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ABSTRACT. In general, the distributions of nutrients and microorganisms in
sediments show complex spatio-temporal patterns, which often cannot be ex-
plained as resulting exclusively from the temporal fluctuations of environmen-
tal conditions and the inhomogeneity of the studied sediment’s material. We
studied the dynamics of one population of microorganisms feeding on a nutri-
ent in a simple model, taking into account that the considered bacteria can
be in an active or in a dormant state. Using this model, we show that the
formation of spatio-temporal patterns can be the consequence of the interac-
tion between predation and transport processes. Employing the model on a
two-dimensional vertical domain, we show by simulations which patterns can
arise. Depending on the strength of bioirrigation, we observe stripes or “hot
spots” (or “cold spots”) with high (or low) microbiological activity. A detailed
study regarding the effect of non-homogeneous (depth dependent) forcing by
bioirrigation shows that different patterns can appear in different depths.

1. Introduction. Pattern formation in spatiotemporal systems has been a focus
of attention of scientific research since the paper by Turing [32]. He found that
the spontaneous emergence of inhomogeneous distributions of chemical substances
in reaction-diffusion-systems (RDS) may be of high importance to morphogenetic
processes. His seminal paper on diffusion instability was the starting point for a
broad theory to establish proof of the significance of pattern formation in a huge
class of RDS [21, 20, 19, 24, 28]. The study of chemical RDS showed that pattern
formation phenomena will only occur if two nonlinearly reacting chemicals have
different diffusion constants (activator and inhibitor). Because this is impossible
to achieve in solutions it took three decades to verify Turing’s theoretical findings
experimentally [7]. Phenomena of pattern formation are not restricted to RDS.
Advection also has been identified as a transport process that can induce pattern
formation [26, 16, 13, 29, 27]. In particular it has been shown that the instabil-
ity of a homogeneous distribution of chemical substances can be achieved by the
interaction of nonlinear, not necessarily autocatalytic, reactions of three chemical
species with advective transport [26]. Furthermore, Henry and Wearne [9] proved
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that if anomalous diffusion is taken into account as a transport process, the diffu-
sion coefficients of activator and inhibitor need not to be different to yield Turing
instabilities.

Pattern formation was also studied with respect to colonies of microorganisms.
Kitsunezaki [12] showed that the surfaces of these colonies can propagate with
different velocities, creating a fingering of the moving fronts. He found that this
behaviour is a result of the interaction of nonlinear diffusion and an activation
mechanism of the bacteria. In a similar way, Tsimring et al. [31] divided bacteria
populations into motile and nonmotile parts. In their model, chemotaxis is the
process inducing the formation of inhomogeneous distributions. Studying slime
mold colonies Camazine et al. [6] showed that chemoattractants (cyclic adenosine
monophosphate or cAMP) may play an important role in pattern formation. The
same substance was found by Bruns et al. [5, 4] to effect a stimulation of the
growth of dormant cells in special planktonic bacteria in fresh and sea water. As
the authors state, cAMP or other signal molecules may be relevant to the growth
of a broader spectrum of marine bacteria.

The degradation of chemical substances in the sediment is processed by a com-
plex network of different reactions that are mostly controlled by microorganisms
[33, 10]. To analyze the essential processes in this network we developed a mini-
mal sediment model (MS-model) that consists of one bacteria population and its
(only) nutrient. By studying this model we have shown that pattern formation pro-
cesses due to diffusion instability can be regarded as one possible mechanism of the
formation of inhomogeneous distributions of chemicals found in marine sediments
[18, 3, 15]. In [1] we presented a detailed analysis of the dynamical properties of
the MS-model in its local form and discussed spatial patterns in 1D (depth in the
sediment). Besides that analysis, we used the program CONTENT [14] to compute
spatial depth-dependent profiles of chemicals and microorganisms. In particular,
we found multistability; that is, the coexistence of different stable spatial patterns.

Based on this previous simplified model we present in this paper a new model,
which incorporates on one hand more realistic features motivated by experimental
studies, and which is on the other hand considered in a 2D spatial domain. In the
model we distinguish between active and dormant bacteria. Degradation is only
performed by active bacteria. In our approach, we examine the possibility that the
activation of dormant bacteria can be intensified by the active bacteria through
the excretion of signal molecules. Another special property of our model is that
it is forced by a depth-dependent bioirrigation term. Focusing on the situation in
natural systems, we study how the model behaves when we force it by a bioirrigation
term that decreases with increasing depth.

The first part of analysis presented in this paper concerns the local model (i.e.,
only the reaction part of our system). We studied the model behavior for broad
ranges of parameters to discover, how environmental influences affect the system.
Since we presume that there is a (small) inflow of nutrient and microorganisms,
it is guaranteed that none of the species is ever extinct. We found that in almost
all cases, the model converges to a steady state, that reacts robustly on changes
of the concentrations of the species. The transient behaviour of the model can be
characterized by a monotonous convergence toward the equilibrium or an oscillating
progression with decreasing amplitude. The steady state is not necessarily unique.
It may be accompanied by another equilibrium. In this case the state that is realized
over the long term depends on the initial conditions. A special scenario is found
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if changes in the environmental conditions (modelled by the parameters) lead to
the transition of a stable equilibrium to a repelling focus. In this case, a stable
limit-cycle evolves, so that the model’s dynamics show stable oscillations.

In section 4 we study the spatial model on a two-dimensional domain. In par-
ticular, we analyze the behavior of stationary homogeneous distributions. When
studying the stability of the homogeneous solutions, we found that Turing insta-
bilities can occur and spatial patterns evolve over the long term. To study the
phenomena of pattern formation we performed several series of computer simula-
tions for certain parameter sets. In a first approach, we study the patterns that
evolve when all external forcing is homogeneous. In a second step, we consider pa-
rameter sets that are more realistic, taking ito account a depth-dependent forcing.
Section 5 is devoted to a discussion of the results.

2. The setup of the model. Fig. 1 shows the processes we are taking into
account in the model. To implement these processes in a mathematical model, we
used the approaches listed in table 1.
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FIGURE 1. The setup of the model.

TABLE 1. Mathematical models for the processes considered.

reaction non-local local
transport transport
inflow of mortality of predation bioirrigation diffusion
bacteria (B) | bacteria (B) (B2<t)N) (N) (B,N)
constant term | linear term | nonlinear term | depth dep. | Fickian type
(see text) Fickian flux

The predation term consists of a Holling IT function, which is prey-dependent.
Since we distinguish between an active and a dormant part of the bacteria popula-
tion and only the active one contributes to predation, we obtain for the predation

term:
Y Y

fpred = XaCtH—Y = g(X)XL+Y, (1)
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where X is the population density of the bacteria, X2 is the active bacteria, ¥
the concentration of nutrient, and L the half-saturation constant of the Holling IT
term. ¢ determines the ratio of active bacteria within the total population. We
presume (i) that a certain fraction of bacteria - is always active and (ii) that an
additional activation is induced by the population itself. An appropriate mathe-
matical formulation to implement these features is:

o) =7+ (-7 @)

where K is another half saturation constant and v € [0,1] is a dimensionless num-
ber regulating the strength of active stimulation in comparison to the fixed activ-
ity /dormancy ratio.

By these mathematical formulae our PDE-system reads:

0X X \ XY 92X PX
E:a(y+(1—y)K+X)L+Y MX+E+DX( o+ Ch) (3)
oy X \ XY Y | oY
E:_6<7+(1_7)K+X>L+—Y+S(Cv)( Y)+DY( a2 Ch )

with « and (§ weighting the influence of predation for bacteria and nutrient. We
employ the rate of mortality M, the rate of bacteria inflow E, and the nutrient’s
concentration in the sea water Yy. S((,) is governing the strength of bioirrigation
and Dx, Dy are the diffusion coefficients for the microorganisms and the chemicals,
respectively. We use coordinates ¢, for vertical and horizontal space and 7 for
time. The bioirrigation corresponds to a nonlocal transport term, which leads to
a global coupling of different sites in the system. Any change of the conditions
for bioirrigation will affect the nutrient concentrations at any point of the model
immediately.

By rescaling, we obtain dimensionless equations with a reduced number of pa-
rameters. In particular we apply:

_ _1 _Cv,h _%
t=pr ﬂLX y=7YV zan=- m=73
o K S 1 1
““@L® 't 75 Tart Tt W

where d is the total depth of the model domain.
The substituions yield:

oz x y Pz 0%z
g_(’Y+(1_’7)k+x)m1+y_mm+€+5(ZU +g)
dy

Yot + ot -+, (2L + T8 @

o S 1—
ot (7+( 7) 1+y 22 22

k+z
3. Analysis of the local model. The local model consists of equations (5), not
regarding all spatial derivatives and assuming a bioirrigation that is homogeneous
in depth. Thus, neglecting the diffusion terms and substituting the function o(z,)
by a fixed parameter o, we get:

ox y
E_<7+(1_7)k+x> T+y —mz+e
9y

az—(’y—l—(l—v)ﬁ)x% + (Yo —vy) (6)
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To study the equilibria (i.e., the stationary solutions) of the local model, we consider
those states in which the time derivatives in equations (6) vanish. In that case we
can derive a linear relationship between the coordinates of any equilibrium (x5, ys),
given by:

mx — €

(7)

Y=UYo—
o
with
€
Yy € (0, Yo + —).
o
Substituting (7) in one of the equations (6) with zero temporal derivatives, we can
derive the equilibria. This leads to the problem of finding the roots of the cubic
polynomial

p(z) := azx® + axx® + a1z + ag (8)
with the coefficients:
az = m(m—1)
as = m2k —yoom + yoo + € — 2me — myk — om

a1 = ve—omk —2mek — yoomk + €2 + yoovk + yooe + ek
ek‘((yo + 1o+ 6).

ao

The roots of the polynomial (8) can be derived analytically but consist of very
complex terms. However, we see that—depending on the parameters—there exist
one, two, or three positive roots.

y

T T =
X (e +oy)/m X

FIGURE 2. The z + y-nullcline with velocity vectors. The velocity
vectors on the x + y-nullcline point in (1, —1) or opposite direction.
Straight forward calculus shows us, that at (0,yo + <) the velocity
vector has a southeast direction, wheres at ((e+o0yg)/m, 0) it points
to the northwest. Since the change of the velocity vector along the
nullcline is continuous, there is in general an odd number of points
on the nullcline, in which the velocity vector vanishes.

Referring to (7), we can formulate a more precise statement. For that case, let
us consider Fig. 2. The graphics show the = + y-nullcline n* given by (7). Since we
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know, that (i) an equilibrium is characterized by a vanishing velocity vector (i.e.,
U= (0x/0t,0y/0t) =0 ), and (ii) that every equilibrium of the system lies on n*,
we find the entire set of equilibria by identifying all points on the nullcline with
vanishing velocity-vector. Using this approach, the computation of steady states
will be no easier than solving (8). Nevertheless, it allows us to find some basic
results. First, we state that any velocity vector on the nullcline obeys:

=2 () )

It vanishes, if and only if % = 0. The nullcline is bounded by the points at which

it intersects the axes. At these points, the derivative % g easy to compute. We

ot
have

dy Jy
5 —0 = —¢€ E w:%ﬂ = 0Yo- (10)

Since % is continuous on n*, the change of signs can only be achieved if there is
(i) at least one root of the derivative dy/dt on the nullcline (ii) in general an odd
number of roots on the nullcline (iii) an even number of roots, only in the special
case that at least one root of higher order (e.g., a double root) occurs. Keeping in
mind, that the roots must also solve (8) we can conclude, that in general we can
distinguish between models having one and models having three steady states (see

Fig. 3).

equilibria: equilibria:
(0.06, 3.99),(0.20, 3.54),(1.0,1.0) (1.03, 0.91)

Fi1GURE 3. Nullclines (thick lines; %—f = 0 is blue dashed-dotted;
% = 0 is green solid) and trajectories (thin lines) for two systems
of different type. We used parameter set 1: k = 1,¢ = 0.005,0 =
0.1,m = 0.3175,y9 = 4.125. The left plot shows three equilibria;
in the right plot, all trajectories converge to a unique steady state.
In the left plot, we assumed ~ = 0.25, whereas in the right graph
~v = 0.3. The trajectories start either at y = 0 (red) or at y = 6

(lightblue).

Fig. (4) illustrates the situation for the continuously changing parameter ~.
~ controls the influence of the bacteria’s population density on the activation mech-
anism. If v is very small, the activation is almost entirely induced by the bacteria.



PATTERN FORMATION IN A BENTHIC NUTRIENT-MICROORGANISM SYSTEM 117

From a mathematical point of view, the decrease of v coincides with an increase of
the nonlinearity of the system.

It appears, that for a broad range of moderate values «y the system is multistable.
This choice of 7y corresponds to an existing but weak effect of activation due to signal
molecules. As the figure shows, the coexisting stable steady states may be a pair
of foci (e.g., at v = 0.2), a focus and a node, or (very close to the first saddle-node
bifurcation) a pair of nodes.

1.2 j ;
—— attracting node

attracting focus
1l = saddle

0.8 |

0.6 4

0.4

0.2 |
I ‘-/ L

0 0.05 0.1 0.15 Y 0.2 0.25 0.3 0.35

FIGURE 4. Depending on the choice of parameters, the model may
have up to three equilibria of different characters. The plot shows
all equilibria of a model with the parameters as used for the plots
in Fig. 3 and v being varied. When passing the saddle-node bi-
furcation at (v ~ 0.1,z ~ 0.74) the saddle turns into an attracting
node before changing to an attracting focus. At the chosen reso-
lution the range in which the equilibrium is a node is not visible.
(Attracting equilibria characterized by dashed lines are “Turing
unstable”, we will refer to this in Sect. 4).

We will obtain a different behavior of the system if we consider models with
o = 0.05. As Fig. 5 shows, at v ~ 0.29 the attracting focus loses its stability
and becomes a repelling focus. At this point (supercritical Hopf-bifurcation), an
attracting limit-cycle evolves (see Fig. 6).

In the phase-plot the trajectories revolve around the focus. In systems having
only one equilibrium, they converge to a limit cycle. If the change of v yields the
emergence of another pair of steady states (saddle and attractor), the cycle collides
with the saddle and disappears (homoclinic bifurcation). In the corresponding
model, the only stable set is then the newly emerged attracting node.

We used analytical methods to determine the stability properties of the steady
states based upon the linearization of equations (6). The eigenvalues of these lin-
earized equations derived at the equilibrium points can be used to characterize the
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FIGURE 5. Location and characteristics of equilibria existing for
models refering to parameter set 2 (k = 1,¢ = 0.005,0 = 0.05,m =
0.3175,y0 = 4.125). For a broad range of v there is a repelling fo-
cus. Near the saddle node bifurcations the properties of dynamics
change very fast so that not all phases can be found at this reso-
lution. For that reason the sequence is given in words.

FIGURE 6. In the left plot, all trajectories converge to a limit cycle
(pink curve). Decreasing v, we pass a saddle node bifurcation and
we obtain a set of equilibria consisting of a saddle, a repelling focus
and an attracting focus. The right plot shows this situation.

dynamics of the system in the neighborhood of the steady state. In particular we
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have the following characteristics:

R(Aoe1) < 0, R(Ajoe2) <0 attracting equilibrium
R(Aoe1) < 0, R(Aioe2) > 0 saddle
R(Aoe1) > 0, R(Aioe2) < saddle
R(Moe1) > 0, R(Aioe2) >0 repelling equilibrium

We get the eigenvalues Ajpc1,2 by solving
det(J — AjoI) =0, (11)

with J being the Jacobian matrix composed of the derivatives of the right-hand
sides of (6) at the steady state (xs,ys) under consideration. Equation (11) can be
transformed to:

Noe = t7(JT) Ao + det(J) = 0. (12)
Hence we obtain:
)\1200_ (A=B—=0)A\oc +mB—-0A=0 (13)
with
A=gg-h® _x% B=g"-hi-x,. (14)
and g; and hy, given by:
0 1—-v)k oh 1
= Bt = e "yl "W

We omit substituting the equilibria’s coordinates into (15), because the resulting
terms are too complex to tell us very much about the system’s behaviour. However,
we can compute the eigenvalues Aj .12 analytically and use them to classify the
stability of equilibria.

4. Analysis of the spatial model. Under certain conditions, reaction-diffusion
systems can show the phenomenon of pattern formation. To study whether trans-
port processes can lead to spatially inhomogeneous patterns of chemicals and mi-
croorganisms in the sediment, we consider our sediment model on a twodimensional
(2D) domain. Besides the reaction part of the model we discussed so far, we will also
regard the diffusion terms. The appropriate partial differential equations (PDEs)
read:

%=(v+(1—w)kx ) ?yy—mm-FE-i-é (8; +%x)
A I

First, we identify some properties of the system by a theoretical analysis, consider-
ing a model without any nonhomogeneous forcing. We assume, that the biological,
chemical, and physical conditions do not depend on space and that there are no
non-homogeneous effects induced by boundary conditions (for that purpose let us
assume that our domain is infinite).

Of course the homogeneity assumptions do not hold for realistic conditions. To
gain insight into realistic cases, we study simulations on a vertical 2D-domain, that
is bounded in the second part of this section. Appropriate boundary conditions and
the depthdependency of the bioirrigation term will be taken into account explicitly.
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4.1. Stability of homogeneous equilibria in the spatial model. In contrast
to the local model, we employ the spatial model on an (inifinite) 2D domain, so
that the steady-state solutions are 2D-functions. First, we want to find the steady-
state solutions within a special class of these functions; namely, the homogeneous
(i.e. spatially constant) functions (such as z(zp, z,) = ¢). Since diffusion flows are
driven by spatial gradients, there will be no fluxes in the case of the homogeneous
distributions. Thus the homogeneous solutions can be obtained from the solutions
of the local model. That means that if [, y;] is a steady state of (6), the functions
[s(2n, 20) = Ts,Ys (2, 2y) = ys] form an equilibrium with respect to (5). Addition-
ally, we know that no other homogeneous distributions are time-invariant in the
spatial model.

Let us now discuss the stability of the homogeneous solutions with respect to
perturbations. Turing proved that it is possible for a homogeneous attracting equi-
librium to lose stability due to the interaction with diffusion processes. To check
under which conditions these Turing instabilities occur in our model, we test how
perturbations of a homogeneous steady-state solution behave in the long-term limit.
To this end we choose perturbation functions consisting of the following 2D Fourier
modes (analogous for §):

I = exp ((nhzl + Ky22)i + )\t). (17)

Since we will work with the linearized form of Eq. (5) and the Fourier modes are
orthogonal, it is sufficient to analyze the long-term behavior of an arbitrary Fourier
mode.

After substituting = x4(2p, 2,) + & and y = ys(zp, 2, ) +§ in Eq. (5) we linearize
the reaction-terms of the equations via a Taylor-expansion about the homogeneous
solution. By that transformation we obtain:

@0 (5 ) =0 (18)

with

Jin — 53:(/’?;21 + K2) Ji2
Jsp = ) v 19

P ( J21 Jo2 — Oy (Kj, + K7) 19)
and ji; being the entries of the Jacobian matrix J (cf. Eq. 11). Since equation (18)
has to be valid for all perturbations we must claim:

det(J,, — AI) = A2 + ((595 +8,) (K2 + K2) — tr(J)>/\+
+det(J) = (3ujaz + 8y511) (ki + K2) + 8.0, (k7 + #3)% = 0. (20)

As in the local model, the eigenvalues A\; o—mnow dependent on x5, and x,—provide
us with the necessary information to determine the stability of the homogeneous
equilibrium [z4(zp, 2u), Ys(2h, 20)]. To find Turing instabilities we must focus on the
stability properties of the attracting homogeneous solutions (zs(2zn, 24 ), Ys(2h, 2v))-
This loss of stability occurs if at least one of the eigenvalues crosses the imaginary
axis.

In the spatial model, the value of A1 2 depends on the sum of the square of
wave numbers x7 + k2. Thus both wave numbers affect the eigenvalues. This
mathematical property reflects the fact that some Fourier modes will vanish in the
long-term limit while others will amplify. To simplify the situation we can make
use of Ay 2 being rotational symmetric functions on the (kp, £,)—plane. Therefore
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we can substitute k? = k7 + K

1D-formulation. We have:

2

+ and derive the results for the 2D-case from a

A —tr(Jgp) X + det(Jgp) =0 (21)
with
tr(Jsp) = tr(J) — (6x + Sy K>
det(Jsp) = 0x 0y k" — (6x g2z + Sy j11)k” + det(J) (22)

Taking into account that tr(Jg,) < tr(J) we can conclude that for attractors and
saddles (both with respect to the local model) a change of stability coincides with
a change of the sign of det(Js,). This change requires that (i) one species z or y
is growing autocatalytically and (ii) the autocatalytic species is less mobile than
its counterpart (see [19, 24, 1]). Both presumptions are fulfilled in our model: The
bacteria grow autocatalytically because of their ability to activate other members of
their population by excreting signal molecules. Furthermore, the bacteria are less
mobile than the molecules of the nutrient because of their size and because they
tend to stick on the sediment matrix. Doing some calculus we find that a change
of sign in det(Jg,) occurs when x takes the critical values

- \/j115y + ja20x — \/(J116y + Ja2bx)? — 46%6% det(J)

2
20x 0y (23)
and
[y + ja2dx + v/ (j110y + Jaadx)? — 40%0% det(J)
KRy = . (24)
20x 0y
In particular, we have:
det(Jsp) <0 = o < K< K. (25)

If both x_ and k4 exist and have positive values, they limit the range of insta-
bility for a locally stable equilibrium. We refer to this range as the Turing space.
To illustrate these findings, let us consider parameter set 1 (Fig. 3) again and
choose v = 1/4. Thus the system has three equilibria: FP; = (0.06,3.99), FP, =
(0.20,3.54), and F'P; = (1.00,1.00). In Fig. 7, the real parts of the eigenvalues of
all three equilibria are plotted. Disturbed by a homogeneous perturbation function,
the equilibria react like their counterparts in the local model. We can tell by the
intersection of the graphs with the x = 0 axis what kind of equilibria we find in
the local model. Furthermore, Fig. 7(a) shows that FP; is unconditionally stable;
i.e., perturbations of any wavelength will be damped out. Comparing this plot of
eigenvalues with that of F'P, (Fig. 7(b)), we find that for a saddle there exists a
critical bound given by k4 below which all perturbations will amplify with time.
However, there are—also for a saddle—higher frequences k > 74.93 that will be ex-
tinguished in the long term. That means that under the influence of diffusion, the
attracting character of the saddle is strengthened. Nevertheless, the homogeneous
F P, equilibrium remains unstable. In Fig. 7(c) we present the typical situation
of a Turing instability. With respect to homogeneous perturbations, F'Ps is stable,
but increasing x one eigenvalue changes its sign and we arrive at a range of per-
turbations inducing the instability of the homogeneous steady state. This Turing
space is bounded from above by .

The change of the bounds x_ and x4 with respect to a variation of v are il-
lustrated in the left subplot of Fig. 8. Some typical features of Turing spaces in
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FIGURE 7. Eigenvalues of the equilibria of a model employing pa-
rameter set 1 (and v = 0.25,6x = 107°,dy = 1072). Disturbed
by a homogeneous perturbation function, the equilibria react like
their counterparts in the local model. So we can tell by the inter-
section of the graphs with the x = 0 axis what kind of equilibria we
find in the local model. As shown above, the character of steady
states is given by the sequence: (a) attracting node (real eigen-
values with negative realparts); (b) saddle (real eigenvalues with
different signs); (c) attracting focus (complex eigenvalues with neg-
ative realparts).

our model can be observed in that plot: The Turing space is limited by two dif-
ferent bounds. On the right side the curves indicating x; and x_ converge in one
point. Beyond that bound, F'P3 exists further but is unconditionally stable. The
left bound of the Turing-space shows an “open end”. The k_ curve hits the y-axis,
whereas—at the same y—the graph of x; returns and continues as the x curve
of F'P,. This bound corresponds to the saddle-node at (y = 0.097, z = 0.74) in the
bifurcation plot, and the equilibrium F'P; does not exist beyond this bound.

When we increase §x, the Turing-spaces of the attractors are getting smaller.
For the right plot in Fig. 7, we chose §y = §x = 1073, and the isolines det(Js,) = 0
consist only of the x; graph belonging to F P,. Thus no Turing-instabilities can
occur if the diffusion coefficients are equal.
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FI1GURE 8. Plots of Turing-spaces (above) and bifurcation dia-
grams (below) for 6x = 107°,6y = 1073 (right) and 6x = dy =
1073 (left). In the Turing-space plots the s (solid lines) and x_
(dotted lines) curves of F P, (thin lines) and F'Ps (thick lines) are
shown. There is also a range of instability for F'P;, but it is too
small to be seen at this resolution. If §x = dy (right) no ranges of
instability corresponding to F'P; or F'P; exist.

4.2. Pattern formation in sediments attributable to Turing instabilities.
To study how structures in the sediment model evolve and to what patterns they
converge, we performed several series of computer simulations. We simulate the
dynamics of nutrient and bacteria on a two-dimensional horizontal-vertical model
domain that has the length 1.3 and the depth 1.0 (both dimensionless lengths).

4.2.1. Models forced by uniform bioirrigation. Performing the first series of simu-
lations we assume that the homogeneous [z, y;]-distributions (with [z, ys] being
an attracting state in the local model) are stationary. Thus we neglect nonuniform
bioirrigation by setting o(z,) = o = const and formulate appropriate boundary
conditions: We presume to have periodic boundary conditions at the boundaries
zp, = 0 and z, = 1.3. At the bottom of the domain (z, = 1.0), there shall be no
fluxes; at the top (z, = 0) we assume that the values of x = zs and y = ys do not
change with time. We start each simulation assuming that it is in the homogeneous
[xs, ys]-equilibrium. To induce a dynamics that may lead to pattern formation, we
perturb the z-distribution by small random values.

Fig. 9 shows a stationary pattern that emerges in the distribution of the bac-
teria’s population density. The y-profile corrsponding to the nutrient distribution
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FIGURE 9. (a) Stationary state of the 2D-simulation basing on
parameter set 1, k =1,5x = 2-107° and dy = 1073. The simula-
tion exhibits structures that could be regarded as wormholes. (b)
The temporal development of the spatial average and variance of
plotted against time (top) the temporal development of the mean
in the pseudo state-space (below).

appears qualitatively as the inverse of the bacteria-distribution. Both are charac-
terized by strip-formed structures, which are horizontally oriented at the top and
vertically orientated at the bottom. This different orientation is due to the different
boundary conditions at the top and the bottom of the domain. Between the depth
of 0.2 and 0.8, we have a region with inclined stripes; below that, the structures
are almost vertical. The transitions from one zone to the other are rather abrupt.
Some stripes have dead ends in which the concentration of nutrient is increased.

The temporal development of the spatially averaged values of the bacteria’s
population density (Fig. 9 (b)) shows that in the first intervalls of simulation these
values change fast and the variance increases. At t ~ 2000, the variance reaches a
constant value and the mean increases slower. At this time the pattern has almost
completely evolved. At ¢t > 8000 the system has reached its steady state.

The pattern illustrated in Fig. 9 is not the only inhomogeneous structure that
can evolve in the sediment model. Varying the strength of bioirrigation (parameter
o) we obtain three different types of patterns. Similar patterns have also been
found in other two-dimensional activator-inhibitor systems, such as the Brusselator
(see [22, 11]). Fig. 10 illustrates the dependency of structures with respect to
changes in o. For small values of o (e.g., o = 0.05), i.e. low inflow of nutrient,
the homogeneous steady state is characterized by a low density of bacteria. It
cannot be destabilized by perturbations. Increasing o, the local model becomes
bistable and a homogeneous equilibrium with higher population densities occurs.
This homogeneous profile is unstable, and in the long run a pattern with isolated
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FIGURE 10. Inhomogeneous patterns depending on the strength
of bioirrigation o. The stationary structure changes from homoge-
neous distributions with low bacteria density via a hot-spot pat-
tern, a striped pattern, and a cold-spot pattern to a homogeneous
profile with high bacteria density.

zones of high bacteria density (“hot spots”) evolves instead. At higher values of o
we obtain banded structures in the equilibrium. A further increase of the parameter
induces the evolution of a pattern, being qualitatively the inverse of the “hot-spots”
structure. Thus it can be referred to as “cold-spots” pattern. Finally, if the nutrient
can inflow easily, a homogeneous distribution characterized by a high population
density of bacteria is stable.

In another series, we study how the model behaves if we do not select a ho-
mogeneous steady state as the initial condition but start with a homogeneous dis-
tribution, that oscillates. In this case diffusion also can cause the formation of
patterns. Generally, the model converges to a stationary inhomogeneous state, as
we have presented so far. Nevertheless, we also found parameter sets for the model,
leading to the evolution of spatio-temporal patterns. In particular we observed
a special kind of oscillation: All points of the domain oscillate with almost the
same period, amplitude, and phase, so that the structure of the evolved pattern
does not alter, whereas the magnitude of the distribution is pulsating. We tracked
this special behavior of the model over a long time. In most cases the dynamics
are very stable but transient: The amplitude of oscillations decreases very slow.
Thus in the long-term limit a stationary inhomogeneous pattern evolves. In a very
small region of parameter space, the oscillations seem to be stable. This region is
close to a Turing-Hopf bifurcation. The behavior of reaction-diffusion systems in
the neighbourhood of Turing-Hopf bifurcations has been a topic of high interest in
recent years [25, 8, 30, 17, 22, 23], and fundamental results have been revealed for
the Brusselator. For our sediment model a stable spatio-temporal pattern seems to
appear but we leave a detailed Turing-Hopf analysis as a task for future work [2].
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p=1 w=1/3

FIGURE 11. Steady states of the sediment model for different bioir-
rigation functions (population densities of bacteria are plotted).
For p = 100 the bioirrigation acts almost constant on the whole
domain. By decreasing p we retard the inflow of nutrient in the
lower parts of the domain. In that region other types of patterns
evolve.

4.2.2. Models forced by nonuniform bioirrigation. A second series of simulations
was performed to study the effect of nonconstant forcing. For that purpose we
replace the constant o by an exponential function decreasing with increasing depth:

J(Zv) =0 eXp(_zv/:U’)v (26)

with p being a characteristic penetration depth. Since the depthdependency of
bioirrigation decreases with parameter p, we can study the effect of the forcing’s
nonhomogenity by comparing the long-term profiles of models in which a fixed
parameter set (here set 1 with v = 0.25) and different values of 1 were considered.
Fig. 11 shows the results: If i takes a large value (e.g., p = 100) the profile does not
differ much from those obtained with homogeneous forcing (cf. Fig. 9). Decreasing
v we find that the domain splits up into two zones. The upper one shows stripes,
the lower one hot spots. Below certain values of p (e.g., at u = 1), the upper zone
degenerates to a thin stratum of high bacteria abundance at the top of the domain;
below that only hot spots can be found. If we decrease p further, a third zone
establishes at the bottom of the domain, in which the bacteria are almost extinct.
This zone exhibits no structures but is homogeneous.



PATTERN FORMATION IN A BENTHIC NUTRIENT-MICROORGANISM SYSTEM 127

Decreasing the value of §, makes it possible to obtain all three types of patterns
in one profile. The decrease of ¢ results in the effect that four of the five stages
illustrated in Fig. 10 occur in one steady state (Fig. 12).

K=1,£=0.005vy=0.256=0.2,m=0.3175,Z = 4.125, D>< =7e-06, DV =0.001,u=3

FIGURE 12. Population density of bacteria in a steady state. The
profile shows a sequence of four of the five different types of pat-
terns that we presented in Fig. 10.

5. Discussion. In a simplified model, we study the dynamics of a population
of microorganisms and its nutrient in the sediment. The fundamental processes
we consider in the system are degradation of nutrients, affecting the growth of
the bacteria’s population, inflow and loss of bacteria, inflow of nutrient due to
bioirrigation and—as local transport process—diffusion. As experimental studies
show, we have to take into account, that the subject bacteria possess an active
as well as an inactive state. In the latter, they do not contribute to degradation.
In our approach we take into account that the active bacteria can intensify the
activation of dormant cells by excreting signal molecules. Another special feature
of our model is associated with bioirrigation, which acts as a nonlocal transport of
nutrients. Thus our model is globally coupled in space.

First we studied the local dynamics of the two species predator-prey model:
Since we presume that nutrients and bacteria flow into the system, it is guaranteed
that none of the species becomes extinct. In the local model, at least one nontrivial
equilibrium is always found. In general, this steady state is attracting. This means
that in almost all cases the system converges to a state in which the concentration
of the nutrient and the population density of the bacteria do not alter. However,
there are some special cases in which the attractor turns to a repelling focus be-
cause of a Hopf bifurcation, and the model shows oscillations in the long-term limit.
In large regions of the parameter space, the attracting equilibrium is accompanied
by two other steady states, one a saddle and the other an attractor. To illustrate
the different behaviours of the models, we choose two different parameter sets and
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perfom a variation of the parameter . This parameter limits the effect of auto-
catalytic activation of bacteria and acts as a measure for the nonlinearity of the
system.

The main result presented in this paper is the analysis of pattern formation
processes due to the interaction of nonlinear growth processes of the bacteria and
diffusive transport. We showed that by generalizing the equilibria of the local model
we can determine all homogeneous steady-state solutions of a spatial system in a
2D horizontal and vertical domain. If these homogeneous equilibria are stable in
the local formulation they may lose this stability with respect to perturbations of
certain wavelengths and converge to heterogeneous distributions of bacteria. The
conditions to obtain such Turing instabilities inducing pattern formation have been
analyzed for this particular model: (i) The particles of the nutrient have to be more
mobile than the individual cells of the bacteria; and (ii) the growth of bacteria has
to be autocatalytic. Both properties can be considered realistic in sediments: The
first follows from the fact that the nutrient particles are much smaller compared
to the individual cells of the microorganisms. Additionally, the bacteria tend to
stick on the sediment matrix. Condition (ii) is a special feature of the activation
mechanism of bacteria, which is taken into account. It is important to note that
Turing instability conditions appear in biogeochemical processes in the sediment in
a natural way, while in normal chemical processes they are very difficult to achieve.

Performing computer simulations, we found that three types of different non-
homogeneous patterns may be stationary in uniformly forced models. In partic-
ular, we obtain hot-spot patterns, structures with stripes, or cold-spot patterns.
For models with spatially constant bioirrigation, we identified the strength of the
influence of bioirrigation (given by parameter o) as one of the factors that controls
what type of pattern is realized. Using this result we performed another series
of simulations to study the effect of a non-constant bioirrigation. If we presume
that the effect of bioirrigation decreases with increasing depth, we see that different
types of patterns, arranged in a vertical sequence, can occur in a stationary state.
Such patterns qualitatively resembleexperimentally observed spatial distributions
of the activity of bacteria in the sediment [3].

According to our studies inhomogeneous distributions of chemicals and microor-
ganisms in the sediment can develop on domains that are totally uniform with
respect to their material properties. The interaction of reaction and diffusion can
induce pattern formation. Besides diffusion there are other processes that can in-
fluence the emergence of spatial patterns in the sediment, which are not taken into
account here. Such processes include advection, chemotaxis and the competition
between different degradation pathways. Future works will focus on these additional
processes.
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