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Abstract: The statistics defined on symmetric permutation groups, particularly descent and inversion,
have been extensively investigated due to their wide-ranging applications in areas such as card shuffling
and sorting algorithms. Descent and inversion were shown to satisfy the central limit theorem by Tanny
(1973) and Bender (1973), respectively. Since then, many mathematicians studied the error bounds
associated with these approximations. Uniform bounds were first established by Fulman in 2004,
while Chuntee and Neammanee (2013) and Sumritnorrapong et al. (2018) derived the non-uniform
bounds. The latest work of non-uniform bounds from Sumritnorrapong et al. (2018) was not practical
since their main theorems are valid for large n and z (n ≥ 7.07 × 106 and |z| ≥ 8

√
3 for descent and

n ≥ 1.9 × 108 and |z| ≥ 24 for inversion). In this paper, we extended the theorem to hold for arbitrary
n ∈ N and z ∈ R. Moreover, our constants were sharper than previously seen. The approach in this
work was done by combining Stein’s method with the exchangeable pair technique.
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approximation; uniform and non-uniform bounds
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1. Introduction

Let S n denote the symmetric permutation group on {1, 2, . . . , n}. The statistics, namely descent,
Des, and inversion, Inv, of S n are defined for a random permutation π in S n as follows:

Des(π) = |{(i, i + 1) ∈ {1, . . . , n − 1} × {2, . . . , n} : π(i) > π(i + 1)}|, and
Inv(π) = |{(i, j) ∈ {1, . . . , n} × {1, . . . , n} : π(i) > π( j)}|.
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That is, the descent of π counts the number of adjacent index pairs (i, i + 1) such that π(i) > π(i + 1),
while the inversion of π counts the number of index pairs (i, j) such that 1 ≤ i < j ≤ n and π(i) > π( j).

We also note that

E(Des) =
n − 1

2
, Var(Des) =

n + 1
12
,

E(Inv) =
n(n − 1)

4
, Var(Inv) =

n(n − 1)(2n + 5)
72

( [1], p. 74). We then define the standardized forms of these statistics by

U :=
Des − E(Des)
√

Var(Des)
, (1.1)

and V :=
Inv − E(Inv)
√

Var(Inv)
. (1.2)

Descents and inversions are also used to study other areas such as the Coxeter group [2], Eulerian
number [3], and combinatorics [4–6]. It is necessary to make a normal approximation for these two
random variables due to various applications including sorting algorithm analysis.

The remainder of this paper is organized as follows: Section 2 provides a literature review and
states the main result. Section 3 reviews Stein’s method within the framework of the exchangeable
pair approach and describes in detail the construction of the required pair for our analysis. Section
4 presents the proof of the main result, which are refined non-uniform bounds, extending previous
results to hold for all n ≥ 4 and any z ∈ R. Section 5 illustrates the applicability of our results through
application in a sorting algorithm. Section 6 provides a discussion on the applicability of the main
result.

2. Literature review and main result

These two statistics were shown to be asymptotically normal in 1973 by Tanny [7] and Bender [8].
In 2004, Fulman [1] applied a theorem of Rinott and Rotar [9] to obtain uniform bounds for these two

statistics, achieving an optimal rate of convergence of order O
(

1
√

n

)
. Following Fulman’s approach,

Chuntee and Neammanee [10] derived explicit constants of the error bounds, which are 1096 and
5421, and further improved them to 13.42 and 14.24, respectively, by using a technique developed by
Neammanee and Rattanawong [11] in 2008. Their results are summarized in Theorem 2.1.

Theorem 2.1. [10] For n ≥ 2,

1) sup
z∈R
|P (U ≤ z) − Φ(z)| ≤

13.42
√

n
,

2) sup
z∈R
|P (V ≤ z) − Φ(z)| ≤

14.24
√

n
,

where Φ is a standard normal distribution function, i.e., Φ(z) =
1
√

2π

z∫
−∞

e−
x2
2 dx for real number z.

Moreover, they provided a first version of the non-uniform bound for these approximations, as stated
below.
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Theorem 2.2. [10] For z ∈ R and n ≥ 2,

1) |P (U ≤ z) − Φ(z)| ≤
C1

√
n(1 + |z|)3

,

2) |P (V ≤ z) − Φ(z)| ≤
C2

√
n(1 + |z|)3

,

where C1 and C2 are unknown constants independent of n and z.
Subsequently, the unknown constants C1 and C2 in Theorem 2.2 were determined by Chuntee and

Neammanee [12] in 2017 to be 101,066 and 546,952, respectively. Exponential non-uniform bounds
were first established in the same paper as presented in Theorem 2.3 below.

Theorem 2.3. [12]

1) |P (U ≤ z) − Φ(z)| ≤
51.25
√

n
e−|z|/4 for z ∈ R and n > 107,

2) |P (V ≤ z) − Φ(z)| ≤
792.71
√

n
e−|z|/4 for z ∈ R and n > 2.4 × 108.

Theorem 2.3 was further improved by Sumritnorrapong et al. [13] in 2018, resulting in Theorem
2.4.

Theorem 2.4. [13]

1) |P (U ≤ z) − Φ(z)| ≤
10.980
√

n
e−z2/32 for |z| > 8

√
3 and n > z6 > 7.07 × 106,

2) |P (V ≤ z) − Φ(z)| ≤
93.467
√

n
e−z2/96 for |z| > 24 and n > z6 > 1.91 × 108.

We observe that, we need a very large n (n > 107) to apply Theorems 2.3 and 2.4. This limitation
motivates us to improve the error bounds and extend their validity to smaller values of n. Since we can
calculate the values of Des(π) and Inv(π) for any π ∈ S n, where n ∈ {1, 2, 3}, easily, the result in this
work is based on the assumption that n ≥ 4.

Theorem 2.5. For z ∈ R and n ≥ 4,

1) |P (U ≤ z) − Φ(z)| ≤
C3(z)
√

n
e−z2/30,

2) |P (V ≤ z) − Φ(z)| ≤
C4(z)
√

n
e−z2/60,

where

C3(z) = 2.17 +
19.62
e7z2/290

+
3
√

3
e89z2/480

(
1 +

9|z|
16

)
+

3
√

3
√

2πe7z2/15
+

14.39
e13z2/480

(1 + |z|),

C4(z) = 3.23 +
30.38

e139z2/27760
+

3
√

3
e97z2/480

(
1 +

9|z|
16

)
+

3
√

3
√

2πe29z2/60
+

14.61
e7z2/780

(1 + |z|).
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Note that the constants C3(z) and C4(z) in Theorem 2.5 are all rounded up. To compare our results
with Theorem 2.4, we note that

|P (U ≤ z) − Φ(z)| ≤
3.54
√

n
e−z2/30 for |z| ≥ 8

√
3 for n ≥ 4,

|P (V ≤ z) − Φ(z)| ≤
7
√

n
e−z2/60 for |z| ≥ 24 for n ≥ 4.

Hence, our results yield sharper constants and are applicable for any n ≥ 4.

3. Stein’s method and exchangeable pairs

Stein’s method is another approach for obtaining normal approximations. In this section, we review
its key ideas and outline how the exchangeable pair technique can be applied to derive non-uniform
bounds for the descent and inversion statistics.

3.1. Stein’s method with the exchangeable pairs technique

The central limit theorem provides conditions under which a suitably standardized distribution
function can be approximated by the standard normal distribution function Φ. Moreover, the Berry-
Esseen theorem gives an explicit error bound for this approximation. We classify such bounds into two
types: the uniform and non-uniform bounds. Suppose F is a distribution function. A uniform bound
does not depend on x, that is,

sup
x∈R
|F(x) − Φ(x)| ≤ C,

where C is independent of x. In contrast, a non-uniform bound depends on x, that is,

|F(x) − Φ(x)| ≤ C(x).

A non-uniform bound is more suitable when the range of x is known, although it might not provide
a uniform guarantee over the entire set of real numbers. In this work, we aim to improve non-
uniform bounds on the normal approximation of descent and inversion by Stein’s method which was
first introduced by Stein [14] in 1972. This method provides a framework for normal approximation
without relying on the Fourier technique [15] and can be extended to various distributions, including
Poisson [16], gamma [17], beta [18], and Laplace distributions [19]. The method replaces the problem
of comparing characteristic functions with the analysis of a differential equation involving an operator
that characterizes the target distribution. This equation is commonly referred to as Stein’s equation.
For a standard normal random variable Z, Stein’s equation takes the form

f ′(w) − w f (w) = h(w) − Eh(Z), (3.1)

where h is a real-valued measurable function satisfying E|h(Z)| < ∞, and f : R → R is a continuous
piecewise-differentiable function. To investigate the Kolmogorov distance, we fix z ∈ R and choose h
to be an indicator function 1(−∞,z], where

1(−∞,z](w) =

1, if w ≤ z,

0, if w > z.

AIMS Mathematics Volume 11, Issue 2, 3903–3919.
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Consequently, Stein’s equation (3.1) becomes

f ′(w) − w f (w) = 1(−∞,z](w) − Φ(z). (3.2)

The solution fz of (3.2) is given by

fz(w) =


√

2π ew2/2Φ(w)[1 − Φ(z)], if w ≤ z,
√

2π ew2/2Φ(z)[1 − Φ(w)], if w > z
(3.3)

( [20], p. 14). In particular,

f ′z (w) =

(1 − Φ(z))
[
1 +
√

2πwew2/2Φ(w)
]
, if w ≤ z,

Φ(z)
[
−1 +

√
2πwew2/2(1 − Φ(w))

]
, if w > z.

(3.4)

This solution has many properties that will be used in this work, such as

| f ′z (w1) − f ′z (w2)| ≤ 1, for all w1,w2 ∈ R, (3.5)
| f ′z (w)| ≤ 1, for all w ∈ R (3.6)

( [20], p. 16). In particular, for z, ϵ > 0, Sumritnorrapong et al. ( [13], p. 284) showed that

| f ′z (w)|2 ≤



e−z2

2πz2 , if w ≤ 0,

e−z2

πz2 + 2ez2(1/(1+ϵ)2−1), if 0 < w ≤
z

1 + ϵ
,

1, if w >
z

1 + ϵ
.

(3.7)

By taking an expectation of (3.2), we obtain

|P(W ≤ z) − Φ(z)| = |E f ′z (W) − EW fz(W)|. (3.8)

This allows us to bound |E f ′z (W) − EW fz(W)| instead of |P(W ≤ z) − Φ(z)|, which is the main idea of
Stein’s method.

In order to bound |E f ′z (W) − EW fz(W)|, there are three main coupling techniques including
exchangeable pair ( [20], p. 21), zero bias transformation ( [20], p. 26), and size biasing ( [20], p.
31). In this work, we employ an exchangeable pair technique. A pair (W,W ′) of random variables is
called an exchangeable pair if (W,W ′) d

= (W ′,W), where X d
= Y denotes that X and Y have the same

distribution. This also implies that W and W ′ are identically distributed. An exchangeable pair (W,W ′)
is said to be a λ-Stein if it satisfies the linear regression condition

E(W −W ′|W) = λW (3.9)

for some λ ∈ (0, 1). Moreover, if (W,W ′) is a λ−Stein, then it follows that

EW f (W) = E
∫ ∞

−∞

f ′(W + t)K(t)dt, (3.10)
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where
K(t) =

1
2λ

(W ′ −W){1(0 ≤ t ≤ W ′ −W) − 1(W ′ −W ≤ t ≤ 0)} (3.11)

( [20], p. 22). From (3.11), it should be noted that∫ ∞

−∞

K(t) dt =
|W −W ′|2

2λ
. (3.12)

In the case where we can construct a random variable W ′ such that the pair (W,W ′) forms a λ-Stein
exchangeable pair, then by using (3.8) and (3.10), we have

|P(W ≤ z) − Φ(z)| =
∣∣∣∣∣E f ′z (W) − E

∫ ∞

−∞

f ′z (W + t)K(t)dt
∣∣∣∣∣

≤

∣∣∣∣∣E f ′z (W) − E f ′z (W)
∫ ∞

−∞

K(t)dt
∣∣∣∣∣

+

∣∣∣∣∣E∫ ∞

−∞

{ f ′z (W) − f ′z (W + t)}K(t)dt
∣∣∣∣∣

:= J1 + J2. (3.13)

Hence, we can bound J1 and J2 instead of |E f ′z (W) − EW f (W)|. This technique is applied by many
researchers (for examples, see [9, 10, 12, 13, 21]). From (3.12), we see that

J1 =

∣∣∣∣∣∣E f ′z (W)
(
1 −

∫ ∞

−∞

K(t) dt
)∣∣∣∣∣∣

=

∣∣∣∣∣∣E f ′z (W)
(
1 −

1
2λ
E

[
(W −W ′)2|W

])∣∣∣∣∣∣ . (3.14)

3.2. Exchangeable pairs for descent and inversion

In this section, we review exchangeable pairs for U and V that were constructed by Fulman [1] in

2004. Let I be a uniform random variable on {1, 2, . . . , n}; i.e., P(I = i) =
1
n

for i = 1, 2, . . . , n. For
random permutation π on S n, we define

π′(i) =


π(i), if i < {I, I + 1, . . . , n},
π(i + 1), if i ∈ {I, I + 1, . . . , n − 1},
π(I), if i = n,

U′(π) = U(π′), and V ′(π) = V(π′). Then, it follows that (U,U′) and (V,V ′) are exchangeable pairs ( [1]

p. 71). Fulman [1] also showed that (U,U′) and (V,V ′) are λ-Stein pairs with the same value of λ =
2
n

.
Consequently, (3.10)–(3.14) are valid when W = U or W = V , with K = K1 or K2, respectively, where

K1(t) =
n
4

(U′ − U){1(0 ≤ t ≤ U′ − U) − 1(U′ − U ≤ t ≤ 0}, (3.15)

K2(t) =
n
4

(V ′ − V){1(0 ≤ t ≤ V ′ − V) − 1(V ′ − V ≤ t ≤ 0}, (3.16)
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respectively. In the proof of the main results in Section 4, we define δU = |U − U′| and δV = |V − V ′|.
We also know that

δU ≤
2
√

3
√

n
, (3.17)

δV ≤
6
√

n
(3.18)

( [1], p. 75).

4. Proof of the main result

In this section, we give the proof of our main results for descent and inversion. Almost all of them
are done for descent while inversion can be proved similarly. The main ideas that make Theorem 2.5
hold for all n ≥ 4 and have a sharper constant come from a sharper bound for the moment in Lemma
4.1 and the fact that we make a bound on four separate cases.

4.1. Auxiliary results

For the proof of the main theorem, we will make a bound only for the case of z ≥ 0. This can be
done by the symmetry of Des and Inv, which can be seen in the following lemma.

Proposition 4.1. U d
= −U and V d

= −V.

Proof. First, we will show that

P(Des = k) = P(Des = n − 1 − k) for k = 0, 1, 2, . . . , n − 1. (4.1)

To prove (4.1), it suffices to show that there exists a bijection between A = {π ∈ S n|Des(π) = k}
and B = {π ∈ S n|Des(π) = n − 1 − k}. For π ∈ S n, let π̃ be defined by π̃(i) = n − π(i) + 1 for any
i = 1, 2, . . . , n. Then, π̃ ∈ S n and Des(π) = k if and only if Des(π̃) = n−1−k. Let g : A→ B be defined

by g(π) = π̃. Then, g is a bijection from A onto B. Hence, (4.1) is true. Note that Im
(
Des −

n − 1
2

)
=

Im
(
n − 1

2
− Des

)
=

{
k −

n − 1
2

∣∣∣∣∣k = 0, 1, 2, . . . , n − 1
}

and for k = 0, 1, 2, . . . , n − 1,

P

(
Des −

n − 1
2
= k −

n − 1
2

)
= P(Des = k)

= P(Des = n − 1 − k)
= P(−Des = k − (n − 1))

= P

(
−Des +

n − 1
2
= k −

n − 1
2

)
,

where we have used (4.1) in the second equality. Hence, U d
= −U. In the case of V , we use the same

argument with the facts that Im(Inv) =
{

0, 1, 2, . . . ,
n(n − 1)

2

}
and E(Inv) =

n(n − 1)
4

. □
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To prove the main theorem, we utilize the Markov inequality and obtain the terms EesU and EesV

for s > 0. To achieve an exponential bound, bounding EesU and EesV in the following lemma plays a
crucial role. In fact, in 2017, Chuntee and Neammanee (Lemma 3.1 in [12]) give bounds for EesU and
EesV for n ≥ 12 and n ≥ 36, respectively. The main theorem of [13] also required the condition n ≥ z6.
In Lemma 4.1, we improve Lemma 3.1 of [12] by providing upper bounds for EesU and EesV that hold
for all positive numbers s and n ∈ N. The properties of an exchangeable pair with the K function are
helpful to prove the result.

Lemma 4.2. For n ∈ N and s > 0,

1) EesU ≤ e
3
2 e2
√

3s/
√

n s2
,

2) EesV ≤ e
9
2 e6s/

√
n s2
.

Proof. (1) Let s > 0 and h : (0,∞) → R be defined by h(ω) = EeωU for ω > 0. In [12], p. 1223,

Chuntee and Neammanee showed that h′(ω) ≤ ωE
∞∫
−∞

eω(U+δU )K1(t) dt. From this fact, (3.17), and

(3.12), we have

h′(ω) ≤ ωe2
√

3ω/
√

nEeωU
∫ ∞

−∞

K1(t) dt

=
ω

2λ
e2
√

3ω/
√

nEeωUδ2
U

≤ 3e2
√

3ω/
√

nωh(ω).

Hence,
h′(ω)
h(ω)

≤ 3ωe2
√

3ω/
√

n. This implies

∫ s

0

h′(ω)
h(ω)

dω ≤ 3
∫ s

0
e2
√

3ω/
√

nω dω

ln h(s) ≤ 3e2
√

3s/
√

n
∫ s

0
ω dω

h(s) ≤ e
3
2 e2
√

3s/
√

n s2
.

(2) We can follow the same argument as in (1) by using (3.18) instead of (3.17). □

It should be noted that this bound for the moment generating function can be improved by making
an explicit integration. Moreover, the bound of the moment generating function is optimal in the form
of eα1eα2/

√
n

by the fact that an absolute difference of descent and inversion with their exchangeable

pairs are bounded by
β
√

n
. In addition, we need bounds for E| f ′z (U)|2 and E| f ′z (V)|2 to prove the main

theorem. The main techniques in the proof are the Markov inequality and a truncation technique.

Lemma 4.3. For n ≥ 4 and 1 ≤ |z| ≤ 0.5
√

n, we have

1) E| f ′z (U)|2 ≤
2.93
√

n
e−z2/15,

AIMS Mathematics Volume 11, Issue 2, 3903–3919.
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2) E| f ′z (V)|2 ≤
2.89
√

n
e−z2/30.

Proof. (1) For α > 0, by applying Markov’s inequality, Lemma 3.2 (1) with s = α|z|, and the fact that
|z| ≤ 0.5

√
n, we obtain

P(U > 0.9|z|) = P
(
eα|z|U > e0.9αz2)

≤ e−0.9αz2
Eeα|z|U

≤ ez2
(

3
2α

2e
√

3α−0.9α
)
.

By numerical optimization, we choose α = 0.186832, and so,
3
2
α2e

√
3α − 0.9α attains its minimum

value of −
1

10.5
, which yields

P(U > 0.9|z|) ≤ e−z2/10.5. (4.2)

It should be noted that this type of optimization will occur frequently in the proof. Now, we apply (3.7)

with ϵ =
1
9

together with (4.2) and obtain that

E| f ′z (U)|2 ≤ E| f ′z (U)|21(U ≤ 0) + E| f ′z (U)|21(0 < U ≤ 0.9|z|) + E| f ′z (U)|21(U > 0.9|z|)

≤
3e−z2

2πz2 + 2e−z2/5.3 + e−z2/10.5.

For |z| ≥ 1, it follows that

3e−z2

2πz2 + 2e−z2/5.3 + e−z2/10.5 ≤
3e−z2/15

2πz2e14z2/15
+

2
e97z2/795

e−z2/15 +
1

ez2/35
e−z2/15

≤ 2.93e−z2/15.

Hence, E| f ′z (U)|2 ≤ 2.93e−z2/15 for 1 ≤ z ≤ 0.5
√

n.
(2) This can be completed by a similar argument as in (1). □

4.2. Proof of the main theorem

From the symmetry properties of U and V described in Proposition 4.1, it suffices to prove the main
theorem for the case z ≥ 0. In [13], Sumritnorrapong et al. obtained an upper bound for EesU under

the condition
2
√

3
√

n
s ≤ 1.256. As a consequence, in the proof of their main theorem, they require

both n1/6 ≥ z and |z| ≥ 8
√

3 in order to achieve an error term of order O(n−1/2). These constraints

imply n ≥ z6 ≥ (8
√

3)6 = 7,077,888. In contrast, our work relaxes the condition
2
√

3
√

n
s ≤ 1.256

(Lemma 4.2), which removes the restriction z ≥ 8
√

3 and allows us to prove the main theorem for
the regime z ≤ c

√
n. Since the descent statistic satisfies |U | ≤

√
3n, we further partition the interval

0 ≤ z ≤
√

3n into three subranges. For Case 1 (0 ≤ z ≤ 1), this avoids the singular term 1/z appearing

AIMS Mathematics Volume 11, Issue 2, 3903–3919.
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in the bound. For 1 ≤ z ≤
√

3n, we use Lemmas 4.2 and 4.3 as key tools. To achieve smaller constants
in the bound, we further separate the range into two cases (Case 2 for 1 ≤ z ≤ 0.5

√
n and Case 3 for

0.5
√

n ≤ z ≤
√

3n). For the remaining z ≥
√

3n, the proof proceeds by a different approach, as detailed
in Case 4.

Case 1. 0 ≤ z ≤ 1. By Theorem 2.1 (1), it follows that

|P(U ≤ z) − Φ(z)| ≤
13.42e1/14.4

√
n

e−z2/14.4 =
14.39
√

n
e−z2/14.4. (4.3)

Case 2. 1 ≤ z ≤ 0.5
√

n. In this case, we will improve the results from Sumritnorrapong et al. [13]
by using Lemma 4.1. From (3.13), it suffices to bound J1 and J2. In 2015, Chuntee and Neammanee
( [10], p. 2317) showed that

E

(
1 −

1
2τ
E[δ2

U |U]
)2

=
1.6

n + 1
. (4.4)

From this fact, Lemma 4.1 (1), (3.6), and (3.14), the term J1 can be bounded as

J1 ≤

√
E| f ′z (U)|2

√
E

(
1 −

1
2τ
E[δ2

U |U]
)2

≤
2.17
√

n
e−z2/30. (4.5)

In 2001, Chen ( [22], p. 250) showed that∣∣∣∣∣∣ f ′z (w) − f ′z (w + t) −
∫ 0

t
h(w + u) du

∣∣∣∣∣∣ ≤ 1(z −max(0, t) < w < z −min(0, t)), (4.6)

where

h(w) = (w fz(w))′ =

(
√

2π(1 + w2)ew2/2(1 − Φ(w)) − w)Φ(z), if w ≥ z,

(
√

2π(1 + w2)ew2/2Φ(w) + w)(1 − Φ(z)), if w < z.

Hence,
J2 ≤ J21 + J22,

where

J21 = E

∫ ∞

−∞

1 (z −max(0, t) < U < z +min(0, t)) K1(t) dt, and

J22 = E

∫ ∞

−∞

∫ 0

t
h(U + u)K1(t) du dt.

Sumritnorrapong ((32) and (35) of [13], p. 285) showed that

J21 ≤
4e4

√
3αz/

√
n

eαz2 E|U |δUeαzU . (4.7)

From Lemma 4.1 (1) and the fact that |z| ≤ 0.5
√

n, we have

Ee2αzU ≤ e6α2e2
√

3αz2
.

AIMS Mathematics Volume 11, Issue 2, 3903–3919.



3913

Hence,

J21 ≤
8
√

3
√

n
e2
√

3α

eαz2

√
EU2
√
Ee2αzU

≤
8
√

3
√

n
e2
√

3α

eαz2

√
Ee2αzU

≤
8
√

3
√

n
e(3α2e2

√
3α−α)z2+2

√
3α.

By choosing α∗ = 0.100313, which minimizes 3α2e2
√

3α − α, we obtain

J21 ≤
19.62
√

n
e−z2/17.4. (4.8)

By a similar argument as in pp. 285–286 of [13], we can show that

J22 ≤
3
√

3
√

n

1
z

(
1 +

9z2

16

)
e−7z2/32 +

e−z2/2

√
2π

 + 3.003
√

3
√

n
(1 + z)P

U > 3z
4
−

2
√

3
√

n

 (4.9)

for all α > 0. To complete the proof in this case, it remains to bound P
U > 3z

4
−

2
√

3
√

n

. Using the

fact that z ≤ 0.5
√

n and applying an argument similar to that used in (4.2), we obtain

P

U > 3z
4
−

2
√

3
√

n

 ≤ 1.33e−z2/14.4. (4.10)

By (4.9) and (4.10), it follows that

J22 ≤
3
√

3
√

n

1
z

(
1 +

9z2

16

)
e−7z2/32 +

e−z2/2

√
2π

 + 6.92
√

n
(1 + z)e−z2/14.4

≤
3
√

3
√

n

(1 + 9z
16

)
e−7z2/32 +

e−z2/2

√
2π

 + 6.92
√

n
(1 + z)e−z2/14.4. (4.11)

Therefore, by (4.5), (4.8), and (4.11),

|P(U ≤ z) − Φ(z)| ≤
2.17
√

n
e−z2/30 +

19.62
√

n
e−z2/17.4 +

3
√

3
√

n

(
1 +

9z
16

)
e−7z2/32

+
3
√

3
√

2πn
e−z2/2 +

14.39
√

n
(1 + z)e−z2/14.4 (4.12)

for any 1 ≤ z ≤ 0.5
√

n.

Case 3. 0.5
√

n ≤ z ≤
√

3n. Note that

|P(U ≤ z) − Φ(z)| = |1 − P(U > z) − (1 − Φ(−z))|
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≤ max{Φ(−z), P(U > z)}. (4.13)

By using the Gaussian tail bound inequality ( [20], p. 38), we have

Φ(−z) = 1 − Φ(z) ≤
1
√

2πz
e−z2/2 ≤

2
√

2πn
e−z2/2. (4.14)

By applying Markov’s inequality, Lemma 4.1 (1) with s = αz for α > 0, and the fact that z ≤
√

3n in
the last inequality, we obtain that

P(U > z) = P(esU > esz) ≤
EesU

esz ≤ e
3
2α

2z2e6α−αz2
=: eg(α)z2

,

where g(α) =
3
2
α2e6α − α. Since g(α) attains its minimum at α∗ = 0.119648, we have

P(U > z) ≤ eg(α∗)z2
= e−z2/13.2 ≤

6.34
√

n
e−z2/17.4. (4.15)

Thus,

|P(U ≤ z) − Φ(z)| ≤
6.34
√

n
e−z2/17.4. (4.16)

Case 4. z >
√

3n. Since 0 ≤ Des(π) ≤ n− 1 for any π ∈ S n and by (1.1), it follows that P(U ≤ z) = 1.
Hence,

|P(U ≤ z) − Φ(z)| = 1 − Φ(z) ≤
1
√

2πz
e−z2/2 ≤

1
√

6πn
e−z2/2. (4.17)

By comparing (4.3), (4.12), (4.16), and (4.17), for any z ≥ 0,

|P(U ≤ z) − Φ(z)| ≤
2.17
√

n
e−z2/30 +

19.62
√

n
e−z2/17.4 +

3
√

3
√

n

(1 + 9z
16

)
e−7z2/32 +

e−z2/2

√
2π


+

14.39
√

n
(1 + |z|)e−z2/14.4

≤
c1(z)
√

n
e−z2/30, (4.18)

where c1(z) = 2.17 +
19.62
e7z2/290

+
3
√

3
e89z2/480

(
1 +

9|z|
16

)
+

3
√

3
√

2πe7z2/15
+

14.39
e13z2/480

(1 + z).

Next, we will give the proof for z < 0. By the symmetry of descent as can be seen from Proposition
4.1 (1), we have

|P(U ≤ z) − Φ(z)| = |P(−U ≥ −z) − Φ(z)|
= |1 − P(−U < −z) − Φ(z)|
= |P(U < −z) − Φ(−z)|. (4.19)

AIMS Mathematics Volume 11, Issue 2, 3903–3919.



3915

If −z < Im(Des), then P(U < −z) = P(U ≤ −z) and we can apply (4.18) immediately. Suppose that

−z ∈ Im(Des). Thus, −z =
k −

(
n−1

2

)
√

n+1
12

for some k ∈ {0, 1, . . . , n − 1}. It follows that

P(U < −z) = P(U ≤ −z − ϵ)

for any ϵ ∈
0, √ 12

n + 1

. By a triangle inequality and (4.18), we have

|P(U ≤ z) − Φ(z)| ≤ |P(U ≤ −z − ϵ) − Φ(−z − ϵ)| + |Φ(−z − ϵ) − Φ(−z)|

≤
C3(−z − ϵ)
√

n
e−(z+ϵ)2/30 +

1
√

2π

∫ −z

−z−ϵ
e−t2/2 dt

≤
C3(−z − ϵ)
√

n
e−(z+ϵ)2/30 +

ϵ
√

2π
e−(z+ϵ)2/2.

Since ϵ ∈ (0, 1) is arbitrary, by taking ϵ → 0+, it follows that

|P(U ≤ z) − Φ(z)| =
C3(−z)
√

n
e−z2/30. (4.20)

From (4.18) and (4.20), the theorem is proved.
Furthermore, if |z| ≥ 8

√
3,

|P(U ≤ z) − Φ(z)| ≤
2.17
√

n
e−z2/30 +

0.19
√

n
e−z2/30 +

1.58 × 10−14

√
n

e−z2/30

+
2.54 × 10−39

√
n

e−z2/30 +
1.18
√

n
e−z2/30

≤
3.54
√

n
e−z2/30.

For Theorem 2.5 (2), we can use the same argument as in the proof of Theorem 2.5 (1).

5. Application

The inversion makes a strong relationship with a sorting algorithm that operates via adjacent swaps.
Classic examples include bubble sorting and selection sorting. In this section, we will consider bubble
sorting since it repeatedly swaps adjacent elements whenever they are in the wrong order. Each swap
removes exactly one inversion. From this reason, its number of swaps is equal to the inversion as
can be seen in Section 5.2.2 of [23]. By Theorem 2.5, we can approximate the probability for the
number of swaps, which may be used to quantify the risk that an algorithm’s runtime exceeds a given
threshold. For example, the probability that a bubble sort will sort the permutation with n = 500 within
k = 100,000 swap counts is

P(Inv ≤ 100,000) = P
(
Inv − E(Inv)
√

Var(Inv)
≤

100,000 − E(Inv)
√

Var(Inv)

)
= P(V ≤ 20.162).
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Note that E(Inv) =
500(500 − 1)

4
and Var(Inv) =

500(500 − 1)(2(500) + 5)
72

. By Theorem 2.5 (2),

it follows that |P(V ≤ 20.162) − Φ(20.162)| ≤
C4(20.162)e−20.1622/60

√
500

= 7.787 × 10−4. Hence, the

probability of the inversion count is approximated by Φ(20.162) with an error bound of 7.787 × 10−4.
For further background on the inversion’s role in sorting algorithm analysis, see [23].

Figure 1 shows the comparison between the uniform bound (Theorem 2.1 (2)) and non-uniform
bound (Theorem 2.5 (2)) for an inversion count. Observe that the error bound is decreasing for |z| ≥
1.886. In particular, the value of z such that the error bound of a non-uniform bound is better than the
uniform bound (Theorem 2.1) is around |z| ≥ 10.3 regardless of the choice of n, and we cannot apply
Theorem 2.4 in this case.

Figure 1. Comparison of non-uniform and uniform bounds for n = 200 and n = 500.

6. Discussion

For small values of n, we can compute P(Des = k) and P(Inv = k) exactly by direct numerical
simulation, so there is no need to approximate it. But if we wanted to make an approximation, by
Theorem 2.5, the results turn out to be worse, as can be seen in Tables 1 and 2.
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Table 1. Comparison between an exact error and the approximate error bound from Theorem
2.5 (1) when k = n − 2.

n

∣∣∣∣∣∣P
(
U ≤ k− n−1

2√
n+1
12

)
− Φ

(
k− n−1

2√
n+1
12

)∣∣∣∣∣∣ Bound from Theorem 2.5 (1)

5 0.0703 25.53
6 0.0234 23.03
7 0.0070 20.28
8 0.0019 17.62
9 5.05 × 10−4 15.19
10 1.28 × 10−4 13.04
11 3.16 × 10−5 11.15

Table 2. Comparison between an exact error and the approximate error bound from Theorem

2.5 (2) when k =
n(n − 1)

2
− 1.

n

∣∣∣∣∣∣P
(
V ≤ k− n(n−1)

4√
n(n−1)(2n+5)

72

)
− Φ

(
k− n(n−1)

4√
n(n−1)(2n+5)

72

)∣∣∣∣∣∣ Bound from Theorem 2.5 (2)

5 0.0250 33.62
6 0.0073 31.12
7 0.0022 28.83
8 6.48 × 10−4 26.79
9 1.96 × 10−4 24.95
10 6.00 × 10−5 23.29
11 1.84 × 10−5 21.78

Observe that if the value of |z| is greater than 6.14 for descents and 10.34 for inversions, as the
non-uniform bound is better than the uniform bound, then, by comparing the values, the last term in
both C3(z) and C4(z) is the most dominant.

Meanwhile, for large z, C3(z) and C4(z) are close to 2.17 and 3.23, respectively. For example,
C3(z) ≤ 2.1701 for |z| ≥ 30 and C4(z) ≤ 3.2404 for |z| ≥ 40. For z ≥ 15, the bound satisfies |P(U ≤

z) − Φ(z)| ≤
2.78
√

n
e−z2/30 ≤

0.0015
√

n
and |P(V ≤ z) − Φ(z)| ≤

44.11
√

n
e−z2/60 ≤

1.03
√

n
. So the users can

choose n, which makes the error bounds as small as they need. At the same error bound, Theorem 2.5
provides a smaller n than the previous results.
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J. Appl. Probab., 50 (2013), 1187–1205. https://doi.org/10.1239/jap/1389370107

19. R. E. Gaunt, New error bounds for Laplace approximation via Stein’s method, ESAIM: PS, 25
(2021), 325–345. https://doi.org/10.1051/ps/2021012

20. L. H. Y. Chen, L. Goldstein, Q.-M. Shao, Normal approximation by Stein’s method, Berlin:
Springer, 2011. https://doi.org/10.1007/978-3-642-15007-4

21. P. Sumritnorrapong, J. Suntornchost, An improvement of a non–uniform bound for unbounded
exchangeable pairs, J. Inequal. Appl., 2023 (2023), 9. https://doi.org/10.1186/s13660-023-02915-
3

22. L. H. Y. Chen, Q.-M. Shao, A non-uniform Berry–Esseen bound via Stein’s method, Probab.
Theory Relat. Fields, 120 (2001), 236–254. https://doi.org/10.1007/PL00008782

23. D. E. Knuth, The art of computer programming, volume 3: sorting and searching, 2 Eds.,
Massachusetts: Addison-Wesley, 1998.

© 2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 2, 3903–3919.

https://dx.doi.org/https://doi.org/10.1080/03610926.2015.1014109
https://dx.doi.org/https://doi.org/10.2306/scienceasia1513-1874.2018.44.277
https://dx.doi.org/https://doi.org/10.2306/scienceasia1513-1874.2018.44.277
https://dx.doi.org/https://doi.org/10.1186/s13660-021-02590-2
https://dx.doi.org/https://doi.org/10.1214/aop/1176996359
https://dx.doi.org/https://doi.org/10.1239/jap/1389370107
https://dx.doi.org/https://doi.org/10.1051/ps/2021012
https://dx.doi.org/https://doi.org/10.1007/978-3-642-15007-4
https://dx.doi.org/https://doi.org/10.1186/s13660-023-02915-3
https://dx.doi.org/https://doi.org/10.1186/s13660-023-02915-3
https://dx.doi.org/https://doi.org/10.1007/PL00008782
https://creativecommons.org/licenses/by/4.0

	Introduction
	Literature review and main result
	Stein's method and exchangeable pairs
	Stein's method with the exchangeable pairs technique
	Exchangeable pairs for descent and inversion

	Proof of the main result
	Auxiliary results
	Proof of the main theorem

	Application
	Discussion

