(coupled with that for E) by a coupled delay differential system for the total number
of mature cells, M(t), and the concentration of EPO, E(t). The new system of delay
differential equations is given by

d

dt
M(t) = −γM(t) + S0e

βµD−αµFE(t− µF ) + ĥ(t) (28)

d

dt
E(t) = −kEE(t) +

a

1 +K[M(t)]r
(29)

for t ∈ [µF , 2µF ] with 2µF ≤ νF and initial conditions

M(µF ) =

∫ νF

0

m(µF , ν)dν,

where m(µF , ν) is given by Equation (22) and E(t) is the solution of Equation (25)
for t ∈ [0, µF ]. Thus, we have an equation of the form

~̇x(t) = ~g(t, ~x(t), ~x(t− µF )), (30)

where

~x(t) =

[

M(t)
E(t)

]

(31)

~g(t, ~ξ(1), ~ξ(2)) =

[

−γξ(1)1 + S0e
βµD−αµF ξ(2)2 + ĥ(t)

−kEξ(1)2 + a
1+Kξr

(1)1

]

. (32)
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Certainly, ~g is continuous, and so are the partial derivatives:

∂g1

∂ξ(1)1
= −γ

∂g1

∂ξ(1)2
= 0

∂g1

∂ξ(2)1
= 0

∂g1

∂ξ(2)2
= S0e

βµD−αµF

∂g2

∂ξ(1)1
= −

aKrξr−1
(1)1

[1 +Kξr(1)1]
2

∂g2

∂ξ(1)2
= −kE .

∂g2

∂ξ(2)1
= 0

∂g2

∂ξ(2)2
= 0.

In addition, the partial derivatives are globally bounded; thus, ~g is globally Lipschitz
with respect to ξ(1). On the interval [µF , 2µF ] Equation (30) becomes

~̇x(t) = ~g(t, ~x(t), ~x(t− µF )) ≡ ~h(t, ~x(t)) (33)

since E(t) for t ∈ [0, µF ] is a known function. Further, ~h(t, ~x) is continuous in
both arguments and Lipschitz in ~x. By a standard existence result for ordinary

differential equations [25], the solution of ~̇x = ~h(t, ~x) exists on [µF , 2µF ] and is
unique. This gives us an initial function for the solution on the interval [2µF , 3µF ];
simple induction arguments yield existence and uniqueness on [µF , νF ]. This is
known as the method of steps [7, 8, 22], which is a standard method for establishing
existence and uniqueness of solutions to delay differential equations.

Once t > νF , we can not write M(t) in the same manner. For t ∈ [νF , νF + µF ],

M(t) =

∫ νF

0

m(t, ν)dν

=

∫ t−µF

0

m(t, ν)dν +

∫ νF

t−µF

m(t, ν)dν

=

∫ t−µF

0

p(t− ν, µF )e−γνdν +

∫ νF

t−µF

p(t− ν, µF )e−γνdν

=

∫ t−µF

0

S0E(t− ν − µF )eβµD−αµF −γνdν

+

∫ νF

t−µF

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν

= S0e
βµD−αµF −γ(t−µF )

∫ t−µF

0

E(w)eγwdw

+

∫ νF

t−µF

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν. (34)
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Following techniques similar to those above, we can write a new system of delay
differential equations for t ∈ [νF , νF + µF ]:

d

dt
M(t) = −γM(t) + S0e

βµD−αµFE(t− µF ) + h̃(t) (35)

d

dt
E(t) = −kEE(t) +

a

1 +K[M(t)]r
(36)

for t ∈ [νF , νF + µF ] where

h̃(t) =
d

dt

[
∫ t

t−µF

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν

]

+γ

∫ t

t−µF

p0(µF − t+ ν)e
∫

t−ν
0

[β(µ(s))−α]dse−γνdν

with initial conditions

M(νF ) =

∫ νF

0

m(νF , ν)dν,

where m(νF , ν) is given by Equation (22) and E(t) is the solutions of systems
previously solved for t ∈ [0, νF ]. As shown previously using the method of steps
and theory for ordinary differential equations, we can establish that the solution
exists and is unique for t ∈ [νF , νF + µF ].

Next we consider the case when t > νF + µF :

M(t) =

∫ νF

0

m(t, ν)dν

=

∫ νF

0

p(t− ν, µF )e−γνdν

=

∫ νF

0

S0E(t− ν − µF )eβµD−αµF e−γνdν

= S0e
βµD−αµF −γ(t−µF )

∫ t−µF

t−νF −µF

E(w)eγwdw. (37)

Differentiating Equation (37), using Leibniz’s Rule to differentiate the integral
on the right-hand side, we obtain

d

dt
M(t) = −γS0e

βµD−αµF −γ(t−µF )

∫ t−µF

t−νF −µF

E(w)eγwdw

+S0e
βµD−αµF −γ(t−µF )

[

E(t− µF )eγ(t−µF )

−E(t− νF − µF )eγ(t−νF −µF )
]

= −γM(t) + S0e
βµD−αµF

[

E(t− µF ) − E(t− νF − µF )e−γνF

]

.(38)

Thus for large time behavior with t > νF + µF , the method of characteristics
again replaces the age-structured population equations for p and m along with E

by a delay differential equation system for the total number of mature cells, M(t),
and the concentration of EPO, E(t). The new system of delay differential equations
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is given by:

d

dt
M(t) = −γM(t) + S0e

βµD−αµF [E(t− µF ) − E(t− νF − µF )e−γνF ] (39)

d

dt
E(t) = −kEE(t) +

a

1 +K[M(t)]r
, (40)

for t > νF + µF with initial conditions

M(νF + µF ) =

∫ νF

0

m(νF + µF , ν)dν.

Here m(νF + µF , ν) is given by Equation (22) and the initial values of E(t) are
the solutions of systems previously solved for t ∈ [0, νF + µF ]. Using arguments
similar to those above, we find by the method of steps and a standard existence
result for ordinary differential equations [25] that the solution exists and is unique
on [νF + µF , 2(νF + µF )]. This gives us an initial function for the solution on the
interval [2(νF + µF ), 3(νF + µF )]; simple induction arguments yield existence and
uniqueness on [νF + µF , tF ] for any tF > νF + µF [7, 8, 22].

Therefore, since E(t) exists and is unique for t ∈ [0, tF ] for all tF > 0, p(t, µ)
and m(t, ν) exist and are unique for all tF > 0, all µ ∈ [0, µF ], and all ν ∈ [0, νF ]
by the method of characteristics.

5. Positivity of solutions. Since p and m represent the number of cells and E is
the concentration of a hormone, none of which can be negative physically, we need
to show that our system has a nonnegative solution when the initial conditions are
nonnegative.

We begin by assuming the following:

E(0) = E0 ≥ 0 (41)

p(0, µ) = p0(µ) ≥ 0 for all µ ∈ (0, µF ] (42)

m(0, ν) = m0(ν) ≥ 0 for all ν ∈ (0, νF ]. (43)

Then M(t) given in Equation (24) is nonnegative since p0 and m0 are nonneg-
ative; thus, f(t) in Equation (25) is nonnegative, which gives us a nonnegative
function E(t) for t ∈ [0, µF ]. It follows that p(t, µ) and m(t, ν) are nonnegative for
t ∈ [0, µF ] and for all µ ∈ [0, µF ] and ν ∈ [0, νF ].

For each of the systems of delay differential equations, the right-hand side of
these equations is nonnegative, since equations M(t) and E(t) are nonnegative on
the previous time intervals. Therefore, E(t) is nonnegative for t ∈ [0, tF ) for all
tF > 0.

Hence, since p0(µ) is nonnegative for all µ and E(t) is nonnegative for all t,
p(t, µ) is nonnegative for all t and all µ. Since m0(ν) is nonnegative for all ν and
p(t, µF ) is nonnegative for all t, m(t, ν) is nonnegative for all t and all ν.

Therefore, if we assume all initial conditions are nonnegative, the solution of the
system given by Equations (8) through (15) has nonnegative components.

6. Weak formulation. In this section, we restate system given by Equations (8)
through (15) in terms of a weak or variational formulation. The weak formulation
provides a natural setting for the numerical approximation to the solution of Equa-
tions (8) through (15) by the finite element method and for the control design and
synthesis.
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6.1. Preliminaries. Define the domains for the maturity levels (ML) and age
levels (AL) respectively:

ΩML = {µ : 0 < µ ≤ µF }

ΩAL = {ν : 0 < ν ≤ νF }.

We also use the following notational conventions:

H1
ML = H1(ΩML)

H1
AL = H1(ΩAL)

L2
ML = L2(ΩML)

L2
AL = L2(ΩAL)

and define the state space

V = H1
ML ×H1

AL ×<.

We define the inner product

〈φ, ψ〉L2
ML

=

∫ µF

0

φ(µ)ψ(µ)dµ

for φ, ψ ∈ L2
ML and the inner product

〈φ, ψ〉L2
AL

=

∫ νF

0

φ(ν)ψ(ν)dν

for φ, ψ ∈ L2
AL.

6.2. Problem formulation. We begin by considering the partial differential equa-
tion for p(t, µ). We multiply Equation (8) by a test function φ ∈ H1

ML, followed by
integration by parts. Thus, we have

〈ṗ, φ〉L2
ML

− 〈p, φ′〉L2
ML

+ p(µF )φ(µF ) − p(0)φ(0) = 〈[β(µ) − α] p, φ〉L2
ML

.

Upon substituting the natural boundary condition from Equation (11), we obtain

〈ṗ, φ〉L2
ML

− 〈p, φ′〉L2
ML

+ p(µF )φ(µF ) − S0E(t)φ(0) = 〈[β(µ) − α] p, φ〉L2
ML

.

Repeating the above process for the equation for m(t, ν), we obtain the following
weak formulation of the problem which should hold for all φ ∈ H1

ML, ψ ∈ H1
AL :

〈ṗ, φ〉L2
ML

− 〈p, φ′〉L2
ML

+ p(µF )φ(µF ) − S0E(t)φ(0) = 〈[β(µ) − α] p, φ〉L2
ML

(44)

〈ṁ, ψ〉L2
AL

− 〈m,ψ′〉L2
AL

+m(νF )ψ(νF ) − p(µF )ψ(0) = 〈−γm,ψ〉L2
AL

(45)

Ė + kEE = f(m)(t). (46)

7. Finite element formulation. We employ the method of finite elements, a
general technique to construct an approximate solution to a boundary value problem
[1], to rewrite the equation as a system of ordinary differential equations.
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7.1. Basis elements. Let 0 = µ1 < µ2 < · · · < µN = µF be a uniform partition
of the interval [0, µF ] into N − 1 finite subintervals of length h = µF

N−1 .
We take as basis elements the piecewise linear continuous functions, φj , j =

1, . . . , N , given by

φj(µ) =







µ−µj−1

h
, µj−1 ≤ µ ≤ µj ,

µj+1−µ

h
, µj ≤ µ ≤ µj+1,

0 0 ≤ µ ≤ µj−1 or µj+1 ≤ µ ≤ µF ,

with derivatives

φ′j(µ) =







1
h
, µj−1 < µ < µj ,

−1
h
, µj < µ < µj+1,

0 0 < µ < µj−1 or µj+1 < µ < µF .

Note that each φj is an element of H1
ML.

Similarly, we let 0 = ν1 < ν2 < · · · < νR = νF be a uniform partition of the
interval [0, νF ] into R − 1 finite subintervals of length h = νF

R−1 . Again, we use

piecewise linear continuous functions, ψk ∈ H1
AL, where k = 1, . . . , R, and ψk is

defined in a manner similar to that of φj above but on the interval [0, νF ].

7.2. Finite element approximation. We define the Galerkin finite element ap-

proximation p(t, µ) =
∑N
i=1 ai(t)φi(µ), where φi is as defined in section 7.1, and

substitute it into Equation (44) to obtain

∫ µF

0

N
∑

i=1

a′i(t)φi(µ)φj(µ)dµ+
N
∑

i=1

ai(t)φi(µF )φj(µF )

−S0E(t)φj(0) −

∫ µF

0

N
∑

i=1

ai(t)φi(µ)φ′j(µ)dµ

=

∫ µD

0

β

N
∑

i=1

ai(t)φi(µ)φj(µ)dµ−

∫ µF

0

α

N
∑

i=1

ai(t)φi(µ)φj(µ)dµ,
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where j = 1, 2, . . . , N . We make simplifications to find

N
∑

i=1

a′i(t)

∫ µF

0

φi(µ)φj(µ)dµ+
N
∑

i=1

ai(t)φi(µF )φj(µF )

−S0E(t)φj(0) −

N
∑

i=1

ai(t)

∫ µF

0

φi(µ)φ′j(µ)dµ

=

N
∑

i=1

ai(t)

∫ µD

0

βφi(µ)φjdµ−

N
∑

i=1

ai(t)

∫ µF

0

αφi(µ)φj(µ)dµ

N
∑

i=1

a′i(t)

∫ µF

0

φi(µ)φj(µ)dµ+

N
∑

i=1

ai(t)φi(µF )φj(µF )

−S0E(t)φj(0) −

N
∑

i=1

ai(t)

∫ µF

0

φi(µ)φ′j(µ)dµ

=
N
∑

i=1

ai(t)

{
∫ µD

0

βφi(µ)φj(µ)dµ−

∫ µF

0

αφi(µ)φj(µ)dµ

}

N
∑

i=1

a′i(t)

∫ µF

0

φi(µ)φj(µ)dµ+

N
∑

i=1

ai(t)

{

φi(µF )φj(µF ) −

∫ µF

0

φi(µ)φ′j(µ)dµ

−β

∫ µD

0

φi(µ)φj(µ)dµ+ α

∫ µF

0

φi(µ)φj(µ)dµ

}

= S0E(t)φj(0).

Thus, we have approximated the partial differential equation for p(t, µ) by an
N -dimensional system of ordinary differential equations for the coefficients ai(t).

Let m(t, ν) =
∑R
k=1 bk(t)ψk(ν), and upon substitution into Equation (45), we

obtain

∫ νF

0

R
∑

k=1

b′k(t)ψk(ν)ψq(ν)dν +

R
∑

k=1

bk(t)ψk(νF )ψq(νF ) + ψq(0)

N
∑

i=1

ai(t)φi(µF )

−

∫ νF

0

R
∑

k=1

bk(t)ψk(ν)ψ
′

q(ν)dν = −

∫ νF

0

γ

R
∑

k=1

bk(t)ψk(ν)ψq(ν)dν,

which simplifies to

R
∑

k=1

b′k(t)

∫ νF

0

ψk(ν)ψq(ν)dν +

R
∑

k=1

bk(t)ψk(νF )ψq(νF ) + ψq(0)

N
∑

i=1

ai(t)φi(µF )

−

R
∑

k=1

bk(t)

∫ νF

0

ψk(ν)ψ
′

q(ν)dν = −

R
∑

k=1

bk(t)

∫ νF

0

γψk(ν)ψq(ν)dν.
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Collecting common terms, we arrive at

R
∑

k=1

b′k(t)

∫ νF

0

ψk(ν)ψq(ν)dν −

N
∑

i=1

ai(t)φi(µF )ψq(0)

+

R
∑

k=1

bk(t)

{

ψk(νF )ψq(νF ) −

∫ νF

0

ψk(ν)ψ
′

q(ν)dν

+γ

∫ νF

0

ψk(ν)ψq(ν)dν

}

= 0.

Thus, the system given by Equations (8) through (15) can be approximated by
the following system of N +R+ 1 ordinary differential equations:

N
∑

i=1

a′i(t)

∫ µF

0

φi(µ)φj(µ)dµ

+

N
∑

i=1

ai(t)

{

φi(µF )φj(µF ) −

∫ µF

0

φi(µ)φ′j(µ)dµ

−β

∫ µD

0

φi(µ)φj(µ)dµ+ α

∫ µF

0

φi(µ)φj(µ)dµ

}

= S0E(t)φj(0), j = 1, 2, . . . , N (47)

R
∑

k=1

b′k(t)

∫ νF

0

ψk(ν)ψq(ν)dν −
N
∑

i=1

ai(t)φi(µF )ψq(0)

+
R
∑

k=1

bk(t)

{

ψk(νF )ψq(νF ) −

∫ νF

0

ψk(ν)ψ
′

q(ν)dν

+γ

∫ νF

0

ψk(ν)ψq(ν)dν

}

= 0, q = 1, 2, . . . , R (48)

dE(t)

dt
+ kEE(t) = f

(

R
∑

k=1

bkψk

)

(t) (49)

with initial conditions
N
∑

i=1

ai(0)φi(µ) = p0(µ) (50)

R
∑

k=1

bk(0)ψk(ν) = m0(ν) (51)

E(0) = E0. (52)

Equations (47) through (49) can be rewritten in the matrix form

M̃~̇x(t) + Ã~x(t) = ~g(~b)(t), (53)

where

~x =





~a
~b

E




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Table 1. Parameter values for the erythropoiesis model using the
Hill feedback function.

Parameter Value
µD 3
µF 5.9
νF 50
S0 4.45×10−7

kE 6.65
β 2.773
α 0
γ 0.01
a 15600
K 0.0382
r 6.96

and

~g =





~0
~0

f(~b)(t)



 .

8. Numerical simulations. For the numerical simulations of Equation (53), we
took φ and ψ to be linear splines defined on uniform partitions of 0 ≤ µ ≤ µF
and 0 ≤ ν ≤ νF respectively. We chose N = 250 and R = 125. We used more
elements for p because the terminal boundary at µ = µF of p(t, µ) was used as the
initial boundary condition at ν = 0 for m(t, ν). Because of the form of this system,
as is evident by the notation in Equation (53), we used the differential algebraic
equation solver in MATLAB instead of inverting the matrix.

Although we would eventually like to use the concentrations for phenol and
hydroquinone in the richly perfused tissue as input into the death-rate term α, here
we will first show results based on initial depletion of precursor cells or depletion
of precursor and mature cells.

We take the normal levels of mature cells to be 3.5, which has units of 1011

erythrocytes per kilogram of body weight. The normal precursor population is
equal to 1% of the mature cell population, because progenitor cells, the major
component of the precursor cells, comprise 1% of the hematopoietic population
[2, 23]. For the precursor cells, we assume the initial condition p0(µ) is linear
for 0 ≤ µ < µD and constant for µ ∈ [µD, µF ]. For the mature cells, the initial
condition m0(ν) is constant. For a human, the normal concentration of EPO is
believed to be between 10 and 25 mU/mL plasma, although values in the range of
3 to 18,000 mU/mL plasma have been reported [2]. We take our initial condition,
or the normal state, to be 15 mU/mL plasma.

We chose the other parameters in a similar fashion to those of Bélair, Mackey,
and Mahaffy, [2, 3, 18, 19, 17]. The values of the parameters that were used are
shown in Table 1. We chose µD = 3 as the period of progenitor cell maturation
is approximately three days [2]. We took µF , the final maturity level of precursor
cells, to be 5.9 days and νF , the final age of mature cells, to be fifty days [3, 18].
Although different values of β, the rate of birth of precursor cells while they are still
dividing, have been used previously, we chose β to be 2.773 days−1 [3]. The death
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Figure 5. Mature cell and erythropoietin response following pre-
cursor cell depletion using Hill function feedback.

rate of mature cells γ is thought to be in the range of 0.001 to 0.1 days−1 [2, 3, 17];
we took γ=0.01, which is certainly in that range. The half-life of EPO has been
reported be be as short as 2.5 hours and as long as 1 to 2 days [2, 18, 31]. We chose
the half-life of 2.5 hours, which corresponds to kE = 6.65 days−1, similar to that
used in several previous studies [2, 3, 18]. The values used previously for S0 have
ranged from 4.45 × 10−7 (×1011 erythrocytes/kg body weight × mL plasma/mU
EPO/day) [17, 19] to 0.00372 [18]; we choose S0 = 4.45×10−7. We use the following
values in the Hill function: a = 15, 600, K = 0.0382, and r = 6.96 [2, 17].

For this study, we began by looking at two simulations: the first in which pre-
cursor cells were depleted by 5%, that is, 95% of normal, but the mature cells were
not depleted and the second in which precursor and mature cells were initially at
only 95% of normal. One could think of this physically as the body having been
exposed to a toxic substance, such as benzene, the cells being depleted, and then
the model examining the body’s response. These results are shown in Figs. 5 and 6,
respectively. In each set of plots, the top plot shows M(t) whereas the lower plot is
E(t). The inverse relation between M(t) and E(t) is obvious from these plots; EPO
increases when the total number of mature cells is less than the normal level and
decreases when the number of mature cells is greater than the normal level needed
by the body. We see that the rise in EPO overshoots and causes an overproduction
of mature cells. We note that the depletion of precursor and mature cells causes
the concentration of EPO to rise more than it would if just the precursor cells were
depleted.
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Figure 6. Mature cell and erythropoietin response following pre-
cursor and mature cell depletion using Hill function feedback.

9. Optimal control.

9.1. Problem formulation. In previous studies and in the first part of this study,
the feedback mechanism has been represented by the Hill function. However, the
Hill function was not able to maintain the normal level of mature cells. Next we
will formulate an optimal control problem to find an optimal feedback function such
that we can track the reference signal, which is M(t) in this problem. That is, we
want to find a feedback function in which we regulate and maintain the normal
number of red blood cells in the body, which is the type of regulation the renal
sensors are affecting to cause the release of EPO.

We first write our approximate simulation system in the form:

M̃~̇x(t) = −Ã~x(t) + ~g(~b)(t)

~x(0) = ~x0

where

~x(t) =





~a
~b

E





and

~g(~b)(t) =





~0
~0

f(~b)(t)




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where f(~b)(t) is the Hill function which has been used previously. We now rewrite
the differential equation as

~̇x(t) = −M̃−1Ã~x(t) + M̃−1





0
0
Bu



u(t)

in order to formulate an optimal tracking problem of finding a feedback control u(t)
so as to maintain the normal level of mature red blood cells in the body. Now, let
A = −M̃−1Ã and B = M̃−1[~0 ~0 Bu]

T , where Bu is a positive constant. Then we
can write the system as

~̇x(t) = A~x(t) +Bu(t) (54)

~x(0) = ~x0 (55)

where u(t) is our control function, thus replacing the nonlinear function ~g by a
linear function u.

Let z(t) denote the tracking variable, which is given by

z(t) = M(t)

=

∫ νF

0

m(t, ν)dν

≈
dR

2
m(t, ν1) + dR

R−2
∑

k=2

m(t, νk) +
3dR

2
m(t, νR−1)

= H~x(t)

where H is of the form

H =

[

~0
dR

2
dR dR · · · dR

3dR

2
0 0

]

.

For the erythropoiesis model, we want z(t) to track a reference signal rM = 3.5,
which is the normal value of M(t). That is, rM is the normal number times 1011

per kilogram body weight of mature red blood cells in the body.
The optimal tracking problem is to find a feedback function u(t) to minimize the

performance measure

J(u) =
1

2

∫

∞

0

{

[

z(t) − rM

]

qd

[

z(t) − rM

]

+ u(t)rdu(t)

}

dt

=
1

2

∫

∞

0

{

[

H~x(t) − rM

]

qd

[

H~x(t) − rM

]

+ u(t)rdu(t)

}

dt

=
1

2

∫

∞

0

{

qd

[

H~x(t) − rM

]2

+ rdu
2(t)

}

dt,

where qd and rd are positive design parameters, subject to

~̇x(t) = A~x(t) +Bu(t)

z(t) = H~x(t)

~x(0) = ~x0.
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9.2. Necessary conditions. We define the Hamiltonian:

H(~x(t), u(t), ~y(t)) =
1

2
qd

[

H~x(t) − rM

]2

+
1

2
rdu

2(t) + ~yT (t)

[

A~x(t) +Bu(t)

]

.

Then the necessary conditions for optimality are given by [13, 15]:

~̇x∗(t) =
∂H

∂~y

= A~x∗(t) +Bu∗(t) (56)

~̇y∗(t) = −
∂H

∂~x

= −qdH
T

[

H~x∗(t) − rM

]

−AT ~y∗(t) (57)

0 =
∂H

∂u

= rdu
∗(t) +BT~y∗(t). (58)

From Equation (58), we find that

u∗(t) = −
1

rd
BT~y∗(t). (59)

Now we assume that

~y∗(t) = Π~x∗(t) + ~s. (60)

Taking the derivative of Equation (60) and substituting into Equation (57), we
obtain the following relation:

Π~̇x∗(t) = −qdH
T

[

H~x∗(t) − rM

]

−AT ~y∗(t).

We now do a series of substitutions, first substituting Equation (56) for ~̇x∗(t)

Π

[

A~x∗(t) +Bu∗(t)

]

= −qdH
T

[

H~x∗(t) − rM

]

−AT ~y∗(t),

then Equation (59) for u∗(t)

Π

[

A~x∗(t) −B
1

rd
BT~y∗(t)

]

= −qdH
T

[

H~x∗(t) − rM

]

−AT ~y∗(t),

and finally Equation (60) for ~y∗(t)

Π

{

A~x∗(t) −B
1

rd
BTΠ

[

~x∗(t) + ~s
]

}

= −qdH
T
[

H~x∗(t) − rM

]

−AT
[

Π~x∗(t) + ~s
]

.

Rearranging the terms, we have
[

ΠA+ATΠ −
1

rd
BBTΠ + qdH

TH

]

~x∗(t) +

[

−
1

rd
ΠBBT~s− qdrMH

T +AT~s

]

= 0.

Since we desire this to be true for all ~x∗(t), we require

ΠA+ATΠ −
1

rd
BBTΠ + qdH

TH = 0, (61)

which is the algebraic Ricatti equation, and

~s = qdrM

(

AT −
1

rd
ΠBBT

)

−1

HT , (62)
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Table 2. Set 1 of parameter values for the erythropoiesis model
using the optimal feedback function.

Parameter Value
µD 3
µF 5.9
νF 50
S0 0.00008
kE 6.65
β 1.5
α 0
γ 0.001
qd 100
rd 10−4

Bu 1.5

which is sometimes called the tracking equation.
We now return to our assumed form of ~y∗(t), and, using Equation (62), we find

~y∗(t) = Π~x∗(t) + ~s

= Π~x∗(t) + qdrM

(

AT −
1

rd
ΠBBT

)

−1

HT .

Thus, the optimal feedback control u∗(t) is given by

u∗(t) = −
1

rd
BT ~y∗(t)

= −
1

rd
BTΠ~x∗(t) −

1

rd
BT qdrM

(

AT −
1

rd
ΠBBT

)

−1

HT . (63)

9.3. Numerical results. In this section, numerical simulations were carried out
to synthesize the feedback given by Equation (63). For these computations, we
took N = 25 and R = 75. These values of N and R were used in order to provide a
better approximation ofm(t, ν) sincem is used in the tracking term. The parameter
values that were used in this case can be found in Table 2; although these values
differ from those used with the Hill function simulations (Table 1), they are still
all within reasonable physiological ranges of values. We again began with a 5%
depletion of precursor cells or precursor and mature cells. These results, in which
the feedback was of the form of the optimal control given in Equation (63), are
presented in Figs. 7 and 8. As depicted in Fig. 8, it also took a longer period of
time to return the system to normal levels of M than when the Hill function was
used, although the Hill function did not maintain this normal value but only passed
through it. We note though that the optimal control returned the total number
of mature cells M closer to the normal value much more gradually than when the
Hill function was used, and there was less overproduction of cells. The maximum
values of the EPO concentration are within a normal range, but the concentrations
that produced optimal tracking also acquired negative values, which we know are
not physically possible.

We again assumed an initial depletion of 5% of precursor cells and then precursor
and mature cells. We then used the set of parameters given in Table 3. We note
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Figure 7. Mature cell and erythropoietin response following pre-
cursor cell depletion using optimal feedback with parameters from
Table 2.
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Figure 8. Mature cell and erythropoietin response following pre-
cursor cell and mature cell depletion using optimal feedback with
parameters from Table 2.
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Table 3. Set 2 of parameter values for the erythropoiesis model
using the optimal feedback function.

Parameter Value
µD 3
µF 5.9
νF 50
S0 0.00008
kE 66.5
β 1.1
α 0
γ 0.01
qd 9500
rd 8 × 10−6

Bu 1.5

0 2 4 6 8 10 12 14 16 18 20
0.85

0.9

0.95

1

1.05

t (days)

M
 (%

 re
la

tiv
e 

to
 n

or
m

al
)

0 2 4 6 8 10 12 14 16 18 20
−100

0

100

200

300

t (days)

E 
(m

U
/m

L)

Figure 9. Mature cell and erythropoietin response following pre-
cursor cell depletion using optimal feedback with parameters from
Table 3.

that the value of kE is not physiologically realistic. These simulation results are
shown in Figs. 9 and 10. Here, the system did return to normal level of M much
more quickly than when the parameter values in Table 2 were used. There was more
fluctuation in the concentration of EPO, but less of this fluctuation occurred in the
negative range. Thus, although not all the parameter values may be physiologically
realistic, they did produce a more physically plausible outcome.

9.4. Suboptimal control. We note that, from Fig. 11, E was negative when
the feedback control, u(t), had negative values. One approach (commonly used in
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Figure 10. Mature cell and erythropoietin response following pre-
cursor and mature cell depletion using optimal feedback with pa-
rameters from Table 3.
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Figure 11. Erythropoietin response and feedback function follow-
ing precursor cell and mature cell depletion using optimal feedback
with parameters from Table 3.
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Figure 12. Mature cell and erythropoietin response following pre-
cursor cell depletion using suboptimal feedback with parameters
from Table 3.

engineering applications) that we considered was to reset u(t) to be zero whenever
its value became negative. This results in a suboptimal control. However, as
depicted in Figs. 12 and 13, using the suboptimal control, the mature cell level is
tracked well, maintaining a normal level of cells, and at the same time the level of
the hormone EPO is now nonnegative.

We then considered the situation where we began in a normal state but had a
cell death rate of 5% for precursor as well as mature cells; in other words, α = 0.05
and γ = 0.05. This would be equivalent to a constant level of benzene toxicity in
the bone marrow killing off precursor cells and mature cells in the blood dying off
at a slightly higher rate (0.05 instead of 0.01) than was previously used. All other
values were taken to be the same as in Table 3. These results are shown in Fig.
14. Despite the fact that precursor and mature cells were constantly dying off, the
suboptimal control did a good job tracking the normal level of total mature cells
M in the body.

We note that the concentrations of EPO found using the optimal and suboptimal
control model were higher and fluctuated more than when the Hill function was used
to represent the feedback mechanism. But, a wide range of EPO values from 3 to
18,000 has been observed, so that the range seen in our numerical simulations is
realistic [2]. It is also noted that although EPO levels vary more than with the
Hill function, there was much less fluctuation in the number of mature cells in the
body and the normal level of mature cells was maintained when the optimal or
suboptimal form of the feedback function was used.
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Figure 13. Mature cell and erythropoietin response following pre-
cursor and mature cell depletion using suboptimal feedback with
parameters from Table 3.

10. Discussion. In this study we have examined an age-structured model for ery-
thropoiesis. By using the method of characteristics with a modified version of the
method of steps, we eliminate the need for the age-structured population equations
for p and m and replace them with a delay differential equation for the total mature
population M(t). This results in a new system of delay differential equations for
M(t) and E(t). Standard existence and uniqueness results for delay differential
equations were then used to guarantee the existence and uniqueness of the solution
to the model. The system was then written in weak form, and a numerical approx-
imation to the solution of the system was found using finite elements. It should
be noted that in previous studies the age-structured models for erythropoiesis have
been solved numerically by using the method of characteristics or, in an indirect
way, by simulating the resulting delay differential equations. To our knowledge,
this is the first time the system of coupled age structured model and ordinary dif-
ferential equation has been solved numerically by the finite element method. The
finite element formulation provides natural means for numerical simulations as well
as for the optimal control problem formulation and synthesis. Finally, we used opti-
mal control theory to track the total number of mature cells and to find an optimal
form of the feedback function of EPO, which determines the number of proliferating
precursor cells that are recruited from the stem cell population. In earlier studies,
a Hill function, which is a standard function often used to characterize unknown
enzyme kinetics, had been used to represent this nonlinear feedback. The results
in the literature using the Hill function establish that this function is not a very
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Figure 14. Mature cell and erythropoietin response with contin-
uous death of precursor and mature cells using suboptimal feed-
back.

good representation of the feedback, as evidenced by the fact that the EPO released
using this function results in underproduction or overproduction of cells and does
not maintain normal levels. Suboptimal linear controls were then obtained in order
to keep the concentration of EPO in the nonnegative range. We note that both the
optimal and suboptimal linear controls did an excellent job in tracking the total
number of mature cells.

Computations were done for various biological scenarios. In all numerical sim-
ulations using both optimal and suboptimal control, the production of EPO was
done in such a way that the total number of mature cells were stabilized; this is
certainly what we would hope for, as the body should not have extreme depletion
or abundance of blood cells. But the controls took more than six days to return
the body to approximately normal levels of mature cells. In the future, we would
hope to look at how this initial delay might be alleviated so as to better correspond
with the body’s rapid response to the change of blood cells in the body. Also, we
examined only initial depletion of cells; in the future; we would hope to look at
continuous depletion of both precursor and mature cells as well as intermittent de-
pletions of these cells. Intermittent depletion could be used to represent exposure
to toxic chemicals, such as benzene, during an individual’s average work day in a
factory.

Although there were gains made through this research in solving the erythro-
poiesis model as system of partial and ordinary differential equations, many sim-
plifications were made. In the future, we hope to look at a velocity of maturation
for the precursor cells that is dependent upon the EPO level, rather than being
constant, as well as cell death for mature cells that is a function of the cell age ν.
Additionally, we would like to formulate β as a function of both µ and E. This
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would create new issues in both the theoretical and numerical aspects of solving
the model, since the partial differential equation for p(t, µ) would involve nonlin-
earity in terms of multiple state variables. This would create new complexities in
the control and tracking problem as well. Also, some work by Mahaffy et al. [18]
suggests that the final age of mature cells should be not fixed but a function of
time, which would present additional new challenges.

In the future we hope to use the results of the PBPK model as direct time-course
input into the precursor death rate term of the erythropoiesis model. We would
also like to extend the model to include other lineages of hematopoiesis, such as
granulopoiesis and thrombopoiesis. The model could also be modified in such a way
to include mutations in blood cells and consider “parallel” age-structured models
representing the maturation of the different lineages of mutated cells. This could
lead to a model in which the possibility of tumors following benzene exposure could
be predicted.
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Appendix: Model Symbols.

t Time (days)
µ Maturity level of precursor cells (days)
ν Age of mature cells (days)
p(t, µ) Number of precursor cells at time t and maturity µ
m(t, ν) Number of mature cells at time t and age ν
E(t) Concentration of erythropoietin at time t (mU/mL plasma)
µD Maturity level at which precursor cells stop dividing (days)
µF Oldest maturity level of precursor cells (days)
νF Oldest age of mature cells (days)
M(t) Total number of mature cells at time t

(×1011 erythrocytes/kg body weight)
S0 Rate of cell recruitment of cells into the proliferating precursor

population
(×1011 erythrocytes/kg body weight × mL plasma/mU EPO/day)

β Birth rate of precursor cells (days−1)
α Death rate of precursor cells (days−1)
γ Death rate of mature cells (days−1)
kE Decay rate of Erythropoietin (days−1)
V (E) Velocity of maturation of precursor cells
W Rate of aging of mature cells
a,K, r Parameters in the Hill function
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