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Abstract: Artificial intelligence (AI) and machine learning (ML) have revolutionized assistive 

technologies, particularly for individuals with hearing and speech impairments. This systematic review 

critically examines recent innovations in next-generation neural network architectures for sign 

language recognition (SLR), emphasizing their mathematical and computational foundations. 

Following PRISMA guidelines, we analyze state-of-the-art models, including convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and hybrid 

approaches integrating classical machine learning methods such as support vector machines (SVMs). 

We explore strategies for feature extraction, data augmentation, multimodal fusion, and optimization, 

highlighting their roles in improving accuracy, robustness, and real-time adaptability. Persistent 

challenges include dataset scarcity, limited generalizability, and computational trade-offs. From a 

mathematical perspective, optimization techniques, probabilistic modeling, and explainable AI 

frameworks are emerging as key enablers for safe and trustworthy SLR systems. This review identifies 

research gaps and proposes future directions toward responsible, mathematically grounded, and 

computationally efficient AI-powered assistive technologies. 
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1. Introduction 

Effective sign language recognition (SLR) systems have a lot of potential uses since sign language 

communication is the main way that millions of individuals engage with the world [1,2]. Some 

potential applications include the translation of sign language into broadcasts, the development of 

equipment that responds to orders given in sign language, and the creation of sophisticated systems to 

aid the disabled in performing everyday tasks. Specifically, AI has become a potentially game-

changing tool for researchers, and its use in solving the SLR problem will certainly have an immediate 

and far-reaching effect [3,4]. A subfield of speech and language processing, SLR focuses on the 

automatic interpretation of non-verbal cues such as hand gestures that assist the deaf and hard of 

hearing in communicating with one another. 

Building fully functional systems that can understand sign language and respond to commands 

given in this format has been the goal of numerous exciting and innovative solutions proposed and 

tested in recent years [5–9]. This is all because hardware and software components have evolved to 

the point where developing advanced systems with real-time translation capacities appears to be within 

reach. However, it is crucial to refine the interpretation algorithms until false positives are uncommon 

before considering any genuinely useful applications [10–13]. There are a lot of obstacles to overcome 

before creating SLR technologies that can achieve near-perfect accuracy on a big vocabulary [14,15]. 

Therefore, it is crucial to keep coming up with new approaches and assessing their respective benefits, 

ultimately arriving at solutions that are more and more dependable. 

While the majority of researchers think that deep learning models are the way to go, there is still 

some debate on the best network architecture, even if numerous other architectures have shown 

promise. The only method to find the top algorithms and improve them utilizing other teams’ 

discoveries where relevant is to conduct extensive experimental evaluations. Most countries have their 

own distinct sign languages, thus most of the study is done at the local level with people who are fluent 

in the signs of the area. Considering this, it's not unexpected that SLR issues have been the focus of 

numerous scientific articles, and that the suggested solutions' performance levels have been climbing 

at a rapid pace over the past few years [16,17]. 

Based on the main data-gathering strategy, the different SLR solutions in the existing literature 

can be roughly categorized into two main classes. One set of techniques makes use of third-party 

sensors like data gloves to learn more about the signer's behavior. Many authors have built upon the 

work of Starner et al. [18] by utilizing wearable sensors in various ways. Most current efforts have 

focused on vision-based approaches, which use pictures, video, and depth data to deduce the semantic 

meaning of hand signals; this is in contrast to sensor-based approaches, which have some practical 

limitations. 

Many more methods, some based on filtering principles, have been suggested since Chen et al. [19] 

introduced a skin-color-based hand gesture detection system, and many more have followed. Regarding 

the best neural network model for stereo vision SLR applications, the convolutional neural network 
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(CNN) model [20] was an early front-runner [21–24]. The commercial release of the microsoft kinect 

device has opened up a whole new realm of understanding [25,26], and scientists are still investigating 

ways to harness the power of depth vision to create more precise SLR tools. Aside from CNNs, other 

designs like RNNs [27] and Hidden Markov Models (HMMs) [19] are commonly used. While random 

forest (RF) and K-nearest neighbor (k-NN) are occasionally selected for the classification task, the 

SVM model is also commonly utilized for this purpose [28,29]. 

In this review paper, we will present a discussion of the most important works in the field of 

assistive techniques for the deaf and hearing impaired with a presentation of existing challenges and 

future directions for handling those limitations. First, a taxonomy and summary of the literature on 

automatic SLR is presented. We meticulously reviewed all published articles on Machine Learning 

and Deep Learning-based automatic sign language recognition from 2014 to 2024. Our analysis 

revealed that the vast amount of available data necessitates a conceptual classification of existing SLR 

approaches to better understand and organize the field. Consequently, this work evaluates the relative 

strengths and weaknesses of various SLR methodologies, focusing on the key features and 

commonalities shared by the majority of these approaches in relation to specific tasks and 

functionalities. 

Second, we propose a foundational framework for SLR models. This framework is developed 

based on the limitations and challenges identified in the literature. While debates continue regarding 

the most promising areas of research, it is widely acknowledged that machine learning and deep 

learning techniques play a crucial role in advancing sign language recognition. Despite significant 

progress, even the most advanced models currently fall short of the reliability required for real-world 

applications. However, there is a general consensus that deeper models hold greater potential for the 

future of practical SLR systems compared to traditional machine learning methods. 

Third, performance and benchmark datasets are examined. We analyze the use of benchmark 

datasets in the literature and their impact on performance. High-quality sign language datasets are 

critical for training SLR technologies to produce accurate and reliable predictions. However, the 

availability of such datasets is limited, and even when they are accessible, they are often insufficient 

for comprehensive testing. It is standard practice to partition datasets into training, validation, and 

testing subsets, enabling models to be evaluated using the same data used for optimization. 

Unfortunately, the lack of standardized datasets makes it challenging to directly compare results across 

studies, as each employs different datasets, hindering consistent performance evaluation and 

benchmarking. 

Finally, we recognize the potential of current approaches while addressing their limitations, 

unresolved questions, and associated challenges. Our analysis highlights several key findings. The 

scarcity of high-quality datasets for less widely spoken sign languages, coupled with the regional 

variations in sign language alphabets and vocabularies, poses significant barriers to cross-border 

collaboration. This lack of standardization complicates the development and testing of more advanced 

applications, which require training on substantially larger vocabularies. While many proposed 

solutions demonstrate innovative concepts, they often fall short in terms of precision and reliability. 

Moreover, the complexity of semantic information further complicates its capture through statistical 

analysis, presenting a critical challenge for the field of continuous SLR. 

The structure of this paper is as follows: Section 2 introduces the foundational concepts, including 

deep learning and machine learning, along with essential background information. Section 3 outlines 

the methodology employed in this investigation. Section 4 provides an in-depth discussion of the 
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proposed framework and the machine learning and deep learning methodologies used in designing 

sign language recognition models. Section 5 explores various SLR models, while Section 6 focuses on 

the languages involved in the recognition process. Section 7 presents a comparative analysis of ML/DL 

algorithms for sign language recognition and highlights the benchmark SLR datasets used for training 

and validation. Section 8 addresses challenges, open questions, and future research directions. Finally, 

Section 9 concludes with the key findings of this study. 

2. Background 

The use of sophisticated algorithms that can learn from their experiences has been the subject of 

persistent research and development in recent years intending to automate a wide variety of language 

tasks [30]. Automating SLR could greatly enrich the lives of many persons who use sign language as 

their primary means of communication [31]. Automated SLR tools must be precise enough to prevent 

producing misleading or non-functional responses, otherwise, a plethora of specialized services would 

be impossible to develop. To set the stage for automated SLR, we give some historical context below 

regarding several key methods. 

2.1. Machine learning 

Machine learning encompasses a range of stochastic methods capable of predicting the value of 

a given parameter when provided with sufficient examples. For instance, using Algorithm 1 as a 

reference, the learning process typically involves forwarding samples through a mapping function. 

This category includes a variety of well-known approaches, such as naïve Bayes, random forest, K-

nearest neighbor, logistic regression, and Support Vector Machine (SVM) [30–32]. Training is a 

fundamental step in these approaches and can be either supervised—using labeled data to establish 

relationships between variables—or unsupervised—where no labels are provided, and the model learns 

to make predictions based on input features. However, due to their inherent simplicity, these methods 

often fall short in capturing complex semantic cues, which are crucial for many language-related tasks. 

Nevertheless, they serve as valuable benchmarks for evaluating success or failure and provide a 

foundation for developing more sophisticated analytical techniques. 

Algorithm 1: Training process 

Input: x (data in a d dimension vector) 

Output: y (prediction) 

Mapping function f : predict labels from input data 

Training data: select data, label pairs 

Hyperparameters: configure model parameters 

Learning algorithm: minimize loss between prediction and target 

With the help of machine learning algorithms, SLR has been somewhat successful. Initial research 

in this area relied on information gleaned from wearable sensors, which translate a user's motions with 

remarkable precision. Methods like SVM can filter the data in order to get a reasonably accurate 

identification of the target sign. It has been attempted to interpret continuous segments of sign language 

speech using dynamic models such as dynamic time warping or relevance vector machines, but most 
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of the aforementioned machine learning methods are used to analyze static content, which consists of 

individual signs that are isolated in time and space. Due to its superiority for easy SLR problems, 

fundamental stochastic models saw heavy application throughout the initial phases of the research 

process. While the number of features studied and the size of the dataset determine the computing 

power requirements, these statistical models usually use less power than more complicated systems. 

Despite the fact that more advanced SLR applications sometimes call for more variables and even 

more modalities, the simplicity of simpler models is still appealing. Therefore, simpler machine 

learning approaches are still useful since they can be used to compare and contrast the features of more 

complex methods subsequently suggested. 

2.2. Deep learning 

Deeper architectures, which use several layers and communicate input in vector format between 

them, have lately supplanted simpler Machine Learning methods. These structures progressively refine 

the estimation until positive recognition is obtained. Often referred to as “deep learning” systems or 

deep neural networks (DNN), these algorithms follow concepts comparable to the aforementioned 

machine learning methodologies, however with somewhat more intricacy. Recurrent neural networks 

(RNNs) with a minimum of one recurrent layer and convolutional neural networks (CNNs) with a 

minimum of one convolutional layer are the two most popular network topologies utilized for various 

applications. 

While the training phase determines the algorithm’s effectiveness, these networks can display 

diverse properties and typically operate better for different kinds of tasks depending on the number 

and kind of layers. A key consideration is the quality of the training set, since bigger and more targeted 

datasets typically result in more resilient network training. Typically, one can further refine a model 

by adjusting a few pertinent hyper-parameters that characterize the training process [33]. Currently, 

most studies on SLR automation use approaches that combine images with depth data; this produces 

a mountain of data that frequently necessitates real-time analysis, or at least consideration of the 

temporal dimension. 

Many more complex models are built using RNN or CNN architecture since basic machine 

learning approaches fail to perform well with bigger and more varied datasets. In certain applications, 

deep networks can attain an ideal recognition accuracy of over 98% when trained with multi-modal 

input, such as skeletal data paired with depth images from microsoft kinect. Konstantinidis et al. [34] 

proved the benefits of deep learning by identifying individual sign language terms using data from 

many sources; nevertheless, their model's performance varied between datasets. Increasing the number 

of layers (depth) is sometimes necessary for more complex models used for SLR tasks like real-time 

translation or continuous voice interpretation. Although deep models seem like a sure bet to power 

automated SLR, it's unclear if the existing architectures will stay the same or if new models will emerge 

that are better able to get the semantics of sign language. Deep belief networks with many layers and 

autoencoder-based networks are two potential models that could see increased application in the future. 

3. Review strategy 

For the benefit of all researchers, we have evaluated and organized all available scientific 

information related to SLR in this paper. To better serve anyone looking for the groundwork of this 
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area of study, we supplemented the study's basic data with an unbiased evaluation of its quality and 

potential for beneficial contributions. Here are some of the primary research questions that we want to 

address. 

• Question 1: What datasets are available for automated sign language recognition research? 

• Question 2: What methods are being used in SLR for different languages? 

• Question 3: What problems in this scientific area have not yet been fully addressed? 

The long-term goal of this work is to clear up any confusion that may arise among academics and 

provide a foundation for future studies on SLR. We broke it down into three distinct but interconnected 

stages: planning, carrying out, and presenting. First, determine which research questions are most 

pertinent. Second, establish ground rules for the evaluation process. Third, formalize the selection 

threshold. Fourth, evaluate the work's premises and results. Fifth, investigate the experimental setup 

methodologically. Finally, extract any relevant information that may provide answers to the mentioned 

questions. 

3.1. Evaluation protocol 

While conducting the literature review, we adhered to a particular procedure in order to conduct 

an objective evaluation of the content of the paper. In the first step of this procedure, acceptable 

variables were identified; in the second step, approaches taken by the authors were identified and 

analyzed; in the third step, the quantitative output was organized; and in the final step, the criteria for 

generalization and summary were outlined. 

3.2. Inclusion and exclusion 

To identify the scientific works included in this review, a clear set of criteria was established. 

Only studies specifically related to Sign Language Recognition (SLR) were considered, as this aligns 

with the focus of this article. As shown in Figure 1, the review spans the period from 2014 to 2024, 

aiming to systematically analyze recent advancements in the field. Table 1 presents a concise and 

comprehensive overview of the guidelines used for selecting research papers. 

Table 1. Inclusion and exclusion criteria. 

Inclusion Exclusion 

English language Other language than English 

Related to central questions duplicated 

Publisher after 2014 Out of time range 

Full-text available No access to full-text 

Related to SLR tasks Non relevant 
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Figure 1. Number of publications on SLR by year. 

3.3. Search method 

By searching through sources that were accessible to the general public, it took a considerable 

amount of time and a combination of automated methods and manual labor to locate the most pertinent 

study material. The automated segment was driven by a number of keywords, which are: sign language, 

sign language recognition, sign language identification, automatic sign language recognition, hearing 

impaired, deaf, mute, deep learning, machine learning, artificial intelligence, hand gesture, pose 

estimation, and sign translation. 

Additionally, the collection expands each time the algorithm discovers a new paper that is equally 

as pertinent as the ones that are already present. We ran a comprehensive search, and some of the 

resources that we looked through included Scopus and Web of Sciences databases. At this point, our 

primary objective was to locate as many publications as possible that are related to SLR. Immediately 

following this stage, we conducted a thorough examination of the full corpus of material that we had 

obtained by employing the forward/back technique. In order to acquire a more comprehensive 

understanding of each work, it was helpful to be able to trace the references and follow the primary 

research lines. Because of this, we were able to ensure that the study did not overlook any significant 

foundational studies and that the final collection of SLR papers appropriately reflects the most effective 

research directions. For the purpose of processing the collection, we utilized the Mendeley technique, 

which enabled us to easily classify the works in accordance with the regional sign languages that they 

referenced. It is evident from Figure 2 that there are several variants of sign language, the most frequent 

of which is the American variation. Nevertheless, there are other works that belong to American, 

Argentinian, Arabic, and other languages. The type of architecture that was offered for the solution 

was another factor that was used to differentiate across the articles. Among the criteria that were used 

to differentiate between the articles was the architecture of the solution that was presented. Figure 3 

presents an all-encompassing summary of the situation. 
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Figure 2. Percentage of publication on SLR based on the spoken language. 

 

Figure 3. Percentage of publication on SLR based on the used technique. 

3.4. Selection method 

The initial search yielded 218 papers, of which 11 were promptly excluded as duplicates. Each 

remaining paper was carefully reviewed based on the information provided on its first page and the 

criteria outlined in Table 1. This process allowed us to filter out studies that were of low quality, 

unrelated to the research area, or obtained from unreliable sources. As a result, 63 papers were excluded 

for failing to meet the inclusion criteria, leaving 144 core and relevant papers for further analysis. 

After that, we went over each study in its entirety and rejected the ones that did not particularly 
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deal with SLR or that did not give adequate evidence to support their point of view. Following that, 

we made it a point to check the internet source articles for authorship and graded the quotations 

according to the quality and accuracy of the information they included. Finally, in order to choose the 

research that ought to have been disclosed, we carried out a qualitative evaluation. The selection 

method resulted in a reduction of the total number of publications that were included in the analysis to 

84. Despite lacking scientific merit and relevance to the main research questions, these publications 

were excluded from the final analysis. 

4. Sign language recognition based on AI techniques 

The vast majority of SLR studies concentrate on the same difficulties, mostly focusing on how to 

interpret the hand and body gestures that are used to indicate sign language signals. Studies in this area 

frequently use the same methodology, despite the fact that their techniques are different. This is 

because the essential goals of these studies are same. The overarching paradigm that the majority of 

researchers in this subject agree upon is depicted in Figure 4. The first layer of the solution combines 

both a visual display and wearable sensors of hand signs for SLR data collection. The second layer is 

the organization layer that filters gesture data and has the ability to decode a sign into the appropriate 

data format while assigning labels. One example of an additional step that can be required is the 

integration of data from various video frames or the normalizing of samples. The procedure of feature 

extraction is started by the system as soon as it receives the sign data. Feature extraction and entry 

categorization are the two most important tasks that all suggested systems need to accomplish in order 

to determine which sign is the most likely to be present. The visual features, the hand movement 

features, the characteristics of the three-dimensional skeleton, the face features, and a great deal of 

other types of features can all function as primary sources of information. When it comes to the success 

of the SLR approach, the selection of characteristics that will be used for algorithm training is an 

essential component. Typically, the data is processed and converted to a vector format before being fed 

into the model. This is done in order to ensure that the data is accurate. The numerous channels are 

combined in order to investigate the combined impact that they have on the process of sign 

identification. In the next layer, the model is trained using an optimization algorithm then evaluated 

based on specific protocol such the k-folds validation. In the final layer, the model is tested on new 

data for potential use in real applications if high confidence prediction is generated. 
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Figure 4. The main paradigm for building an SLR system. 

4.1. Data collection 

The discipline of interactive computing has experienced considerable growth over the course of 

the past several years. Since this is the case, it is necessary to develop efficient techniques of human-

computer interaction. One method that has the potential to assist in the development of this sector is 

the recognition of sign language. A receiver can acquire the ability to recognize familiar motions 

through the use of sign language. Obtaining information regarding the recognition of sign language 

can be accomplished through the use of hardware-based, vision-based, or hybrid approaches. 

Since they don't impose many limitations on users, vision-based methods have recently attracted 

more attention in the field of sign language recognition systems than sensor-based alternatives. Users' 

depth and posture estimation data is gathered via vision-based sensors. The topic of depth data and 

pose estimation is covered later. A few of the more recent SLR investigations depend on visual input. 

Formats such as depth information and RBG are examples of what is often encountered in this industry, 

as shown by [17]. 

According to earlier studies conducted by Rioux-Maldague and Giguere [35], the proliferation of 

3D sensors has led to a rise in the utilization of depth data. In their investigation, they utilized a 

Microsoft Kinect sensor, which captures depth images using a conventional intensity camera and 

boasts an image resolution of 640 × 480. Also, depth data has been acquired using vision-based 

methods in recent papers [36–38]. Videos [39–44] or images [45–48] captured with a regular camera 

or a mobile device can provide depth data. The hand gesture grayscale images utilized by Oyedotun 

and Khashman [48] have dimensions of 248 × 256 pixels. Zheng et al. [17] states that using depth data 

helps with human body extraction since it keeps things private and makes it easier. 

In addition, depth measurements remain unchanged regardless of changes in lighting, hairstyle, 

apparel, skin tone, or backdrop [17]. Pose estimation has been utilized to support vision-based techniques 

in addition to depth data. To classify various hand positions, Rioux-Maldague and Giguere [35] 

employed depth information in conjunction with regular intensity images. Using OpenNI+NITE 
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framework functions that are publicly available, they were able to track the hands. A 3D hand pose 

was inferred using inverse kinematics and depth channels, and computationally expensive heat maps 

for 2D joint positions were generated during pose estimation. 

The most recent development in hand form identification was elaborated upon by Koller et al. [37], 

who detailed how the joints' locations and angles dictate the shape of a hand stance. Since these joint 

locations and angles can be approximated using depth pictures and pixel-wise hand segmentation, they 

are now utilized in many experiments. A hand pose estimation system coupled with a classifier trained 

to recognize hand gestures is used in other research, for example, by Zimmermann and Brox [49]. The 

limited performance of standard cameras limits vision-based approaches, despite the fact that they do 

not involve invasive procedures. Another issue is that complex hand characteristics need more processing 

time to implement, while simple ones can lead to ambiguities [50]. 

When it comes to sign language recognition, hardware-based methods aim to sidestep computer 

vision issues. For instance, these difficulties can arise when trying to identify indications in a movie. 

Methods that rely on physical components often make use of gadgets or wearable sensors. A glove-

based technique or user-attached sensors are common in wearable devices used for sign language 

detection. The sensors, gloves, or rings can decode sign language and render it audible or textual. With 

regard to wearable sensors and technologies, many works were proposed [50–52] for capturing depth 

and intensity images using data collected from a SOFTKINECT and a Microsoft Kinect sensor. Direct 

measuring techniques involving sensors attached to the body or the hands, as well as motion capture 

devices, are part of a related class of observations [53]. 

As pointed out by Huang et al. [54], sensor-based techniques are inherently unnatural due to the 

necessity of wearing cumbersome devices. Real-Sense, a new method they suggest, can detect and 

follow hand locations in a more organic way. A resurgence of enthusiasm for research into human 

action and gesture detection has occurred in recent years, spurred on by the enormous success of 

device-based systems. 

The Kinect is the most widely used device-based technique, outpacing both Google Tango and 

the leap motion controller (LMC) [13,50–55]. Leap motion is a top-notch device that employs 

computer vision to accomplish a practical interactive function, according to Wang et al. [56]. Learning 

and practicing sign language is not prevalent in society, which further emphasizes the significance of 

LMC (as described in [57]). 

Alternate approaches use input from specialized gloves, as in [58–60], and also make use of a 

variety of technical tools, including accelerometers [61] and depth recording devices [62]. One of the 

simplest sensor setups that allows for cheap and easy motion tracking is the coloration of the fingers 

on gloves, as seen in [63,64]. 

According to [65], digitally capture-capable gloves were used to deduce Arabic sign language 

variant hand signals using a smaller number of sensors. Although there is a significant investment 

required to design and operate such specialized machinery, the final cost is far lower than that of 

competing high-tech products. By utilizing a motion controller as their principal input device, the 

authors of [66] were able to achieve extremely precise three-dimensional object tracking at a rate of 

120 frames per second. Their controller was specifically designed to capture hand movements, 

allowing the researchers to keep track of multiple important hand positions from frame to frame. With 

the same instrument, [67] achieved pinpoint accuracy in differentiating fifty distinct isolated hand signs. 

When gathering data on sign language recognition, hybrid methods have been employed. When 

it comes to proportional automatic voice or handwriting recognition, hybrid approaches perform as 
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well as, if not better than, other methods. Combining vision-based cameras with other kinds of sensors, 

including infrared depth sensors, allows hybrid techniques to obtain multi-mode information about the 

hand forms [68]. Calibration between hardware and vision-based modalities is a key component of this 

technique, and it can be somewhat tough. The method's speed and suitability for investigating the 

effects of deep learning approaches are both enhanced by the fact that it does not necessitate retraining. 

In order to test how this data directly affects a CNN, Koller et al. [69] used the cleaner hybrid 

approach, often known as Automated Speech Recognition (ASR). While high-resolution still images 

or continuous RGB recordings have their uses, depth imaging is superior for estimating distances from 

a given point. A few algorithms combine the two forms of visual data [46]. Although it is utilized less 

frequently than the preceding two types, thermal imaging is still an intriguing potential. 

Near-infrared (IR) heat sensors can also use radio wave emission and light reflection to create an 

image. While this data has shown promise in other areas, such as face identification and body 

contouring, it has not yet made it into stereo vision research [70]. The position of the joints in the hands 

as they make SLR movements is one example of how skeletal data can be used as input. Motion capture 

also provides some feedback in the form of monitored information changes between images. In these 

types of models, the optical sequence is typically defined as a vector that describes the movement of 

pixels in a series of images. On the other hand, in video materials, the so-called scene sequence can be 

tracked, which refers to the motion of three-dimensional objects within the scene, relative to the 

distance from the camera lens [71]. All of the input devices have the potential to be useful in certain 

situations, but how well they work depends heavily on those circumstances. Deep sensors and 

RealSense/Kinect recording systems are examples of more sophisticated input sources. 

4.2. Data organization 

Research for sign language recognition relies heavily on data organization. It may include tasks 

such as representing signs, filtering and normalizing data, organizing and displaying data, and labelling. 

As a visual language, sign language allows people to communicate through the use of both manual 

and non-manual sign representations that are grammatically structured. Hand form, palm orientation, 

finger and hand movement and placement, head tilt, mouthing, and other facial expressions are all 

examples of what might be represented. Eight time-ordered representative frames were utilized by 

Tang et al. [52]. The two hands, depicted by them, moved closer together before gradually pulling 

apart. 

In an experiment described in [36], the signer's hand was utilized to represent all gestures. To 

further illustrate the form of the hand sign, a hand segmentation phase was also employed. Just as 

Koller et al. [37] used a double state to represent 60 different hand shape classes, a single state was 

used to represent the rubbish class. Zhou et al. [72] conducted an additional study that solely included 

signers with their right hand. Here, the dominant hand was the right hand and the submissive hand was 

the left. 

The Bengali Sign Language was the concentration of Hossen et al. [73]. The language has 51 

letters and was represented in the experiment using 38 signs. These signs were created by merging 

related sound alphabets into one sign. As mentioned in [69], the Bahasa Indonesian language uses a 

maximum of five marks to represent a single word. This means that there is a single, consistently 

performed sign for each word and prefix in signed Indonesian (SIBI).  

Huang et al. [54] conducted an additional experiment using 26 indications represented by 26 



3851 

AIMS Mathematics  Volume 11, Issue 2, 3839–3902. 

output units and 66 input units. Attempts to compare hand and body characteristics have also been 

made in previous investigations. According to research in [15], when it comes to sign language 

identification, body features are somewhat more accurate representations than hand aspects. 

Essentially, a 2.27% improvement in sign language identification was achieved by utilizing body 

features [44]. Joints in the torso are more reliable and stronger than joints in the hands, which explains 

these findings. 

Normalization is the process of normalizing input according to a set of criteria in machine learning 

and deep learning. The goal is to make the AI tool work better. Data pre-processing is when this 

technique, which may involve media processing chores or statistical processes, is carried out. 

Considerations such as input format (e.g., text, image, or video), sample variability, machine learning 

architecture type, automation tool purpose, etc. determine the specific normalization technique that is 

best used. 

Modern methods for sign language recognition often use normalization because of the positive 

effect it has on performance, and its inclusion has been supported by empirical evidence [64,74]. Given 

the diverse range of input modalities and purposes used in SLR investigations, it is not surprising that 

the discipline employs a wide range of normalization procedures. Changing images to fit them into a 

standard format that the algorithm can easily understand is a common practice in most of the visual 

approaches. 

Due to the pixel-level encoding of information in machine learning models during feature extraction 

and network training, this is a common method for accomplishing this. Kratimenos et al. [75] and other 

studies [64,76] demonstrate some of the basic instances of normalizing methods utilized in SLR, such 

as image scaling and re-shaping. In order to make the feature map dimensions fit, Garurel et al. [77] 

additionally use the training mean values and standard deviations to determine the best size for each 

frame. Another common technique, cropping can remove potential causes of algorithmic 

misunderstanding, improving the quality of visual input and leading to more reliable sign recognition. 

To facilitate sign language communication, input images are usually cropped to exclude everything 

but the parts showing the hands and face. Cropped photos are normalized in [78] using the average neck 

length, which eliminates the effect of camera distance for all photographs. According to [79], the 

positioning of important joints allows for the selection of a benchmark signer and the standardization 

of input from other signers. Also, contour extraction is employed for this purpose; for instance, in [80], 

the hand-related regions are extracted while the backdrop is eliminated. 

To standardize the quality of different clips and decrease computing demands, frame down 

sampling is commonly employed by SLR systems that mainly use video as raw input. The procedures 

of normalizing and filtration were utilized in [35]. All of the image's pixels were adjusted to lie on the 

[0, 1] interval, and the intensity histogram was levelled out. The produced images were subsequently 

subjected to four distinct orientation and scale Gabor filters. The main hand outlines were attempted 

to be obtained by applying bar filters to the depth and intensity images. 

In their experiment, Li et al. [68] also employed gabor filters to extract classifiable hand features. 

Prior to applying Gabor filters, the images were scaled down to 96 × 96 pixels. Another study used 

component analysis (PCA) filter convolutions trained on input images in their experiment [36]. Koller 

et al. [37] utilized pre-trained convolutional filters in the CNN model's lower layers and performed a 

per-pixel normalization on images as part of the preprocessing. In their experiment, Zhou et al. [72] 

refrained from doing any normalization technique since the retrieved features naturally fell within the 

interval of [−1, 1]. Another experiment by Yang and Zhu [39] set a threshold to filter the minor skin-
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color area, an approach that enhanced the robustness of the system by using the second layer of their 

CNN model as a filter. 

The experiments conducted by [41,44,45] also show instances of normalization. Balayn et al. [41] 

normalized Japanese sign language (JSL) motion sentences and used them as inputs and outputs for 

Seq2Seq models. The classifier was fed normalized hand positions and cropped hand areas, as 

described by Konstantinidis et al. [44]. In their attempt to examine Chinese Sign Language, [45] 

obtained a total of 1,260 images of basic signs in Chinese, which were normalized to 256 × 256 

optimized background samples. Their model used 16 filters in the first convolutional layer. The filters 

had a width and height of 7 and a channel width of 3. Similarly, Koller et al. [69] applied a global mean 

normalization process to images before finetuning their CNN model. 

Experiments to format and organize data in various ways have been reported. Tang et al. [52] 

organized the hidden layers of their models using various planes within which all units shared similar 

weights. In another experiment by Jiang and Zhang [45], the data were divided into training and test 

sets, with the training set containing 80% of the total images and the test set containing the remaining 

20%. In a different experiment that used a Kinect sign language dataset, Huang et al. [51] formatted 

and organized their data into 25 vocabularies that were extensively used in daily life. Each word was 

played by nine signers, and each signer repeated each word three times. Using this approach, each 

word was organized into 27 samples, yielding a total of 25 × 27 samples. 

Eighteen samples were selected for training, and the remaining samples were used for testing. 

Many studies from this field also include filtering and data augmentation steps, which have the purpose 

of improving the quality of input and consequently boosting the accuracy of the model. Random 

sampling or discarding of frames is one of the most straightforward techniques found in literature, 

where approximately 20% of input is eliminated. 

In [81], this technique is complemented by random changes of brightness, saturation, and other 

image parameters. Some of the data augmentation methods used in [82] include Gaussian Noise, Just 

Counter, and Future Prediction. The PoseLTSM tool also employs some operations aimed at 

augmenting the input images, with rotation of the hands around fixed points in the wrists as one of the 

most original ideas. As with normalization, the choice of filtering and data augmentation techniques is 

directly related to the properties of the model and the type of input, so it must be made with full 

understanding of each individual implementation and its objectives. 

4.3. Model design 

Feature extraction is an essential part model design since it determines the training process and, 

by extension, how fast the models can learn to differentiate between various signs and words. Features 

in sign language communication are always based on raw data and relate to the locations of various 

body parts, such as important places on the face and hands. Statistical processes are used to compute 

features, which are then given weights that are directly proportional to their discriminatory value [82]. 

The neural model is able to learn the probability of features’ association with particular classes 

by expressing them as vectors in latent space. In some cases, a specialized tool was utilized to extract 

features from the various feature engineering techniques that are detailed. The impact on accuracy and 

scalability of the model is usually taken into account while optimizing the final number of features and 

their weight distribution [36,72]. 

In their experiments on sign language recognition, multiple writers used feature extraction 
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algorithms [50,52]. By establishing the network's architecture as (NX, N2, 1000, 1000, 1000, 1000, 

NTC), Wu and Shao [38] were able to perform high-level feature extraction, with NX representing the 

observation domain dimension and N2 the number of hidden nodes. For the purpose of identifying 

hand positions from depth and intensity pictures, Rioux-Maldague and Giguere [35] introduced a new 

feature extraction approach. In order to downsize the images from 128 × 64 to 64 × 64, they were de-

interlaced by keeping every other line in the image. A 1 × 4096 intensity vector was extracted from 

every 64 × 64 image that was generated. 

The recognition procedure was significantly improved by Tang et al. [52] when they retrieved 

hand traits by taking the two hands into account collectively. To overcome the difficulties of 

processing many visual modalities, a related experiment in [40] employed PCANet for feature 

extraction. Li et al. [43] demonstrated feature extraction in action by transforming data from two-

handed sensors into vectors of useful information. Doing away with the need to recreate the hand's 

exact form, orientation, and location is the goal of this method. 

The spatial feature extraction performed by Camgoz et al. [38] also made use of 2D CNNs. The 

feature maps were created by convolving images with weights in the 2D convolution layers. 

Furthermore, findings from [21] further proved that spatial-temporal information may be extracted 

using many layers of convolution and subsampling. To train a Gaussian mixture model-hidden Markov 

model (GMM-HMM), Huang et al. [51] employed these principles to extract characteristics from a 

movie that included sign language. 

In a different study, features like finger length, finger width, and finger angle were fed directly 

into the DNN, in contrast to Huang et al. [51], who manually supervised the feature extraction 

procedure. Due to their capacity to address spatial and temporal correlations, 3D-CNNs have been 

utilized in several experiments instead of 2D CNNs. For example, in order to create a representation 

of every video clip that was taken into consideration, the authors in [11] utilized a ResNet model that 

was based on a 3D CNN model. 

In a related area, the authors of [83] created a neural network for feature extraction using a multi-

layer architecture. Several input features were extracted using a convolution layer in [45]. As a feature 

extractor for an SVM, the authors in [46] utilized a trained CNN. Konstantinidis et al. [34] conducted 

an additional study that used video sequences to extract skeletal elements in addition to video content. 

Skeletal features included the body, hands, and face, whereas video features included the image and 

optical flow. 

For video feature extraction, the VGG-16 network that had been pre-trained on ImageNet was 

utilized. Features were extracted using a combination of the ImageNet VCG-19 network and conv44 

in an analogous study conducted by Konstantinidis et al. [44]. Among the most important 

characteristics retrieved from the experiment were the 18 2D body joints and the 21 2D hand joints. 

Humanoid feature extraction and recognition were carried out by Rao and Kishore [42]. Human 

interpreters rely on these characteristics to reliably remember signs. Some trials have attempted to 

streamline or do away with feature extraction altogether. To simplify their feature extraction 

procedures, Yang and Zhu [39] employed a CNN. As a result, the sign language recognition system 

may receive images directly. 

Building a model for sign language recognition using machine learning require the feature 

selection step. The basic idea is to simplify the data such that just a few important statistical parameters 

remain, and then feed those into the machine learning network [84]. The goal is to reduce the amount 

of calculations needed to get an accurate forecast by include just the features that drastically improve 
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the algorithm's ability to recognize different classes. 

Since different models use different algorithms, raw data structures and volumes, and the primary 

tasks anticipated of the machine learning classifier might cause the exact number of picked features to 

vary from model to model [85]. Researchers rate features according to their significance and pick those 

that are worthy of inclusion using a variety of approaches. One may classify feature selection methods 

as either supervised or unsupervised [84]. Some of the features' inherent characteristics are captured 

by filter methods (e.g., variance threshold, correlation coefficient, or Chi-square test) and evaluated by 

wrapper methods (e.g., forward feature selection or backward feature elimination) in order to 

determine their relative importance in a given algorithm [85]. 

Embedded methods incorporate LASSO regularization or random forest importance, while hybrid 

approaches combine the best features of both the filter and wrapper approaches. Given the variety of 

feature selection schemes available, researchers should apply the one that works best with their particular 

classifier, important tasks, and data [86]. Findings from the experiments reported in [52,81] are examples 

of feature selection experiments. 

There was less need for human feature selection in [39] because a DNN was employed. Feature 

extraction and autonomous detection are both accomplished by the DNN. Using 215 separate test 

words to stand in for typical sign language conversations, another example of the feature selection 

method was given in [72]. Among the 18 features retrieved from the joints of the human body, 

Konstantinidis et al. [44] chose to focus on just 12 for their experiment. The candidates were chosen 

because, in most sign language datasets, the signers are seated and their leg skeletal joints are not 

apparent. 

Not only did some trials employ CNN, but PCA was also utilized to help with feature selection 

in others. The fact that principal PCA is a tried-and-true method for reducing the number of dimensions 

in a space might inform its application to the processing of image data, which often contains 

information about spaces with many dimensions. One example is the use of PCA for feature selection 

and dimensional reduction in [68]. DNN, also known as feature learning, were demonstrated in a 

separate experiment by Huang et al. [54] to generate and choose features. To put it simply, a DNN can 

automatically evaluate and produce features from unprocessed input. 

Building a coherent model for SLR from the phonetic to the semantic levels is the primary goal 

of the model design step. From the utilization of the signing space to the synchronization of both 

manual and non-manual elements like eye gazing and facial emotions, the modelling process 

encompasses a wide range of techniques. Contrarily, natural language processing, pattern recognition, 

computer vision, and linguistics are all involved in SLR [87]. The goal of SLR is to create various 

algorithms and methods that can identify preexisting signals and understand their meaning. Models for 

classic, deep learning, SLR continuous, and SLR isolated sign language processing are covered in this 

section. 

4.3.1. Machine learning 

The field studying how computers can learn to do tasks automatically, without human intervention, 

is called machine learning. Along with the required data, machine learning algorithms are often given 

broad guidelines that describe the model. Typically, the data contains instructions for how to execute 

the specified job by the model. Machine learning algorithms are able to accomplish their goals when 

they modify the model using the data that is linked to it. Numerous machine learning algorithms are 
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available, some of which are SVM, PCA, and HMM. 

To solve classification problems with two groups, supervised machine learning models like SVM 

is used. When you feed an SVM model with labelled training data, it may classify the new instances 

into groups. This is just one of many uses for SVM in previous investigations. To learn the retrieved 

data, Nguyen and Do [46] used multiclass SVM. While the combination of histogram of oriented 

gradient (HOG) with local binary patterns (LBP) and SVM model had higher validation accuracy, the 

CNN-SVM model had lower accuracy. 

On the other hand, the CNN-SVM model was more likely to prevent overfitting. In order to 

compare the most popular classifiers, which use a combination of softmax and linear SVM, the demand 

for real-time performance was assessed in [68]. When compared to other sophisticated classifiers, 

SVM and softmax achieved superior accuracy. It was also noted that an SVM classifier with a linear 

kernel outperformed the softmax-based classifier, but it took more time to train. 

Similarly, using the same dataset, an experiment by [54] sought to compare the performance of 

DNN and SVM. The results showed that compared to SVM, DNN achieved a higher recognition rate. 

As an example, SVM was chosen by the authors of [88] as an appropriate classifier for real-time SLR. 

SVM and DNN were employed by Chong and Lee [57] in their investigation of American Sign 

Language. According to the results, when using SVM, the rate of sign language recognition for 26 

letters was 80.30%, while using DNN, it was 93.8%. Additionally, it was noted that the recognition 

rates for a grouping of 26 letters and 10 numbers were slightly lower for SVM (72.79%) and DNN 

(88.79%). When it came to sign language recognition, the DNN outperformed the SVM.  

A large-vocabulary SLR method was also used by Huang et al. [89] with SVM. In order to 

represent video features as a fixed-dimensional vector, the experiment's SVM approach made it easier 

to do mean pooling across clipped data. Using SVM for video feature-based categorization was 

proposed by Huang et al. [89]. It was pointed out that their machine learning method ignores time-

related data while mean-pooling, even though SVM are used. 

In addition, [90] assessed how well the SVM performed in a hybrid setup. The experiment tested 

how well a HOG+SVM system could classify data. An SVM classifier was fed canonical hand shapes 

into the hybrid system, and a HOG feature extractor was used to generate 64-dimensional features. 

The accuracy improvements achieved by combining HOG and SVM ranged from 14.18% to 18.33% 

as compared to using SVM. 

To extract features or decrease dimensionality, PCA is employed in computer vision. A number 

of recent studies have employed PCA to reduce the number of dimensions in sign language recognition. 

An orthogonal linear transformation is the easiest way to explain PCA, which changes the original 

data’s coordinate system to one with less dimensions. There was a proposal for a PCA-based 

fingerspelling recognition system in [36]. 

Using PCA, Koller et al. [37] were able to decrease the dimensionality from 1024 to 200 using 

feature maps. In another study, PCA was employed to identify data streams with around 492 

dimensions that showed a lot of variation [41]. One other way that PCA has helped cut down on 

overfitting is by using it on Kinect data. Another experiment employed principal component analysis 

(PCA) to convert a matrix to a vector with 210 dimensions [56]. 

An improved technique for the mel frequency cepstral coefficient (MFCC), which is helpful for 

sign language recognition, can be created with the help of these dimensional vectors. There was a 

comparison of the suggested approach to others, including SAE+PCA, in [91]. Based on the results of 

the comparison, SAE+PCA outperformed the proposed technique and attained an accuracy rate of 
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99.05%. A variant of PCA called recursive principal component analysis (RPCA) has also garnered 

attention in other trials for feature extraction. Using RPCA, the authors of [92] were able to attain a 

98% classification rate when investigating the characteristics of SLR systems. 

Utilizing statistical processes, HMM is able to discern patterns arising from the intricate interplay 

of motions within a space-time continuum. While [93] was the first to utilize it in the context of SLR 

in 1996, [94] achieved good performance with the best settings in 1997 when using it to categorize 

individual hand motions from visual input. In an effort to expand upon the underlying model's 

promising performance, variations like factorial HMM [95] or dual HMM [96] were proposed about 

the same time. According to those researches, the model needs a large amount of training data to 

produce reliable statistical predictions. 

Shortly thereafter, Wilson and Bobick [97] suggested enhancing this method based on parameters, 

while authors in [98] suggested including parallel computing into this paradigm. In order to address 

issues related to language, the same idea was expanded upon by [99]. By training the model with 80% 

of the sample and testing it with 20%, this method proved to be more cost-efficient than any of the 

previous HMM implementations. It achieved an accuracy of more than 94% for static signs and more 

than 84% for dynamic signs in continuous speech. 

A different subset of these models, input/output HMM, was initially proposed by [100] for use 

with less homogeneous data. Using the same idea, it is possible to successfully track hand locations 

during sign language communication; for example, as shown in [101], the output accuracy was over 

70% when 16 different signs were distinguished solely by hand movement. In 2009, another paper 

improved upon the input/output HMM model [102]. The authors established a cut-off point and 

increased the accuracy to above 90%, but only for cases with fewer than 20 signs to be detected. 

After failing to noticeably enhance SLR performance over earlier versions, [103] offered an 

alternative in 2003, naming their approach Left & Right HMM. Even with limited data, a hybrid of 

HMM and Gaussian mixture model (GMM) models can improve hand sign recognition as 

demonstrated in [104], albeit at the cost of reduced system reliability. Data gathered from a number of 

video cameras was also analysed using HMM by [105]. Although those approaches have their uses, 

further research is needed to apply them to SLR. 

Some academics have attempted to improve their results by combining HMM with other 

approaches in recent years. An effort in this direction was made in 2011 by [106], who used this method 

in conjunction with PCA to extract important characteristics from hand signals. Meanwhile, in order 

to follow the contours of hands during sign language communication, the authors of [107] integrated 

HMM into an RNN model; nevertheless, they only achieved success when dealing with a small set of 

known signs. 

While Yang et al. [108] did their best to reduce calculation time by creating a variant of HMM, 

there are some requirements that must be satisfied for this method to work, such as a maximum length 

for each gesture. Training samples with limited distribution were processed using a combination of the 

CRF approach and HMM in the study by Belgacem et al. [109]. However, even with a large number 

of alternatives, the discrimination process remains challenging. HMM are a common solution to the 

terrestrial alignment problems that plague many continuous processing workloads. Incorporating an 

EM-based approach into HMMs helped with weak supervision and video processing issues in [37]. 

In order to enable continuous sign language recognition, Zhou et al. [72] utilized HMM 

techniques to create a model framework. Thanks to HMM, the final system can handle a bigger 

vocabulary, model individual signs and their transitions, and train and decode using even the most 
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cutting-edge techniques. The authors of [52] conducted an additional experiment that looked at the 

GMM-HMM as a starting point. To train the GMM-HMM for recognition, characteristics such as 

trajectory and hand-shape were retrieved. When utilizing both trajectory and hand-shape information, 

an average accuracy rate of 90.8% was attained. 

4.3.2. Deep learning 

Learning representations of data is the primary goal of deep learning, a relatively new area of 

machine learning [50]. Nevertheless, the intricacy of the models and the input details to the system 

limit deep learning techniques' capacity to extract data semantics [34,50]. Neural network-based SLR 

seems to benefit greatly from recent developments in deep learning. In recent experiments, various 

deep learning techniques have been utilized, such as convolutional neural networks, recurrent neural 

networks, attention-based approaches, deep belief networks, and autoencoders architecture. 

In order to distinguish between images, Convolutional Neural Networks take in input images, 

amplify certain parts of those images, and then output the results. For the purpose of sign language 

recognition, Figure 5 depicts the fundamental CNN construction mode. When compared to other deep 

learning algorithms, CNNs need significantly less pre-processing [37]. There are a lot of tasks where 

neural networks excel [39], but they need a lot of labelled data to train on [41,45]. There is an additional 

burden to gather training data for hand shape identification because of the extremely high rate of intra-

class ambiguity in this procedure, which is affected by the subject’s position. 

 

Figure 5. CNN architecture. 

Among the many models that make sequential data modeling easier, RNN stands out. Voice 

recognition, video recognition, language translation, and natural language processing are just a few of 

the many critical activities that have benefited greatly from this style of approach. To understand how 

RNN Encoder-Decoders work for sign language recognition, Figure 6 illustrate the basic idea. 
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Figure 6. RNN encoder-decoder architecture. 

A bidirectional RNN and long short-term memory (LSTM) were employed by Fang et al. [110] 

to enable universal and non-intrusive sign language word and sentence translation in their experiment. 

Results from the experiment showed that RNN model could accurately represent American sign 

language words with all the necessary characteristics. 

Long Short-Term Memory (LSTM) is an RNN feature that has been used in a few experiments. 

In their study, Kavarthapu and Mitra [111] utilized a bidirectional LSTM for encoding and a second 

LSTM at the embedding layer for decoding. Bidirectional LSTM is a game-changer for sign language 

recognition since it enables abstract data collecting. It was clear from the outcomes that the 

bidirectional LSTM worked quite effectively. 

Rakun et al. [112] used LSTM for the recognition of Indonesian Sign Language. In this 

experiment, LSTM was utilized due to its independence from pre-clustered per-frame data and its 

ability to accept entire sequences as input. According to the results of the experiment, the 2-layer 

LSTM model outperformed all of the other models and correctly classified root words with 95.4% of 

accuracy. Inflectional words presented a considerably greater challenge for the LSTM model, which 

resulted in a significantly lower accuracy of 77% when trained on these words. 

In [113], an model made of LSTM cells was utilized for SLR system. Every time step in the 

design took the feature vector from all the frames as input. In the output layer, a softmax classifier was 

used. Real-time sign language translation was ensured with the use of LSTM. As a result, the model 

was able to convert long-form sign language films into full-text English sentences, which greatly 

improved sign language communication. 

A small number of recent studies have also employed LSTM to identify motions in Indonesian 

sign language. The researchers in [114] employed 2-layer LSTM neural networks to recognize SIBI 

gestures. With accuracy rates of 91.74% for prefix, 98.94% for root, and 97.71% for suffix datasets, 

the neural network demonstrated very high performance [115]. 

Increasing use of hierarchical deep recurrent fusion (HRF) networks has resulted from efforts to 

tackle the difficulties of sign language translation. Visual semantics can be encrypted with several levels 

of visual granularity using a hierarchical recurrent architecture that was created by Guo et al. [54]. To 

decipher a text, the HRF employs skeletal signemes and complimentary RGB visemes. In order to 

encode the complete visual material, the HRF translated the video into multiple neural languages. 

Up next, Guo et al. investigated sign language translation action patterns using adaptive clip 
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summarization (ACS). Instead than using a set interval to acquire key frames or clips, as previous 

models have done, they suggested an adaptive temporal segmentation technique. To further reduce the 

duration, a hierarchical adaptive temporal encoding network was then created. Aside from HRF, LSTM 

was chosen as the fundamental RNN component. Long short-term memory (LSTM) learned the 

original features' persistent qualities in its top layer. Condensed visemes or signemes' recurring 

characteristics were taught by the medium layer. Into textual semantics the visual data was transformed 

by the bottom layer. Earlier, we established that learning the descriptors of sub-visual words like 

visemes and signemes was the central premise of the proposed approach. Thorough trials demonstrated 

the exceptional efficacy of the HRF framework, which is based on LSTM. 

The classification of learning representations in several sign language experiments has been 

accomplished using a deep belief network (DBN). Double-layer perceptron DBN are similar to 

multilayer perceptron (MLPs), but DBNs have a lot more layers. Although DBNs' additional layers are 

notoriously tough to train, they greatly improve the network’s learning capability. Nevertheless, DBN 

training has been made easier by recent efforts. 

An example of a DBN is the one employed by Rioux-Maldague et al. [35], which consists of three 

restricted Boltzmann machine (RBM) and one additional translation layer. By utilizing DBNs, Tang et 

al. [52] were able to accomplish hand posture identification. A higher recognition accuracy of 98.12% 

was achieved by the DBN compared to the baseline HOG+SVM technique, according to the 

recognition findings. 

A deep belief network's architecture and performance in gesture identification were investigated 

using an American Sign Language dataset. In the experiment, DBN was tested against two other typical 

methods for gesture recognition—a convolutional neural network and a stacking denoise auto 

encoder—and the results showed that the proposed DBN performed significantly better. 

There are many situations when using just one deep learning technique can be difficult. 

Consequently, there have been experiments that incorporated deep learning techniques. For example, 

it was pointed out in [52] that training DBNs was not an easy task to parallelize across many machines. 

In order to assess this matter, they compared it using CNNs. While the hybrid DBN method produced 

a higher recognition accuracy rate (95.17%), CNN still managed to pull ahead with decent results. 

A hybrid deep architecture was suggested by Wang et al. [40] to tackle the continuous sign 

language translation challenge. The hybrid model included a fusion layer (FL), a bidirectional gated 

recurrent unit (BGRU) module, and a temporal convolution module. Here in the model, temporal 

convolution is in charge of collecting the quick changes in time, while BGRU holds on to the big 

changes in context that happen across several time dimensions. To discover the correlations between 

the corresponding features in the temporal convolution and BGRU outputs, the FL next fuses them. 

Results from experiments showed that as compared to using just deep learning approaches, this hybrid 

architecture enhanced accuracy by 6.1% in terms of Word Error Rate (WER). 

A CNN and a bidirectional recurrent neural network (Bi-RNN) have both been employed in 

tandem. By combining both methods, the authors of [43] were able to derive features from each video 

frame using a 3D convolutional neural network (CNN), and they were able to generate unique features 

from the sequential behavior in each frame using a bi-RNN. While the Lipnet model had a lower 

average character error rate, the hybrid approach had a greater average word error rate. 

Cui et al. [3] used a deep CNN and a Bi-LSTM together to get features. By feeding video streams 

into the CNN model, spatiotemporal representations could be learned. The next step was to train Bi-

LSTMs to understand more nuanced interactions. Repetition in LSTM computations is achieved by 
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Bi-LSTMs through the use of forward and backward hidden sequence calculations. Unidirectional 

RNNs have a limitation that the authors took advantage of by using Bi-LSTMs. they can only 

determine hidden steps by looking at previous time steps. 

Researchers in [89] used attention-based 3D-CNNs to improve sign language vocabulary 

recognition for huge datasets. In particular, the attention-based approach offers two benefits. Before 

anything else, the model can pick up spatio-temporal features from unprocessed video data without 

any prior training. Second, we can pick up hints with the help of attention mechanisms. Here, utilizing 

continuous sign language data and the ChaLearn14 benchmark [116], attention-based 3D-CNNs were 

evaluated. Compared to more sophisticated algorithms, the results showed that the method was more 

accurate. 

A study that employed transfer learning to train a CNN model to recognize Indian sign language 

was proposed [117]. With the use of transfer learning, new classes could be learned even when training 

sets were small. Using a combination of deep learning-based networks, Oyedotun and Khashman [48] 

identified hand motions taken from a public database. Stack denoising autoencoder (SDAE) and 

convolutional neural network (CNN) methods were utilized. Contrasted with SDAE's 92.83% 

identification rate on test data that wasn't part of the training set, CNN got 91.33%. 

Using a combination of CNN and RNN, Bantupalli and Xie [118] conducted an additional 

experiment that investigated American Sign Language. When it came time to recognize sign language 

in a video stream, the Inception CNN model was brought into play. Its job was to extract spatial 

information from the feed. The experiment then proceeded to extract temporal features from video 

sequences using an RNN model and LSTM. The softmax and pooling layers of the CNN were utilized 

to generate the outputs. Despite the experiment’s success, the scientists speculated that capsule 

networks, not Inception, would have performed better when it came to sign language recognition. 

Muslims who are deaf or hard of hearing face significant barriers that prevent them from obtaining 

higher degrees. Because of this, they have a much more difficult time studying the Holy Qur'an than 

the average person, and they have a much harder time understanding its meanings and interpretations. 

As a result, they are unable to practice Islamic rituals like prayer, which need knowledge of the Holy 

Qur'an. A novel model [119] for Qur’anic sign language recognition that is based on CNN was 

proposed. Aiming to assist hearing impaired persons in learning Islamic rituals, the proposed model is 

designed to recognize the hand gestures that relate to the dashed Qur’anic letters in Arabic sign 

language. 

With the use of deep recurrent neural networks, hand feature representation, and hand semantic 

segmentation, a new framework is suggested for SLR employing deep learning [120]. A newly-

developed semantic segmentation algorithm called DeepLabv3+ [121] is trained to extract hand 

regions from each frame of the input video using a set of pixel-labeled hand images. After that, in order 

to rectify the hand scale differences, the extracted hand regions are cropped and scaled to a set size. 

An alternative to employing pretrained deep convolutional neural networks for feature extraction is a 

single-layer Convolutional Self-Organizing Map (CSOM). Later on, a deep Bi-directional Long Short-

Term Memory (BiLSTM) recurrent neural network is employed for feature vector sequence 

recognition. The three layers that make up a BiLSTM network are the fully connected and softmax 

layers. We test the suggested strategy on a difficult Arabic sign language database with 23 individual 

terms uploaded by three individuals. 

Although the examined literature covers a wide variety of sign language recognition 

methodologies, nearly all of them adhere to a small set of core principles. Specifically, attention-based 
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neural models with transformer architecture are the main focus of the studies [122]. As shown in Figure 

7, this computing paradigm trains the model to classify sign language data using encoder and decoder 

stacks. Not only has this method outperformed previous models, but it has also been successful with 

many kinds of tasks. The goal here is for the models to pick up on the connection between spatial and 

temporal signals and use that information to infer the desired sign. 

 

Figure 7. Transformer main architecture. 

Tokenization is a process that takes input and output and uses them to create frames, key points, 

and word embeddings [123]. Adding a temporal ordering step is necessary since transformer models 

do not provide positional information for the sequences that are being inspected, which is one of their 

distinctive constraints. This leads us to the next essential component of transformer-based neural 

models for feature extraction. This process involves selecting the most important features from the 

input tokens and then using them to train the model [77,123]. There are characteristics that distinguish 

one gloss from another (intra-cue features) and those that distinguish between signals (inter-cue 

features) [81,124]. 

A hybrid approach significantly improves efficiency by using a separate CNN-type neural 

network to extract information from video input. The categorization step is usually handled by an 

encoder-decoder stack, which consists of multiple successive layers, or a Bi-directional Long Short 

Term Memory (Bi-LSTM) module. The number of deployed attention heads and the exact depth of the 

model can be fine-tuned for optimal performance based on empirical evaluations; these parameters 

vary with the model's intended usage and other circumstances. 

For instance, at the top of the stack, some research suggested a linear projection layer and a 

softmax attention layer, while others suggest employing just two layers in transformer models, instead 

of the usual six used for NLP [75,78]. The model is fine-tuned for the particular goal through a 

validation approach, and its efficiency during training is enhanced by a normalization procedure, which 

is motivated by maximizing conditional probabilities and minimizing cross-entropy loss. This type of 

network has been evaluated in several contexts, such as sign language translation, isolated [125] and 

continuous SLR [126], and other similar tasks. While this methodology was tested with video footage 

and skeletal data as input modalities, it may theoretically be applied with other modalities as well [80]. 
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The deep learning method's transformer architecture’s adaptability is well appreciated in this 

demanding domain, as it allows for the output to be tailored by choosing the training dataset, features, 

and training hyperparameters. Several intriguing suggestions, such as gloss-level supervision or the 

usage of specific posture estimation methods, were made in the examined literature that could further 

improve encoder models' sign language understanding capabilities. Those enhancements have the 

potential to finally put an end to some of the persistent problems in the SLR sector [127]. 

The proposed deep learning model is experimentally evaluated in all of these works, and the 

results are usually compared to those of other SLR methods. In most cases, techniques that rely on 

transformer design achieve much better results than simple sequence to sequence models and other 

standards. When it comes to tasks like posture estimation, the best version of the system can usually 

get predictions right up to 85% of the time. For isolated SLR, it's around 70%–75%, and for the more 

challenging translation task, it can get it right up to 45%. The advantages over alternative approaches 

were negligible in some circumstances and substantial in others. 

The objective isn't the only variable that could impact output quality; other variables include the 

amount of the vocabulary, the size of the training dataset, the precise setup of the network, etc. [128]. 

The results of those tests are certainly helpful, but it is still difficult to say for sure what configuration 

would provide the best results independent of variables like signer identity, regional sign language 

variations, and environmental factors. So far, data suggests that transformer-type deep neural networks 

play a role in this area of study; however, it is unclear what that role should be and how to use it to 

broaden the scope of potential SLR applications [74]. 

Although there are noticeable advancements in accuracy compared to previous deep learning SLR 

systems, the methods based on transformer architecture are still far from being suitable for use in daily 

practice. Accuracy tends to improve with increasing complexity of studied sign language samples, and 

it becomes more noticeable with increasingly complicated assignments [126]. Additional input 

modalities and localized sign language variations, as well as more thorough testing, are necessary to 

conclude whether performance gaps are caused by training samples and selected features or by the 

fundamental data processing approach [81]. 

Given these findings, the development of universal autonomous tools that can perform signer-and 

language-independent continuous SLR is still in its early stages. The results of the evaluation of the 

encoder models indicate that SLR may benefit from a slightly different architecture than linguistic 

tasks, so it would be fascinating to witness creative efforts to rethink transformer models and create 

them specifically for sign language interpretation [129]. 

This review highlights the most crucial aspects while referencing the most significant studies due 

to the extensive scientific literature on the topic and the significance of hand gestures for SLR. Over 

the course of several decades, scientists have studied gesture interpretation, leading to a deluge of 

reviews covering the topic at different points in time. Gavrila [130] conducted one of the first reviews, 

looking at various 2D and 3D models for human motion analysis. While Ribeiro and Gonzaga [131] 

mostly concentrated on real-time methodologies available at the time, Moeslund and Granum [132] 

offered a thorough summary of twenty years of research including gesture tracking and recognition. 

Rautaray and Agrawal [133] revised assessment of possibilities and obstacles in this area is one 

example of a more recent article. While Mohandes et al. [134] investigated sensor-based and direct 

measurement approaches to sign language identification, Kumar and Bhatia [135] covered a range of 

feature extraction methods.  

We present a concise synopsis of the present status of research in the area of automated hand 
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gesture and sign language identification due to the fact that this area has seen substantial development 

and numerous evaluations throughout the previous twenty years. Accurate hand form recognition is a 

highly useful characteristic for automated systems since most sign language characters and words can 

be conveyed with simple hand gestures. But there are a lot of obstacles to overcome when trying to 

recognize hand motions, and some of those obstacles may be associated with the fact that signers' 

hands are different sizes and shapes and have varying skin tones. Furthermore, different people may 

sign with different styles that highlight different aspects. 

The application of sophisticated analytical methods that seek to detect patterns apart from the 

signer's identity or the physical characteristics of their hands can overcome such challenges [136]. An 

efficient method for analysing hand motions in SLR is to employ deep learning networks, which can 

detect latent relationships among numerous variables. Depending on the regional sign languages, 

certain words or phrases can be expressed using either one-handed or two-handed motions. 

Typically, one-handed signals are assigned fundamental meanings like letters or numbers. 

Therefore, it is possible to accurately identify simple linguistic content from various sources, including 

still photos or movies, using only hand motion analysis. Some uses may benefit from combining hand 

gesture analysis with additional methods, such as monitoring head motions [137]. 

Despite growing interest in full-body tracking and continuous sign language interpretation, this 

facet of SLR is expected to remain relevant because hand motion is the foundation of all sign language 

communication systems. The most effective use of pure hand gesture analysis approaches, however, 

would likely need a combination of methods. As an example, there are a growing number of hybrid 

models that take into account various aspects of a signer's behavior [137,138]. 

In the field of sign language recognition, posture estimation algorithms are fundamental tools due 

to the significant significance that body form plays. Finding the precise position of the whole body 

from the measurements of a few fixed spots is the main concept. Deep learning algorithms, when 

trained adequately with carefully selected examples, have shown to be effective in this task, albeit 

there are other techniques to get the same result. In the case of high-quality input, ideally from multiple 

sources/modalities, this is especially the case [139]. 

By comparing the spatial organization of distinct body components in images of varying sizes, a 

convolutional neural network-based approach was proposed by [140] for establishing the human 

body's stance. For the final prediction, it was necessary to repeat the pooling and upsampling 

operations multiple times. Experiments using two separate datasets showed that this model 

significantly outperformed the baselines by 1.7%–2.4%. 

In order to forecast the body's location, another model based on the same neural network type 

was introduced in [141], which made use of interdependent variables. Using an approach that doesn't 

require the creation of a graphical representation, this method utilizes a CNN network along with pre-

prepared knowledge maps to generate appropriate output. Evaluative results on the MPII set (with a 

9% improvement), the LSP dataset (with a 6% improvement), and the FLIC dataset (with a 3% 

improvement) corroborated this as well. 

Using DNN as the foundational tool for estimating the locations and interrelationships of the 

body's joints, [142] built a cascade architecture model in 2014. The model's performance, which 

outperformed past solutions on two regularly used datasets by 2% and 17%, proves that framing the 

problem as a question of regression is a very acceptable paradigm. 

To compare different deep learning-based pose estimation methods, the authors of [143] 

introduced a new dataset for SLR research and established a standard for predicting body positions. 
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They discovered evidence that transfer learning applies to SLR [144] after studying its potential 

applications. Continuing from the linear Skinned Multi-Person Linear model (SMPL), a comparable 

approach for posture estimation was proposed by [145] using RGB images and deep learning. The 

authors of this study conducted a parameter regression using three-dimensional models of human joints 

as intermediaries. 

In order to ensure that any structural flaws are rectified, the model depends on autoencoders to 

connect the regressed SMPL to a convolutional neural network. When tested on Surreal and Human 

3.6M datasets, the enhanced SMPL demonstrated a noticeable performance gain over the baseline. 

Aside from physical gestures, facial expressions, and body language are also important components in 

sign language communication. Although there is a plethora of research on the topic of automatic hand 

gesture recognition, there is less on the subject of body posture analysis. 

To tackle this issue, Jain et al. [146] used a CNN to examine the interrelationships of different 

body parts. However, using a tree-like data organization and an SVM as their classifier, Yang and 

Ramanan [28] came up with a different approach. Using a graphical model to depict the spatial 

configuration of human joints, Chen and Yuille [147] performed another noteworthy study in this field. 

Charles [148] enhanced this method by enhancing the system's ability to comprehend body positions 

by extracting temporal information from successive photos; Toshev and Szegedy [142] offered another 

strategy to evaluating the location of body joints. 

In order to determine the best methodology for body posture detection, the authors of this work 

conducted trials on a new dataset using the latter two methodologies, despite the fact that there are 

many conflicting principles and ideas. More recently, [149] suggested a method that uses a 

convolutional network to analyze graphs; in this method, the human body is shown in three dimensions 

using a network of points and connections. To distinguish between data and put this schematic 

representation into context, this approach uses an attention mechanism. Experimental testing on a 

variety of SLR datasets shows that this model can outperform alternative techniques by a small margin 

(0.7%–3.4% points). 

Combining features of convolutional and recurring neural networks, as well as a self-correcting 

feature that can enhance prior predictions, is a model developed by [150]. This model accounts for 

noise as it constructs a 3D vector space from local input and uses it to recover partial body positions. 

By comparing it to other models on a new dataset, the authors confirmed that their creation is the best. 

Depth Ranking Pose Estimation for 3D pictures, the technique proposed by [151], likewise heavily 

relies on depth imaging. Combining depth data with two-dimensional photos, this approach uses a 

CNN network to decide between candidate pairs in the initial phase and then makes 3D posture 

predictions in the second step. Compared to other 3D posture estimation methods, this one performed 

far better on a scale of more than 6 mm when tested on the industry-standard Human 3.6M dataset. 

With the use of depth information to generate maps, a model called DDP (Deep Depth Pose) was 

suggested by [152] for approximating body positions. These maps were made in advance and included 

every joint that was relevant as well as several body positions. This strategy surpassed the benchmarks 

by over 11%, proving its effectiveness in practice. 

There have been numerous efforts to develop a good model using convolutional and recurrent 

forms of deep learning networks due to the importance of body position estimate in various research 

disciplines, including SLR. With the advent of 3D imagery and the creation of depth maps, these 

models' identification capabilities have been substantially enhanced. Cascade or tree-like structures, 

the imposition of specific constraints, etc., are some of the methods that try to achieve greater advances 



3865 

AIMS Mathematics  Volume 11, Issue 2, 3839–3902. 

in precision. Experimental assessments show that newer models are significantly more effective and 

dependable than older ones, yet no solution, no matter how complicated, will have 100% universal 

application [74]. 

Improving the ability to understand people’s body positions is an important area of study. In 

instance, scientists are putting in a lot of time and effort to make sure that joint locations can be 

pinpointed even when photos have background noise or some body components are obscured. 

Although significant strides have been made in 3D body position mapping, one source of complexity 

is the fact that a single 2D pose can correspond to numerous 3D locations. 

Labeling 3D joint images is challenging, which adds another layer of complexity and calls for 

high-tech input devices. In contrast, accurate mapping of spatial interactions between critical body 

locations is necessary for effective 3D data regression. Among the many features tracked by current 

models is the exact three-dimensional placement of every joint, as seen from different angles and in 

relation to different body shapes. These models lay the groundwork for additional SLR research that 

can be expanded upon with different methodologies. 

The capacity of modern systems to recognize poses and forecast shapes has been enhanced by 

technological advancements in capturing equipment. An encouraging area of study is the integration 

of several data sources such as thermal imaging or hybrid data with indications based on vision, which 

can increase the systems' reliability in real-world scenarios. In contrast to image-based approaches, 

which deduce the positions of the critical points (i.e., limbs and joints) from 2D images, sensor 

technology directly transfers these positions. 

Due to this crucial distinction, the input type and desired outcome should inform the procedures 

used to complete this activity [153]. Correcting the interpretation of sign language information relies 

heavily on deducing the stance [137]. This is especially crucial for continuous SLR, since it displays 

individual indications in a continuous stream and how the subject's body moves can convey the whole 

meaning of the expression. The selection of features, which can incorporate both two- and three-

dimensional data points, as well as the depth and architecture of the classifier, are just a few of the 

numerous elements that might impact the efficiency of pose estimation methods. In spite of their 

impressive accuracy, several of the most recent pose estimate algorithms are still too vulnerable to 

false positives to be considered ready for widespread use just yet [154]. 

Recent research has shown a trend toward using cutting-edge tech, such as the Microsoft Kinect, 

to identify body poses using a variety of parameters; this is obviously an area that will be further 

explored in the coming years as improved sensors and tracking devices become accessible [138,142]. 

At long last, reliable tools for testing out novel approaches are appearing. More thorough testing is 

encouraged by the availability of publicly available big SLR datasets, which moves us closer to the 

commercialization stage of this technique. 

5. Sign language recognition models 

5.1. Continuous sign language recognition models 

Continuous models have been utilized in certain investigations pertaining to sign language 

recognition and modelling. In order to continuously recognize gestures, for instance, Wu and Shao [50] 

suggested a novel bimodal dynamic network. Both the spatial locations of the 3D joints and the spoken 

commands of the gesture tokens were used to build the model. Using an expectation–maximization 



3866 

AIMS Mathematics  Volume 11, Issue 2, 3839–3902. 

(EM)-based method, Koller et al. [37] showed how to recognize sign language continuously. To solve 

the issue of temporal alignment in continuous video processing tasks, an EM-based algorithm was 

developed. Continuous sign language recognition also has scalability issues, which Li et al. [53] 

attempted to solve with their suggested system.  

Camgoz et al. [38] created a complete system for continuous sign language recognition and 

alignment. Explanation: The model relies on explicit subunit modelling. In a similar vein, Wang et 

al. [40] proposed a connectionist temporal fusion method that might convert video’s continuous 

visual languages into textual sentences. Moreover, Rao and Kishore [42] have performed further 

research on continuous SLR models. Over the course of several iterations, a system was constructed 

and tested using 282 words of continuous Indian Sign Language. 

Koller et al. [69] also utilized a database that included of continuous German Sign Language 

signing. Graphics were handled in a continuous fashion in [88]. Because the animations were so tough 

to manipulate after processing, this method was incredibly difficult to implement. Deep residual 

networks may learn patterns in continuous films containing motions and signs, as Pigou et al. [155] 

discovered when studying the challenges of continuous translation. Deep residual networks can reduce 

preprocessing requirements. 

The model shown in [17] can improve upon current methods of sign language recognition by a 

range of 15% to 38% in relative terms and by 13.3% in absolute terms. In addition, Cui et al. [156] 

proposed a weakly supervised method that, with the aid of deep neural networks, could constantly 

recognize sign language. The result was on par with what is accomplished by state-of-the-art methods. 

5.2. Isolated sign language recognition models 

Most investigations on sign language recognition have relied on single sign samples up until 

recently. Based on hand movements captured by sensor gloves, these models process a series of 

pictures or signals [92]. In many cases, sensor gloves stand in for a full sign. As an example, a dataset 

containing isolated signs from the sign languages of Denmark and New Zealand was utilized by Koller 

et al. [37]. Each signed video corresponded to one word in another experiment by [34], which 

suggested an isolated SLR system to extract discriminative characteristics from videos. 

Following their assessment of the difficulties associated with continuous translation, Escudeiro 

et al. [88] adopted a standalone strategy. Basically, each gesture was made independently, which makes 

it much easier to work with animations. In contrast, Fang et al. [110] found that deep recurrent neural 

networks were the most effective in a hierarchical model. An structured high-level representation 

usable for translation was generated from the model by combining the isolated low-level American 

Sign Language characteristics. The utilization of regions of interest (ROIs) to isolate hand motions and 

sign language characteristics has the potential to improve recognition accuracy, according to recent 

advances in sign language research [118]. 

An isolated SLR system was employed to enable real-time sign language translation in [113]. A 

time-series neural network module and video pre-processing were components of the standalone gloss 

recognition system. Latif et al. [157] conducted an additional study that examined video portions using 

an estimated “gloss-level”. Cui et al. [3] adjusted their receptive field to match the predicted duration 

of a single sign while they were conducting their observations. 

An isolated SLR task was the subject of a recent study by Huang et al. [116]. To identify a huge 

vocabulary, it was suggested to employ an attention-based 3D-CNN. The model’s strength lay in the 
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fact that it made use of the 3D-CNN’s spatio-temporal feature learning capabilities. The American sign 

language lexicon video dataset, which includes video sequences of isolated American sign language 

signs, was utilized by Papadimitriou and Potamianos [90]. 

5.3. Deliberation on sign language recognition models 

Isolated and continuous modes make up SLR, and they each present unique difficulties and need 

for unique solutions. Specifically, continuous SLR requires significantly more direct monitoring, 

which is a major difference. Unlike isolated SLR, which concentrates all the important information 

into a small area of a single image, continuous SLR requires meticulous alignment of the video’s 

portions in chronological order and accurate tagging of each sentence. 

That's just one illustration of the computationally intensive complexity of continuous sign 

language recognition. This is something that needs to be considered when evaluating methodologies 

and choosing features. Continuous video analysis improves the model’s accuracy prospects if 

sequential labeling is executed properly and the most predictive features are chosen. While clever uses 

of deep learning systems have helped to automate a lot of related chores and this area in recent years, 

there is still a long way to go before we see advances that the general public can benefit from. 

Graph neural networks applications, for instance, make advantage of the attention mechanism, 

which is fascinating since it works effectively with various kinds of data and can explain complicated 

connections in space and time. If this method is the best way to fix the current problems with 

continuous SLR, more study will reveal it. 

6. Sign language recognition based on region and spoken language 

Sign language is based on many fundamental ideas. To start with, sign languages are never really 

global. The majority of countries employ a variety of sign languages. There are a lot of countries where 

sign language is used, including the US, UK, Arabic world, and China. You can see a summary of the 

studies that used different sign languages in Table 3. As an example, the most widely used localization, 

American Sign Language (ASL), adheres to its own set of grammar norms apart from visual English. 

In their experiment, Rioux-Maldague and Giguere [35] used their proposed technique to classify 

ASL according to grammatical norms, demonstrating the application of this localization. In order to 

train and recognize postures, Tang et al. [52] conducted an experiment that took 36 hand postures 

derived from American Sign Language into consideration. On the other hand, some systems use non-

ASL indicators in an English-ordered fashion. Research centered on Italian Sign Language is one such 

example. 

There was an evaluation of a new bimodal dynamic network for gesture recognition in [50], using 

a dataset of twenty signs from Italian culture or anthropology. The Italian dataset included 7,754 

gestures and 393 labelled sequences. For many people who are hard of hearing, Arabic Sign Language 

is the best way to communicate. A method that can distinguish connected indicators was developed 

using Arabic depth and intensity images in [36]. An accuracy of 99.5% was achieved when testing the 

suggested technique with a dataset acquired from three distinct users. A dataset in Arabic Sign 

Language was also utilized by the writers in [157,158]. 

Chinese has been the subject of some sign language experiments. The 510 individual words taken 

from Chinese Sign Language were used as a vocabulary in [72]. Of these words, 353 had only one sign 
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while the rest had multiple signs. In order to accomplish their experiment's goal, Yang and Zhu [39] 

utilized the instructional film We Learn Sign Language, which demonstrates an interest in Chinese 

Sign Language. Jiang and Zhang [45] conducted an additional study that included Chinese Sign 

Language to aid in the fingerspelling procedure. In addition, tests were conducted using Chinese Sign 

Language by the authors in [56,92,116]. 

There were a few of more studies that looked at Argentine Sign Language. As an example, 

consider the study [34], which used Argentine Sign Language to collect data from 10 participants. 

Similarly, Konstantinidis et al. [44] investigated bone recognition for hands and bodies using Argentine 

Sign Language with ten participants. Some studies use a combination of sign languages rather than 

just one. 

To investigate CNN training on 1 million hand images, for instance, Koller et al. [37] used a 

combination of Danish and New Zealand sign languages. Using publicly available lexicons, the sign 

languages were culled from two representative videos. While there was minor motion blur in the New 

Zealand version, it was nonexistent in the Danish data. To further investigate the function of SubUNets 

in sign language recognition, Camgoz et al. [38] conducted an experiment with Danish, New Zealand, 

and German sign languages. 

7. Training and evaluation 

7.1. Training with backpropagation 

For the purpose of training artificial neural networks, specifically feed-forward networks, 

backpropagation is a potent deep learning technique. Iteratively, it minimizes the cost function by 

modifying biases and weights. To minimize loss, the model updates these parameters at each epoch in 

response to the error gradient. Gradient descent and stochastic gradient descent are two optimization 

methods that are commonly used in backpropagation. By calculating the gradient according to the 

calculus chain rule, the method is able to efficiently traverse the many layers of the neural network in 

order to minimize the cost function. Equations (1) and (2) provide the fundamental equations that 

characterize the learning process. 

𝜃𝑡+1  =  𝜃𝑡 − 𝛼
𝜕𝐸

𝜕𝜃
,                                  (1) 

𝐸 =  
1

2𝑁
∑ (𝑦𝑖 − 𝑦𝑖′)𝑁

𝑖=1 ,                              (2) 

where 𝛼 is the learning rate and 𝜃 is the weight. 

In order to train a translation layer, Rioux-Maldague and Giguere [35] utilized the standard 

multilayer perceptron (MLP) approach. Every 24 letters were translated into a 24-dimensional softmax 

vector by the output layer during training using normal backpropagation, which interpreted the 

activations of different restricted Boltzmann machines (RBMs). The training process included weight 

decay and early halting, and it was based on 200 epochs of backpropagation. They also used the whole 

network for a fine-grained backpropagation phase, although they slowed down the learning pace 

significantly. Wu et al. [50] also used the conventional backpropagation method to fine-tune the 

relative importance of each modality. 
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7.2. Loss function 

SLR can be formulated as a sequence-to-sequence learning problem. Given an input video 

sequence 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} , where each frame 𝑥𝑡 represents visual or multimodal observations 

(e.g., RGB, depth, pose), the goal is to predict a linguistic label sequence 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝐿} , with 

L≤ TL, corresponding to glosses, words, or characters. A neural model 𝑓𝜃(⋅), parameterized by θ, 

maps the input sequence to frame-level logits as 3. 

𝑍 =  𝑓𝜃(𝑋)𝑍 ∈ ℝ𝑇×𝐾,                              (3) 

where K is the vocabulary size. The learning objective is to find optimal parameters based on 4. 

𝜃∗  =  arg min 𝐿
𝜃

(𝑌, 𝑓𝜃(𝑋)),                           (4) 

where L is a task-dependent loss function. 

Cross-entropy loss (CE) 

For isolated sign recognition or frame-level classification, cross-entropy loss is commonly used. 

Let 𝑝̂𝑡 (𝑘) denote the predicted probability of class 𝑘 at time 𝑡, and 𝑦𝑡  be the ground-truth label. 

the CE los function is computed as (5). 

𝐿𝐶𝐸  =  − ∑ log  𝑝̂𝑡 (𝑦𝑡)𝑇
𝑡=1 .                             (5) 

CE enforces discriminative frame-level learning but requires explicit temporal alignment, limiting its 

applicability in continuous SLR. 

Connectionist temporal classification (CTC) 

As previously formalized, CTC removes the need for frame-level annotations by marginalizing 

over all valid alignments. The CTC loss function is presented in (6). 

𝐿𝐶𝑇𝐶  =  − log ∑ ∏ 𝑃(𝜋𝑡|𝑥𝑡)𝑇
𝑡=1𝜋∈ℬ−1(𝑌) .                     (6) 

CTC is central to continuous SLR due to its alignment-free supervision and robustness to variable 

signing speed. 

Attention-based sequence-to-sequence loss 

Transformer and encoder-decoder models optimize a conditional log-likelihood over output 

tokens. The loss fuction is defined as (7). 

𝐿𝑠𝑒𝑞2𝑠𝑒𝑞  =  − ∑ log  𝑃(𝑦𝑙|𝑦<𝑙 , 𝑋)𝐿
𝑙=1 .                       (7) 

This loss captures long-range dependencies and linguistic structure but is sensitive to alignment noise 

and requires large training data. 

Hybrid CTC–attention loss 

To combine the strengths of CTC and attention mechanisms, a multi-objective loss is often used. 
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The hybrid CTC loss function is computed as (8). 

𝐿ℎ𝑦𝑟𝑖𝑑  =  𝜆𝐿𝐶𝑇𝐶 + (1 − 𝜆)𝐿𝑠𝑒𝑞2𝑠𝑒𝑞,                        (8) 

where λ∈[0,1] balances alignment stability and semantic modeling. This formulation improves 

convergence, stabilizes training, and enhances recognition accuracy in continuous SLR. 

Contrastive loss for representation learning 

For multimodal or self-supervised SLR, contrastive learning enforces alignment between 

representations. The loss function is defined as (9). 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒  =  − log
𝑒𝑠𝑖𝑚(𝑧𝑖,𝑧𝑖

+)/𝜏 

𝑒𝑠𝑖𝑚(𝑧𝑖,𝑗)/𝜏 ,                          (9) 

where τ is a temperature parameter. Contrastive loss enhances modality-invariant and signer-

independent representations. Table 2 present a summary comparison between different loss functions 

for SLR tasks. 

Table 2. Comparative table of loss functions in SLR. 

Loss function 
Alignment 

requirement 
Suitable SLR task Advantages Limitations 

Cross-Entropy Explicit Isolated / frame-level Simple, stable Requires segmentation 

CTC Implicit Continuous SLR 
Alignment-free, 

robust 

Weak language 

modeling 

Seq2Seq 

(Attention) 
None Learned Sentence-level Captures semantics 

Hybrid CTC–

Attention 
Mixed 

Continuous 

translation 
Stable + expressive Higher complexity 

Contrastive N/A Multimodal / SSL 
Improves 

generalization 

Requires careful 

sampling 

7.3. Datasets 

In order to evaluate SLR techniques, a selection of the most relevant and accessible datasets that 

include hand movements are presented. Making sure dictionaries are big enough to support more 

stringent testing and more complex applications is a top priority. Depending on the selected 

geographical variety of sign language, there are currently certain high-quality sets that can be utilized 

for this purpose. 

Researchers in the field of UK sign language have access to a variety of datasets, such as RWTH-

Boston-1, RWTH-Boston-50, and RWTH-Boston-400, which contain anywhere from ten to four 

hundred distinct signs. Notable examples of high-quality data corpora for German sign language 

include DGS Kinect-40, SIGNUM, and RWTHPHOENIX-Weather. There are a lot of real sentences 

signed by up to nine professional signers in those sets, and the first and ending frames of each sign are 

labelled with facial and hand feature definitions. The sets also include 35 to 1225 distinct signs. 

With more than 30,000 signs performed by six individuals, ASLLVD is the gold standard for ASL 

research. Like the last set, this one has labels indicating which frames begin and conclude each 
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sentence. There are three high-quality data sets available for studies of polish sign language variation: 

PSL Kinect 30, PSL ToF 84, and PSL 101. There is a cap of one person working on these datasets, and 

they only include individual words (with a total of 30 to 101 signs). Indian scholars have access to the 

Sign Corpus IITA-ROBITA ISL, which was built cooperatively by multiple teams between 2010 and 

2017. Sadly, there is just one signer and only 23 signs in the complete set. 

Two datasets, ASLLVD and RWTH-PHOENIX-Weather, stand out among the others due to their 

widespread applicability. In SLR studies, publicly available sign language sets are frequently utilized 

as benchmarks to assess the efficacy of suggested computing algorithms. This is because these sets are 

well-suited for sign language interpretation in real-world scenarios. Virtually, all SLR researchers are 

presently fixated on the problem of limited access to specialized datasets. A further complicating factor 

is the need for distinct datasets for various linguistic tasks and geographical variants of sign language. 

While some studies employed well-known local datasets, others started with video recordings of 

sign language users and added additional metrics to create new datasets. In order to train a system that 

can recognize signs independently of signers, a typical dataset contains several instances of the same 

sign made by different signers. When evaluating the credibility of findings, it is important to remember 

that certain datasets offered in the literature are much bigger than others. 

As shown in Table 3, we relied on the literature reviews and strictly stated criteria to examine the 

datasets in all the research publications that were reviewed. The databases utilized share numerous 

commonalities and can be efficiently categorized according to these properties, since all the 

publications mainly focus on decoding sign language parts of different levels of complexity. Although 

certain categories may not apply or authors may not have supplied data, the criteria were chosen with 

the intention of offering a framework for direct comparison between research. 

Table 3. Sign language datasets based on the region and spoken language. 

Model Reference Items Classes Subject 

European sign language 

NA [34] 3200+1297 64+50 10+NA 

CNN/Stacked LSTM/OpenPose [44] 32001535 videos 6450 10 

CNN-Stacked LSTM [44] 3200 videos 64 10 

3D CNN [159] 500 videos 10 10 

CNN+EM [37] 1134319 images 60 6, 8, 2009 

CNN+BLSTM [38] 1.2 million images 60 23 

NA [160] 11+200 per class 40 100 

Residual network + BiLSTM [155] 55224, 12599 video-gloss, 22535 video 100, 100, 249 78, 53, 21 

NA [161] 5 hours video 60 18 

CNN + B RNN [3] 6522711874 455 9 

Pose estimation [49] 43986 images 35 20 

Temporal CNN [156] 5672 sentences 9 NA 

TCONV + BGRU [40] 6841 videos 10 40 

CNN + BiLSTM [3] 6841 sentences + 2340 sentences 455 91 

DBN [50] 13858 20 NA 

NA [162] 2000 Videos 10 3 

SVM [88] NA 57 NA 

Continued on next page 
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Model Reference Items Classes Subject 

American sign language 

NA [163] 2524 36 NA 

NA [164] 9800 3300 6 

NA [143] 808+479 NA 8 

NA [165] NA 35 3 

DBN [35] 60000 24 5 

DNN [52] 288 videos 36 8 

CNN + HMM [69] 2137 sentences 40 7 

Sparse autoencoder [68] 120000 images 24 5 

3D CNN [51] 657 25 9 

CNN [47] 60000 images 26 5 

PCANet + SVM [13] 60000 images 24 5 

CNN [90] 3000, 4416 images 24 6, 20 

CNN [166] 78000 26 NA 

CNN + SDAE [48] 2040 gestures 24 NA 

Bidirectional DRNN [110] 7306 images 156 11 

NA [167] 900 images 36 NA 

DenseNet [168] 100000 images 24 NA 

CapsuleNet [169] 34672 images 24 NA 

CNN + LSTM [118] 62400 24 NA 

DNN [57] NA 36 12 

CNN + SVM [46] 2425 images 5 20 

Arabic sign language 

NA [170] 180 3 10 

NA [134] 900 30 30 

NA [171] 150 150 21 

PCANet, SVM [36] 1400 28 3 

NA [157] 54049 32 40 

ResNet 18 [158] 54049 32 40 

East Asian countries sign language 

NA [83] 54000 45 3 

CNN [172] 1074 10 NA 

DCNN [83] 1147 images 37 NA 

NA [173] 9000 90 NA 

NA [54] 78 26 3 

3D CNN [55] 5000 videos 179 50 

NA [92] 100, 16000 sentences 20, 3000 3, 50 

3D CNN + attention [89] 125000 images 500 50 

CNN [39] NA 40 NA 

CNN [45] 1260 samples 30 NA 

3D CNN + attention [89] 125000, 14000 instances 50020 50 

DNN [117] 30000 images 20 15 

Continued on next page 
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Model Reference Items Classes Subject 

East Asian countries sign language 

CNN [174] NA 26, 9 NA 

DNN [42] 282 words NA 10 

LSTM [112] 1630 words 163 2 

3D CNN + BiRNN [43] 3006 videos, 30 sentences 30 10 

3D CNN [175] 100 images 5 NA 

LSTM [156] NA NA NA 

LSTM [41] 812 sentences 195 1 

NA [144] 14672 419, 105 14 

GRU [144] 14672 videos 524 14 

YOLO [176] 30000 images 25 12 

Through this review, we aim to highlight the similarities and differences in the datasets used 

across various studies. To ensure clarity and address space constraints, training, testing, and assessment 

datasets are often presented in a combined format. Consequently, the actual structure of a dataset may 

be more complex than what is depicted in the tables for certain studies. For practical applications of 

any of these SLR datasets, it is advisable to closely examine each dataset in detail. A glance at Table 4 

reveals significant variations in the datasets, particularly in terms of data types. 

Table 4. Sign language datasets based on the data type. 

Reference Data type 

Alphabetic linguistic content 

[177] RGB video + depth info 

[178] [73] 2 D images 

[37] [178] [45] [166] [45] [48] [49] [169] [117] [174] [91] 

[157] [158] [36] [46] [176] 
RGB 

[47] RGBD 

[13] RGBD, Kinect 

[92] RGBD, Kinect, gloves 

[90] RGB video 

[36] RGB+ depth info 

[179] RGB+ depth RGB 

[57] 3D models 

Words and sentences linguistic content 

[156] [40] [3] RBG 

[34] [43] [44] [159] [143] [144] RGB video 

[41] [112] RGB, Kinect 

[89] RGB, depth, skeleton 

[89] RGB, Kinect, skeleton point 

[52] RGB, Kinect, 3D skeleton point 

[110] Infrared 

Continued on next page 
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Reference Data type 

Words and sentences linguistic content 

[165] [160] [162] Video 

[164] Video, Kinect 

[171] RGB, depth, 3D skeleton, facial features 

Hand gesture linguistic content 

[38] [3] [167] [168] RGB 

[68] RGBD 

[39] [118] RGB video 

[175] [51] RGB, Kinect 

[35] Intensity camera, Kinect 

[180] 2D and 3D skeleton, depth info 

[111] 6D IMU 

[155] RGB, RGBD Kinect 

Because studies of sign language use different theoretical frameworks and may investigate 

seemingly unconnected areas of sign language understanding, this is to be expected. For example, 

while continuous SLR experiments require sentences or even longer segments of speech, isolated SLR 

experiments typically use alphanumerical characters or words for recognition of isolated language 

elements. Knowing the difference between the two approaches and the kinds of datasets appropriate 

for each is crucial. 

When trying to assess a model's generalizability, it's necessary to take into account the dataset’s 

size and complexity differences. Nevertheless, due to resource constraints and practical considerations, 

even the most extensive datasets fall well short of being comprehensive. The availability of more 

statistics documenting several geographical variations of sign language is a positive trend. Since SLR 

research has broad applicability, it is imperative that we prioritize the development of automated 

systems that can identify regional variants of hand signals. 

Additionally, multi-modal datasets are on the rise, which bodes well for the future of SLR research 

and provides more room for creative thinking. The lack of diversity in the signers and classes used to 

compile most datasets casts doubt on their reliability as representations of the real world. Because of 

this, automated algorithms that use those datasets may not be able to accurately interpret significantly 

different sign language gesture displays. One of the most important factors influencing the rate of 

advancement in any area of artificial intelligence research is the accessibility of high-quality datasets 

for training and testing models. 

The studies that were considered show that this is becoming less of an issue, which is encouraging 

because SLR research is still a young field. When widespread compatibility of the experimental results 

is sought, there are a number of commonly used datasets that can be regarded as “standards”. However, 

fresh datasets that are specific to local sign language systems are cropping up, which means that they 

may be able to be recycled to power more studies in the same area. Although things are looking good, 

it's important to note that the datasets that are already out there vary substantially in size, structure, 

quality, and perhaps require the creation of additional datasets to back up certain study paths. 

Although a growing number of datasets have been introduced for SLR, dataset scarcity remains 

a fundamental challenge. This apparent contradiction arises from the distinction between dataset count 

and effective data coverage. While multiple corpora exist, most suffer from limitations in scale, 
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diversity, and annotation consistency, which significantly restrict model generalizability and real-

world applicability. 

A dominant source of bias in existing SLR datasets is signer dependency. Many datasets include 

a small number of signers—often fewer than ten—recorded under controlled laboratory conditions. 

Models trained on such data tend to overfit to signer-specific characteristics such as hand size, signing 

speed, posture, and habitual motion patterns. This bias severely limits cross-signer generalization, 

which is essential for practical SLR systems intended for broad user populations. The lack of 

demographic diversity in age, gender, and signing style further exacerbates this issue. 

Most available datasets focus on limited vocabularies, frequently constrained to isolated signs or 

predefined gloss sets. While suitable for benchmarking isolated SLR, these datasets fail to capture the 

linguistic richness of natural sign languages, including co-articulation, grammatical facial expressions, 

and non-manual markers. Additionally, gloss annotations often abstract away semantic nuance, 

resulting in models that recognize symbol sequences rather than meaning. This lexical bias restricts 

the applicability of trained models to real-world continuous signing scenarios. 

SLR datasets are commonly recorded in controlled environments with uniform backgrounds, 

stable lighting, and fixed camera viewpoints. Although this setup simplifies data collection and 

annotation, it introduces a strong domain bias. Models trained on such data often exhibit significant 

performance degradation when deployed in unconstrained settings, such as daily communication 

environments with occlusions, camera motion, or background clutter. This gap highlights the lack of 

in-the-wild datasets that reflect realistic signing conditions. 

Another critical limitation lies in annotation quality. Differences in gloss definitions, temporal 

segmentation strategies, and labeling conventions across datasets hinder cross-dataset training and 

evaluation. In continuous SLR, the absence of consistent frame-level annotations further complicates 

sequence alignment and learning. These inconsistencies introduce noise into the training process and 

impede the transferability of learned representations. 

Many datasets exhibit severe class imbalance, where frequent signs dominate the training 

distribution while rare signs remain underrepresented. This imbalance biases models toward common 

patterns and reduces recognition accuracy for less frequent signs. Moreover, most datasets rely 

exclusively on RGB video, with limited availability of multimodal data such as depth, skeletal pose, 

or inertial measurements. The lack of multimodal annotations constrains the development of robust, 

modality-agnostic models. 

Collectively, these biases explain why dataset scarcity persists despite the apparent abundance of 

datasets. The challenge lies not in the number of datasets, but in the absence of large-scale, diverse, 

consistently annotated corpora that support signer-independent, linguistically grounded, and 

deployment-ready SLR models. Addressing this issue requires not only larger datasets, but also 

principled data collection protocols, standardized annotations, and increased emphasis on cross-dataset 

evaluation. 

7.4. Evaluation 

Accurate recognition of sign language material is the main focus of most research papers, and the 

primary criteria used to measure the results is the F1 score which combine the precision and the recall. 

Training, testing, and validation accuracy are sometimes defined differently by different writers, 

depending on the phase of an experiment. Another aspect that was monitored in certain experiments 
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was the amount of time needed for training to achieve acceptable accuracy; this was often stated in 

epochs. Though it was possible to describe processing time and input video length in seconds and/or 

frames, these metrics were not always deemed important enough to merit direct measurement. For a 

quick rundown of performance metrics utilized in SLR research, Tables 5 present a detailed summary. 

Table 5. Accuracy of state-of-the-art models for SLR. 

Model Accuracy (%) 

[34] 99.84 

[170] 92 

[177] 97.3 

[163] 84.68 

[83] 94.7 

[173] 98 

[180] 92.28 

[160] 95 

[162] 73 

[181] 63.56 

[165] 89.33 

[171] 55.57 

[144] 93.28 

[50] 70.1 

[35] 77 

[51] 98.12 

[69] 55.7 

[68] 99.1 

[52] 94.2 

[54] 98.9 

[47] 80.34 

[55] 92.9 

[13] 88.7 

[117] 97 

[144] 93.28 

[90] 99.39 

[166] 88.7 

[89] 91.93 

[3] 99.5 

[36] 62.8 

[37] 87.4 

[53] 92.83 

[48] 94.5 

[110] 73.3 

[155] 97.7 

[111] 81.7 

Continued on next page 
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Model Accuracy (%) 

[49] 99 

[39] 70 

[34] 95 

[172] 98.05 

[167] 90.3 

[168] 99.74 

[169] 91 

[118] 83.78 

[57] 84.68 

[73] 53 

[41] 92.88 

[182] 83.72 

[91] 99.56 

[174] 99.31 

[179] 94.7 

[183] 77 

[112] 90 

[42] 98.09 

[44] 100 

[159] 92.24 

[175] 91.93 

[3] 88.7 

[89] 99.48 

[158] 88.1 

[45] 98.36 

[46] 98.81 

[114] 87.31 

[125] 92.92 

[129] 98.4 

[76] 71.9 

[80] 77.75 

[79] 98.08 

[77] 46.96 

[78] 74.7 

[75] 94.77 

While recognition accuracy remains the primary evaluation metric in most SLR studies, practical 

deployment—particularly in wearable assistive devices, mobile platforms, and interactive systems—

requires careful consideration of real-time performance constraints. These constraints include 

inference latency, memory footprint, and energy consumption, which are directly influenced by 

architectural design choices. 

We consider the following metrics as fundamental for deployment-oriented evaluation: 

• Inference latency: Average time required to process a video frame or sequence, directly 
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affecting real-time usability. 

• Model size: Memory footprint determined by parameter count and precision, influencing 

deployability on edge devices. 

• Energy consumption: Power usage during inference, critical for battery-powered systems. 

Rather than hardware-specific benchmarks, we analyze relative computational behavior across 

architecture families. 2D CNNs offer low inference latency and moderate model size, making them 

suitable for isolated sign recognition and short sequences. However, extending them to 3D CNNs 

significantly increases computational cost and energy consumption due to volumetric convolutions. 

CNN–RNN hybrids and TCNs provide a favorable balance between temporal modeling and efficiency. 

TCNs, in particular, benefit from parallelizable convolutions, resulting in lower latency than recurrent 

models while maintaining competitive accuracy. Pose-based GCNs are computationally efficient, as 

they operate on sparse skeletal graphs rather than dense pixel grids. This results in small model sizes 

and low energy consumption, making them highly suitable for real-time and embedded SLR systems, 

provided reliable pose estimation is available. Transformers deliver strong performance for long-range 

temporal reasoning but incur high memory and computational costs due to self-attention’s quadratic 

complexity with sequence length. This limits their applicability in real-time scenarios without 

optimization techniques such as windowed attention or model compression. 

Hybrid models combine multiple components and therefore exhibit higher computational 

demands. Nevertheless, they often achieve superior accuracy per parameter due to complementary 

inductive biases, making them attractive for medium- to high-budget deployments. Table 6 presents a 

comparison between different models families based on different metrics. 

Table 6. Computational trade-offs of SLR architectures. 

Architecture family 
Inference 

latency 
Model size 

Energy 

consumption 

Real-time 

suitability 
Typical deployment 

2D CNN Low Small-Medium Low High Mobile/Edge 

3D CNN High Large High Low Offline 

CNN-RNN Medium Medium Medium Medium Desktop 

TCN Low-Medium Medium Medium High Real-time systems 

GCN (Pose-based) Very Low Small Very Low Very High Wearables/Edge 

Transformer High Large High Low-Medium Server-scale 

Hybrid Models Medium-High Large Medium-High Medium Hybrid deployments 

This analysis demonstrates that model selection in SLR inherently involves a trade-off between 

recognition accuracy and computational feasibility. Pose-based and TCN architectures are best suited 

for real-time, low-power applications, whereas Transformer-based and hybrid models are more 

appropriate for high-accuracy, offline, or server-assisted scenarios. By explicitly incorporating 

computational metrics into the discussion, the revised manuscript provides a more comprehensive and 

deployment-aware perspective on SLR system design. 

Proposed sign recognition algorithms are quantitatively evaluated in nearly all of the assessed 

research papers. The goals of the study dictate which tests are administered, which in turn affects the 

breadth and depth of the testing. The goal of the testing was to determine the algorithm's performance 

in differentiating between phrases or words in sign language, typically by comparing it to other 

benchmark methods. 
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In general, several approaches worked adequately and identified over 90% of the presented 

indications; however, there are certain caveats when comparing results across studies due to the varied 

nature of the tests. The claimed effectiveness was over 97% in a few instances, although these instances 

were simpler tasks and frequently couldn't be sustained across multiple datasets. Recognition rates of 

80% for continuous SLR tasks are strong, particularly when they hold across different datasets. 

It was observed that the majority of algorithms showed inconsistent performance when switching 

between signs, and that a small number of perplexing indicators usually caused the majority of false 

positives. Due to systemic reasons or the similarity of hand gestures, these frequent mistakes frequently 

persisted irrespective of the classifier or training technique. This discovery highlights the fact that 

existing SLR algorithms are still not perfect and should be regularly compared with human-made 

estimates to prevent misunderstandings, and it also suggests that certain issues with the structure and 

form of sign language, rather than methodological shortcomings, are preventing the development of 

more effective tools. 

Typically, the proposed models are assessed based on their ability to accurately carry out the main 

task, which is either sign language translation or recognition. The primary metric for evaluating the 

model's performance is the whole dataset average accuracy; a greater percentage denotes a more 

precise method. The accuracy of the model in identifying the “most likely” options was expressed as 

top-1, top-5, and top-10 in some instances, instead of just one right response. 

In order for the neural classifier to perform well in testing and real-world scenarios, it needs to be 

trained on data that closely matches the samples it will face. It is common practice for human observers 

to annotate a set of basic sign language symbols, words, or sentences before using them as training 

data for a sign language decoding system. Following training, the model can be applied to deduce 

certain sign language elements using the same structure, with different levels of accuracy. While some 

research focused on finding the best feature combinations, other studies compared several classifiers 

on the same tasks to see which ones performed better. 

Although neural models can only generalize to the signs learnt in the training set, it is possible to 

attain some degree of accuracy when it comes to individuals expressing the same sign. Consequently, 

optimizing training parameters is a crucial part of SLR research that can greatly affect the solutions' 

usefulness. Improving the ability to translate in real-time and understand increasingly complicated 

portions of continuous sign language speech are goals of more sophisticated systems. Such uses are 

far more involved than basic character recognition using sign language datasets derived from sentence 

and word content. Datasets for sign language derived from other language sources are used for low 

complexity systems. individual words, and they often need to use a combination of indicators to 

decipher a sequence’s meaning. As a result, scientists are turning to hybrid designs and complex 

sequence-to-sequence models to help them decipher subtle semantic cues and distinguish between 

seemingly identical indications. 

Hybrid architectures in SLR—such as CNN–RNN, CNN–GCN–Transformer, or multimodal 

fusion networks—exhibit superior performance due to the synergistic interaction of multiple modeling 

mechanisms, rather than a single dominant factor. 

At the representational level, hybrid models benefit from complementary feature fusion. CNN-

based encoders excel at extracting dense spatial and appearance features from RGB inputs, while 

GCNs capture articulated kinematic structures from skeletal data, and facial encoders model non-

manual cues. By jointly learning these representations, hybrid systems reduce information loss 

inherent in single-modality pipelines. Empirically, this fusion improves robustness to background 
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clutter, signer variability, and viewpoint changes, directly addressing known failure modes of RGB-

only models. 

Hybrid architectures also enhance temporal reasoning by distributing temporal modeling across 

different layers. Local temporal dependencies are often captured by 3D CNNs or TCNs operating on 

short frame windows, while long-range dependencies and linguistic structure are modeled using RNNs 

or Transformers. This multi-scale temporal decomposition allows hybrid models to align low-level 

motion dynamics with high-level semantic units, which is particularly critical in continuous and 

sentence-level SLR. As a result, hybrid systems achieve better sequence alignment and reduced 

temporal ambiguity compared to single-stage temporal models. 

A less explicit but equally important factor is implicit regularization. Hybrid architectures 

introduce architectural constraints—such as separate modality streams, attention-based fusion, or 

auxiliary losses (e.g., CTC combined with sequence-to-sequence objectives)—that restrict the 

hypothesis space. This structured learning acts as a form of regularization, improving convergence 

stability and reducing overfitting, especially in the presence of limited or biased datasets. Multi-

objective optimization further encourages the model to learn representations that are simultaneously 

temporally coherent and semantically consistent. 

Taken together, the performance gains of hybrid approaches arise from the joint effect of richer 

representations, hierarchical temporal modeling, and regularized optimization, rather than from any 

single component in isolation. This mechanistic understanding explains why hybrid architectures 

consistently outperform monolithic CNN-, RNN-, or Transformer-only models across diverse SLR 

benchmarks and tasks. 

8. Summary of principled model and guidelines for practitioners 

SLR poses unique challenges due to its reliance on fine-grained spatial cues (hand shape, 

orientation, facial expression) and complex temporal dynamics (motion trajectories, co-articulation, 

and long-range linguistic dependencies). Consequently, a wide range of neural network architectures 

have been explored, each offering distinct advantages and trade-offs. This section provides a detailed 

comparative analysis of the principal model families, focusing on their representational capabilities, 

computational characteristics, and applicability to different SLR scenarios. 

2D CNNs process sign language videos on a frame-by-frame basis, excelling at spatial feature 

extraction such as hand appearance, facial expressions, and local texture cues. Architectures such as 

ResNet and EfficientNet benefit from large-scale image pretraining, which is particularly 

advantageous in SLR settings with limited labeled data. However, because 2D CNNs lack intrinsic 

temporal modeling, they cannot capture motion patterns or temporal dependencies without additional 

modules. As a result, they are typically combined with temporal pooling, recurrent networks, or 

attention mechanisms. While efficient and easy to deploy, 2D CNN-based pipelines are best suited for 

isolated SLR tasks where temporal complexity is limited. 

3D CNNs extend spatial convolutions into the temporal dimension, enabling joint modeling of 

space and time. Models such as I3D and SlowFast capture short-term motion dynamics directly from 

video clips, making them highly effective for recognizing dynamic signs. Their main advantage lies in 

end-to-end spatio-temporal feature learning without explicit temporal alignment modules. However, 

this comes at a high computational and memory cost, and performance is strongly dependent on large-

scale pretraining. Additionally, 3D CNNs struggle to model long-range dependencies efficiently, 



3881 

AIMS Mathematics  Volume 11, Issue 2, 3839–3902. 

limiting their scalability to continuous SLR tasks. 

Two-stream architectures decouple spatial and temporal modeling by processing RGB frames and 

motion information (typically optical flow) in parallel. This explicit separation allows the model to 

emphasize dynamic motion cues that are critical for many signs. While such architectures often 

improve recognition accuracy, they introduce significant computational overhead due to optical flow 

computation and increased model complexity. Furthermore, optical flow can be sensitive to noise, 

occlusions, and camera motion, which reduces robustness in real-world scenarios. These models are 

therefore more appropriate for offline or benchmark-focused studies rather than real-time applications. 

CNN–RNN hybrids combine spatial encoders with recurrent networks such as LSTMs or GRUs 

to model temporal dependencies. This architecture naturally supports variable-length sequences and is 

widely used in continuous SLR and sign-to-text translation systems. Recurrent models are effective at 

capturing sequential patterns but exhibit limitations in modeling very long sequences due to vanishing 

gradients and limited parallelism. Their performance is also highly dependent on the quality of the 

extracted frame-level features. Despite these drawbacks, CNN–RNN pipelines remain a practical and 

computationally efficient choice for moderate-length sequences. 

Temporal Convolutional Networks use one-dimensional convolutions with dilation to model 

long-range temporal dependencies in a parallelizable manner. Compared to RNNs, TCNs offer more 

stable training and better scalability to long sequences. They are particularly effective for temporal 

segmentation and frame-level labeling in continuous SLR. However, TCNs do not inherently model 

spatial structure and therefore rely on a separate spatial backbone. Their effectiveness depends on 

careful design of the receptive field to match the temporal extent of the task. 

GCNs and their spatio-temporal variants operate on skeletal representations of the signer, 

modeling joints as nodes and their relationships as edges. This structured representation enables 

efficient modeling of kinematic dependencies and reduces sensitivity to background clutter. GCN-

based approaches are computationally lightweight and well suited for real-time applications. However, 

their performance is limited by the accuracy of pose estimation, particularly for hands and fingers, and 

they lack appearance-based cues such as texture and facial details. As such, they are most effective 

when combined with visual feature extractors. 

Transformer models leverage self-attention to capture long-range temporal dependencies and 

complex interactions across frames. Unlike RNNs, they enable global temporal reasoning and flexible 

multimodal fusion, making them particularly suitable for continuous SLR and sign-to-text translation. 

Transformer-based models often achieve state-of-the-art performance but are computationally 

expensive and data-intensive. Their quadratic complexity with respect to sequence length necessitates 

efficient attention variants or temporal downsampling for practical deployment. 

Hybrid architectures integrate complementary model families, such as CNNs or GCNs for local 

feature extraction and Transformers or TCNs for global temporal modeling. The superior performance 

of hybrid approaches can be attributed to their ability to fuse heterogeneous features, model long-range 

dependencies, and introduce implicit regularization through architectural modularity. While highly 

effective, these models are more complex to design and optimize, and they incur higher computational 

costs. 

Lightweight architectures prioritize efficiency through compact backbones, model pruning, and 

quantization. These approaches trade some accuracy for real-time performance and low power 

consumption, making them suitable for wearable assistive devices and edge computing scenarios. 

Their limited capacity, however, restricts their ability to handle highly complex or long-duration sign 
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sequences. 

In summary, no single architecture is universally optimal for all SLR tasks. Instead, the choice of 

model should be guided by task complexity, sequence length, available computational resources, and 

deployment constraints. While CNN-based models remain effective for isolated SLR, Transformer-

based and hybrid architectures are increasingly favored for continuous and semantic-level tasks. 

Lightweight and pose-based models, on the other hand, offer practical solutions for real-time and 

resource-constrained applications. This comparative analysis highlights the importance of principled 

architectural selection in advancing robust and deployable SLR systems. Table 7 represents a detailed 

comparative analysis of neural network architectures for sign language recognition 

Table 7. Detailed comparative analysis of neural network architectures for sign language 

recognition. 

Architecture type Key advantages Main limitations Suitable scenarios 

2D CNNs (e.g., 

ResNet, 

EfficientNet) 

Strong spatial feature 

extraction; readily available 

pretrained weights; efficient 

for frame-based processing 

Lack inherent temporal 

modeling; require additional 

modules for motion 

representation; may miss fine 

temporal cues 

Isolated SLR with limited 

temporal variability; low-

data settings leveraging 

transfer learning 

3D CNNs (e.g., 

I3D, R(2+1)D, 

SlowFast) 

Joint spatio-temporal 

modeling; high recognition 

accuracy for dynamic signs; 

effective with large-scale 

pretraining 

Computationally intensive; 

memory-heavy; require 

substantial training data; limited 

long-range temporal modeling 

High-accuracy isolated 

SLR; offline processing; 

datasets with rich motion 

patterns 

Two-Stream 

Networks (RGB + 

Optical Flow) 

Explicit motion modeling; 

improved performance for 

highly dynamic signs; 

separate stream specialization 

Optical flow is costly and 

sensitive to noise; higher 

complexity; increased inference 

time 

Benchmark-oriented 

studies; accuracy-focused 

systems where compute 

cost is acceptable 

RNNs 

(LSTM/GRU) and 

CNN–RNN 

Hybrids 

Effective for variable-length 

sequences; natural fit for 

sequential decoding; 

lightweight compared with 

transformers 

Weaker long-range modeling 

than attention-based models; 

dependent on frame-level feature 

quality 

Continuous SLR pipelines; 

low-resource systems 

requiring moderate 

temporal reasoning 

Temporal 

Convolutional 

Networks (TCN) 

Parallel temporal modeling; 

stable training; long receptive 

fields with dilated 

convolutions 

Requires careful design for long 

sequences; relies on separate 

spatial encoder 

Framewise labeling, 

temporal segmentation, 

and continuous SLR 

boundary detection 

Graph 

Convolutional  

Networks (GCN / 

ST-GCN) 

Strong modeling of joint 

relationships; efficient; robust 

to background clutter; well-

suited for pose-based SLR 

Performance tied to pose 

estimation accuracy; lacks 

appearance cues; sensitive to 

hand/finger keypoint errors 

Real-time or resource-

constrained SLR; pose-

centric systems; noisy 

visual environments 

Continued on next page 
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Architecture type Key advantages Main limitations Suitable scenarios 

Transformers (e.g., 

TimeSformer, ViT-

Temporal) 

Excellent long-range 

dependency modeling; flexible 

multimodal fusion; state-of-the-

art performance with adequate 

data 

Data-hungry; high 

compute/memory cost; 

challenging for on-device 

deployment 

High-performance 

continuous SLR; sign-

to-text translation; 

multimodal modeling 

Hybrid Models (CNN 

+ Transformer, GCN + 

Transformer) 

Combine strengths of local and 

global modeling; highly 

adaptable; superior empirical 

performance 

More complex architecture 

and tuning; higher 

computational overhead 

Advanced SLR systems 

prioritizing accuracy; 

multimodal fusion tasks 

Lightweight / Mobile 

Models (MobileNet + 

TCN, Tiny-

Transformer) 

Suitable for on-device and real-

time inference; reduced 

power/runtime cost 

Lower accuracy; require 

distillation/pruning; limited 

handling of highly complex 

signs 

Wearable and 

embedded SLR 

systems; smart glasses; 

low-latency 

applications 

SLR tasks vary in temporal scope, from isolated signs lasting a few frames to continuous signing 

over long sequences. The framework categorizes tasks into three sequence-length regimes. Short 

sequences (isolated signs, 1–2 seconds): These tasks primarily require fine-grained spatial recognition 

of hand shapes, orientations, and facial cues. 2D CNNs or lightweight 3D CNNs are effective here, as 

they can capture local spatio-temporal features without the overhead of long-range modeling. Medium 

sequences (phrases or segmented streams): Medium-length sequences demand modeling of local 

temporal dependencies. Architectures such as CNN–RNN hybrids or Temporal Convolutional 

Networks (TCNs) are suitable, as they can capture sequential patterns while remaining 

computationally tractable. Long sequences (continuous SLR, sentence-level or sign-to-text translation): 

These tasks require long-range temporal reasoning and semantic alignment. Transformers or hybrid 

CNN/GCN + Transformer models are recommended due to their ability to model global dependencies 

and integrate multimodal cues. Table 8 provide a summary on model selection based on sequence 

length. 

Table 8. Model selection based on sequence length. 

Sequence length Dominant challenge Recommended architectures Rationale 

Short sequences 

(isolated signs, 1–2 s) 

Fine-grained spatial 

and short-term motion 

cues 

2D CNN + pooling, 3D 

CNN 

Temporal dependencies are limited; 

local spatio-temporal modeling is 

sufficient 

Medium sequences 

(phrases, segmented 

streams) 

Temporal ordering and 

local context 
CNN + RNN, TCN 

Efficient modeling of sequential 

patterns with moderate temporal 

span 

Long sequences 

(continuous SLR, 

sign-to-text) 

Long-range 

dependency and 

linguistic structure 

Transformer, Hybrid 

CNN/GCN + Transformer 

Self-attention enables global 

temporal reasoning and language-

level modeling 

Practical deployment scenarios impose constraints on compute resources, memory, and energy. 
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The framework incorporates computational considerations to guide architecture selection. Low-budget 

environments (edge devices, wearable assistive systems): Lightweight GCNs, CNN–TCN pipelines, 

or pruned CNNs are recommended to ensure real-time performance with minimal energy consumption. 

Medium-budget environments (desktop or interactive setups): CNN–RNN hybrids, TCNs, or compact 

Transformers provide a balance between accuracy and efficiency. High-budget environments (server-

scale offline analysis): 3D CNNs, full Transformers, or hybrid architectures achieve state-of-the-art 

accuracy at the cost of higher compute and memory requirements, suitable for offline processing and 

high-fidelity translation tasks. Table 9 summarizes the model selection based on computation budget. 

Table 9. Model selection based on computation budget. 

Computational budget Deployment context Suitable model families Trade-off 

Low (edge, wearable) 
Smart glasses, mobile 

devices 

GCN (pose-based), 

lightweight CNN + TCN 

Lower accuracy but real-time 

and energy-efficient 

Medium (desktop 

GPU) 

Interactive systems, lab 

setups 

CNN–RNN, TCN, 

compact Transformers 

Balanced accuracy and 

efficiency 

High (server-scale) 
Offline analysis, 

translation systems 

3D CNNs, full 

Transformers, hybrid 

models 

Highest accuracy at the cost of 

compute and memory 

By combining sequence length and computational budget, the framework yields clear 

recommendations for model selection. Real-time, low-power applications: Favor pose-based GCNs or 

lightweight CNN–TCN pipelines. Moderate accuracy and flexibility: Use CNN–RNN or TCN 

architectures for medium-length sequences. High-performance continuous SLR: Adopt Transformer-

based or hybrid architectures for long sequences requiring semantic-level understanding. Multimodal 

fusion: Where RGB, skeletal, depth, and facial modalities are available, hybrid models with attention-

based fusion provide the most robust performance, despite higher computational cost. 

This framework provides a systematic and task-driven approach to model selection, overcoming 

the limitations of purely descriptive surveys. It allows practitioners to make informed decisions based 

on task complexity, sequence length, modality availability, and computational constraints, ensuring 

both practical feasibility and high recognition performance. Based on the proposed principled 

framework, the selection of neural network architectures for SLR should be guided by task 

requirements, temporal complexity, and resource constraints. For scenarios where latency and power 

consumption are critical, such as wearable devices or edge applications, pose-based GCNs or 

lightweight CNN–TCN pipelines are recommended due to their efficiency and real-time capability. 

When moderate accuracy and flexibility are desired, CNN–RNN hybrids or TCN-based architectures 

provide a balanced trade-off between performance and computational cost, making them suitable for 

interactive or desktop systems. For tasks requiring long-range temporal reasoning and linguistic 

understanding, such as continuous sign-to-text translation or sentence-level SLR, Transformer-based 

or hybrid architectures are most appropriate, offering superior modeling of global dependencies. 

Finally, when multimodal cues—including RGB video, skeletal pose, and facial expressions—are 

available, hybrid models that integrate these streams provide the most robust recognition performance, 

albeit at higher computational complexity. These guidelines enable practitioners to select architectures 

systematically based on operational constraints and task-specific priorities. 
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9. Challenges and future directions 

The most noticeable flaw, after going over a lot of SLR studies, is how disjointed the research is 

in this area. Although several research teams have come up with promising outcomes utilizing different 

methodologies, there isn’t much overlap between these studies and the use of numerous effective 

instruments together is taking its sweet time to emerge. One potential roadblock to improving practical 

results is the absence of a widespread agreement on the most important properties and the best neural 

network architecture. 

Continuous sign language voice recognition is still quite difficult, and even the most advanced 

automated systems have trouble understanding the subtleties of spoken sign language. This might be 

due, in part, to the fact that the majority of accessible datasets have very small vocabulary sets and 

very basic sentences, whereas training models for complex language tasks need much larger libraries 

with a wide variety of samples. It is still very difficult for automated systems to understand sign 

language communication. It turns out that the reasons machines still can't reliably decipher sign 

language sequences aren’t as black-and-white as they are initially. 

It is challenging to describe any natural language in a mathematical style that computers can be 

programmed with due to the complicated interplay of many laws and relationships. This clarifies why 

the latest SLR tools perform admirably with alphabetic characters and basic sentences and phrases, 

yet.... State-of-the-art sign language recognition accuracy results. has difficulty managing tales and 

conversations that go on indefinitely. Given the field’s social relevance, some of the most prestigious 

academic institutions in the world devote substantial resources to improving its current state. One may 

make the case that the next time frame is essential for removing some of the roadblocks to faster 

advancement.  

Although some of the examined models concentrate on RGB images with a higher level of 

information to enable efficient SLR, most of them use depth imaging. Data presented in a sequential 

style has also proven valuable, particularly for scene and object tracking as well as skeletal position 

data. While thermal imaging isn't often used for SLR, it can provide value when paired with more 

fundamental data types like pictures. At the sign level, we have static signs and dynamic signs, with a 

subgroup of dynamic signs utilized in continuous SLR. Consistent with recent tendencies, research 

into complex signs and continuous video is likely to take center stage in the near future. Everything 

seems to be setting up for this change of emphasis to take place. 

An ongoing problem in SLR research is the absence of reliable input databases of high quality. 

Researchers from smaller nations do not have access to the samples necessary for training and testing 

models. The only large and diverse datasets accessible are for American Sign Language and a few 

other varieties, such Chinese or Indian. This is beginning to change, though, as more and more research 

into SLR is conducted and resources are amassed to support future waves of studies. 

Although things are looking up, it’s still not easy to test out more complex applications that call 

for big vocabularies in order to show how well current or future methods work. Meanwhile, more 

proactive resource sharing and direct collaboration across research teams could significantly alleviate 

current challenges and set a precedent for more effective networking. An international concerted effort 

is necessary to find a solution to the problem of sign language recognition, which affects people all 

over the globe.  

However, sign language is highly variable among regions, with each using its own distinct set of 

hand and facial motions to convey meaning. Therefore, it is very evident that high-quality datasets 
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incorporating all relevant input modalities are required. Until recently, there weren’t enough properly 

labeled sets of hand signs to conduct outside testing of SLR gear, but that’s starting to change. In the 

long run, we hope that better datasets will make it easier to create SLR models that have real-world 

applications. This requires the labeling of lengthier segments of sign language discourse rather than 

the current practice of labeling individual pieces. 

To put it simply, in order for newly created approaches to become a reality, fresh datasets should 

reflect the diversity of sign language communication. Modern SLR techniques should have little 

trouble processing lengthy sequences of signs, as real communications are continuous and 

unconstrained. Now that deep learning networks are becoming more widely used, this lofty objective 

may be within reach very soon. 

Despite numerous research have tackled this subject, there are still numerous challenges that must 

be resolved. When attempting to characterize numerous human body components, it can be helpful to 

integrate attributes. Data might come in various forms, including text, photos, depth and skeleton 

information, etc., which makes this problem more difficult to solve. Better feature engineering and, by 

extension, a more precise model, can be achieved by merging portions of this data. These 

characteristics are most prominent on the hands, face, and trunk of the body. Imperfect models that 

misinterpret some indications can be the outcome of focusing just on hands. Detecting the position of 

the hand, estimating its shapes and motions, tracking its movement in real time, and similar activities 

are all important for success in this area, but they can all be challenging in their own ways. 

To illustrate the point, signers' hands can vary greatly in size and shape, and yet, fingers can 

appear very similar and even obscure one another at times. Light levels and other environmental factors 

can play a role. When dealing with low-resolution input photos, obstacles in the way, or complex 

gestures that need analysis, these problems become much worse. Researchers use feature fusion to 

incorporate face traits into the mix, which helps to relieve some of those problems. 

Conversely, there are unique difficulties associated with using sign language, such as the partial 

blocking of important areas caused by the fast movement of the neck and face. Additionally, the third 

set of traits, which pertain to the signer's body, can be incorporated to enhance recognition even further. 

Therefore, more generalizable models that may draw on data from many anatomical regions are 

preferable and should serve as the basis for further studies. 

The field of isolated SLR has shown significant progress in training algorithms to detect 

individual alphabetic signs or words; however, continuous SLR, which requires interpretation of longer 

segments of speech, has not been as fruitful. Because of the importance of sign-to-sentence linkages 

in determining sentence meaning, this task cannot be boiled down to gesture recognition alone. When 

complex semantic subtleties need to be analyzed, current efforts to build continuous SLR capacity 

often fail and show only limited effectiveness. 

Among the many active areas of SLR research, this will undoubtedly remain a focal point as 

researchers seek a configuration that may circumvent the obstacles impeding the development of 

powerful new tools. In light of the present state of the art, we anticipate that future studies will center 

on more elaborate neural network models with many layers and different compositions of layers used 

to increase processing power. 

Any technology aiming for commercial use and public trust must possess exceptional reliability 

(>99%) and consistency. Current SLR apps, on the other hand, still indicate a tiny but consistent 

number of false positives and false negatives, thus this isn't the case. Very few SLR technologies are 

currently being used in practice since the rate of erroneously detected objects grows with the 



3887 

AIMS Mathematics  Volume 11, Issue 2, 3839–3902. 

vocabulary size and task complexity. 

Small teams frequently lack the resources to conduct large-scale testing or extensively refine 

training strategies; therefore, although some proposed solutions are conceptually sound and promising 

for further development, they are often preliminary and insufficiently validated. The next step is to 

rally more people behind the cause and collect enough money and materials to optimize accuracy at a 

high level. The systems need to be evaluated in a range of environments and be able to produce usable 

findings despite less-than-ideal external conditions, such as input photographs captured in low-light 

situations. 

The ability to meaningfully connect observed hand and body gestures to set units of sign language 

has long been the focus of scientific inquiry. Although this is reasonable for a preliminary scientific 

investigation, more focus on the usability aspect is required moving forward. Modern systems are far 

more efficient and may incorporate as few as a handful of small cameras, in contrast to earlier SLR 

solutions that necessitated sensors worn on the body and other cumbersome apparatus. 

Another area that needs more future attention is user-system interaction, namely how to give users 

some say over the software that their computers run. Making sure user opinions are acknowledged and 

having a system in place to quickly find frequent mistakes are both critical. There has been a resurgence 

of interest in SLR research since the last discovery period, and numerous conflicting theoretical 

postulations have emerged as a consequence. 

Despite widespread agreement that deep learning networks are the best technology to solve this 

challenging language challenge, a long way still to go before completely automated systems can 

comprehend live streams of sign language conversation. Some of the known solutions will likely reach 

a virtually ideal level of maturity in the next decade, and a big breakthrough could happen at any point. 

More innovative and useful mainstream applications will undoubtedly appear as SLR technologies 

improve in reliability; these will directly benefit the global population of hearing and speech-impaired 

people. 

While existing studies identify broad challenges in SLR, meaningful progress requires the 

definition of concrete and measurable benchmarks. A first critical research target is signer-independent 

continuous SLR at scale, where future models should aim to achieve 75%–80% accuracy (or <25% 

word error rate) on large-vocabulary datasets (>1,000 glosses) under strictly disjoint train–test signer 

protocols. Such a benchmark directly addresses the current generalization gap and emphasizes learning 

signer-invariant linguistic representations rather than appearance-specific cues. Complementarily, a 

second benchmark should focus on real-time deployability, requiring models to maintain 65%–70% 

signer-independent accuracy while satisfying practical constraints, including sub-50 ms inference 

latency per frame, model sizes below 50 MB, and power consumption under 5 W on edge-class 

hardware. Together, these benchmarks shift the evaluation paradigm from isolated accuracy 

improvements toward holistic system-level performance, aligning future SLR research with real-world 

assistive and interactive applications and enabling more rigorous, reproducible comparisons across 

methods. 

Although visual information remains the primary input for most Sign Language Recognition 

systems, reliance on RGB or depth data alone often limits semantic expressiveness and robustness. 

Sign languages convey meaning through a combination of manual gestures, non-manual markers 

(facial expressions and body posture), and linguistic context, creating a semantic gap between observed 

motion patterns and intended meaning. To address this gap, recent research trends point toward 

multimodal integration frameworks, where visual features are augmented with skeletal pose, facial 
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landmarks, inertial sensor data, and explicit linguistic representations. Within such frameworks, 

multimodal Large Language Models (LLMs) offer a unifying abstraction by aligning heterogeneous 

sensory embeddings with language-level semantics through shared latent spaces and cross-modal 

attention mechanisms. Visual encoders (e.g., CNNs, GCNs, or Transformers) extract modality-specific 

features, which are then fused and projected into a language-aware representation space guided by 

pretrained linguistic knowledge. This integration enables higher-level reasoning, contextual 

disambiguation, and semantic consistency across long sign sequences. Consequently, multimodal 

LLM-driven architectures represent a promising direction for moving beyond gesture classification 

toward semantically grounded sign language understanding and translation, particularly in continuous 

and large-vocabulary SLR scenarios. 

10. Conclusions 

This review highlights the critical role of AI-driven pattern recognition systems in advancing SLR 

and improving communication accessibility for individuals with hearing and speech impairments. The 

study systematically examined state-of-the-art deep learning and machine learning models, identifying 

CNNs, RNNs, and hybrid neural architectures as leading approaches for gesture and speech pattern 

recognition. These models have demonstrated high accuracy in recognizing sign language, but their 

effectiveness is often constrained by data limitations, processing requirements, and adaptability across 

different linguistic and cultural contexts. 

Despite notable progress, key challenges persist, including data scarcity, generalization issues, 

and real-time inference limitations. The lack of large, diverse datasets representing multiple sign 

languages hampers the ability of AI models to generalize across different users and regional variations. 

Additionally, the high computational cost of deep learning-based models poses a barrier to real-time 

SLR deployment on resource-constrained devices. Current solutions often require cloud-based 

computation, which introduces latency issues and limits accessibility in low-connectivity 

environments. 
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