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Abstract: Artificial intelligence (AI) and machine learning (ML) have revolutionized assistive
technologies, particularly for individuals with hearing and speech impairments. This systematic review
critically examines recent innovations in next-generation neural network architectures for sign
language recognition (SLR), emphasizing their mathematical and computational foundations.
Following PRISMA guidelines, we analyze state-of-the-art models, including convolutional neural
networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and hybrid
approaches integrating classical machine learning methods such as support vector machines (SVMs).
We explore strategies for feature extraction, data augmentation, multimodal fusion, and optimization,
highlighting their roles in improving accuracy, robustness, and real-time adaptability. Persistent
challenges include dataset scarcity, limited generalizability, and computational trade-offs. From a
mathematical perspective, optimization techniques, probabilistic modeling, and explainable Al
frameworks are emerging as key enablers for safe and trustworthy SLR systems. This review identifies
research gaps and proposes future directions toward responsible, mathematically grounded, and
computationally efficient Al-powered assistive technologies.
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1. Introduction

Effective sign language recognition (SLR) systems have a lot of potential uses since sign language
communication is the main way that millions of individuals engage with the world [1,2]. Some
potential applications include the translation of sign language into broadcasts, the development of
equipment that responds to orders given in sign language, and the creation of sophisticated systems to
aid the disabled in performing everyday tasks. Specifically, Al has become a potentially game-
changing tool for researchers, and its use in solving the SLR problem will certainly have an immediate
and far-reaching effect [3,4]. A subfield of speech and language processing, SLR focuses on the
automatic interpretation of non-verbal cues such as hand gestures that assist the deaf and hard of
hearing in communicating with one another.

Building fully functional systems that can understand sign language and respond to commands
given in this format has been the goal of numerous exciting and innovative solutions proposed and
tested in recent years [5-9]. This is all because hardware and software components have evolved to
the point where developing advanced systems with real-time translation capacities appears to be within
reach. However, it is crucial to refine the interpretation algorithms until false positives are uncommon
before considering any genuinely useful applications [10—13]. There are a lot of obstacles to overcome
before creating SLR technologies that can achieve near-perfect accuracy on a big vocabulary [14,15].
Therefore, it is crucial to keep coming up with new approaches and assessing their respective benefits,
ultimately arriving at solutions that are more and more dependable.

While the majority of researchers think that deep learning models are the way to go, there is still
some debate on the best network architecture, even if numerous other architectures have shown
promise. The only method to find the top algorithms and improve them utilizing other teams’
discoveries where relevant is to conduct extensive experimental evaluations. Most countries have their
own distinct sign languages, thus most of the study is done at the local level with people who are fluent
in the signs of the area. Considering this, it's not unexpected that SLR issues have been the focus of
numerous scientific articles, and that the suggested solutions' performance levels have been climbing
at a rapid pace over the past few years [16,17].

Based on the main data-gathering strategy, the different SLR solutions in the existing literature
can be roughly categorized into two main classes. One set of techniques makes use of third-party
sensors like data gloves to learn more about the signer's behavior. Many authors have built upon the
work of Starner et al. [18] by utilizing wearable sensors in various ways. Most current efforts have
focused on vision-based approaches, which use pictures, video, and depth data to deduce the semantic
meaning of hand signals; this is in contrast to sensor-based approaches, which have some practical
limitations.

Many more methods, some based on filtering principles, have been suggested since Chen et al. [19]
introduced a skin-color-based hand gesture detection system, and many more have followed. Regarding
the best neural network model for stereo vision SLR applications, the convolutional neural network
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(CNN) model [20] was an early front-runner [21-24]. The commercial release of the microsoft kinect
device has opened up a whole new realm of understanding [25,26], and scientists are still investigating
ways to harness the power of depth vision to create more precise SLR tools. Aside from CNNs, other
designs like RNNs [27] and Hidden Markov Models (HMMs) [19] are commonly used. While random
forest (RF) and K-nearest neighbor (k-NN) are occasionally selected for the classification task, the
SVM model is also commonly utilized for this purpose [28,29].

In this review paper, we will present a discussion of the most important works in the field of
assistive techniques for the deaf and hearing impaired with a presentation of existing challenges and
future directions for handling those limitations. First, a taxonomy and summary of the literature on
automatic SLR is presented. We meticulously reviewed all published articles on Machine Learning
and Deep Learning-based automatic sign language recognition from 2014 to 2024. Our analysis
revealed that the vast amount of available data necessitates a conceptual classification of existing SLR
approaches to better understand and organize the field. Consequently, this work evaluates the relative
strengths and weaknesses of various SLR methodologies, focusing on the key features and
commonalities shared by the majority of these approaches in relation to specific tasks and
functionalities.

Second, we propose a foundational framework for SLR models. This framework is developed
based on the limitations and challenges identified in the literature. While debates continue regarding
the most promising areas of research, it is widely acknowledged that machine learning and deep
learning techniques play a crucial role in advancing sign language recognition. Despite significant
progress, even the most advanced models currently fall short of the reliability required for real-world
applications. However, there is a general consensus that deeper models hold greater potential for the
future of practical SLR systems compared to traditional machine learning methods.

Third, performance and benchmark datasets are examined. We analyze the use of benchmark
datasets in the literature and their impact on performance. High-quality sign language datasets are
critical for training SLR technologies to produce accurate and reliable predictions. However, the
availability of such datasets is limited, and even when they are accessible, they are often insufficient
for comprehensive testing. It is standard practice to partition datasets into training, validation, and
testing subsets, enabling models to be evaluated using the same data used for optimization.
Unfortunately, the lack of standardized datasets makes it challenging to directly compare results across
studies, as each employs different datasets, hindering consistent performance evaluation and
benchmarking.

Finally, we recognize the potential of current approaches while addressing their limitations,
unresolved questions, and associated challenges. Our analysis highlights several key findings. The
scarcity of high-quality datasets for less widely spoken sign languages, coupled with the regional
variations in sign language alphabets and vocabularies, poses significant barriers to cross-border
collaboration. This lack of standardization complicates the development and testing of more advanced
applications, which require training on substantially larger vocabularies. While many proposed
solutions demonstrate innovative concepts, they often fall short in terms of precision and reliability.
Moreover, the complexity of semantic information further complicates its capture through statistical
analysis, presenting a critical challenge for the field of continuous SLR.

The structure of this paper is as follows: Section 2 introduces the foundational concepts, including
deep learning and machine learning, along with essential background information. Section 3 outlines
the methodology employed in this investigation. Section 4 provides an in-depth discussion of the
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proposed framework and the machine learning and deep learning methodologies used in designing
sign language recognition models. Section 5 explores various SLR models, while Section 6 focuses on
the languages involved in the recognition process. Section 7 presents a comparative analysis of ML/DL
algorithms for sign language recognition and highlights the benchmark SLR datasets used for training
and validation. Section 8 addresses challenges, open questions, and future research directions. Finally,
Section 9 concludes with the key findings of this study.

2. Background

The use of sophisticated algorithms that can learn from their experiences has been the subject of
persistent research and development in recent years intending to automate a wide variety of language
tasks [30]. Automating SLR could greatly enrich the lives of many persons who use sign language as
their primary means of communication [31]. Automated SLR tools must be precise enough to prevent
producing misleading or non-functional responses, otherwise, a plethora of specialized services would
be impossible to develop. To set the stage for automated SLR, we give some historical context below
regarding several key methods.

2.1. Machine learning

Machine learning encompasses a range of stochastic methods capable of predicting the value of
a given parameter when provided with sufficient examples. For instance, using Algorithm 1 as a
reference, the learning process typically involves forwarding samples through a mapping function.
This category includes a variety of well-known approaches, such as naive Bayes, random forest, K-
nearest neighbor, logistic regression, and Support Vector Machine (SVM) [30-32]. Training is a
fundamental step in these approaches and can be either supervised—using labeled data to establish
relationships between variables—or unsupervised—where no labels are provided, and the model learns
to make predictions based on input features. However, due to their inherent simplicity, these methods
often fall short in capturing complex semantic cues, which are crucial for many language-related tasks.
Nevertheless, they serve as valuable benchmarks for evaluating success or failure and provide a
foundation for developing more sophisticated analytical techniques.

Algorithm 1: Training process

Input: x (data in a d dimension vector)

Output: y (prediction)

Mapping function f : predict labels from input data

Training data: select data, label pairs

Hyperparameters: configure model parameters

Learning algorithm: minimize loss between prediction and target

With the help of machine learning algorithms, SLR has been somewhat successful. Initial research
in this area relied on information gleaned from wearable sensors, which translate a user's motions with
remarkable precision. Methods like SVM can filter the data in order to get a reasonably accurate
identification of the target sign. It has been attempted to interpret continuous segments of sign language
speech using dynamic models such as dynamic time warping or relevance vector machines, but most
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of the aforementioned machine learning methods are used to analyze static content, which consists of
individual signs that are isolated in time and space. Due to its superiority for easy SLR problems,
fundamental stochastic models saw heavy application throughout the initial phases of the research
process. While the number of features studied and the size of the dataset determine the computing
power requirements, these statistical models usually use less power than more complicated systems.
Despite the fact that more advanced SLR applications sometimes call for more variables and even
more modalities, the simplicity of simpler models is still appealing. Therefore, simpler machine
learning approaches are still useful since they can be used to compare and contrast the features of more
complex methods subsequently suggested.

2.2. Deep learning

Deeper architectures, which use several layers and communicate input in vector format between
them, have lately supplanted simpler Machine Learning methods. These structures progressively refine
the estimation until positive recognition is obtained. Often referred to as “deep learning” systems or
deep neural networks (DNN), these algorithms follow concepts comparable to the aforementioned
machine learning methodologies, however with somewhat more intricacy. Recurrent neural networks
(RNNs) with a minimum of one recurrent layer and convolutional neural networks (CNNs) with a
minimum of one convolutional layer are the two most popular network topologies utilized for various
applications.

While the training phase determines the algorithm’s effectiveness, these networks can display
diverse properties and typically operate better for different kinds of tasks depending on the number
and kind of layers. A key consideration is the quality of the training set, since bigger and more targeted
datasets typically result in more resilient network training. Typically, one can further refine a model
by adjusting a few pertinent hyper-parameters that characterize the training process [33]. Currently,
most studies on SLR automation use approaches that combine images with depth data; this produces
a mountain of data that frequently necessitates real-time analysis, or at least consideration of the
temporal dimension.

Many more complex models are built using RNN or CNN architecture since basic machine
learning approaches fail to perform well with bigger and more varied datasets. In certain applications,
deep networks can attain an ideal recognition accuracy of over 98% when trained with multi-modal
input, such as skeletal data paired with depth images from microsoft kinect. Konstantinidis et al. [34]
proved the benefits of deep learning by identifying individual sign language terms using data from
many sources; nevertheless, their model's performance varied between datasets. Increasing the number
of layers (depth) is sometimes necessary for more complex models used for SLR tasks like real-time
translation or continuous voice interpretation. Although deep models seem like a sure bet to power
automated SLR, it's unclear if the existing architectures will stay the same or if new models will emerge
that are better able to get the semantics of sign language. Deep belief networks with many layers and
autoencoder-based networks are two potential models that could see increased application in the future.

3. Review strategy

For the benefit of all researchers, we have evaluated and organized all available scientific
information related to SLR in this paper. To better serve anyone looking for the groundwork of this
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area of study, we supplemented the study's basic data with an unbiased evaluation of its quality and
potential for beneficial contributions. Here are some of the primary research questions that we want to
address.

e Question 1: What datasets are available for automated sign language recognition research?

e Question 2: What methods are being used in SLR for different languages?

e Question 3: What problems in this scientific area have not yet been fully addressed?

The long-term goal of this work is to clear up any confusion that may arise among academics and
provide a foundation for future studies on SLR. We broke it down into three distinct but interconnected
stages: planning, carrying out, and presenting. First, determine which research questions are most
pertinent. Second, establish ground rules for the evaluation process. Third, formalize the selection
threshold. Fourth, evaluate the work's premises and results. Fifth, investigate the experimental setup
methodologically. Finally, extract any relevant information that may provide answers to the mentioned
questions.

3.1. Evaluation protocol

While conducting the literature review, we adhered to a particular procedure in order to conduct
an objective evaluation of the content of the paper. In the first step of this procedure, acceptable
variables were identified; in the second step, approaches taken by the authors were identified and
analyzed; in the third step, the quantitative output was organized; and in the final step, the criteria for
generalization and summary were outlined.

3.2. Inclusion and exclusion

To identify the scientific works included in this review, a clear set of criteria was established.
Only studies specifically related to Sign Language Recognition (SLR) were considered, as this aligns
with the focus of this article. As shown in Figure 1, the review spans the period from 2014 to 2024,
aiming to systematically analyze recent advancements in the field. Table 1 presents a concise and
comprehensive overview of the guidelines used for selecting research papers.

Table 1. Inclusion and exclusion criteria.

Inclusion Exclusion

English language Other language than English
Related to central questions duplicated

Publisher after 2014 Out of time range

Full-text available No access to full-text
Related to SLR tasks Non relevant

AIMS Mathematics Volume 11, Issue 2, 3839-3902.



3845

35
30
25

20

, n 11

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

1

a1

1

(@]

Figure 1. Number of publications on SLR by year.
3.3. Search method

By searching through sources that were accessible to the general public, it took a considerable
amount of time and a combination of automated methods and manual labor to locate the most pertinent
study material. The automated segment was driven by a number of keywords, which are: sign language,
sign language recognition, sign language identification, automatic sign language recognition, hearing
impaired, deaf, mute, deep learning, machine learning, artificial intelligence, hand gesture, pose
estimation, and sign translation.

Additionally, the collection expands each time the algorithm discovers a new paper that is equally
as pertinent as the ones that are already present. We ran a comprehensive search, and some of the
resources that we looked through included Scopus and Web of Sciences databases. At this point, our
primary objective was to locate as many publications as possible that are related to SLR. Immediately
following this stage, we conducted a thorough examination of the full corpus of material that we had
obtained by employing the forward/back technique. In order to acquire a more comprehensive
understanding of each work, it was helpful to be able to trace the references and follow the primary
research lines. Because of this, we were able to ensure that the study did not overlook any significant
foundational studies and that the final collection of SLR papers appropriately reflects the most effective
research directions. For the purpose of processing the collection, we utilized the Mendeley technique,
which enabled us to easily classify the works in accordance with the regional sign languages that they
referenced. It is evident from Figure 2 that there are several variants of sign language, the most frequent
of which is the American variation. Nevertheless, there are other works that belong to American,
Argentinian, Arabic, and other languages. The type of architecture that was offered for the solution
was another factor that was used to differentiate across the articles. Among the criteria that were used
to differentiate between the articles was the architecture of the solution that was presented. Figure 3
presents an all-encompassing summary of the situation.
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Figure 3. Percentage of publication on SLR based on the used technique.
3.4. Selection method

The initial search yielded 218 papers, of which 11 were promptly excluded as duplicates. Each
remaining paper was carefully reviewed based on the information provided on its first page and the
criteria outlined in Table 1. This process allowed us to filter out studies that were of low quality,
unrelated to the research area, or obtained from unreliable sources. As a result, 63 papers were excluded
for failing to meet the inclusion criteria, leaving 144 core and relevant papers for further analysis.

After that, we went over each study in its entirety and rejected the ones that did not particularly
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deal with SLR or that did not give adequate evidence to support their point of view. Following that,
we made it a point to check the internet source articles for authorship and graded the quotations
according to the quality and accuracy of the information they included. Finally, in order to choose the
research that ought to have been disclosed, we carried out a qualitative evaluation. The selection
method resulted in a reduction of the total number of publications that were included in the analysis to
84. Despite lacking scientific merit and relevance to the main research questions, these publications
were excluded from the final analysis.

4. Sign language recognition based on Al techniques

The vast majority of SLR studies concentrate on the same difficulties, mostly focusing on how to
interpret the hand and body gestures that are used to indicate sign language signals. Studies in this area
frequently use the same methodology, despite the fact that their techniques are different. This is
because the essential goals of these studies are same. The overarching paradigm that the majority of
researchers in this subject agree upon is depicted in Figure 4. The first layer of the solution combines
both a visual display and wearable sensors of hand signs for SLR data collection. The second layer is
the organization layer that filters gesture data and has the ability to decode a sign into the appropriate
data format while assigning labels. One example of an additional step that can be required is the
integration of data from various video frames or the normalizing of samples. The procedure of feature
extraction is started by the system as soon as it receives the sign data. Feature extraction and entry
categorization are the two most important tasks that all suggested systems need to accomplish in order
to determine which sign is the most likely to be present. The visual features, the hand movement
features, the characteristics of the three-dimensional skeleton, the face features, and a great deal of
other types of features can all function as primary sources of information. When it comes to the success
of the SLR approach, the selection of characteristics that will be used for algorithm training is an
essential component. Typically, the data is processed and converted to a vector format before being fed
into the model. This is done in order to ensure that the data is accurate. The numerous channels are
combined in order to investigate the combined impact that they have on the process of sign
identification. In the next layer, the model is trained using an optimization algorithm then evaluated
based on specific protocol such the k-folds validation. In the final layer, the model is tested on new
data for potential use in real applications if high confidence prediction is generated.
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4.1. Data collection

The discipline of interactive computing has experienced considerable growth over the course of
the past several years. Since this is the case, it is necessary to develop efficient techniques of human-
computer interaction. One method that has the potential to assist in the development of this sector is
the recognition of sign language. A receiver can acquire the ability to recognize familiar motions
through the use of sign language. Obtaining information regarding the recognition of sign language
can be accomplished through the use of hardware-based, vision-based, or hybrid approaches.

Since they don't impose many limitations on users, vision-based methods have recently attracted
more attention in the field of sign language recognition systems than sensor-based alternatives. Users'
depth and posture estimation data is gathered via vision-based sensors. The topic of depth data and
pose estimation is covered later. A few of the more recent SLR investigations depend on visual input.
Formats such as depth information and RBG are examples of what is often encountered in this industry,
as shown by [17].

According to earlier studies conducted by Rioux-Maldague and Giguere [35], the proliferation of
3D sensors has led to a rise in the utilization of depth data. In their investigation, they utilized a
Microsoft Kinect sensor, which captures depth images using a conventional intensity camera and
boasts an image resolution of 640 x 480. Also, depth data has been acquired using vision-based
methods in recent papers [36—38]. Videos [39-44] or images [45-48] captured with a regular camera
or a mobile device can provide depth data. The hand gesture grayscale images utilized by Oyedotun
and Khashman [48] have dimensions of 248 % 256 pixels. Zheng et al. [17] states that using depth data
helps with human body extraction since it keeps things private and makes it easier.

In addition, depth measurements remain unchanged regardless of changes in lighting, hairstyle,
apparel, skin tone, or backdrop [17]. Pose estimation has been utilized to support vision-based techniques
in addition to depth data. To classify various hand positions, Rioux-Maldague and Giguere [35]
employed depth information in conjunction with regular intensity images. Using OpenNI+NITE
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framework functions that are publicly available, they were able to track the hands. A 3D hand pose
was inferred using inverse kinematics and depth channels, and computationally expensive heat maps
for 2D joint positions were generated during pose estimation.

The most recent development in hand form identification was elaborated upon by Koller et al. [37],
who detailed how the joints' locations and angles dictate the shape of a hand stance. Since these joint
locations and angles can be approximated using depth pictures and pixel-wise hand segmentation, they
are now utilized in many experiments. A hand pose estimation system coupled with a classifier trained
to recognize hand gestures is used in other research, for example, by Zimmermann and Brox [49]. The
limited performance of standard cameras limits vision-based approaches, despite the fact that they do
not involve invasive procedures. Another issue is that complex hand characteristics need more processing
time to implement, while simple ones can lead to ambiguities [50].

When it comes to sign language recognition, hardware-based methods aim to sidestep computer
vision issues. For instance, these difficulties can arise when trying to identify indications in a movie.
Methods that rely on physical components often make use of gadgets or wearable sensors. A glove-
based technique or user-attached sensors are common in wearable devices used for sign language
detection. The sensors, gloves, or rings can decode sign language and render it audible or textual. With
regard to wearable sensors and technologies, many works were proposed [50-52] for capturing depth
and intensity images using data collected from a SOFTKINECT and a Microsoft Kinect sensor. Direct
measuring techniques involving sensors attached to the body or the hands, as well as motion capture
devices, are part of a related class of observations [53].

As pointed out by Huang et al. [54], sensor-based techniques are inherently unnatural due to the
necessity of wearing cumbersome devices. Real-Sense, a new method they suggest, can detect and
follow hand locations in a more organic way. A resurgence of enthusiasm for research into human
action and gesture detection has occurred in recent years, spurred on by the enormous success of
device-based systems.

The Kinect is the most widely used device-based technique, outpacing both Google Tango and
the leap motion controller (LMC) [13,50-55]. Leap motion is a top-notch device that employs
computer vision to accomplish a practical interactive function, according to Wang et al. [56]. Learning
and practicing sign language is not prevalent in society, which further emphasizes the significance of
LMC (as described in [57]).

Alternate approaches use input from specialized gloves, as in [58—60], and also make use of a
variety of technical tools, including accelerometers [61] and depth recording devices [62]. One of the
simplest sensor setups that allows for cheap and easy motion tracking is the coloration of the fingers
on gloves, as seen in [63,64].

According to [65], digitally capture-capable gloves were used to deduce Arabic sign language
variant hand signals using a smaller number of sensors. Although there is a significant investment
required to design and operate such specialized machinery, the final cost is far lower than that of
competing high-tech products. By utilizing a motion controller as their principal input device, the
authors of [66] were able to achieve extremely precise three-dimensional object tracking at a rate of
120 frames per second. Their controller was specifically designed to capture hand movements,
allowing the researchers to keep track of multiple important hand positions from frame to frame. With
the same instrument, [67] achieved pinpoint accuracy in differentiating fifty distinct isolated hand signs.

When gathering data on sign language recognition, hybrid methods have been employed. When
it comes to proportional automatic voice or handwriting recognition, hybrid approaches perform as

AIMS Mathematics Volume 11, Issue 2, 3839-3902.



3850

well as, if not better than, other methods. Combining vision-based cameras with other kinds of sensors,
including infrared depth sensors, allows hybrid techniques to obtain multi-mode information about the
hand forms [68]. Calibration between hardware and vision-based modalities is a key component of this
technique, and it can be somewhat tough. The method's speed and suitability for investigating the
effects of deep learning approaches are both enhanced by the fact that it does not necessitate retraining.
In order to test how this data directly affects a CNN, Koller et al. [69] used the cleaner hybrid
approach, often known as Automated Speech Recognition (ASR). While high-resolution still images
or continuous RGB recordings have their uses, depth imaging is superior for estimating distances from
a given point. A few algorithms combine the two forms of visual data [46]. Although it is utilized less
frequently than the preceding two types, thermal imaging is still an intriguing potential.
Near-infrared (IR) heat sensors can also use radio wave emission and light reflection to create an
image. While this data has shown promise in other areas, such as face identification and body
contouring, it has not yet made it into stereo vision research [70]. The position of the joints in the hands
as they make SLR movements is one example of how skeletal data can be used as input. Motion capture
also provides some feedback in the form of monitored information changes between images. In these
types of models, the optical sequence is typically defined as a vector that describes the movement of
pixels in a series of images. On the other hand, in video materials, the so-called scene sequence can be
tracked, which refers to the motion of three-dimensional objects within the scene, relative to the
distance from the camera lens [71]. All of the input devices have the potential to be useful in certain
situations, but how well they work depends heavily on those circumstances. Deep sensors and
RealSense/Kinect recording systems are examples of more sophisticated input sources.

4.2. Data organization

Research for sign language recognition relies heavily on data organization. It may include tasks
such as representing signs, filtering and normalizing data, organizing and displaying data, and labelling.

As avisual language, sign language allows people to communicate through the use of both manual
and non-manual sign representations that are grammatically structured. Hand form, palm orientation,
finger and hand movement and placement, head tilt, mouthing, and other facial expressions are all
examples of what might be represented. Eight time-ordered representative frames were utilized by
Tang et al. [52]. The two hands, depicted by them, moved closer together before gradually pulling
apart.

In an experiment described in [36], the signer's hand was utilized to represent all gestures. To
further illustrate the form of the hand sign, a hand segmentation phase was also employed. Just as
Koller et al. [37] used a double state to represent 60 different hand shape classes, a single state was
used to represent the rubbish class. Zhou et al. [72] conducted an additional study that solely included
signers with their right hand. Here, the dominant hand was the right hand and the submissive hand was
the left.

The Bengali Sign Language was the concentration of Hossen et al. [73]. The language has 51
letters and was represented in the experiment using 38 signs. These signs were created by merging
related sound alphabets into one sign. As mentioned in [69], the Bahasa Indonesian language uses a
maximum of five marks to represent a single word. This means that there is a single, consistently
performed sign for each word and prefix in signed Indonesian (SIBI).

Huang et al. [54] conducted an additional experiment using 26 indications represented by 26
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output units and 66 input units. Attempts to compare hand and body characteristics have also been
made in previous investigations. According to research in [15], when it comes to sign language
identification, body features are somewhat more accurate representations than hand aspects.
Essentially, a 2.27% improvement in sign language identification was achieved by utilizing body
features [44]. Joints in the torso are more reliable and stronger than joints in the hands, which explains
these findings.

Normalization is the process of normalizing input according to a set of criteria in machine learning
and deep learning. The goal is to make the Al tool work better. Data pre-processing is when this
technique, which may involve media processing chores or statistical processes, is carried out.
Considerations such as input format (e.g., text, image, or video), sample variability, machine learning
architecture type, automation tool purpose, etc. determine the specific normalization technique that is
best used.

Modern methods for sign language recognition often use normalization because of the positive
effect it has on performance, and its inclusion has been supported by empirical evidence [64,74]. Given
the diverse range of input modalities and purposes used in SLR investigations, it is not surprising that
the discipline employs a wide range of normalization procedures. Changing images to fit them into a
standard format that the algorithm can easily understand is a common practice in most of the visual
approaches.

Due to the pixel-level encoding of information in machine learning models during feature extraction
and network training, this is a common method for accomplishing this. Kratimenos et al. [75] and other
studies [64,76] demonstrate some of the basic instances of normalizing methods utilized in SLR, such
as image scaling and re-shaping. In order to make the feature map dimensions fit, Garurel et al. [77]
additionally use the training mean values and standard deviations to determine the best size for each
frame. Another common technique, cropping can remove potential causes of algorithmic
misunderstanding, improving the quality of visual input and leading to more reliable sign recognition.

To facilitate sign language communication, input images are usually cropped to exclude everything
but the parts showing the hands and face. Cropped photos are normalized in [78] using the average neck
length, which eliminates the effect of camera distance for all photographs. According to [79], the
positioning of important joints allows for the selection of a benchmark signer and the standardization
of input from other signers. Also, contour extraction is employed for this purpose; for instance, in [80],
the hand-related regions are extracted while the backdrop is eliminated.

To standardize the quality of different clips and decrease computing demands, frame down
sampling is commonly employed by SLR systems that mainly use video as raw input. The procedures
of normalizing and filtration were utilized in [35]. All of the image's pixels were adjusted to lie on the
[0, 1] interval, and the intensity histogram was levelled out. The produced images were subsequently
subjected to four distinct orientation and scale Gabor filters. The main hand outlines were attempted
to be obtained by applying bar filters to the depth and intensity images.

In their experiment, Li et al. [68] also employed gabor filters to extract classifiable hand features.
Prior to applying Gabor filters, the images were scaled down to 96 x 96 pixels. Another study used
component analysis (PCA) filter convolutions trained on input images in their experiment [36]. Koller
et al. [37] utilized pre-trained convolutional filters in the CNN model's lower layers and performed a
per-pixel normalization on images as part of the preprocessing. In their experiment, Zhou et al. [72]
refrained from doing any normalization technique since the retrieved features naturally fell within the
interval of [—1, 1]. Another experiment by Yang and Zhu [39] set a threshold to filter the minor skin-
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color area, an approach that enhanced the robustness of the system by using the second layer of their
CNN model as a filter.

The experiments conducted by [41,44,45] also show instances of normalization. Balayn et al. [41]
normalized Japanese sign language (JSL) motion sentences and used them as inputs and outputs for
Seq2Seq models. The classifier was fed normalized hand positions and cropped hand areas, as
described by Konstantinidis et al. [44]. In their attempt to examine Chinese Sign Language, [45]
obtained a total of 1,260 images of basic signs in Chinese, which were normalized to 256 x 256
optimized background samples. Their model used 16 filters in the first convolutional layer. The filters
had a width and height of 7 and a channel width of 3. Similarly, Koller et al. [69] applied a global mean
normalization process to images before finetuning their CNN model.

Experiments to format and organize data in various ways have been reported. Tang et al. [52]
organized the hidden layers of their models using various planes within which all units shared similar
weights. In another experiment by Jiang and Zhang [45], the data were divided into training and test
sets, with the training set containing 80% of the total images and the test set containing the remaining
20%. In a different experiment that used a Kinect sign language dataset, Huang et al. [51] formatted
and organized their data into 25 vocabularies that were extensively used in daily life. Each word was
played by nine signers, and each signer repeated each word three times. Using this approach, each
word was organized into 27 samples, yielding a total of 25 x 27 samples.

Eighteen samples were selected for training, and the remaining samples were used for testing.
Many studies from this field also include filtering and data augmentation steps, which have the purpose
of improving the quality of input and consequently boosting the accuracy of the model. Random
sampling or discarding of frames is one of the most straightforward techniques found in literature,
where approximately 20% of input is eliminated.

In [81], this technique is complemented by random changes of brightness, saturation, and other
image parameters. Some of the data augmentation methods used in [82] include Gaussian Noise, Just
Counter, and Future Prediction. The PoseLTSM tool also employs some operations aimed at
augmenting the input images, with rotation of the hands around fixed points in the wrists as one of the
most original ideas. As with normalization, the choice of filtering and data augmentation techniques is
directly related to the properties of the model and the type of input, so it must be made with full
understanding of each individual implementation and its objectives.

4.3. Model design

Feature extraction is an essential part model design since it determines the training process and,
by extension, how fast the models can learn to differentiate between various signs and words. Features
in sign language communication are always based on raw data and relate to the locations of various
body parts, such as important places on the face and hands. Statistical processes are used to compute
features, which are then given weights that are directly proportional to their discriminatory value [82].

The neural model is able to learn the probability of features’ association with particular classes
by expressing them as vectors in latent space. In some cases, a specialized tool was utilized to extract
features from the various feature engineering techniques that are detailed. The impact on accuracy and
scalability of the model is usually taken into account while optimizing the final number of features and
their weight distribution [36,72].

In their experiments on sign language recognition, multiple writers used feature extraction
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algorithms [50,52]. By establishing the network's architecture as (NX, N2, 1000, 1000, 1000, 1000,
NTC), Wu and Shao [38] were able to perform high-level feature extraction, with NX representing the
observation domain dimension and N2 the number of hidden nodes. For the purpose of identifying
hand positions from depth and intensity pictures, Rioux-Maldague and Giguere [35] introduced a new
feature extraction approach. In order to downsize the images from 128 x 64 to 64 x 64, they were de-
interlaced by keeping every other line in the image. A 1 x 4096 intensity vector was extracted from
every 64 x 64 image that was generated.

The recognition procedure was significantly improved by Tang et al. [52] when they retrieved
hand traits by taking the two hands into account collectively. To overcome the difficulties of
processing many visual modalities, a related experiment in [40] employed PCANet for feature
extraction. Li et al. [43] demonstrated feature extraction in action by transforming data from two-
handed sensors into vectors of useful information. Doing away with the need to recreate the hand's
exact form, orientation, and location is the goal of this method.

The spatial feature extraction performed by Camgoz et al. [38] also made use of 2D CNNs. The
feature maps were created by convolving images with weights in the 2D convolution layers.
Furthermore, findings from [21] further proved that spatial-temporal information may be extracted
using many layers of convolution and subsampling. To train a Gaussian mixture model-hidden Markov
model (GMM-HMM), Huang et al. [51] employed these principles to extract characteristics from a
movie that included sign language.

In a different study, features like finger length, finger width, and finger angle were fed directly
into the DNN, in contrast to Huang et al. [51], who manually supervised the feature extraction
procedure. Due to their capacity to address spatial and temporal correlations, 3D-CNNs have been
utilized in several experiments instead of 2D CNNs. For example, in order to create a representation
of every video clip that was taken into consideration, the authors in [11] utilized a ResNet model that
was based on a 3D CNN model.

In a related area, the authors of [83] created a neural network for feature extraction using a multi-
layer architecture. Several input features were extracted using a convolution layer in [45]. As a feature
extractor for an SVM, the authors in [46] utilized a trained CNN. Konstantinidis et al. [34] conducted
an additional study that used video sequences to extract skeletal elements in addition to video content.
Skeletal features included the body, hands, and face, whereas video features included the image and
optical flow.

For video feature extraction, the VGG-16 network that had been pre-trained on ImageNet was
utilized. Features were extracted using a combination of the ImageNet VCG-19 network and conv44
in an analogous study conducted by Konstantinidis et al. [44]. Among the most important
characteristics retrieved from the experiment were the 18 2D body joints and the 21 2D hand joints.
Humanoid feature extraction and recognition were carried out by Rao and Kishore [42]. Human
interpreters rely on these characteristics to reliably remember signs. Some trials have attempted to
streamline or do away with feature extraction altogether. To simplify their feature extraction
procedures, Yang and Zhu [39] employed a CNN. As a result, the sign language recognition system
may receive images directly.

Building a model for sign language recognition using machine learning require the feature
selection step. The basic idea is to simplify the data such that just a few important statistical parameters
remain, and then feed those into the machine learning network [84]. The goal is to reduce the amount
of calculations needed to get an accurate forecast by include just the features that drastically improve
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the algorithm's ability to recognize different classes.

Since different models use different algorithms, raw data structures and volumes, and the primary
tasks anticipated of the machine learning classifier might cause the exact number of picked features to
vary from model to model [85]. Researchers rate features according to their significance and pick those
that are worthy of inclusion using a variety of approaches. One may classify feature selection methods
as either supervised or unsupervised [84]. Some of the features' inherent characteristics are captured
by filter methods (e.g., variance threshold, correlation coefficient, or Chi-square test) and evaluated by
wrapper methods (e.g., forward feature selection or backward feature elimination) in order to
determine their relative importance in a given algorithm [85].

Embedded methods incorporate LASSO regularization or random forest importance, while hybrid
approaches combine the best features of both the filter and wrapper approaches. Given the variety of
feature selection schemes available, researchers should apply the one that works best with their particular
classifier, important tasks, and data [86]. Findings from the experiments reported in [52,81] are examples
of feature selection experiments.

There was less need for human feature selection in [39] because a DNN was employed. Feature
extraction and autonomous detection are both accomplished by the DNN. Using 215 separate test
words to stand in for typical sign language conversations, another example of the feature selection
method was given in [72]. Among the 18 features retrieved from the joints of the human body,
Konstantinidis et al. [44] chose to focus on just 12 for their experiment. The candidates were chosen
because, in most sign language datasets, the signers are seated and their leg skeletal joints are not
apparent.

Not only did some trials employ CNN, but PCA was also utilized to help with feature selection
in others. The fact that principal PCA is a tried-and-true method for reducing the number of dimensions
in a space might inform its application to the processing of image data, which often contains
information about spaces with many dimensions. One example is the use of PCA for feature selection
and dimensional reduction in [68]. DNN, also known as feature learning, were demonstrated in a
separate experiment by Huang et al. [54] to generate and choose features. To put it simply, a DNN can
automatically evaluate and produce features from unprocessed input.

Building a coherent model for SLR from the phonetic to the semantic levels is the primary goal
of the model design step. From the utilization of the signing space to the synchronization of both
manual and non-manual elements like eye gazing and facial emotions, the modelling process
encompasses a wide range of techniques. Contrarily, natural language processing, pattern recognition,
computer vision, and linguistics are all involved in SLR [87]. The goal of SLR is to create various
algorithms and methods that can identify preexisting signals and understand their meaning. Models for
classic, deep learning, SLR continuous, and SLR isolated sign language processing are covered in this
section.

4.3.1. Machine learning

The field studying how computers can learn to do tasks automatically, without human intervention,
is called machine learning. Along with the required data, machine learning algorithms are often given
broad guidelines that describe the model. Typically, the data contains instructions for how to execute
the specified job by the model. Machine learning algorithms are able to accomplish their goals when
they modify the model using the data that is linked to it. Numerous machine learning algorithms are
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available, some of which are SVM, PCA, and HMM.

To solve classification problems with two groups, supervised machine learning models like SVM
is used. When you feed an SVM model with labelled training data, it may classify the new instances
into groups. This is just one of many uses for SVM in previous investigations. To learn the retrieved
data, Nguyen and Do [46] used multiclass SVM. While the combination of histogram of oriented
gradient (HOG) with local binary patterns (LBP) and SVM model had higher validation accuracy, the
CNN-SVM model had lower accuracy.

On the other hand, the CNN-SVM model was more likely to prevent overfitting. In order to
compare the most popular classifiers, which use a combination of softmax and linear SVM, the demand
for real-time performance was assessed in [68]. When compared to other sophisticated classifiers,
SVM and softmax achieved superior accuracy. It was also noted that an SVM classifier with a linear
kernel outperformed the softmax-based classifier, but it took more time to train.

Similarly, using the same dataset, an experiment by [54] sought to compare the performance of
DNN and SVM. The results showed that compared to SVM, DNN achieved a higher recognition rate.
As an example, SVM was chosen by the authors of [88] as an appropriate classifier for real-time SLR.
SVM and DNN were employed by Chong and Lee [57] in their investigation of American Sign
Language. According to the results, when using SVM, the rate of sign language recognition for 26
letters was 80.30%, while using DNN, it was 93.8%. Additionally, it was noted that the recognition
rates for a grouping of 26 letters and 10 numbers were slightly lower for SVM (72.79%) and DNN
(88.79%). When it came to sign language recognition, the DNN outperformed the SVM.

A large-vocabulary SLR method was also used by Huang et al. [89] with SVM. In order to
represent video features as a fixed-dimensional vector, the experiment's SVM approach made it easier
to do mean pooling across clipped data. Using SVM for video feature-based categorization was
proposed by Huang et al. [89]. It was pointed out that their machine learning method ignores time-
related data while mean-pooling, even though SVM are used.

In addition, [90] assessed how well the SVM performed in a hybrid setup. The experiment tested
how well a HOG+SVM system could classify data. An SVM classifier was fed canonical hand shapes
into the hybrid system, and a HOG feature extractor was used to generate 64-dimensional features.
The accuracy improvements achieved by combining HOG and SVM ranged from 14.18% to 18.33%
as compared to using SVM.

To extract features or decrease dimensionality, PCA is employed in computer vision. A number
of recent studies have employed PCA to reduce the number of dimensions in sign language recognition.
An orthogonal linear transformation is the easiest way to explain PCA, which changes the original
data’s coordinate system to one with less dimensions. There was a proposal for a PCA-based
fingerspelling recognition system in [36].

Using PCA, Koller et al. [37] were able to decrease the dimensionality from 1024 to 200 using
feature maps. In another study, PCA was employed to identify data streams with around 492
dimensions that showed a lot of variation [41]. One other way that PCA has helped cut down on
overfitting is by using it on Kinect data. Another experiment employed principal component analysis
(PCA) to convert a matrix to a vector with 210 dimensions [56].

An improved technique for the mel frequency cepstral coefficient (MFCC), which is helpful for
sign language recognition, can be created with the help of these dimensional vectors. There was a
comparison of the suggested approach to others, including SAE+PCA, in [91]. Based on the results of
the comparison, SAE+PCA outperformed the proposed technique and attained an accuracy rate of
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99.05%. A variant of PCA called recursive principal component analysis (RPCA) has also garnered
attention in other trials for feature extraction. Using RPCA, the authors of [92] were able to attain a
98% classification rate when investigating the characteristics of SLR systems.

Utilizing statistical processes, HMM is able to discern patterns arising from the intricate interplay
of motions within a space-time continuum. While [93] was the first to utilize it in the context of SLR
in 1996, [94] achieved good performance with the best settings in 1997 when using it to categorize
individual hand motions from visual input. In an effort to expand upon the underlying model's
promising performance, variations like factorial HMM [95] or dual HMM [96] were proposed about
the same time. According to those researches, the model needs a large amount of training data to
produce reliable statistical predictions.

Shortly thereafter, Wilson and Bobick [97] suggested enhancing this method based on parameters,
while authors in [98] suggested including parallel computing into this paradigm. In order to address
issues related to language, the same idea was expanded upon by [99]. By training the model with 80%
of the sample and testing it with 20%, this method proved to be more cost-efficient than any of the
previous HMM implementations. It achieved an accuracy of more than 94% for static signs and more
than 84% for dynamic signs in continuous speech.

A different subset of these models, input/output HMM, was initially proposed by [100] for use
with less homogeneous data. Using the same idea, it is possible to successfully track hand locations
during sign language communication; for example, as shown in [101], the output accuracy was over
70% when 16 different signs were distinguished solely by hand movement. In 2009, another paper
improved upon the input/output HMM model [102]. The authors established a cut-off point and
increased the accuracy to above 90%, but only for cases with fewer than 20 signs to be detected.

After failing to noticeably enhance SLR performance over earlier versions, [103] offered an
alternative in 2003, naming their approach Left & Right HMM. Even with limited data, a hybrid of
HMM and Gaussian mixture model (GMM) models can improve hand sign recognition as
demonstrated in [104], albeit at the cost of reduced system reliability. Data gathered from a number of
video cameras was also analysed using HMM by [105]. Although those approaches have their uses,
further research is needed to apply them to SLR.

Some academics have attempted to improve their results by combining HMM with other
approaches in recent years. An effort in this direction was made in 2011 by [106], who used this method
in conjunction with PCA to extract important characteristics from hand signals. Meanwhile, in order
to follow the contours of hands during sign language communication, the authors of [107] integrated
HMM into an RNN model; nevertheless, they only achieved success when dealing with a small set of
known signs.

While Yang et al. [108] did their best to reduce calculation time by creating a variant of HMM,
there are some requirements that must be satisfied for this method to work, such as a maximum length
for each gesture. Training samples with limited distribution were processed using a combination of the
CRF approach and HMM in the study by Belgacem et al. [109]. However, even with a large number
of alternatives, the discrimination process remains challenging. HMM are a common solution to the
terrestrial alignment problems that plague many continuous processing workloads. Incorporating an
EM-based approach into HMMs helped with weak supervision and video processing issues in [37].

In order to enable continuous sign language recognition, Zhou et al. [72] utilized HMM
techniques to create a model framework. Thanks to HMM, the final system can handle a bigger
vocabulary, model individual signs and their transitions, and train and decode using even the most

AIMS Mathematics Volume 11, Issue 2, 3839-3902.



3857

cutting-edge techniques. The authors of [52] conducted an additional experiment that looked at the
GMM-HMM as a starting point. To train the GMM-HMM for recognition, characteristics such as
trajectory and hand-shape were retrieved. When utilizing both trajectory and hand-shape information,
an average accuracy rate of 90.8% was attained.

4.3.2. Deep learning

Learning representations of data is the primary goal of deep learning, a relatively new area of
machine learning [50]. Nevertheless, the intricacy of the models and the input details to the system
limit deep learning techniques' capacity to extract data semantics [34,50]. Neural network-based SLR
seems to benefit greatly from recent developments in deep learning. In recent experiments, various
deep learning techniques have been utilized, such as convolutional neural networks, recurrent neural
networks, attention-based approaches, deep belief networks, and autoencoders architecture.

In order to distinguish between images, Convolutional Neural Networks take in input images,
amplify certain parts of those images, and then output the results. For the purpose of sign language
recognition, Figure 5 depicts the fundamental CNN construction mode. When compared to other deep
learning algorithms, CNNs need significantly less pre-processing [37]. There are a lot of tasks where
neural networks excel [39], but they need a lot of labelled data to train on [41,45]. There is an additional
burden to gather training data for hand shape identification because of the extremely high rate of intra-
class ambiguity in this procedure, which is affected by the subject’s position.

Fully

Convolution Connected

Input

Feature Extraction Classification

Figure 5. CNN architecture.

Among the many models that make sequential data modeling easier, RNN stands out. Voice
recognition, video recognition, language translation, and natural language processing are just a few of
the many critical activities that have benefited greatly from this style of approach. To understand how
RNN Encoder-Decoders work for sign language recognition, Figure 6 illustrate the basic idea.
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Figure 6. RNN encoder-decoder architecture.

A bidirectional RNN and long short-term memory (LSTM) were employed by Fang et al. [110]
to enable universal and non-intrusive sign language word and sentence translation in their experiment.
Results from the experiment showed that RNN model could accurately represent American sign
language words with all the necessary characteristics.

Long Short-Term Memory (LSTM) is an RNN feature that has been used in a few experiments.
In their study, Kavarthapu and Mitra [111] utilized a bidirectional LSTM for encoding and a second
LSTM at the embedding layer for decoding. Bidirectional LSTM is a game-changer for sign language
recognition since it enables abstract data collecting. It was clear from the outcomes that the
bidirectional LSTM worked quite effectively.

Rakun et al. [112] used LSTM for the recognition of Indonesian Sign Language. In this
experiment, LSTM was utilized due to its independence from pre-clustered per-frame data and its
ability to accept entire sequences as input. According to the results of the experiment, the 2-layer
LSTM model outperformed all of the other models and correctly classified root words with 95.4% of
accuracy. Inflectional words presented a considerably greater challenge for the LSTM model, which
resulted in a significantly lower accuracy of 77% when trained on these words.

In [113], an model made of LSTM cells was utilized for SLR system. Every time step in the
design took the feature vector from all the frames as input. In the output layer, a softmax classifier was
used. Real-time sign language translation was ensured with the use of LSTM. As a result, the model
was able to convert long-form sign language films into full-text English sentences, which greatly
improved sign language communication.

A small number of recent studies have also employed LSTM to identify motions in Indonesian
sign language. The researchers in [114] employed 2-layer LSTM neural networks to recognize SIBI
gestures. With accuracy rates of 91.74% for prefix, 98.94% for root, and 97.71% for suffix datasets,
the neural network demonstrated very high performance [115].

Increasing use of hierarchical deep recurrent fusion (HRF) networks has resulted from efforts to
tackle the difficulties of sign language translation. Visual semantics can be encrypted with several levels
of visual granularity using a hierarchical recurrent architecture that was created by Guo et al. [54]. To
decipher a text, the HRF employs skeletal signemes and complimentary RGB visemes. In order to
encode the complete visual material, the HRF translated the video into multiple neural languages.

Up next, Guo et al. investigated sign language translation action patterns using adaptive clip
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summarization (ACS). Instead than using a set interval to acquire key frames or clips, as previous
models have done, they suggested an adaptive temporal segmentation technique. To further reduce the
duration, a hierarchical adaptive temporal encoding network was then created. Aside from HRF, LSTM
was chosen as the fundamental RNN component. Long short-term memory (LSTM) learned the
original features' persistent qualities in its top layer. Condensed visemes or signemes' recurring
characteristics were taught by the medium layer. Into textual semantics the visual data was transformed
by the bottom layer. Earlier, we established that learning the descriptors of sub-visual words like
visemes and signemes was the central premise of the proposed approach. Thorough trials demonstrated
the exceptional efficacy of the HRF framework, which is based on LSTM.

The classification of learning representations in several sign language experiments has been
accomplished using a deep belief network (DBN). Double-layer perceptron DBN are similar to
multilayer perceptron (MLPs), but DBNs have a lot more layers. Although DBNs' additional layers are
notoriously tough to train, they greatly improve the network’s learning capability. Nevertheless, DBN
training has been made easier by recent efforts.

An example of a DBN is the one employed by Rioux-Maldague et al. [35], which consists of three
restricted Boltzmann machine (RBM) and one additional translation layer. By utilizing DBNs, Tang et
al. [52] were able to accomplish hand posture identification. A higher recognition accuracy of 98.12%
was achieved by the DBN compared to the baseline HOG+SVM technique, according to the
recognition findings.

A deep belief network's architecture and performance in gesture identification were investigated
using an American Sign Language dataset. In the experiment, DBN was tested against two other typical
methods for gesture recognition—a convolutional neural network and a stacking denoise auto
encoder—and the results showed that the proposed DBN performed significantly better.

There are many situations when using just one deep learning technique can be difficult.
Consequently, there have been experiments that incorporated deep learning techniques. For example,
it was pointed out in [52] that training DBNs was not an easy task to parallelize across many machines.
In order to assess this matter, they compared it using CNNs. While the hybrid DBN method produced
a higher recognition accuracy rate (95.17%), CNN still managed to pull ahead with decent results.

A hybrid deep architecture was suggested by Wang et al. [40] to tackle the continuous sign
language translation challenge. The hybrid model included a fusion layer (FL), a bidirectional gated
recurrent unit (BGRU) module, and a temporal convolution module. Here in the model, temporal
convolution is in charge of collecting the quick changes in time, while BGRU holds on to the big
changes in context that happen across several time dimensions. To discover the correlations between
the corresponding features in the temporal convolution and BGRU outputs, the FL next fuses them.
Results from experiments showed that as compared to using just deep learning approaches, this hybrid
architecture enhanced accuracy by 6.1% in terms of Word Error Rate (WER).

A CNN and a bidirectional recurrent neural network (Bi-RNN) have both been employed in
tandem. By combining both methods, the authors of [43] were able to derive features from each video
frame using a 3D convolutional neural network (CNN), and they were able to generate unique features
from the sequential behavior in each frame using a bi-RNN. While the Lipnet model had a lower
average character error rate, the hybrid approach had a greater average word error rate.

Cui et al. [3] used a deep CNN and a Bi-LSTM together to get features. By feeding video streams
into the CNN model, spatiotemporal representations could be learned. The next step was to train Bi-
LSTMs to understand more nuanced interactions. Repetition in LSTM computations is achieved by
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Bi-LSTMs through the use of forward and backward hidden sequence calculations. Unidirectional
RNNs have a limitation that the authors took advantage of by using Bi-LSTMs. they can only
determine hidden steps by looking at previous time steps.

Researchers in [89] used attention-based 3D-CNNs to improve sign language vocabulary
recognition for huge datasets. In particular, the attention-based approach offers two benefits. Before
anything else, the model can pick up spatio-temporal features from unprocessed video data without
any prior training. Second, we can pick up hints with the help of attention mechanisms. Here, utilizing
continuous sign language data and the ChalLearn14 benchmark [116], attention-based 3D-CNNs were
evaluated. Compared to more sophisticated algorithms, the results showed that the method was more
accurate.

A study that employed transfer learning to train a CNN model to recognize Indian sign language
was proposed [ 117]. With the use of transfer learning, new classes could be learned even when training
sets were small. Using a combination of deep learning-based networks, Oyedotun and Khashman [48]
identified hand motions taken from a public database. Stack denoising autoencoder (SDAE) and
convolutional neural network (CNN) methods were utilized. Contrasted with SDAE's 92.83%
identification rate on test data that wasn't part of the training set, CNN got 91.33%.

Using a combination of CNN and RNN, Bantupalli and Xie [118] conducted an additional
experiment that investigated American Sign Language. When it came time to recognize sign language
in a video stream, the Inception CNN model was brought into play. Its job was to extract spatial
information from the feed. The experiment then proceeded to extract temporal features from video
sequences using an RNN model and LSTM. The softmax and pooling layers of the CNN were utilized
to generate the outputs. Despite the experiment’s success, the scientists speculated that capsule
networks, not Inception, would have performed better when it came to sign language recognition.

Muslims who are deaf or hard of hearing face significant barriers that prevent them from obtaining
higher degrees. Because of this, they have a much more difficult time studying the Holy Qur'an than
the average person, and they have a much harder time understanding its meanings and interpretations.
As a result, they are unable to practice Islamic rituals like prayer, which need knowledge of the Holy
Qur'an. A novel model [119] for Qur’anic sign language recognition that is based on CNN was
proposed. Aiming to assist hearing impaired persons in learning Islamic rituals, the proposed model is
designed to recognize the hand gestures that relate to the dashed Qur’anic letters in Arabic sign
language.

With the use of deep recurrent neural networks, hand feature representation, and hand semantic
segmentation, a new framework is suggested for SLR employing deep learning [120]. A newly-
developed semantic segmentation algorithm called DeepLabv3+ [121] is trained to extract hand
regions from each frame of the input video using a set of pixel-labeled hand images. After that, in order
to rectify the hand scale differences, the extracted hand regions are cropped and scaled to a set size.
An alternative to employing pretrained deep convolutional neural networks for feature extraction is a
single-layer Convolutional Self-Organizing Map (CSOM). Later on, a deep Bi-directional Long Short-
Term Memory (BiLSTM) recurrent neural network is employed for feature vector sequence
recognition. The three layers that make up a BILSTM network are the fully connected and softmax
layers. We test the suggested strategy on a difficult Arabic sign language database with 23 individual
terms uploaded by three individuals.

Although the examined literature covers a wide variety of sign language recognition
methodologies, nearly all of them adhere to a small set of core principles. Specifically, attention-based
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neural models with transformer architecture are the main focus of the studies [122]. As shown in Figure
7, this computing paradigm trains the model to classify sign language data using encoder and decoder
stacks. Not only has this method outperformed previous models, but it has also been successful with
many kinds of tasks. The goal here is for the models to pick up on the connection between spatial and
temporal signals and use that information to infer the desired sign.
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Figure 7. Transformer main architecture.

Tokenization is a process that takes input and output and uses them to create frames, key points,
and word embeddings [123]. Adding a temporal ordering step is necessary since transformer models
do not provide positional information for the sequences that are being inspected, which is one of their
distinctive constraints. This leads us to the next essential component of transformer-based neural
models for feature extraction. This process involves selecting the most important features from the
input tokens and then using them to train the model [77,123]. There are characteristics that distinguish
one gloss from another (intra-cue features) and those that distinguish between signals (inter-cue
features) [81,124].

A hybrid approach significantly improves efficiency by using a separate CNN-type neural
network to extract information from video input. The categorization step is usually handled by an
encoder-decoder stack, which consists of multiple successive layers, or a Bi-directional Long Short
Term Memory (Bi-LSTM) module. The number of deployed attention heads and the exact depth of the
model can be fine-tuned for optimal performance based on empirical evaluations; these parameters
vary with the model's intended usage and other circumstances.

For instance, at the top of the stack, some research suggested a linear projection layer and a
softmax attention layer, while others suggest employing just two layers in transformer models, instead
of the usual six used for NLP [75,78]. The model is fine-tuned for the particular goal through a
validation approach, and its efficiency during training is enhanced by a normalization procedure, which
is motivated by maximizing conditional probabilities and minimizing cross-entropy loss. This type of
network has been evaluated in several contexts, such as sign language translation, isolated [125] and
continuous SLR [126], and other similar tasks. While this methodology was tested with video footage
and skeletal data as input modalities, it may theoretically be applied with other modalities as well [80].
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The deep learning method's transformer architecture’s adaptability is well appreciated in this
demanding domain, as it allows for the output to be tailored by choosing the training dataset, features,
and training hyperparameters. Several intriguing suggestions, such as gloss-level supervision or the
usage of specific posture estimation methods, were made in the examined literature that could further
improve encoder models' sign language understanding capabilities. Those enhancements have the
potential to finally put an end to some of the persistent problems in the SLR sector [127].

The proposed deep learning model is experimentally evaluated in all of these works, and the
results are usually compared to those of other SLR methods. In most cases, techniques that rely on
transformer design achieve much better results than simple sequence to sequence models and other
standards. When it comes to tasks like posture estimation, the best version of the system can usually
get predictions right up to 85% of the time. For isolated SLR, it's around 70%—75%, and for the more
challenging translation task, it can get it right up to 45%. The advantages over alternative approaches
were negligible in some circumstances and substantial in others.

The objective isn't the only variable that could impact output quality; other variables include the
amount of the vocabulary, the size of the training dataset, the precise setup of the network, etc. [128].
The results of those tests are certainly helpful, but it is still difficult to say for sure what configuration
would provide the best results independent of variables like signer identity, regional sign language
variations, and environmental factors. So far, data suggests that transformer-type deep neural networks
play a role in this area of study; however, it is unclear what that role should be and how to use it to
broaden the scope of potential SLR applications [74].

Although there are noticeable advancements in accuracy compared to previous deep learning SLR
systems, the methods based on transformer architecture are still far from being suitable for use in daily
practice. Accuracy tends to improve with increasing complexity of studied sign language samples, and
it becomes more noticeable with increasingly complicated assignments [126]. Additional input
modalities and localized sign language variations, as well as more thorough testing, are necessary to
conclude whether performance gaps are caused by training samples and selected features or by the
fundamental data processing approach [81].

Given these findings, the development of universal autonomous tools that can perform signer-and
language-independent continuous SLR is still in its early stages. The results of the evaluation of the
encoder models indicate that SLR may benefit from a slightly different architecture than linguistic
tasks, so it would be fascinating to witness creative efforts to rethink transformer models and create
them specifically for sign language interpretation [129].

This review highlights the most crucial aspects while referencing the most significant studies due
to the extensive scientific literature on the topic and the significance of hand gestures for SLR. Over
the course of several decades, scientists have studied gesture interpretation, leading to a deluge of
reviews covering the topic at different points in time. Gavrila [130] conducted one of the first reviews,
looking at various 2D and 3D models for human motion analysis. While Ribeiro and Gonzaga [131]
mostly concentrated on real-time methodologies available at the time, Moeslund and Granum [132]
offered a thorough summary of twenty years of research including gesture tracking and recognition.
Rautaray and Agrawal [133] revised assessment of possibilities and obstacles in this area is one
example of a more recent article. While Mohandes et al. [134] investigated sensor-based and direct
measurement approaches to sign language identification, Kumar and Bhatia [135] covered a range of
feature extraction methods.

We present a concise synopsis of the present status of research in the area of automated hand
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gesture and sign language identification due to the fact that this area has seen substantial development
and numerous evaluations throughout the previous twenty years. Accurate hand form recognition is a
highly useful characteristic for automated systems since most sign language characters and words can
be conveyed with simple hand gestures. But there are a lot of obstacles to overcome when trying to
recognize hand motions, and some of those obstacles may be associated with the fact that signers'
hands are different sizes and shapes and have varying skin tones. Furthermore, different people may
sign with different styles that highlight different aspects.

The application of sophisticated analytical methods that seek to detect patterns apart from the
signer's identity or the physical characteristics of their hands can overcome such challenges [136]. An
efficient method for analysing hand motions in SLR is to employ deep learning networks, which can
detect latent relationships among numerous variables. Depending on the regional sign languages,
certain words or phrases can be expressed using either one-handed or two-handed motions.

Typically, one-handed signals are assigned fundamental meanings like letters or numbers.
Therefore, it is possible to accurately identify simple linguistic content from various sources, including
still photos or movies, using only hand motion analysis. Some uses may benefit from combining hand
gesture analysis with additional methods, such as monitoring head motions [137].

Despite growing interest in full-body tracking and continuous sign language interpretation, this
facet of SLR is expected to remain relevant because hand motion is the foundation of all sign language
communication systems. The most effective use of pure hand gesture analysis approaches, however,
would likely need a combination of methods. As an example, there are a growing number of hybrid
models that take into account various aspects of a signer's behavior [137,138].

In the field of sign language recognition, posture estimation algorithms are fundamental tools due
to the significant significance that body form plays. Finding the precise position of the whole body
from the measurements of a few fixed spots is the main concept. Deep learning algorithms, when
trained adequately with carefully selected examples, have shown to be effective in this task, albeit
there are other techniques to get the same result. In the case of high-quality input, ideally from multiple
sources/modalities, this is especially the case [139].

By comparing the spatial organization of distinct body components in images of varying sizes, a
convolutional neural network-based approach was proposed by [140] for establishing the human
body's stance. For the final prediction, it was necessary to repeat the pooling and upsampling
operations multiple times. Experiments using two separate datasets showed that this model
significantly outperformed the baselines by 1.7%-2.4%.

In order to forecast the body's location, another model based on the same neural network type
was introduced in [141], which made use of interdependent variables. Using an approach that doesn't
require the creation of a graphical representation, this method utilizes a CNN network along with pre-
prepared knowledge maps to generate appropriate output. Evaluative results on the MPII set (with a
9% improvement), the LSP dataset (with a 6% improvement), and the FLIC dataset (with a 3%
improvement) corroborated this as well.

Using DNN as the foundational tool for estimating the locations and interrelationships of the
body's joints, [142] built a cascade architecture model in 2014. The model's performance, which
outperformed past solutions on two regularly used datasets by 2% and 17%, proves that framing the
problem as a question of regression is a very acceptable paradigm.

To compare different deep learning-based pose estimation methods, the authors of [143]
introduced a new dataset for SLR research and established a standard for predicting body positions.
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They discovered evidence that transfer learning applies to SLR [144] after studying its potential
applications. Continuing from the linear Skinned Multi-Person Linear model (SMPL), a comparable
approach for posture estimation was proposed by [145] using RGB images and deep learning. The
authors of this study conducted a parameter regression using three-dimensional models of human joints
as intermediaries.

In order to ensure that any structural flaws are rectified, the model depends on autoencoders to
connect the regressed SMPL to a convolutional neural network. When tested on Surreal and Human
3.6M datasets, the enhanced SMPL demonstrated a noticeable performance gain over the baseline.
Aside from physical gestures, facial expressions, and body language are also important components in
sign language communication. Although there is a plethora of research on the topic of automatic hand
gesture recognition, there is less on the subject of body posture analysis.

To tackle this issue, Jain et al. [146] used a CNN to examine the interrelationships of different
body parts. However, using a tree-like data organization and an SVM as their classifier, Yang and
Ramanan [28] came up with a different approach. Using a graphical model to depict the spatial
configuration of human joints, Chen and Yuille [147] performed another noteworthy study in this field.
Charles [148] enhanced this method by enhancing the system's ability to comprehend body positions
by extracting temporal information from successive photos; Toshev and Szegedy [142] offered another
strategy to evaluating the location of body joints.

In order to determine the best methodology for body posture detection, the authors of this work
conducted trials on a new dataset using the latter two methodologies, despite the fact that there are
many conflicting principles and ideas. More recently, [149] suggested a method that uses a
convolutional network to analyze graphs; in this method, the human body is shown in three dimensions
using a network of points and connections. To distinguish between data and put this schematic
representation into context, this approach uses an attention mechanism. Experimental testing on a
variety of SLR datasets shows that this model can outperform alternative techniques by a small margin
(0.7%—3.4% points).

Combining features of convolutional and recurring neural networks, as well as a self-correcting
feature that can enhance prior predictions, is a model developed by [150]. This model accounts for
noise as it constructs a 3D vector space from local input and uses it to recover partial body positions.
By comparing it to other models on a new dataset, the authors confirmed that their creation is the best.
Depth Ranking Pose Estimation for 3D pictures, the technique proposed by [151], likewise heavily
relies on depth imaging. Combining depth data with two-dimensional photos, this approach uses a
CNN network to decide between candidate pairs in the initial phase and then makes 3D posture
predictions in the second step. Compared to other 3D posture estimation methods, this one performed
far better on a scale of more than 6 mm when tested on the industry-standard Human 3.6M dataset.

With the use of depth information to generate maps, a model called DDP (Deep Depth Pose) was
suggested by [152] for approximating body positions. These maps were made in advance and included
every joint that was relevant as well as several body positions. This strategy surpassed the benchmarks
by over 11%, proving its effectiveness in practice.

There have been numerous efforts to develop a good model using convolutional and recurrent
forms of deep learning networks due to the importance of body position estimate in various research
disciplines, including SLR. With the advent of 3D imagery and the creation of depth maps, these
models' identification capabilities have been substantially enhanced. Cascade or tree-like structures,
the imposition of specific constraints, etc., are some of the methods that try to achieve greater advances
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in precision. Experimental assessments show that newer models are significantly more effective and
dependable than older ones, yet no solution, no matter how complicated, will have 100% universal
application [74].

Improving the ability to understand people’s body positions is an important area of study. In
instance, scientists are putting in a lot of time and effort to make sure that joint locations can be
pinpointed even when photos have background noise or some body components are obscured.
Although significant strides have been made in 3D body position mapping, one source of complexity
is the fact that a single 2D pose can correspond to numerous 3D locations.

Labeling 3D joint images is challenging, which adds another layer of complexity and calls for
high-tech input devices. In contrast, accurate mapping of spatial interactions between critical body
locations is necessary for effective 3D data regression. Among the many features tracked by current
models is the exact three-dimensional placement of every joint, as seen from different angles and in
relation to different body shapes. These models lay the groundwork for additional SLR research that
can be expanded upon with different methodologies.

The capacity of modern systems to recognize poses and forecast shapes has been enhanced by
technological advancements in capturing equipment. An encouraging area of study is the integration
of several data sources such as thermal imaging or hybrid data with indications based on vision, which
can increase the systems' reliability in real-world scenarios. In contrast to image-based approaches,
which deduce the positions of the critical points (i.e., limbs and joints) from 2D images, sensor
technology directly transfers these positions.

Due to this crucial distinction, the input type and desired outcome should inform the procedures
used to complete this activity [153]. Correcting the interpretation of sign language information relies
heavily on deducing the stance [137]. This is especially crucial for continuous SLR, since it displays
individual indications in a continuous stream and how the subject's body moves can convey the whole
meaning of the expression. The selection of features, which can incorporate both two- and three-
dimensional data points, as well as the depth and architecture of the classifier, are just a few of the
numerous elements that might impact the efficiency of pose estimation methods. In spite of their
impressive accuracy, several of the most recent pose estimate algorithms are still too vulnerable to
false positives to be considered ready for widespread use just yet [154].

Recent research has shown a trend toward using cutting-edge tech, such as the Microsoft Kinect,
to identify body poses using a variety of parameters; this is obviously an area that will be further
explored in the coming years as improved sensors and tracking devices become accessible [138,142].
At long last, reliable tools for testing out novel approaches are appearing. More thorough testing is
encouraged by the availability of publicly available big SLR datasets, which moves us closer to the
commercialization stage of this technique.

5. Sign language recognition models
5.1. Continuous sign language recognition models

Continuous models have been utilized in certain investigations pertaining to sign language
recognition and modelling. In order to continuously recognize gestures, for instance, Wu and Shao [50]

suggested a novel bimodal dynamic network. Both the spatial locations of the 3D joints and the spoken
commands of the gesture tokens were used to build the model. Using an expectation—maximization
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(EM)-based method, Koller et al. [37] showed how to recognize sign language continuously. To solve
the issue of temporal alignment in continuous video processing tasks, an EM-based algorithm was
developed. Continuous sign language recognition also has scalability issues, which Li et al. [53]
attempted to solve with their suggested system.

Camgoz et al. [38] created a complete system for continuous sign language recognition and
alignment. Explanation: The model relies on explicit subunit modelling. In a similar vein, Wang et
al. [40] proposed a connectionist temporal fusion method that might convert video’s continuous
visual languages into textual sentences. Moreover, Rao and Kishore [42] have performed further
research on continuous SLR models. Over the course of several iterations, a system was constructed
and tested using 282 words of continuous Indian Sign Language.

Koller et al. [69] also utilized a database that included of continuous German Sign Language
signing. Graphics were handled in a continuous fashion in [88]. Because the animations were so tough
to manipulate after processing, this method was incredibly difficult to implement. Deep residual
networks may learn patterns in continuous films containing motions and signs, as Pigou et al. [155]
discovered when studying the challenges of continuous translation. Deep residual networks can reduce
preprocessing requirements.

The model shown in [17] can improve upon current methods of sign language recognition by a
range of 15% to 38% in relative terms and by 13.3% in absolute terms. In addition, Cui et al. [156]
proposed a weakly supervised method that, with the aid of deep neural networks, could constantly
recognize sign language. The result was on par with what is accomplished by state-of-the-art methods.

5.2. Isolated sign language recognition models

Most investigations on sign language recognition have relied on single sign samples up until
recently. Based on hand movements captured by sensor gloves, these models process a series of
pictures or signals [92]. In many cases, sensor gloves stand in for a full sign. As an example, a dataset
containing isolated signs from the sign languages of Denmark and New Zealand was utilized by Koller
et al. [37]. Each signed video corresponded to one word in another experiment by [34], which
suggested an isolated SLR system to extract discriminative characteristics from videos.

Following their assessment of the difficulties associated with continuous translation, Escudeiro
et al. [88] adopted a standalone strategy. Basically, each gesture was made independently, which makes
it much easier to work with animations. In contrast, Fang et al. [110] found that deep recurrent neural
networks were the most effective in a hierarchical model. An structured high-level representation
usable for translation was generated from the model by combining the isolated low-level American
Sign Language characteristics. The utilization of regions of interest (ROIs) to isolate hand motions and
sign language characteristics has the potential to improve recognition accuracy, according to recent
advances in sign language research [118].

An isolated SLR system was employed to enable real-time sign language translation in [113]. A
time-series neural network module and video pre-processing were components of the standalone gloss
recognition system. Latif et al. [157] conducted an additional study that examined video portions using
an estimated “gloss-level”. Cui et al. [3] adjusted their receptive field to match the predicted duration
of a single sign while they were conducting their observations.

An isolated SLR task was the subject of a recent study by Huang et al. [116]. To identify a huge
vocabulary, it was suggested to employ an attention-based 3D-CNN. The model’s strength lay in the
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fact that it made use of the 3D-CNN’s spatio-temporal feature learning capabilities. The American sign
language lexicon video dataset, which includes video sequences of isolated American sign language
signs, was utilized by Papadimitriou and Potamianos [90].

5.3. Deliberation on sign language recognition models

Isolated and continuous modes make up SLR, and they each present unique difficulties and need
for unique solutions. Specifically, continuous SLR requires significantly more direct monitoring,
which is a major difference. Unlike isolated SLR, which concentrates all the important information
into a small area of a single image, continuous SLR requires meticulous alignment of the video’s
portions in chronological order and accurate tagging of each sentence.

That's just one illustration of the computationally intensive complexity of continuous sign
language recognition. This is something that needs to be considered when evaluating methodologies
and choosing features. Continuous video analysis improves the model’s accuracy prospects if
sequential labeling is executed properly and the most predictive features are chosen. While clever uses
of deep learning systems have helped to automate a lot of related chores and this area in recent years,
there is still a long way to go before we see advances that the general public can benefit from.

Graph neural networks applications, for instance, make advantage of the attention mechanism,
which is fascinating since it works effectively with various kinds of data and can explain complicated
connections in space and time. If this method is the best way to fix the current problems with
continuous SLR, more study will reveal it.

6. Sign language recognition based on region and spoken language

Sign language is based on many fundamental ideas. To start with, sign languages are never really
global. The majority of countries employ a variety of sign languages. There are a lot of countries where
sign language is used, including the US, UK, Arabic world, and China. You can see a summary of the
studies that used different sign languages in Table 3. As an example, the most widely used localization,
American Sign Language (ASL), adheres to its own set of grammar norms apart from visual English.

In their experiment, Rioux-Maldague and Giguere [35] used their proposed technique to classify
ASL according to grammatical norms, demonstrating the application of this localization. In order to
train and recognize postures, Tang et al. [52] conducted an experiment that took 36 hand postures
derived from American Sign Language into consideration. On the other hand, some systems use non-
ASL indicators in an English-ordered fashion. Research centered on Italian Sign Language is one such
example.

There was an evaluation of a new bimodal dynamic network for gesture recognition in [50], using
a dataset of twenty signs from Italian culture or anthropology. The Italian dataset included 7,754
gestures and 393 labelled sequences. For many people who are hard of hearing, Arabic Sign Language
is the best way to communicate. A method that can distinguish connected indicators was developed
using Arabic depth and intensity images in [36]. An accuracy of 99.5% was achieved when testing the
suggested technique with a dataset acquired from three distinct users. A dataset in Arabic Sign
Language was also utilized by the writers in [157,158].

Chinese has been the subject of some sign language experiments. The 510 individual words taken
from Chinese Sign Language were used as a vocabulary in [72]. Of these words, 353 had only one sign
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while the rest had multiple signs. In order to accomplish their experiment's goal, Yang and Zhu [39]
utilized the instructional film We Learn Sign Language, which demonstrates an interest in Chinese
Sign Language. Jiang and Zhang [45] conducted an additional study that included Chinese Sign
Language to aid in the fingerspelling procedure. In addition, tests were conducted using Chinese Sign
Language by the authors in [56,92,116].

There were a few of more studies that looked at Argentine Sign Language. As an example,
consider the study [34], which used Argentine Sign Language to collect data from 10 participants.
Similarly, Konstantinidis et al. [44] investigated bone recognition for hands and bodies using Argentine
Sign Language with ten participants. Some studies use a combination of sign languages rather than
just one.

To investigate CNN training on 1 million hand images, for instance, Koller et al. [37] used a
combination of Danish and New Zealand sign languages. Using publicly available lexicons, the sign
languages were culled from two representative videos. While there was minor motion blur in the New
Zealand version, it was nonexistent in the Danish data. To further investigate the function of SubUNets
in sign language recognition, Camgoz et al. [38] conducted an experiment with Danish, New Zealand,
and German sign languages.

7. Training and evaluation
7.1. Training with backpropagation

For the purpose of training artificial neural networks, specifically feed-forward networks,
backpropagation is a potent deep learning technique. Iteratively, it minimizes the cost function by
modifying biases and weights. To minimize loss, the model updates these parameters at each epoch in
response to the error gradient. Gradient descent and stochastic gradient descent are two optimization
methods that are commonly used in backpropagation. By calculating the gradient according to the
calculus chain rule, the method is able to efficiently traverse the many layers of the neural network in
order to minimize the cost function. Equations (1) and (2) provide the fundamental equations that
characterize the learning process.

OE

t+1 _ t _ el
01 = 0t —a =, (1)
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where «a is the learning rate and 6 1is the weight.

In order to train a translation layer, Rioux-Maldague and Giguere [35] utilized the standard
multilayer perceptron (MLP) approach. Every 24 letters were translated into a 24-dimensional softmax
vector by the output layer during training using normal backpropagation, which interpreted the
activations of different restricted Boltzmann machines (RBMs). The training process included weight
decay and early halting, and it was based on 200 epochs of backpropagation. They also used the whole
network for a fine-grained backpropagation phase, although they slowed down the learning pace
significantly. Wu et al. [50] also used the conventional backpropagation method to fine-tune the
relative importance of each modality.
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7.2. Loss function

SLR can be formulated as a sequence-to-sequence learning problem. Given an input video
sequence X = {x1,x2,...,xT}, where each frame xt represents visual or multimodal observations
(e.g., RGB, depth, pose), the goal is to predict a linguistic label sequence Y = {y1,y2,...,yL} , with
L< TL, corresponding to glosses, words, or characters. A neural model fg4(-), parameterized by 6,
maps the input sequence to frame-level logits as 3.

Z = f,(X)Z € R™, 3)

where K is the vocabulary size. The learning objective is to find optimal parameters based on 4.

6" = argminL(Y, fp(X)), “4)
0

where L is a task-dependent loss function.
Cross-entropy loss (CE)

For isolated sign recognition or frame-level classification, cross-entropy loss is commonly used.
Let p; (k) denote the predicted probability of class k attime t,and y, be the ground-truth label.
the CE los function is computed as (5).

Leg = —Z?=110g De Vo). ®)

CE enforces discriminative frame-level learning but requires explicit temporal alignment, limiting its
applicability in continuous SLR.

Connectionist temporal classification (CTC)

As previously formalized, CTC removes the need for frame-level annotations by marginalizing
over all valid alignments. The CTC loss function is presented in (6).

Lere = —log Yres-1(v) [Ti=1 P(melxy). (6)
CTC is central to continuous SLR due to its alignment-free supervision and robustness to variable
signing speed.
Attention-based sequence-to-sequence loss

Transformer and encoder-decoder models optimize a conditional log-likelihood over output
tokens. The loss fuction is defined as (7).

Lseqaseq = _Zlellog P(yily<i,X). (7)

This loss captures long-range dependencies and linguistic structure but is sensitive to alignment noise
and requires large training data.

Hybrid CTC-attention loss

To combine the strengths of CTC and attention mechanisms, a multi-objective loss is often used.
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The hybrid CTC loss function is computed as (8).
Lhyrid = AL¢re + (1 — A)LsquSeqa (8)

where A€[0,1] balances alignment stability and semantic modeling. This formulation improves
convergence, stabilizes training, and enhances recognition accuracy in continuous SLR.

Contrastive loss for representation learning

For multimodal or self-supervised SLR, contrastive learning enforces alignment between
representations. The loss function is defined as (9).

: +
estm(zi,zi )/T

Leontrastive = —10g oSImEZ /T )

where T is a temperature parameter. Contrastive loss enhances modality-invariant and signer-
independent representations. Table 2 present a summary comparison between different loss functions
for SLR tasks.

Table 2. Comparative table of loss functions in SLR.

. Alignment . o
Loss function . Suitable SLR task Advantages Limitations
requirement
Cross-Entropy Explicit Isolated / frame-level ~ Simple, stable Requires segmentation
o i Alignment-free, Weak language
CTC Implicit Continuous SLR .
robust modeling
Seq2Seq .
. None Learned Sentence-level Captures semantics
(Attention)
Hybrid CTC- ) Continuous ) ) )
. Mixed . Stable + expressive  Higher complexity
Attention translation
] ] Improves Requires careful
Contrastive N/A Multimodal / SSL o .
generalization sampling

7.3. Datasets

In order to evaluate SLR techniques, a selection of the most relevant and accessible datasets that
include hand movements are presented. Making sure dictionaries are big enough to support more
stringent testing and more complex applications is a top priority. Depending on the selected
geographical variety of sign language, there are currently certain high-quality sets that can be utilized
for this purpose.

Researchers in the field of UK sign language have access to a variety of datasets, such as RWTH-
Boston-1, RWTH-Boston-50, and RWTH-Boston-400, which contain anywhere from ten to four
hundred distinct signs. Notable examples of high-quality data corpora for German sign language
include DGS Kinect-40, SIGNUM, and RWTHPHOENIX-Weather. There are a lot of real sentences
signed by up to nine professional signers in those sets, and the first and ending frames of each sign are
labelled with facial and hand feature definitions. The sets also include 35 to 1225 distinct signs.

With more than 30,000 signs performed by six individuals, ASLLVD is the gold standard for ASL
research. Like the last set, this one has labels indicating which frames begin and conclude each
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sentence. There are three high-quality data sets available for studies of polish sign language variation:
PSL Kinect 30, PSL ToF 84, and PSL 101. There is a cap of one person working on these datasets, and
they only include individual words (with a total of 30 to 101 signs). Indian scholars have access to the
Sign Corpus IITA-ROBITA ISL, which was built cooperatively by multiple teams between 2010 and
2017. Sadly, there is just one signer and only 23 signs in the complete set.

Two datasets, ASLLVD and RWTH-PHOENIX-Weather, stand out among the others due to their
widespread applicability. In SLR studies, publicly available sign language sets are frequently utilized
as benchmarks to assess the efficacy of suggested computing algorithms. This is because these sets are
well-suited for sign language interpretation in real-world scenarios. Virtually, all SLR researchers are
presently fixated on the problem of limited access to specialized datasets. A further complicating factor
is the need for distinct datasets for various linguistic tasks and geographical variants of sign language.

While some studies employed well-known local datasets, others started with video recordings of
sign language users and added additional metrics to create new datasets. In order to train a system that
can recognize signs independently of signers, a typical dataset contains several instances of the same
sign made by different signers. When evaluating the credibility of findings, it is important to remember
that certain datasets offered in the literature are much bigger than others.

As shown in Table 3, we relied on the literature reviews and strictly stated criteria to examine the
datasets in all the research publications that were reviewed. The databases utilized share numerous
commonalities and can be efficiently categorized according to these properties, since all the
publications mainly focus on decoding sign language parts of different levels of complexity. Although
certain categories may not apply or authors may not have supplied data, the criteria were chosen with
the intention of offering a framework for direct comparison between research.

Table 3. Sign language datasets based on the region and spoken language.

Model Reference Items Classes Subject

European sign language

NA [34] 3200+1297 64+50 10+NA
CNN/Stacked LSTM/OpenPose  [44] 32001535 videos 6450 10
CNN-Stacked LSTM [44] 3200 videos 64 10

3D CNN [159] 500 videos 10 10
CNN+EM [37] 1134319 images 60 6, 8, 2009
CNN+BLSTM [38] 1.2 million images 60 23

NA [160] 11+200 per class 40 100
Residual network + BiLSTM [155] 55224, 12599 video-gloss, 22535 video 100, 100,249 78, 53, 21
NA [161] 5 hours video 60 18

CNN + B RNN [3] 6522711874 455 9

Pose estimation [49] 43986 images 35 20
Temporal CNN [156] 5672 sentences 9 NA
TCONV + BGRU [40] 6841 videos 10 40

CNN + BiLSTM [3] 6841 sentences + 2340 sentences 455 91

DBN [50] 13858 20 NA

NA [162] 2000 Videos 10 3

SVM [88] NA 57 NA

Continued on next page
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Model Reference Items Classes Subject
American sign language

NA [163] 2524 36 NA
NA [164] 9800 3300 6
NA [143] 808+479 NA 8
NA [165] NA 35 3
DBN [35] 60000 24 5
DNN [52] 288 videos 36 8
CNN + HMM [69] 2137 sentences 40 7
Sparse autoencoder [68] 120000 images 24 5
3D CNN [51] 657 25 9
CNN [47] 60000 images 26 5
PCANet + SVM [13] 60000 images 24 5
CNN [90] 3000, 4416 images 24 6,20
CNN [166] 78000 26 NA
CNN + SDAE [48] 2040 gestures 24 NA
Bidirectional DRNN [110] 7306 images 156 11
NA [167] 900 images 36 NA
DenseNet [168] 100000 images 24 NA
CapsuleNet [169] 34672 images 24 NA
CNN +LSTM [118] 62400 24 NA
DNN [57] NA 36 12
CNN + SVM [46] 2425 images 5 20
Arabic sign language

NA [170] 180 3 10
NA [134] 900 30 30
NA [171] 150 150 21
PCANet, SVM [36] 1400 28 3
NA [157] 54049 32 40
ResNet 18 [158] 54049 32 40
East Asian countries sign language

NA [83] 54000 45 3
CNN [172] 1074 10 NA
DCNN [83] 1147 images 37 NA
NA [173] 9000 90 NA
NA [54] 78 26 3
3D CNN [55] 5000 videos 179 50
NA [92] 100, 16000 sentences 20, 3000 3,50
3D CNN + attention [89] 125000 images 500 50
CNN [39] NA 40 NA
CNN [45] 1260 samples 30 NA
3D CNN + attention [89] 125000, 14000 instances 50020 50
DNN [117] 30000 images 20 15
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Model Reference Items Classes Subject
East Asian countries sign language

CNN [174] NA 26,9 NA
DNN [42] 282 words NA 10
LSTM [112] 1630 words 163 2
3D CNN + BiRNN [43] 3006 videos, 30 sentences 30 10
3D CNN [175] 100 images 5 NA
LSTM [156] NA NA NA
LSTM [41] 812 sentences 195 1
NA [144] 14672 419, 105 14
GRU [144] 14672 videos 524 14
YOLO [176] 30000 images 25 12

Through this review, we aim to highlight the similarities and differences in the datasets used
across various studies. To ensure clarity and address space constraints, training, testing, and assessment
datasets are often presented in a combined format. Consequently, the actual structure of a dataset may
be more complex than what is depicted in the tables for certain studies. For practical applications of
any of these SLR datasets, it is advisable to closely examine each dataset in detail. A glance at Table 4
reveals significant variations in the datasets, particularly in terms of data types.

Table 4. Sign language datasets based on the data type.

Reference Data type

Alphabetic linguistic content

[177] RGB video + depth info

[178][73] 2 D images

[37]1 [178] [45] [166] [45] [48] [49] [169] [117] [174] [91] RGB

[157] [158] [36] [46] [176]

[47] RGBD

[13] RGBD, Kinect

[92] RGBD, Kinect, gloves

[90] RGB video

[36] RGB+ depth info

[179] RGB+ depth RGB

[57] 3D models

Words and sentences linguistic content

[156] [40] [3] RBG

[34][43] [44] [159] [143] [144] RGB video

[41][112] RGB, Kinect

[89] RGB, depth, skeleton

[89] RGB, Kinect, skeleton point

[52] RGB, Kinect, 3D skeleton point

[110] Infrared

Continued on next page
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Reference Data type
Words and sentences linguistic content
[165] [160] [162] Video

[164]
[171]

Video, Kinect
RGB, depth, 3D skeleton, facial features

Hand gesture linguistic content

[38] [3] [167] [168]
[68]

[39] [118]
[175][51]

[35]

[180]

[111]

[155]

RGB

RGBD

RGB video

RGB, Kinect

Intensity camera, Kinect

2D and 3D skeleton, depth info
6D IMU

RGB, RGBD Kinect

Because studies of sign language use different theoretical frameworks and may investigate
seemingly unconnected areas of sign language understanding, this is to be expected. For example,
while continuous SLR experiments require sentences or even longer segments of speech, isolated SLR
experiments typically use alphanumerical characters or words for recognition of isolated language
elements. Knowing the difference between the two approaches and the kinds of datasets appropriate
for each is crucial.

When trying to assess a model's generalizability, it's necessary to take into account the dataset’s
size and complexity differences. Nevertheless, due to resource constraints and practical considerations,
even the most extensive datasets fall well short of being comprehensive. The availability of more
statistics documenting several geographical variations of sign language is a positive trend. Since SLR
research has broad applicability, it is imperative that we prioritize the development of automated
systems that can identify regional variants of hand signals.

Additionally, multi-modal datasets are on the rise, which bodes well for the future of SLR research
and provides more room for creative thinking. The lack of diversity in the signers and classes used to
compile most datasets casts doubt on their reliability as representations of the real world. Because of
this, automated algorithms that use those datasets may not be able to accurately interpret significantly
different sign language gesture displays. One of the most important factors influencing the rate of
advancement in any area of artificial intelligence research is the accessibility of high-quality datasets
for training and testing models.

The studies that were considered show that this is becoming less of an issue, which is encouraging
because SLR research is still a young field. When widespread compatibility of the experimental results
is sought, there are a number of commonly used datasets that can be regarded as “standards”. However,
fresh datasets that are specific to local sign language systems are cropping up, which means that they
may be able to be recycled to power more studies in the same area. Although things are looking good,
it's important to note that the datasets that are already out there vary substantially in size, structure,
quality, and perhaps require the creation of additional datasets to back up certain study paths.

Although a growing number of datasets have been introduced for SLR, dataset scarcity remains
a fundamental challenge. This apparent contradiction arises from the distinction between dataset count
and effective data coverage. While multiple corpora exist, most suffer from limitations in scale,
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diversity, and annotation consistency, which significantly restrict model generalizability and real-
world applicability.

A dominant source of bias in existing SLR datasets is signer dependency. Many datasets include
a small number of signers—often fewer than ten—recorded under controlled laboratory conditions.
Models trained on such data tend to overfit to signer-specific characteristics such as hand size, signing
speed, posture, and habitual motion patterns. This bias severely limits cross-signer generalization,
which is essential for practical SLR systems intended for broad user populations. The lack of
demographic diversity in age, gender, and signing style further exacerbates this issue.

Most available datasets focus on limited vocabularies, frequently constrained to isolated signs or
predefined gloss sets. While suitable for benchmarking isolated SLR, these datasets fail to capture the
linguistic richness of natural sign languages, including co-articulation, grammatical facial expressions,
and non-manual markers. Additionally, gloss annotations often abstract away semantic nuance,
resulting in models that recognize symbol sequences rather than meaning. This lexical bias restricts
the applicability of trained models to real-world continuous signing scenarios.

SLR datasets are commonly recorded in controlled environments with uniform backgrounds,
stable lighting, and fixed camera viewpoints. Although this setup simplifies data collection and
annotation, it introduces a strong domain bias. Models trained on such data often exhibit significant
performance degradation when deployed in unconstrained settings, such as daily communication
environments with occlusions, camera motion, or background clutter. This gap highlights the lack of
in-the-wild datasets that reflect realistic signing conditions.

Another critical limitation lies in annotation quality. Differences in gloss definitions, temporal
segmentation strategies, and labeling conventions across datasets hinder cross-dataset training and
evaluation. In continuous SLR, the absence of consistent frame-level annotations further complicates
sequence alignment and learning. These inconsistencies introduce noise into the training process and
impede the transferability of learned representations.

Many datasets exhibit severe class imbalance, where frequent signs dominate the training
distribution while rare signs remain underrepresented. This imbalance biases models toward common
patterns and reduces recognition accuracy for less frequent signs. Moreover, most datasets rely
exclusively on RGB video, with limited availability of multimodal data such as depth, skeletal pose,
or inertial measurements. The lack of multimodal annotations constrains the development of robust,
modality-agnostic models.

Collectively, these biases explain why dataset scarcity persists despite the apparent abundance of
datasets. The challenge lies not in the number of datasets, but in the absence of large-scale, diverse,
consistently annotated corpora that support signer-independent, linguistically grounded, and
deployment-ready SLR models. Addressing this issue requires not only larger datasets, but also
principled data collection protocols, standardized annotations, and increased emphasis on cross-dataset
evaluation.

7.4. Evaluation
Accurate recognition of sign language material is the main focus of most research papers, and the
primary criteria used to measure the results is the F1 score which combine the precision and the recall.

Training, testing, and validation accuracy are sometimes defined differently by different writers,
depending on the phase of an experiment. Another aspect that was monitored in certain experiments
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was the amount of time needed for training to achieve acceptable accuracy; this was often stated in
epochs. Though it was possible to describe processing time and input video length in seconds and/or
frames, these metrics were not always deemed important enough to merit direct measurement. For a
quick rundown of performance metrics utilized in SLR research, Tables 5 present a detailed summary.

Table 5. Accuracy of state-of-the-art models for SLR.

Model Accuracy (%)
[34] 99.84
[170] 92
[177] 97.3
[163] 84.68
[83] 94.7
[173] 98
[180] 92.28
[160] 95
[162] 73
[181] 63.56
[165] 89.33
[171] 55.57
[144] 93.28
[50] 70.1
[35] 77
[51] 98.12
[69] 55.7
[68] 99.1
[52] 94.2
[54] 98.9
[47] 80.34
[55] 92.9
[13] 88.7
[117] 97
[144] 93.28
[90] 99.39
[166] 88.7
[89] 91.93
[3] 99.5
[36] 62.8
[37] 87.4
[53] 92.83
[48] 94.5
[110] 73.3
[155] 97.7
[111] 81.7

Continued on next page
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Model Accuracy (%)
[49] 99
[39] 70
[34] 95
[172] 98.05
[167] 90.3
[168] 99.74
[169] 91
[118] 83.78
[57] 84.68
[73] 53
[41] 92.88
[182] 83.72
[91] 99.56
[174] 99.31
[179] 94.7
[183] 77
[112] 90
[42] 98.09
[44] 100
[159] 92.24
[175] 91.93
[3] 88.7
[89] 99.48
[158] 88.1
[45] 98.36
[46] 98.81
[114] 87.31
[125] 92.92
[129] 98.4
[76] 71.9
[80] 77.75
[79] 98.08
[77] 46.96
[78] 74.7
[75] 94.77

While recognition accuracy remains the primary evaluation metric in most SLR studies, practical
deployment—yparticularly in wearable assistive devices, mobile platforms, and interactive systems—
requires careful consideration of real-time performance constraints. These constraints include
inference latency, memory footprint, and energy consumption, which are directly influenced by
architectural design choices.

We consider the following metrics as fundamental for deployment-oriented evaluation:

. Inference latency: Average time required to process a video frame or sequence, directly
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affecting real-time usability.

. Model size: Memory footprint determined by parameter count and precision, influencing
deployability on edge devices.
. Energy consumption: Power usage during inference, critical for battery-powered systems.

Rather than hardware-specific benchmarks, we analyze relative computational behavior across
architecture families. 2D CNNs offer low inference latency and moderate model size, making them
suitable for isolated sign recognition and short sequences. However, extending them to 3D CNNs
significantly increases computational cost and energy consumption due to volumetric convolutions.
CNN-RNN hybrids and TCNs provide a favorable balance between temporal modeling and efficiency.
TCN:ss, in particular, benefit from parallelizable convolutions, resulting in lower latency than recurrent
models while maintaining competitive accuracy. Pose-based GCNs are computationally efficient, as
they operate on sparse skeletal graphs rather than dense pixel grids. This results in small model sizes
and low energy consumption, making them highly suitable for real-time and embedded SLR systems,
provided reliable pose estimation is available. Transformers deliver strong performance for long-range
temporal reasoning but incur high memory and computational costs due to self-attention’s quadratic
complexity with sequence length. This limits their applicability in real-time scenarios without
optimization techniques such as windowed attention or model compression.

Hybrid models combine multiple components and therefore exhibit higher computational
demands. Nevertheless, they often achieve superior accuracy per parameter due to complementary
inductive biases, making them attractive for medium- to high-budget deployments. Table 6 presents a
comparison between different models families based on different metrics.

Table 6. Computational trade-offs of SLR architectures.

. . Inference . Energy Real-time .
Architecture family Model size . o Typical deployment
latency consumption suitability
2D CNN Low Small-Medium  Low High Mobile/Edge
3D CNN High Large High Low Offline
CNN-RNN Medium Medium Medium Medium Desktop
TCN Low-Medium Medium Medium High Real-time systems
GCN (Pose-based)  Very Low Small Very Low Very High Wearables/Edge
Transformer High Large High Low-Medium  Server-scale
Hybrid Models Medium-High Large Medium-High  Medium Hybrid deployments

This analysis demonstrates that model selection in SLR inherently involves a trade-off between
recognition accuracy and computational feasibility. Pose-based and TCN architectures are best suited
for real-time, low-power applications, whereas Transformer-based and hybrid models are more
appropriate for high-accuracy, offline, or server-assisted scenarios. By explicitly incorporating
computational metrics into the discussion, the revised manuscript provides a more comprehensive and
deployment-aware perspective on SLR system design.

Proposed sign recognition algorithms are quantitatively evaluated in nearly all of the assessed
research papers. The goals of the study dictate which tests are administered, which in turn affects the
breadth and depth of the testing. The goal of the testing was to determine the algorithm's performance
in differentiating between phrases or words in sign language, typically by comparing it to other
benchmark methods.
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In general, several approaches worked adequately and identified over 90% of the presented
indications; however, there are certain caveats when comparing results across studies due to the varied
nature of the tests. The claimed effectiveness was over 97% in a few instances, although these instances
were simpler tasks and frequently couldn't be sustained across multiple datasets. Recognition rates of
80% for continuous SLR tasks are strong, particularly when they hold across different datasets.

It was observed that the majority of algorithms showed inconsistent performance when switching
between signs, and that a small number of perplexing indicators usually caused the majority of false
positives. Due to systemic reasons or the similarity of hand gestures, these frequent mistakes frequently
persisted irrespective of the classifier or training technique. This discovery highlights the fact that
existing SLR algorithms are still not perfect and should be regularly compared with human-made
estimates to prevent misunderstandings, and it also suggests that certain issues with the structure and
form of sign language, rather than methodological shortcomings, are preventing the development of
more effective tools.

Typically, the proposed models are assessed based on their ability to accurately carry out the main
task, which is either sign language translation or recognition. The primary metric for evaluating the
model's performance is the whole dataset average accuracy; a greater percentage denotes a more
precise method. The accuracy of the model in identifying the “most likely”” options was expressed as
top-1, top-5, and top-10 in some instances, instead of just one right response.

In order for the neural classifier to perform well in testing and real-world scenarios, it needs to be
trained on data that closely matches the samples it will face. It is common practice for human observers
to annotate a set of basic sign language symbols, words, or sentences before using them as training
data for a sign language decoding system. Following training, the model can be applied to deduce
certain sign language elements using the same structure, with different levels of accuracy. While some
research focused on finding the best feature combinations, other studies compared several classifiers
on the same tasks to see which ones performed better.

Although neural models can only generalize to the signs learnt in the training set, it is possible to
attain some degree of accuracy when it comes to individuals expressing the same sign. Consequently,
optimizing training parameters is a crucial part of SLR research that can greatly affect the solutions'
usefulness. Improving the ability to translate in real-time and understand increasingly complicated
portions of continuous sign language speech are goals of more sophisticated systems. Such uses are
far more involved than basic character recognition using sign language datasets derived from sentence
and word content. Datasets for sign language derived from other language sources are used for low
complexity systems. individual words, and they often need to use a combination of indicators to
decipher a sequence’s meaning. As a result, scientists are turning to hybrid designs and complex
sequence-to-sequence models to help them decipher subtle semantic cues and distinguish between
seemingly identical indications.

Hybrid architectures in SLR—such as CNN-RNN, CNN-GCN-Transformer, or multimodal
fusion networks—exhibit superior performance due to the synergistic interaction of multiple modeling
mechanisms, rather than a single dominant factor.

At the representational level, hybrid models benefit from complementary feature fusion. CNN-
based encoders excel at extracting dense spatial and appearance features from RGB inputs, while
GCNs capture articulated kinematic structures from skeletal data, and facial encoders model non-
manual cues. By jointly learning these representations, hybrid systems reduce information loss
inherent in single-modality pipelines. Empirically, this fusion improves robustness to background
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clutter, signer variability, and viewpoint changes, directly addressing known failure modes of RGB-
only models.

Hybrid architectures also enhance temporal reasoning by distributing temporal modeling across
different layers. Local temporal dependencies are often captured by 3D CNNs or TCNs operating on
short frame windows, while long-range dependencies and linguistic structure are modeled using RNNs
or Transformers. This multi-scale temporal decomposition allows hybrid models to align low-level
motion dynamics with high-level semantic units, which is particularly critical in continuous and
sentence-level SLR. As a result, hybrid systems achieve better sequence alignment and reduced
temporal ambiguity compared to single-stage temporal models.

A less explicit but equally important factor is implicit regularization. Hybrid architectures
introduce architectural constraints—such as separate modality streams, attention-based fusion, or
auxiliary losses (e.g., CTC combined with sequence-to-sequence objectives)—that restrict the
hypothesis space. This structured learning acts as a form of regularization, improving convergence
stability and reducing overfitting, especially in the presence of limited or biased datasets. Multi-
objective optimization further encourages the model to learn representations that are simultaneously
temporally coherent and semantically consistent.

Taken together, the performance gains of hybrid approaches arise from the joint effect of richer
representations, hierarchical temporal modeling, and regularized optimization, rather than from any
single component in isolation. This mechanistic understanding explains why hybrid architectures
consistently outperform monolithic CNN-, RNN-, or Transformer-only models across diverse SLR
benchmarks and tasks.

8. Summary of principled model and guidelines for practitioners

SLR poses unique challenges due to its reliance on fine-grained spatial cues (hand shape,
orientation, facial expression) and complex temporal dynamics (motion trajectories, co-articulation,
and long-range linguistic dependencies). Consequently, a wide range of neural network architectures
have been explored, each offering distinct advantages and trade-offs. This section provides a detailed
comparative analysis of the principal model families, focusing on their representational capabilities,
computational characteristics, and applicability to different SLR scenarios.

2D CNNs process sign language videos on a frame-by-frame basis, excelling at spatial feature
extraction such as hand appearance, facial expressions, and local texture cues. Architectures such as
ResNet and EfficientNet benefit from large-scale image pretraining, which is particularly
advantageous in SLR settings with limited labeled data. However, because 2D CNNs lack intrinsic
temporal modeling, they cannot capture motion patterns or temporal dependencies without additional
modules. As a result, they are typically combined with temporal pooling, recurrent networks, or
attention mechanisms. While efficient and easy to deploy, 2D CNN-based pipelines are best suited for
isolated SLR tasks where temporal complexity is limited.

3D CNNs extend spatial convolutions into the temporal dimension, enabling joint modeling of
space and time. Models such as 13D and SlowFast capture short-term motion dynamics directly from
video clips, making them highly effective for recognizing dynamic signs. Their main advantage lies in
end-to-end spatio-temporal feature learning without explicit temporal alignment modules. However,
this comes at a high computational and memory cost, and performance is strongly dependent on large-
scale pretraining. Additionally, 3D CNNs struggle to model long-range dependencies efficiently,
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limiting their scalability to continuous SLR tasks.

Two-stream architectures decouple spatial and temporal modeling by processing RGB frames and
motion information (typically optical flow) in parallel. This explicit separation allows the model to
emphasize dynamic motion cues that are critical for many signs. While such architectures often
improve recognition accuracy, they introduce significant computational overhead due to optical flow
computation and increased model complexity. Furthermore, optical flow can be sensitive to noise,
occlusions, and camera motion, which reduces robustness in real-world scenarios. These models are
therefore more appropriate for offline or benchmark-focused studies rather than real-time applications.

CNN-RNN hybrids combine spatial encoders with recurrent networks such as LSTMs or GRUs
to model temporal dependencies. This architecture naturally supports variable-length sequences and is
widely used in continuous SLR and sign-to-text translation systems. Recurrent models are effective at
capturing sequential patterns but exhibit limitations in modeling very long sequences due to vanishing
gradients and limited parallelism. Their performance is also highly dependent on the quality of the
extracted frame-level features. Despite these drawbacks, CNN—RNN pipelines remain a practical and
computationally efficient choice for moderate-length sequences.

Temporal Convolutional Networks use one-dimensional convolutions with dilation to model
long-range temporal dependencies in a parallelizable manner. Compared to RNNs, TCNs offer more
stable training and better scalability to long sequences. They are particularly effective for temporal
segmentation and frame-level labeling in continuous SLR. However, TCNs do not inherently model
spatial structure and therefore rely on a separate spatial backbone. Their effectiveness depends on
careful design of the receptive field to match the temporal extent of the task.

GCNs and their spatio-temporal variants operate on skeletal representations of the signer,
modeling joints as nodes and their relationships as edges. This structured representation enables
efficient modeling of kinematic dependencies and reduces sensitivity to background clutter. GCN-
based approaches are computationally lightweight and well suited for real-time applications. However,
their performance is limited by the accuracy of pose estimation, particularly for hands and fingers, and
they lack appearance-based cues such as texture and facial details. As such, they are most effective
when combined with visual feature extractors.

Transformer models leverage self-attention to capture long-range temporal dependencies and
complex interactions across frames. Unlike RNNs, they enable global temporal reasoning and flexible
multimodal fusion, making them particularly suitable for continuous SLR and sign-to-text translation.
Transformer-based models often achieve state-of-the-art performance but are computationally
expensive and data-intensive. Their quadratic complexity with respect to sequence length necessitates
efficient attention variants or temporal downsampling for practical deployment.

Hybrid architectures integrate complementary model families, such as CNNs or GCNs for local
feature extraction and Transformers or TCNs for global temporal modeling. The superior performance
of hybrid approaches can be attributed to their ability to fuse heterogeneous features, model long-range
dependencies, and introduce implicit regularization through architectural modularity. While highly
effective, these models are more complex to design and optimize, and they incur higher computational
costs.

Lightweight architectures prioritize efficiency through compact backbones, model pruning, and
quantization. These approaches trade some accuracy for real-time performance and low power
consumption, making them suitable for wearable assistive devices and edge computing scenarios.
Their limited capacity, however, restricts their ability to handle highly complex or long-duration sign
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sequences.

In summary, no single architecture is universally optimal for all SLR tasks. Instead, the choice of
model should be guided by task complexity, sequence length, available computational resources, and
deployment constraints. While CNN-based models remain effective for isolated SLR, Transformer-
based and hybrid architectures are increasingly favored for continuous and semantic-level tasks.
Lightweight and pose-based models, on the other hand, offer practical solutions for real-time and
resource-constrained applications. This comparative analysis highlights the importance of principled
architectural selection in advancing robust and deployable SLR systems. Table 7 represents a detailed
comparative analysis of neural network architectures for sign language recognition

Table 7. Detailed comparative analysis of neural network architectures for sign language

recognition.
Architecture type Key advantages Main limitations Suitable scenarios
. Lack inherent temporal o
Strong spatial feature . . . Isolated SLR with limited
2D CNNs (e.g., . . . modeling; require additional o
extraction; readily available . temporal variability; low-
ResNet, ] . ] modules for motion ] )
. pretrained weights; efficient . . data settings leveraging
EfficientNet) ] representation; may miss fine i
for frame-based processing transfer learning
temporal cues
Joint spatio-temporal ) ) ) ) )
. . . Computationally intensive; High-accuracy isolated
3D CNNs (e.g., modeling; high recognition ] . ]
o memory-heavy; require SLR; offline processing;
13D, R(2+1)D, accuracy for dynamic signs; ) T o o )
. . substantial training data; limited  datasets with rich motion
SlowFast) effective with large-scale .
. long-range temporal modeling patterns
pretraining
Explicit motion modeling; Optical flow is costly and Benchmark-oriented
Two-Stream . . . . .
improved performance for sensitive to noise; higher studies; accuracy-focused
Networks (RGB + . Lo L .
. highly dynamic signs; complexity; increased inference ~ systems where compute
Optical Flow) S . .
separate stream specialization  time cost is acceptable
Effective for variable-length ) ) o
RNNs Weaker long-range modeling Continuous SLR pipelines;
sequences; natural fit for .
(LSTM/GRU) and i . than attention-based models; low-resource systems
sequential decoding; .
CNN-RNN . . . dependent on frame-level feature  requiring moderate
. lightweight compared with . .
Hybrids quality temporal reasoning
transformers
Parallel temporal modeling; . . Framewise labeling,
Temporal . . Requires careful design for long .
. stable training; long receptive . temporal segmentation,
Convolutional o sequences; relies on separate .
fields with dilated . and continuous SLR
Networks (TCN) . spatial encoder .
convolutions boundary detection
Graph Strong modeling of joint Performance tied to pose Real-time or resource-
Convolutional relationships; efficient; robust  estimation accuracy; lacks constrained SLR; pose-
Networks (GCN / to background clutter; well- appearance cues; sensitive to centric systems; noisy
ST-GCN) suited for pose-based SLR hand/finger keypoint errors visual environments
Continued on next page
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Architecture type

Key advantages

Main limitations

Suitable scenarios

Transformers (e.g.,

TimeSformer, ViT-

Excellent long-range
dependency modeling; flexible

multimodal fusion; state-of-the-

Data-hungry; high
compute/memory cost;

challenging for on-device

High-performance
continuous SLR; sign-

to-text translation;

Temporal) art performance with adequate . .
deployment multimodal modeling
data
. Combine strengths of local and )
Hybrid Models (CNN i i More complex architecture Advanced SLR systems
global modeling; highly ) ] o
+ Transformer, GCN + . . and tuning; higher prioritizing accuracys;
adaptable; superior empirical ) . .
Transformer) computational overhead multimodal fusion tasks
performance
) ) ) ) Wearable and
Lightweight / Mobile . . Lower accuracy; require
) Suitable for on-device and real- o . o embedded SLR
Models (MobileNet + . distillation/pruning; limited
) time inference; reduced ) ) systems; smart glasses;
TCN, Tiny- . handling of highly complex
power/runtime cost . low-latency
Transformer) signs

applications

SLR tasks vary in temporal scope, from isolated signs lasting a few frames to continuous signing
over long sequences. The framework categorizes tasks into three sequence-length regimes. Short
sequences (isolated signs, 1-2 seconds): These tasks primarily require fine-grained spatial recognition
of hand shapes, orientations, and facial cues. 2D CNNs or lightweight 3D CNNs are effective here, as
they can capture local spatio-temporal features without the overhead of long-range modeling. Medium
sequences (phrases or segmented streams): Medium-length sequences demand modeling of local
temporal dependencies. Architectures such as CNN-RNN hybrids or Temporal Convolutional
Networks (TCNs) are suitable, as they can capture sequential patterns while remaining
computationally tractable. Long sequences (continuous SLR, sentence-level or sign-to-text translation):
These tasks require long-range temporal reasoning and semantic alignment. Transformers or hybrid
CNN/GCN + Transformer models are recommended due to their ability to model global dependencies
and integrate multimodal cues. Table 8 provide a summary on model selection based on sequence
length.

Table 8. Model selection based on sequence length.

Sequence length Dominant challenge Recommended architectures  Rationale

Fine-grained spatial Temporal dependencies are limited;

Short sequences . 2D CNN + pooling, 3D
and short-term motion

(isolated signs, 1-2 s) CNN
cues

local spatio-temporal modeling is

sufficient

Medium sequences . Efficient modeling of sequential
Temporal ordering and
(phrases, segmented

CNN + RNN, TCN patterns with moderate temporal

local context

streams) span
Long sequences Long-range . Self-attention enables global
] Transformer, Hybrid ]
(continuous SLR, dependency and temporal reasoning and language-

CNN/GCN + Transformer

sign-to-text) linguistic structure level modeling

Practical deployment scenarios impose constraints on compute resources, memory, and energy.
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The framework incorporates computational considerations to guide architecture selection. Low-budget
environments (edge devices, wearable assistive systems): Lightweight GCNs, CNN-TCN pipelines,
or pruned CNNs are recommended to ensure real-time performance with minimal energy consumption.
Medium-budget environments (desktop or interactive setups): CNN—RNN hybrids, TCNs, or compact
Transformers provide a balance between accuracy and efficiency. High-budget environments (server-
scale offline analysis): 3D CNNs, full Transformers, or hybrid architectures achieve state-of-the-art
accuracy at the cost of higher compute and memory requirements, suitable for offline processing and
high-fidelity translation tasks. Table 9 summarizes the model selection based on computation budget.

Table 9. Model selection based on computation budget.

Computational budget ~ Deployment context Suitable model families Trade-off

Smart glasses, mobile GCN (pose-based), Lower accuracy but real-time
Low (edge, wearable) ) ] ) )

devices lightweight CNN + TCN and energy-efficient
Medium (desktop Interactive systems, lab CNN-RNN, TCN, Balanced accuracy and
GPU) setups compact Transformers efficiency

. . 3D CNNe, full i
. Offline analysis, . Highest accuracy at the cost of

High (server-scale) . Transformers, hybrid

translation systems del compute and memory

models

By combining sequence length and computational budget, the framework yields clear
recommendations for model selection. Real-time, low-power applications: Favor pose-based GCNs or
lightweight CNN-TCN pipelines. Moderate accuracy and flexibility: Use CNN-RNN or TCN
architectures for medium-length sequences. High-performance continuous SLR: Adopt Transformer-
based or hybrid architectures for long sequences requiring semantic-level understanding. Multimodal
fusion: Where RGB, skeletal, depth, and facial modalities are available, hybrid models with attention-
based fusion provide the most robust performance, despite higher computational cost.

This framework provides a systematic and task-driven approach to model selection, overcoming
the limitations of purely descriptive surveys. It allows practitioners to make informed decisions based
on task complexity, sequence length, modality availability, and computational constraints, ensuring
both practical feasibility and high recognition performance. Based on the proposed principled
framework, the selection of neural network architectures for SLR should be guided by task
requirements, temporal complexity, and resource constraints. For scenarios where latency and power
consumption are critical, such as wearable devices or edge applications, pose-based GCNs or
lightweight CNN-TCN pipelines are recommended due to their efficiency and real-time capability.
When moderate accuracy and flexibility are desired, CNN—RNN hybrids or TCN-based architectures
provide a balanced trade-off between performance and computational cost, making them suitable for
interactive or desktop systems. For tasks requiring long-range temporal reasoning and linguistic
understanding, such as continuous sign-to-text translation or sentence-level SLR, Transformer-based
or hybrid architectures are most appropriate, offering superior modeling of global dependencies.
Finally, when multimodal cues—including RGB video, skeletal pose, and facial expressions—are
available, hybrid models that integrate these streams provide the most robust recognition performance,
albeit at higher computational complexity. These guidelines enable practitioners to select architectures
systematically based on operational constraints and task-specific priorities.
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9. Challenges and future directions

The most noticeable flaw, after going over a lot of SLR studies, is how disjointed the research is
in this area. Although several research teams have come up with promising outcomes utilizing different
methodologies, there isn’t much overlap between these studies and the use of numerous effective
instruments together is taking its sweet time to emerge. One potential roadblock to improving practical
results is the absence of a widespread agreement on the most important properties and the best neural
network architecture.

Continuous sign language voice recognition is still quite difficult, and even the most advanced
automated systems have trouble understanding the subtleties of spoken sign language. This might be
due, in part, to the fact that the majority of accessible datasets have very small vocabulary sets and
very basic sentences, whereas training models for complex language tasks need much larger libraries
with a wide variety of samples. It is still very difficult for automated systems to understand sign
language communication. It turns out that the reasons machines still can't reliably decipher sign
language sequences aren’t as black-and-white as they are initially.

It is challenging to describe any natural language in a mathematical style that computers can be
programmed with due to the complicated interplay of many laws and relationships. This clarifies why
the latest SLR tools perform admirably with alphabetic characters and basic sentences and phrases,
yet.... State-of-the-art sign language recognition accuracy results. has difficulty managing tales and
conversations that go on indefinitely. Given the field’s social relevance, some of the most prestigious
academic institutions in the world devote substantial resources to improving its current state. One may
make the case that the next time frame is essential for removing some of the roadblocks to faster
advancement.

Although some of the examined models concentrate on RGB images with a higher level of
information to enable efficient SLR, most of them use depth imaging. Data presented in a sequential
style has also proven valuable, particularly for scene and object tracking as well as skeletal position
data. While thermal imaging isn't often used for SLR, it can provide value when paired with more
fundamental data types like pictures. At the sign level, we have static signs and dynamic signs, with a
subgroup of dynamic signs utilized in continuous SLR. Consistent with recent tendencies, research
into complex signs and continuous video is likely to take center stage in the near future. Everything
seems to be setting up for this change of emphasis to take place.

An ongoing problem in SLR research is the absence of reliable input databases of high quality.
Researchers from smaller nations do not have access to the samples necessary for training and testing
models. The only large and diverse datasets accessible are for American Sign Language and a few
other varieties, such Chinese or Indian. This is beginning to change, though, as more and more research
into SLR is conducted and resources are amassed to support future waves of studies.

Although things are looking up, it’s still not easy to test out more complex applications that call
for big vocabularies in order to show how well current or future methods work. Meanwhile, more
proactive resource sharing and direct collaboration across research teams could significantly alleviate
current challenges and set a precedent for more effective networking. An international concerted effort
is necessary to find a solution to the problem of sign language recognition, which affects people all
over the globe.

However, sign language is highly variable among regions, with each using its own distinct set of
hand and facial motions to convey meaning. Therefore, it is very evident that high-quality datasets
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incorporating all relevant input modalities are required. Until recently, there weren’t enough properly
labeled sets of hand signs to conduct outside testing of SLR gear, but that’s starting to change. In the
long run, we hope that better datasets will make it easier to create SLR models that have real-world
applications. This requires the labeling of lengthier segments of sign language discourse rather than
the current practice of labeling individual pieces.

To put it simply, in order for newly created approaches to become a reality, fresh datasets should
reflect the diversity of sign language communication. Modern SLR techniques should have little
trouble processing lengthy sequences of signs, as real communications are continuous and
unconstrained. Now that deep learning networks are becoming more widely used, this lofty objective
may be within reach very soon.

Despite numerous research have tackled this subject, there are still numerous challenges that must
be resolved. When attempting to characterize numerous human body components, it can be helpful to
integrate attributes. Data might come in various forms, including text, photos, depth and skeleton
information, etc., which makes this problem more difficult to solve. Better feature engineering and, by
extension, a more precise model, can be achieved by merging portions of this data. These
characteristics are most prominent on the hands, face, and trunk of the body. Imperfect models that
misinterpret some indications can be the outcome of focusing just on hands. Detecting the position of
the hand, estimating its shapes and motions, tracking its movement in real time, and similar activities
are all important for success in this area, but they can all be challenging in their own ways.

To illustrate the point, signers' hands can vary greatly in size and shape, and yet, fingers can
appear very similar and even obscure one another at times. Light levels and other environmental factors
can play a role. When dealing with low-resolution input photos, obstacles in the way, or complex
gestures that need analysis, these problems become much worse. Researchers use feature fusion to
incorporate face traits into the mix, which helps to relieve some of those problems.

Conversely, there are unique difficulties associated with using sign language, such as the partial
blocking of important areas caused by the fast movement of the neck and face. Additionally, the third
set of traits, which pertain to the signer's body, can be incorporated to enhance recognition even further.
Therefore, more generalizable models that may draw on data from many anatomical regions are
preferable and should serve as the basis for further studies.

The field of isolated SLR has shown significant progress in training algorithms to detect
individual alphabetic signs or words; however, continuous SLR, which requires interpretation of longer
segments of speech, has not been as fruitful. Because of the importance of sign-to-sentence linkages
in determining sentence meaning, this task cannot be boiled down to gesture recognition alone. When
complex semantic subtleties need to be analyzed, current efforts to build continuous SLR capacity
often fail and show only limited effectiveness.

Among the many active areas of SLR research, this will undoubtedly remain a focal point as
researchers seek a configuration that may circumvent the obstacles impeding the development of
powerful new tools. In light of the present state of the art, we anticipate that future studies will center
on more elaborate neural network models with many layers and different compositions of layers used
to increase processing power.

Any technology aiming for commercial use and public trust must possess exceptional reliability
(>99%) and consistency. Current SLR apps, on the other hand, still indicate a tiny but consistent
number of false positives and false negatives, thus this isn't the case. Very few SLR technologies are
currently being used in practice since the rate of erroneously detected objects grows with the
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vocabulary size and task complexity.

Small teams frequently lack the resources to conduct large-scale testing or extensively refine
training strategies; therefore, although some proposed solutions are conceptually sound and promising
for further development, they are often preliminary and insufficiently validated. The next step is to
rally more people behind the cause and collect enough money and materials to optimize accuracy at a
high level. The systems need to be evaluated in a range of environments and be able to produce usable
findings despite less-than-ideal external conditions, such as input photographs captured in low-light
situations.

The ability to meaningfully connect observed hand and body gestures to set units of sign language
has long been the focus of scientific inquiry. Although this is reasonable for a preliminary scientific
investigation, more focus on the usability aspect is required moving forward. Modern systems are far
more efficient and may incorporate as few as a handful of small cameras, in contrast to earlier SLR
solutions that necessitated sensors worn on the body and other cumbersome apparatus.

Another area that needs more future attention is user-system interaction, namely how to give users
some say over the software that their computers run. Making sure user opinions are acknowledged and
having a system in place to quickly find frequent mistakes are both critical. There has been a resurgence
of interest in SLR research since the last discovery period, and numerous conflicting theoretical
postulations have emerged as a consequence.

Despite widespread agreement that deep learning networks are the best technology to solve this
challenging language challenge, a long way still to go before completely automated systems can
comprehend live streams of sign language conversation. Some of the known solutions will likely reach
a virtually ideal level of maturity in the next decade, and a big breakthrough could happen at any point.
More innovative and useful mainstream applications will undoubtedly appear as SLR technologies
improve in reliability; these will directly benefit the global population of hearing and speech-impaired
people.

While existing studies identify broad challenges in SLR, meaningful progress requires the
definition of concrete and measurable benchmarks. A first critical research target is signer-independent
continuous SLR at scale, where future models should aim to achieve 75%—-80% accuracy (or <25%
word error rate) on large-vocabulary datasets (>1,000 glosses) under strictly disjoint train - test signer
protocols. Such a benchmark directly addresses the current generalization gap and emphasizes learning
signer-invariant linguistic representations rather than appearance-specific cues. Complementarily, a
second benchmark should focus on real-time deployability, requiring models to maintain 65%—70%
signer-independent accuracy while satisfying practical constraints, including sub-50 ms inference
latency per frame, model sizes below 50 MB, and power consumption under 5 W on edge-class
hardware. Together, these benchmarks shift the evaluation paradigm from isolated accuracy
improvements toward holistic system-level performance, aligning future SLR research with real-world
assistive and interactive applications and enabling more rigorous, reproducible comparisons across
methods.

Although visual information remains the primary input for most Sign Language Recognition
systems, reliance on RGB or depth data alone often limits semantic expressiveness and robustness.
Sign languages convey meaning through a combination of manual gestures, non-manual markers
(facial expressions and body posture), and linguistic context, creating a semantic gap between observed
motion patterns and intended meaning. To address this gap, recent research trends point toward
multimodal integration frameworks, where visual features are augmented with skeletal pose, facial
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landmarks, inertial sensor data, and explicit linguistic representations. Within such frameworks,
multimodal Large Language Models (LLMs) offer a unifying abstraction by aligning heterogeneous
sensory embeddings with language-level semantics through shared latent spaces and cross-modal
attention mechanisms. Visual encoders (e.g., CNNs, GCNs, or Transformers) extract modality-specific
features, which are then fused and projected into a language-aware representation space guided by
pretrained linguistic knowledge. This integration enables higher-level reasoning, contextual
disambiguation, and semantic consistency across long sign sequences. Consequently, multimodal
LLM-driven architectures represent a promising direction for moving beyond gesture classification
toward semantically grounded sign language understanding and translation, particularly in continuous
and large-vocabulary SLR scenarios.

10. Conclusions

This review highlights the critical role of Al-driven pattern recognition systems in advancing SLR
and improving communication accessibility for individuals with hearing and speech impairments. The
study systematically examined state-of-the-art deep learning and machine learning models, identifying
CNNs, RNNs, and hybrid neural architectures as leading approaches for gesture and speech pattern
recognition. These models have demonstrated high accuracy in recognizing sign language, but their
effectiveness is often constrained by data limitations, processing requirements, and adaptability across
different linguistic and cultural contexts.

Despite notable progress, key challenges persist, including data scarcity, generalization issues,
and real-time inference limitations. The lack of large, diverse datasets representing multiple sign
languages hampers the ability of Al models to generalize across different users and regional variations.
Additionally, the high computational cost of deep learning-based models poses a barrier to real-time
SLR deployment on resource-constrained devices. Current solutions often require cloud-based
computation, which introduces latency issues and limits accessibility in low-connectivity
environments.
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