AIMS Mathematics, 11(2): 3811-3838.
DOI: 10.3934/math.2026155
ATMS Mathematics Received: 28 October 2025

Revised: 19 January 2026

Accepted: 23 January 2026
https://www.aimspress.com/journal/Math Published: 09 February 2026

Research article

Periodic solutions and asymptotic properties of first order linear
nonhomogeneous neutral delay differential equations

Ali Fuat Yenicerioglu'-*Vildan Yazici> and Ciineyt Yazic1!

! Department of Mathematics, The Faculty of Education, Kocaeli University, Kocaeli, 41001, Turkey

2 Department of Computer Engineering, The Faculty of Engineering and Natural Science, Kocaeli
Health and Technology University, 41275, Kocaeli, Turkey

* Correspondence: Email: fuatyenicerioglu@kocaeli.edu.tr.

Abstract: This article concerns first-order linear nonhomogeneous neutral delay differential equations
with periodic coefficients and constant delays, where the coeflicients share a common period and the
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1. Introduction and Preliminaries

Neutral delay differential equations (NDDEs) are a type of delay differential equations,
characterized by the incorporation of temporal delays within the derivative terms of the state variables.
NDDEs demonstrate broad applicability throughout multiple disciplines in scientific and engineering
contexts [1, 2]. As an illustration, a previous study [2] introduced a feedback control mechanism
designed for system output stabilization. A further implementation was demonstrated in another study
[3], which employed a NDDE framework for modeling real-time dynamic substructuring experiments.
In particular, these researchers [3] revealed excellent correspondence between theoretical predictions
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and empirical observations. Another piece of research [4] used linear NDDEs, which provide a
more accurate representation of an Escherichia coli bacterial population’s growth than conventional
exponential growth models. Many results on NDDE theory are given in the books by Kolmanovski
and Myshkis [5], and Hale and Verduyn Lunel [6].

Inspired by the pioneering work of Frasson and Tacuri [7], the aforementioned authors showed
the application of Floquet Theory to NDDEs for the case where the delays are denoted as integer
multiples of the common period of the periodic coefficients. Additionally, for the solutions of first-
order NDDE:s, they obtained asymptotic behaviors. The authors of a previous study [7] investigated
the asymptotic behavior of solutions to linear homogeneous equations by calculating the resolvent of
the monodromy operator. In this article, we obtain the asymptotic behavior and an estimation of the
solutions of a linear nonhomogeneous equation using a suitable real root of the characteristic equation.
Further recent outcomes were presented by Philos and Purnaras [8, 9]. The asymptotic behavior of
solutions to first-order linear NDDEs with periodic coefficients and constant delays that are multiples
of the common period was considered in a previous article [8]. It is worth noting that in this article, we
extend the results obtained in the aforementioned article [8] to nonhomogeneous differential equations.
The authors of [9] established both lower and upper estimates for the solutions through two admissible,
distinct real roots of the pertinent characteristic equation. Presenting a study similar to the one in the
article mentioned above [9] for periodic linear nonhomogeneous NDDEs will be the subject of a future
study. These articles [7-9] inspired the form of the equation under consideration here.

This paper aims to obtain periodic solutions of a first-order nonhomogeneous linear NDDE, in
which the coeflicients are periodic and have constant delays, a common period exists for these
coefficients, and the delays are multiples of the aforementioned period. Furthermore, utilizing a
real root of the characteristic equation corresponding to this (with a suitable property), we obtain
the asymptotic behavior for solutions of the given equation and construct an estimate of the solutions.
The results given in a previous study [10] extended and improved some important results obtained by
Farkas et al. [11] on the periodic solution and asymptotic behavior of a first-order linear (non-neutral)
differential equation with a constant delay, as well as periodic coefficients. In addition to this, another
important result given in the article in question [10] set an exponential estimate for the solutions.
In this article, we extend the results obtained in these articles [10, 11] to nonhomogeneous linear
NDDEs. It should be noted that, to the best of the authors’ knowledge, periodic solutions of linear
nonhomogeneous NDDEs have not been obtained analytically in the existing literature. In summary,
recent results for periodic first-order linear (non-neutral) delay differential equations, given by Farkas
etal. [11] and by Yenicerioglu and Yazic1 [10], can be derived (as a special case) from the results of this
paper. The techniques we apply to obtain our results originate from a combination of the methods used
in previous work [8—11]. In the article by Li, Jin and Zhang [12], interesting results were obtained
regarding the existence of nonoscillatory solutions for a class of higher-order nonlinear differential
equations.

In general, the theory of NDDEs presents some additional complexities not found in the
corresponding theory of delay differential equations. Therefore, extending the results related to
homogeneous delay differential equations to nonhomogeneous NDDEs is not easy.

This article consists of four sections: Section 1 provides an introduction to and preliminaries
on first-order linear nonhomogeneous NDDEs containing periodic coefficients and constant delays,
where the coeflicients share a common period, and the delays are multiples of this period. Section
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2 presents periodic solutions of the given equation using the variation of parameters method. These
periodic solutions are expressed analytically, and two examples are given. Section 3 demonstrates
the asymptotic behavior of the solutions of the given equation and then derives the estimates of the
solutions. Three examples are shown at the end of the section. The final section presents a special
case of linear nonhomogeneous NDDEs with constant coefficients and constant delays, and provides
an example.

Consider the following neutral delay differential equation:

/
u(x)+ Y du(x = o)| +a(u(x) + Y Bixulx = 7;) = h(x), (1.1)
iel iel
where / is the initial segment of natural numbers; d; for i € I are real numbers; h, @ and 5; for i € [ are
continuous real-valued functions on the interval [0, o); o; for i € I represents positive real numbers
such that o;, # o, foriy,i, € I with i; # i; and 7; for i € I represents positive real numbers such that
T, # T, foriy,ip € I with i # i,. Assume that at least one of the functions §; for i € I is not identically
zero on [0, o). Moreover, suppose that the coeflicients @ and §; for i € I are periodic functions with a
common period P > 0 and positive integers n; for i € I and m; for i € I exist such that o; = n;P and
T, =mPforiel.

We define

T=max7; and o = maxo;,
i€l iel

and consider the positive real number
v = max{rt, o}.

As known, a continuous real-valued function u defined on the interval [y, o) will be called a
“solution” of the NDDE (1.1) if the function u(x) + };;; diu(x — o;) is continuously differentiable for
x > 0 and u satisfies (1.1) for all x > 0.

Along with the NDDE (1.1), it is customary to specify an “initial condition” in the following form:
u(x) =yY(x) for —y<x<0, (1.2)

where the initial function ¢ is a given continuous real-valued function on the interval [—y, 0] satisfying
the “consistency condition”

W)+ ). ' (o) + OW(0) + ) BOW(-T) = h(0).
iel iel

Equation (1.1) and initial function (1.2) constitute an “initial value problem” (IVP). It is well known
(see, for example, Hale and Verduyn Lund [6]) that there is a unique solution u of the NDDE (1.1)
which satisfies the initial condition (1.2); this unique solution u will be called the solution of the IVP
(1.1)—(1.2).

In the case of the function 4 being identically zero on the interval [0, co0), the NDDE (1.1) is reduced
to

’

u(x)+ Y du(x = o)| +a(u(x) + Y fixulx 1) = 0. (1.3)

iel iel
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The following notations are used in this article:

1 1 (f
a= —f a(x)dx and b; = —f Bi(x)dx for iel.
P Jo P Jo

We also associate the following equation with the differential equation (1.3):

L (1 £y die_"""] fa+ ) bt =0, (1.4)

i€l i€l
which will be called the “characteristic equation” of (1.3). Sufficient conditions for obtaining the real
roots of the characteristic equation (1.4) are given by Philos and Purnaras [13, Chapter 3].

In the following parts, we use & and 3; for i € I to denote the P-periodic extensions of the coefficients
a and B; for i € I, respectively, on the interval [—y, o). Furthermore, for the real root y, of (1.4), by
Puo» We use the continuous real-valued function defined on the interval [—y, o) to denote follows:

Puo(x) = &(x) + Y Bix)e™ ™ for x > —y. (1.5)
i€l
Now, we set up some equalities needed below. For each index i € I, we can use the assumption that
the function B,- are P-periodic and that 7; = m;P and o; = n;P to solve for x > O and i € [

X T Ti P
f Bi(s)ds = f /5’,~<s>ds:[l f /i-(s)ds]n:[l f @(s)ds]n:b,-n.
X—T; 0 Ti Jo P 0

Bi(s)ds = b,o;.

X—0

We can verify that for every x > Oandi € /

) Bi(s)| ds = by, (1.6)
[ Bl

Similarly

where
- 1
b; = —f |Bi(s)| ds foriel.
P Jo
We clearly have
|bi| < b; foriel.
Moreover, we have |b;] = b; for i € I in the case where each one of the coefficients Bifori e Iis

assumed to be of one sign on the interval [0, co).

Our goal in this paper is to obtain periodic solutions of the NDDE (1.1) when the function 4 is
P-periodic, as well as to obtain an asymptotic criterion and exponential estimates of the solutions of
Equation (1.1).

The principal findings of this work are given together with the proofs of the first theorem in Section
2 and the two theorems in Section 3. In Section 4, the main results are applied to the special case of
nonhomogeneous constant coefficient NDDEs.
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2. Periodic solutions

In this section, we establish conditions under which Equation (1.1) has a periodic solution. We
assume that £ is always P-periodic, even if this is not explicitly stated. Consider the equation

u' (x) + a(x)u(x) = 0. 2.1

As known, the general solution of Equation (2.1) is

u(x) = c exp {— fx a/(s)a's},
0

where c is a constant. We apply the variation of constants formula to find the solution of (1.3). Suppose
that

u(x) = c(x) exp {— fx a(s) ds} , 2.2)
0
where
Al a(x), x>0,
ax) = { a(x+7y), —-y<x<0,

is a solution of (1.3). Replacing (2.2) into (1.3) yields the condition

c(x) + Z d;(¢'(x — o)) —a(x) ¢ (x — 07;)) exp {fx a(s) ds}

i€l

x (2.3)
+ Z Bi(x) ¢ (x —T;) exp { f a(s) ds} =0
iel X=Ti
for all x > 0 on c(x).
We define
b(x) = > B,
i€l
where
Ao ) Bix), x 20,
pix) _{,Bi(x+y), —y<x<0.
Suppose that (2.3) has a solution of the form
c(x) = exp {fx (A a(s) + A,b(s)) ds} . 2.4)
0

Then, from (2.3), we obtain

(La(x) + 2b(x)) + Z d; [(ﬂl&(x —0;) + Lb(x — 0;)) exp {— fx (A1a(s) + A2b(s)) ds}

iel

—a(x)exp {— fx (A1a(s) + A:b(s)) ds}] exp {fx &(s)ds}
+ Zﬁi(x) exp {— fx (a(s) + A2b(s)) ds} exp {fx &(s)ds} =0

iel i
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or

(16(x) + b)) + Y di iéx = ) + dab(x = ) = ()| exp { f (= ) a(s) - b(s) ds}

iel 0

+ D B exp{ ((1 = 21) &(s) = Aab(s)) ds} = 0.

iel AT

Since the functions @ and b are P-periodic, from the last equation, we have

(L) + Lb() + D df (1 = D a(x) + 2b(x)| exp { f (1= ) als) = Ab(s)) ds}
icl 0
(2.5)

s Yp@en] [ (@@= a0at) - bbndsy =0
0

iel
Next, for each index i € I, we assume that @ and S; are P-periodic and that o; = n;P to solve for x > 0

fm [(1 =2 a(s) — Ab(s)]ds = {i fi a’s} O
0 g Jo
1 P
= {;, f (1= a(s) —AZZﬁ,(s)] ds} o
0 iel
1 f 1 *
= {(1 -A) ;)I) a(s)ds — A, ; [Fﬁ ,Bi(s)ds]}a'i
- l(l —/ll)a—/IZZb[]oy-.

i€l

(1= a(s) = o ) Bi(s)

i€l

Similarly, for each index i € I, we assume that @ and §3; are P-periodic and that 7; = m;P to solve for
x>0
f [(1 - ) a(s) = Lb(s)]ds = [(1 —)a-h )y b,} 7.
0 iel

Thus, from (2.5), we obtain

(1-2) a—/lZZb,}o-i}

i€l

(L(x) + b)) + > di| (1 = D alx) + Lb(v)] exp{

i€l
+ > Bilx)exp {[(1 —A) a-A ) bi] T,-} =0
i€l i€l
or, by taking the definition of b into account, we get

a(x) (/ll (=1 d; exp{ (I-a)a-a ) bi] 0',})

i€l i€l

) (ag +h Y d exp{ (1-A)a-2 ) bi] 0',-} (2.6)

i€l i€l i€l

+exp {[(1 —)a-h )y b,} Tl}] = 0.

iel
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If we assume that a(x) # 0 and }},.; Bi(x) # O for x > 0 and
(1=A) a=A ) b=0 2.7)
i€l

hold. Then, from (2.6), we get

A+ - 1)Zdi =0 and /12+/122d,~+1 = 0.
i€l i€l
From both equations, we obtain

Ziel di 1

ﬂ = d /l = - 5
1 o ? L+ e di

1+ Dicr di

where };.; d; # —1. If we substitute these values (2.7), we get the following condition:

a+ Z b, = 0. (2.8)

Moreover, by taking the definitions of 4; and A, into account, from (2.4), it follows that

1 X
c(x) = exp {m fo [d/(s) > di- b(s)} ds}

iel

is a solution of (2.3). Hence, from (2.2), it follows that

1 x
u(x) = k exp {—m f (&(S) + b(S)) dS} , (29)
iel “i Jo

where k is a constant, is a solution of Equation (1.3). Furthermore, due to Condition (2.8), it can be

easily seen that
als) + E ﬂ, $)|ds = 0,

i€l
where

w = min {min T;, min 0',} .
iel iel

Then (2.9) is a w-periodic solution of Equation (1.3).

We now turn our attention to the original nonhomogeneous equation (1.1). By implementing the
variation of parameters method once more, we postulate that Equation (1.1) possesses a solution
expressed in the following form:

1 X
MP(X) = K(.X) exXp {—m f [d’(S) + b(S)] dS} . (210)
iel %i Jo
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Using the condition (2.8), substituting (2.10) into (1.1) gives the equation

K'(X) - #ﬂdl [a(x) + b(x)] K(x)
+ IEZI d {K’ (x—0y) - #ladz [a(x) + b(x)] K (x— U'i)}

X exp {#le]dl f:m [@(s) + b(s)] ds} + a(x)K(x)

+ D BOK (x =) exp {ﬁ f _ [a(s) + b(s)] ds}

iel

l X
= h(x) exp {m L [a(s) + b(s)] ds}

or
v Zie[ di 1 Ziel di
K'(x) + ma(x)l((x) + ;ﬁi(x) [K (x—71)— mK(X) - mlf(x - O'i)]
+ ; d; [K (x—0) Zzel — (WK (x- a,.)]

1 X
= h(x) exp {m j(: [a(s) + b(s)] dS} .

The substituted (2.10) is a periodic solution of (1.1) if and only if K(x) is periodic. However, this
indicates that K(x) = K(x — ;) and K(x) = K(x — o) so the differential equation for i € I, and thus,
taking into account that it will be K’(x) = K’(x — o), the last differential equation for K is

K'(x) + Z diK'(x) = h(x) exp{ .3 f [a(s) + b(s)] ds}
tEI

i€l

or

4 — 1 1 y
K (x)= o5 4 5 dih(x) exp{—1 S d j(; [a(s) + b(s)] ds}.

It follows that

K(x) = #ﬂdl j: h(v) exp{#iddi ‘fov [a(s) + Z,Bi(s)]ds}dv. (2.11)

iel

Specifying that this function is the integral of a w-periodic function, one can observe that it is a w-
periodic function if and only if

) 1 vV
h - -
\fo (v)exp { 1+ e d; fo

Substituting (2.11) into (2.10), the following result is obtained.

iel

a(s) + Zﬁi(s)] ds} dv =0.
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Theorem 1. Suppose that a(x) # 0, Y ;c; Bi(x) # 0 for x > 0, and ) ;c; d; # —1. Assume that

a+Zb,-:0,

i€l

1 1 (r
a:—f a(s)ds, bi:—f bi(s)ds, i€l
P Jo P Jo

) 1 1%
f(; hv) exp { 1+ Y di ‘E

@ = min {min T;, Min 0',-} .
i€l iel

where

Assume also that

als)+ ) ﬁ,-(s)] ds} dv =0,

iel

where

Then, for each k € R, we have

1 X
el g g |
1€ l

a(s +vy) + Z,Bi(s + )/)} ds} +up(x), x=-v,
where

i€l
1 X
MP(X) = exp {—mf dS}
iel %i JOo

x {ﬁ fo " h) exp{ﬁ fo v [a/(s Y Bls+ y)]ds}dv}

iel

a(s+7)+ ) Bils +7)

i€l

is a w-periodic solution of Eq (1.1).

Example 2.2. Consider

Wx)+u'(x—=1)—u'(x—=2)— Q2+ sin2rx)u(x) + (1 + sin2xx)u(x — 1) 5 1o
+ (1 + cos 2ax)u(x — 2) = cos2nx, x> 0. (2.12)

In this equation, 37, d; = 0 # —1, a(x) = —(2 +sin27x) # 0, and Y7, B,(x) = 2 + sin27x +
cos2nx # 0 for x > 0. Since a = [ (-2 - sin2ns)ds = =2, by = [ (1 + sin2ws)ds = 1, and

b, = fol(l + sin2ns)ds = 1, we have a + by + b, = 0. Also, since w = 1, we get

1 v 1
1
f h(v) exp {f (cos2ms) ds} dv = f (cos 2mv) exp {—sinZ:rv} dv =0.
0 0 0 2n

Thus, the conditions of Theorem 1 are satisfied. Then, for each k € R, we have

1
u(x) = k exp {—Z—Sinsz} +up(x) for x>-2,
Vi
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where
| 1 .
up(x) = expy—=—sin2nxp|exps —sin2nxy —1].
2 2
Thus, for each k£ € R, we have
L .
u(x) =(k—1)exp {—2—szn27rx} +1 forx>-2
i

is a 1-periodic solution to Equation (2.12).
Example 2.3. Consider

2 in2
u'(x)+u'(x—m+ (1 - cos2 x) u(x) — (1 - sz x) u(x —m) = cos2x —sin2x, x>0. (2.13)

In this equation, d; = 1 # =1, a(x) =1- 2 %0, and Bi(x) = -1 + %= % 0 for x > 0. Since
a= lfo ( —COSZ’C) s=1,and by = 7—1rf0”(—1+%)ds:—1,wehavea+b1 = 0. Since w = 7, we

get
i 1 (Y {sin2s — 2
f(cost—sinZv)exp{—f(M)ds}dv:o.
0 2 Jo 2

Thus, the conditions of Theorem 1 are fulfilled. Then, for each k € R, we have
1 .

u(x) =k exp {g(cos 2x —sin2x — 1)} +up(x) for x> -m,

where
1 .
up(x) = -2 (1 —exp {g(cos 2x —sin2x — 1)}) .
Thus, for each k € R, we have
1 .

u(x) = (k+2)exp {g(cos 2x —sin2x — 1)} -2 forx>-n
is a m-periodic solution to Equation (2.13).
3. An asymptotic result and estimation of the solutions

The main results of this section are presented in Theorems 2 and 4. Specifically, Theorem 2

establishes an asymptotic criterion for the solutions of the linear nonhomogeneous NDDE given by

(1.1), while Theorem 4 provides an estimate for the solutions of the same equation. Examples are
given at the end of this section.
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Theorem 2. Assume that « and 3; for i € I are periodic continuous real-valued functions having a
common period P > 0, and that h is a continuous real-valued function on interval [0, o). Suppose
that g be a real root of the characteristic equation (1.4) and set

Fﬂo =1+ Zdie_#OO'i. (31)
i€l
Let the root uy satisfy
Z |dil (ll“#0| + Gﬂocri) e "% 4+ Ty, Z bTie o

i€l i€l

00 1 S
+|I“#0|f |h(s)| exp [r—f PuoWV)dv
0 Mo JO

where G, = % fOP lou, ($lds, and also p,, and b; are defined as in (1.5) and (1.6), respectively. Then,
for any ¢ € C([—y, 0], R), the solution u of the IVP (1.1)—(1.2) satisfies

lim {u(x) exp[ri f ) p,,o(s)ds]} = Lnl®) (3.3)
X—00 0

o 1+ &

(3.2)

ds < Ty,

where

—HoT 0 1 s
L) =¢(0) + Z d; {lﬁ(—a'i) + f _Puo(s)'ﬁ(S) exp [F_ fo Pﬂo(v)dv]ds}

5 r 0 o 0
o 1 ﬂ s 0 # (" G
_ Z e HoTi f Bl(s)w(s) exp [— f pﬂo(v)dv]ds + f h(S) exXp [_f pﬂO(V)dV]dS
iel -7 r,uo 0 0 rﬂo 0
and
Eup = Z [d; (1 = poory) €7 = biTie ™| (3.5)

i€l
Proof. From (3.2), it follows immediately that
ol Y ldide ™ <Dyl e (1= D ldie ™) > 0.
i€l i€l
Therefore, we always have
1= > ldle ™ > 0.
i€l
However, from (3.1), we get
T =1+ ) die™ > 1 — |d e

i€l

and, consequently, I',; is necessarily positive. Hence, (3.2) becomes

G o I a 1 y
Puo = Z |di|(1 + F_/‘Oo-l.)e Hooi 4 ZI byt et +j(; |h(s)| exp [FL pﬂo(v)dv]ds < 1. (3.6)
1SS

i€l Ho Mo
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In what follows, we proceed to establish several equalities that are essential for the subsequent
developments. The P-periodicity of the functions & and j; for i € I implies that the function Puo 18
also P-periodic. Therefore, accounting for fact the that o; = n;P for i € I, we solve fori € [ and x > 0

f Puo(8)ds = L lpﬂo(s)ds —f pm(s)ds] o= [ f pyo(s)ds] O
| L d ds|e ™
= {[;L a(s) s_ + ; f Bi(s) s] e }
= (a + Z b;e ™% o).

iel

Thus, since y is a root of (1.4), we have

1 X
iR f Pu($)ds = —upo;  forevery x >0 andallie€ /. 3.7
Ho Jx—0o

In similar way, considering the fact that 7; = m;P for i € I and again using the hypothesis that y is a
root of (1.4), we can obtain

X

1
T Puo(8)ds = —pot; forevery x >0 andallie€l. (3.8)

Ho Y x—7;

Moreover, again, by taking the fact that o; = n;P for i € I into account, we get for i € I and x > 0, we

get
[ puslas= [peolas=[= [T puolasfoi=[5 [ louol sl

So, it holds that
f |p#0(s)| ds = G,o0; foreveryx>0 andalliel. (3.9

By using (3.7) and (3.9) for a point x = xy, > 0 and an index i € I, we obtain

fxo (5)d 1 f o5 ds = 22
Puo(8)ds 0, ()| ds = ,
Xo—0, o L0y Xo—0, . Ly

1.e., |uol < % Thus, using (1.6) and (3.5), we have
Ho

<

|10l =

r,o

o io

|§”°| = Z (il (1 + |poloy) €777 + |bj|Te7H07]

iel

< Z [ld | (1 + 2o, ) €M7 4 by T

iel

(o) 1 (o)
+ f |h(s)| exp [F_ f pﬂo(v)dv] ds = @,
0 Mo JO

where ¢, 1s defined as in (3.6). We have thus proved that |§”O| < ¢,,- Nevertheless, in view of (3.6),
¢y, < 1 and thus we always have 1 + ¢, > 0.
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Now, consider an arbitrary function ¥(x) € C([-y,0],R). Let u be the solution of the IVP (1.1)-
(1.2) and define

y(x) = u(x)exp {rL prﬂo(s)ds} for x> —y.

Ho
By using (3.7), for every x > 0, we then obtain

1 * 1 "
u(x) + Z diu(x — o) = {y(x) + Z diy(x — o) X exp [F— f pﬂo(s)ds] }exp [—F— I) pﬂo(s)ds]
Ho X—0

iel iel Ho

1 X
Y0 + > dieoTy(x — O-i)] exp [—r— fo pﬂo(S)dS] ;

i€l Ho

and by virtue of (3.8), for any x > 0, we get

1 x 1 x
Zﬁi(x)u(x—ri)={Z,Bi(x)y(x—Ti)eXp[r— | pm(s)ds]}exp - [ pwras
po Jx-1;

iel i€l -7 Ho
1 X
= [Zﬁi(x)ew”yu—n)] exp [—F— | pm(s)ds}.
i€l Ho JO

Thus, using (1.5) and (3.1), from (1.1), we have

|

S
[y(x) + ) diy(x— cri)e‘““’"] ~ =P () [y(x) + ) die Ty (x - m-)] + a(x)y(x)

iel F/‘O iel

u(x) + Z diu(x — O'i):i + a(x)u(x) + Z,Bi(x)u(x - T,-)} exp [ri fx pﬂO(S)ds]
Mo YO

iel iel

1 X
= h(x)exp [F— j(; p,lo(s)ds] ,

Ho

1 X
+ ZI]ﬁi(X)e_“ “y(x — 1) = h(x) exp [r—m fo Pyo(S)dS] :

’

YOO + > die 7 y(x - m)]

iel

1
- 1—~_#0p/10 (-x)

Y + Y diy(x — e

iel

1 X
+ [gm(x) - Zﬁi(x)e‘m] Y00 + B0y (x = 77) = h(x) exp [F— fo p,m(s)ds] ,

iel iel Ho
Y(0) + ) diy(x = e
iel

= 3 Bixe Ty + 3 Bia)e M Ty(x - 1) = h(x) exp [ri fo xpm(s)ds] ,

iel iel Ho

' 1 1
+ (1 - F—m)pyo(x)y(x) ~ T Pu(®) D die " y(x - o)

Ho iel
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[y(x) + ) dy(x—ae W’f} +— [Z die ”O‘T')pm(x)yu) F—Pu® D die " y(x = o)

iel iel iel

1 X
= > B0 my(x) + Zﬁi(x)e‘m’fy(x ~ 7)) = h(x) exp [r— fo puo(sms] ,
Ho

iel iel

1
; r—pﬂo(x)zd 7 [y(x) — y(x — 07)]

iel
lfx ()d]
— | pu(s)ds
ryo 0 HO

for every x > 0. Therefore, the fact that u satisfies (1.1) for all x > 0 is equivalent to

Y0 + ) diy(x = e

iel

= D B0 [y(x) = y(x = 7)) = h(x) exp

iel

o
Y + Y die Ty (x - al-)] =~ Pu( D e [y(0) = y(x = o)
iel iel (310)

+ Z Bi(x)e™7 [y(x) — y(x — ;)] + h(x) exp [F%O fo xpﬂO(S)dS] :

iel

Moreover, the initial condition (1.2) takes the following equivalent form:

1 X
y(x) = ¥(x)exp [F—j(; pﬂo(s)ds] for xe€[-v,0]. (3.11)
Mo

Furthermore, considering that the functions p,,, and Bi for i € I exhibit P-periodicity, and recognizing
that the delays o, i € I are integer multiples of P, it can be demonstrated that (3.10) is mathematically
equivalent to

Y0+ 3 de (5= ) = L) = - Y die f Puo()Y(5)ds

iel ,uo iel —Ti

+Ze“°”f ,BI(S)y(S)dS—f h(S)eXPlrlo Lspuo(v)dv]ds’

iel x

(3.12)

where L, () is defined as in (3.4).

Next, we define

L,,(¥)
I+&,

By using (3.5) and (3.7), it is not difficult to verify that (3.12) is equivalent to the following equation:

7(x) = y(x) — for x>0.

1 X
2(x) + Z die™%iz(x — o) = = Z d;e ™07 f Puo(8)z(s)ds

i€l Ho jer —0

+Z o f Bi(s)z(s)ds — f h(s)e)qo[rl0 fo bpuo(v)dv]ds

i€l x

(3.13)
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for x > 0. Moreover, the initial condition (3.11) can be equivalently expressed as

L, ()
I +&,

By definitions of y and z, we should prove the equality (3.3), i.e.,

1 X
2(x) = Y(x) exp[r— fo pﬂo(s)ds]—

Ho

lim z(x) = 0.

X—00

In the remaining part of the proof, we determine (3.15). Since 0 < ¢,, < 1, then

00 1 S
0< f |h(s)| exp [—f pyo(v)dv] ds <@, < 1.
0 l—‘Ivlo 0

Therefore, we can obtain an expression as follows:

00 1 S
lim f |h(s)| exp [F_ f pﬂo(v)dv] ds =0.
x—o00 J. o 0

Hence, we can inductively define a sequence of points (x,),s; in [0, co) with
-xl’H—l_-any (n:1,2,)

such that, foralln =1,2,...,

o 1 et [ 1
f Ih(s)lexp[r—fO pﬂo(v)dv]dsg((pﬂo) 1f0 |h(s)|exp[r—v£ pﬂo(v)dv] ds.
Xn Ho Ho

Set xo = —y, and we define

L)
1 +&,

F,) = max{l’x$3§1] ly(x) exp [FL#U fo xppo(s)ds] —
Hence, F,,(¢) > 1. In this case, from (3.14)
lz(x0)| < F,,() for x € [xo, x1].
We now prove the following inequality:
lz(x)] < Fuy(y) for x> xo.

Therefore, consider an arbitrary number € > 0. We assume the following:

lz(x)] < F () +& for x> x.

for x € [-y,0].

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Let us assume that the inequality (3.20) is not satisfied. Due to (3.18) and by the continuity of z, a point

x* > x; exists such that

lz(0)| < FuW) +& for x€[xp,x") and |z(x")| = F,(¥) + &.
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By using (1.6), (3.6), and (3.9), from (3.13), we obtain

me0+a=MfﬂSzy&wdﬁ—am+f:l;mbm®m49M46W“

i€l
X . 0 1 s
+ Z e HOTi Bi(s)| lz(s)| ds + f |h(s)| exp [— f pyo(v)dV] ds
iel X' x L Jo
1 .
(v i [ ol
X1 . o'e) 1 S
+ Z e |Bi(s)| ds + f |h(s)| exp [r_ f pﬂo(V)dV] dS}
il T 0 Ho JO
= (Fuo(lﬂ) + 8) Z |di| |1+ %0}'] e 7 4 Z bitie™ i + foo |h(s)|exp [L fspﬂo(v)dv] ds
iel Lo iel 0 T Jo

< (Fu@) + &) @y < (Fue@) + &)

This is a contradiction; therefore, (3.20) holds true. Since (3.20) is provided for all £ > 0, (3.19) is
always satisfied. Now, by virtue of (3.19), from (3.13), we get

1 * ;
iel HO M x=ai

v 00 1 S
+ ) e f |B:(s)| lz(s)l ds + f |h(s)| exp [— f pyo(v)dV] ds

el X—T; X r/lo 0
1 X—0; B )
1+—f W®WFW
Lyy Jx

SMM%ZMI
+ Z e HoTi f)::_i Iﬁl(s)l ds + fom |h(s)| exp [I—-Lﬂo fospﬂo(v)dv] ds}

i€l
i€l
. Y 1 [
S&M%ZMI ﬂ“+2mwwwjgwmﬁﬂml}mmﬂw}
1€

G
1+ ﬂoy
Ly

iel

Therefore, in view of (3.6), we obtain
l2(x)| < Fy(W)py, forall x> xi. (3.21)
Next, by using (3.6), (3.19), and (3.21), we show by induction that z satisfies the following inequality:
K < @) (0) + x2x (1=0,1,2.3,...). (3.22)

We observe that (3.22) with n = 0 coincides with (3.19), while (3.22) with n = 1 is the same as (3.21).
Suppose that (3.22) is true for n = k, where k is a positive integer, i.e.,

k
2Ol < Fly @) (0) » %2 %0
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Using (3.16) and the fact that F, () > 1, from (3.13), it follows that for x > x;,, we have

lz(x)] < Z |d;] [lZ(x o)l + —f |p,10(s)| Iz(s)lds] o HOT

iel

+ Z e Hoti f LB (S)| lz(s)|ds + f |h(s)l exp [ f pﬂo(v)dv]

i€l
1+ I"L fx o |p/10(s)|ds] e

Foo®) (00) {Z i
Ho

iel

00 1 )
+ ; e ﬂonf lﬁ(s)| ds + LH |h(s)| exp [F_uo‘fo pﬂo(v)dv] ds}
Fou@) (610 {Z |

i€l

1+ —0'] THOTE 4 Zbr,e HOTi

i€l

+(6) f Ih(s)l exp ri f sp,,o(v)dv] ds}
Fuo®) (0 {Z i “—f’] et ) b+ f Ih(s)leXp[ f Ppo(v)dv] }

iel i€l
mwme

We thus obtain

k+1
2] < Fo@) () > X2 Ko,

Therefore, by the induction principle, we concludrfl: that (3.22) holds true for all non-negative integers
n. Finally, because of (3.6), we have lim,_,, (goﬂo) =0. So, as (3.22)istrue foralln =0,1,2,..., we
can easily find (3.15), that is, lim,_,, z(x) = 0. Hence, this completes the proof of the theorem.

O
Corollary 3. Suppose that
a(x)+ Y (x)=0 for xel0,) (3.23)
iel
and
Z [ldil + Bm-] + fow Ih(s)|ds < 1. (3.24)

i€l

For any ¢ € C ([-y,0],R), the solution u of the IVP (1.1)—(1.2) satisfies

0 A 00
OEDY [diw(—ai) - ﬁi(s)l//(s)ds] + [ h(s)ds
li = .
= 0 L+ Yies ldi = biti]
Note: It is established from (3.24) that 1 + ;. [d; — biT;] > O.
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Proof. It immediately follows from (3.23) that a + }};;; b; = 0 and hence py = 0 is a real root of (1.4).
By using (3.23) again, we see that, for uo = 0, we have p,, = 0 on the interval [—y, 00), and Gy = 0.
Moreover, according to (3.24), it is not difficult to verify that the root yy = 0 of (1.4) has the property
(3.6). Therefore, applying Theorem 2 with y = 0 leads to Corollary 3.

m]

Theorem 4. Let uy be a real root of the characteristic equation (1.4) with the property (3.6), and let
&, and @y, be defined by (3.5) and (3.6), respectively. Set

Qo) = 5 + G:25)

For any ¥ € C ([-y,0],R), the solution u of the IVP (1.1)—(1.2) satisfies

[u(x)] < Q (o) Yy, () exp [_FL fxpﬂo(s)ds] forall x>0, (3.26)
Ho JO
where
Y, () = max{l, max [Y(x)|, max {It//(x)|exp [L fxpyo(s)ds]}}. (3.27)
—y<x<0 —y<x<0 F,uo 0

Proof. Assume that u is the solution of (1.1)—(1.2), and hat y and z are as in the proof of Theorem 2,
ie., forx > -y

L,,(¥)
1+&,’

where p,,, I'y,, and L, are defined as in (1.5), (3.1), and (3.4), respectively. Moreover, let F, () be
defined by (3.17). As in the proof of Theorem 2, it can be demonstrated that z satisfies (3.21); in other
words

1 X
y(X)=M(X)eXp{F— fo pﬂo(s)ds} and  z(x) = y(x) -

Ho

lz(xX)| < Fuy(W)p,, forall x>0.

By the definition of z, it follows that

L, )|

forall x>0. (3.28)
I +&,

YOI < Fu (g, +
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On the other hand, using (3.6) and (3.27), from (3.4), we get

1 0
L] < WO + )1 [W—mn e f Ipﬂo(s>||w<s>|ds] ¢

iel (]
00 1 A\
ds+f Ih(s)lexp[—fp,,o(v)dv]ds
0 Fﬂo 0

0 . 1 A
+ Z et f |,3i(s)| [y (s) exp [F— ‘f(; Puo(V)dv
. Ho
1 (9 0
1+ 1_,—/10 Im |p,tt0(S)| dS] e M 4 Z e M Iﬂ lﬁ’(s)| ds

i€l
iel

§{1+Z|di|

iel

" f |h<s>|exp[r— f pm(v)dv]ds}m(w
0 Mo JO

G - © 1 y
< {1 + Z ldi| |1+ F—MOO',] e M 4 Z biTie M7 + f |h(s)| exp [F—f PHO(V)dV] ds} Y, (),
0

iel Ho iel 0 Ho

i.e.,
L, @)] < (1+ @) Yo (). (3.29)
Additionally, using (3.27) and (3.29), from (3.17), we obtain
L, )| IL,, )| (1+ @) Yo @)
F#o(w) < max{l, Y,Uo(w) + 1 +§ﬂ0 - Yﬂo(w) + 1 +§/10 < Y#o(lﬁ) + 1 +§u0
B 1 + ¢y
= (1 + [+, ) Y, ().

Thus, by combining (3.28) and (3.29), we get

1+ ¢y
L +&,

()] < (1 + )Yyo(lﬁ)%o +

2

1+, (1 + "D'“U)
Y/l()( ): 1+§

Ho

—_— Y, =Q Y,
1+ f#() ‘70#0] #o(w) (/JO) yo(lp)a
where Q (u) 1s defined as in (3.25). Using the definition of y, we obtain

1 X
lu(x)| < Q (o) Y, () exp {—r—f pﬂo(s)ds} forall x>0.
Ho <O

This completes the proof of Theorem 4.
O

In the examples that follow, we will apply Theorem 2 to the asymptotic behavior of the solutions
and Theorem 4 to the exponential estimation of solutions. To do this, in each example, a suitable root
of the characteristic equation (1.4) is first found. Later, it is checked whether Condition (3.2) (or (3.6))
holds for the suitable root wy. Finally, (3.3) from Theorem 2 and (3.26) from Theorem 4 are applied.
Let us look at the following examples for easier understanding.

Example 3.4. We consider

[u(x) + u(x - 2m)] + (6_2” cos x — 1) u(x) — (cosx + u(x —2m) = g (3.30)
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for x > 0 and
u(x) =y(x), -2r<x<0, (3.31)

where ¥/(x) is an arbitrary continuous function on the interval [-27, 0]. Since

1 27 21

= — (e‘z”cosx—l)dx:—l and b = — (—cosx—1)dx=-1,
27T 0

a
2 0

the characteristic equation of the homogeneous equation of (3.30) is from (1.4)
p(l+e?)—1-e?™=0. (3.32)

We clearly observe that gy = 1 is a unique real root of the characteristic equation (3.32). In Figure
1, we show the location of the root of (3.32). We check the condition (3.2) or (3.6) in Theorem 2.
Since T, = 1+ ™", p,(x) = = (1 + ™), by = 1, and G, = 1 + ¢, from (3.6), we obtain

(o] 1 A
=(1+2me ¥ +2 ‘2”+f 2 f—1+ “Mdv|d
Gup = ( me e ; 2exp = (1+edv|ds

zo,014+o,012+f S etds = 0,026+ 2 < 1.
0o 2 2

20

3 2 1 olL— 1 2 3 4 5 6

Figure 1. Location of the root of (3.32).
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Therefore, (3.6) is satisfied. From (3.3) and (3.26), the solution u of (3.30) and (3.31) then satisfies

. o L)
fim fu0e™) = o
where
0 0 1
L, (%) =y(0) + [l//(—zn) - f w(s)ds] e e | (coss+ De*y(s)ds + 5
-2 -2
and also
lu(x)| < Q)Y (Y)e* forall x>0,
where
(2 +0,026)
52(1) —--——I—;T;:ZF—— +‘0,()26
and

ni) = max {1, max Wl max [weoe™]}.

T<X<

Example 3.5. Consider

[u(x) + %u(x - 1)] - (% + sin(27rx)) u(x) + (% + sin(27rx)) u(x —1) = e (3.33)
for x > 0 and
u(x) =y(x), -1<x<0, (3.34)

where /(x) is an arbitrary continuous function on the interval [—1, 0]. Since

1 1
1 1 1 1
a= [) - (§ + sin(27rx)) dx = -3 and by = fo (g + Siﬂ(ZNX)) dx = 3

the characteristic equation of the homogeneous equation of (3.33) is from (1.4) as follows:
u (1 + —e‘”) ——+=-e*=0. (3.35)

We clearly that uy = 0 is a unique real root of the characteristic equation (3.35). In Figure 2, we
show the location of the root of (3.35). Since a(x) + B,(x) = 0, we look directly at Corollary 3. Since
b, = %, from (3.24), we obtain

1+1
2 3

© 5 1
+f e s ==+ — < 1.
0 6 62
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30

20

Figure 2. Location of the root of (3.35).

Therefore, (3.24) is satisfied. Then, the solution u of (3.33) and (3.34) satisfies

W(0) + [%1//(—1) — [ (4 +sin(2ns) lﬂ(s)ds] rd

lim u(x) =

X—00

[ BN

Likewise, from Theorem 4, we obtain
lu(x)| < QO0)Yo(y) forall x>0,

where

(2
6 e2

+ 5 1
Q) = 5 2k and VW) = max{l, _1}1<3§O|w(x)|}.
1 ax

e2

Example 3.6. Consider
1 ’ 1
u(x) — u(x — 1) —cosaxju(x) + su(x—1)=0 for x>0,
e e

and

u(x) =y(x), -1<x<0,

(3.36)

(3.37)
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where /(x) is an arbitrary continuous function on the interval [—1, 0]. Since

1 1 1
a= f —cos(2ax)dx =0 and b = f —dx = —,
0 0 € e?
the characteristic equation of the homogeneous equation of (3.36) is from (1.4) as follows:
1 _ 1 u
pll=e* |+ e =" (1 -w+pu=0. (3.38)
e e

We see that y; = —1.485 and u, = —0.197 are real roots of the characteristic equation (3.38). In
Figure 3, we give the locations of the roots of (3.38). Let uy = —1.485. We check the condition (3.2)
or (3.6) in Theorem 2. Since I, = 1 — ™15, b; = %, and G, = ¢33, from (3.6), we obtain

1 6_0'515 1 1
_ 1 1485 , 1 1485 _ 0515 ~
Gup = 7 (1 + - 6_0_515)e + eze =e (1 + T e‘0-515) =2.082 > 1.
6
5
4
h
3
2
1
a—1
S A — g s 0 ols ] 115 2
-4
-2
-3

Figure 3. Locations of the roots of (3.38).

Therefore, Theorem 2 and Theorem 4 cannot be applied to Eq (3.36). On the other hand, for
Ho =—0.197, we get,, =1 —e '8, G, =¢85 and

1

e 803 0197 . 1 0197 1.803 1
90,,022(14‘%)6' +Z€' =—e (1+m)50362<1
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Therefore, (3.6) is satisfied. The solution u of (3.36) and (3.37) then satisfies

_ 1 (1 Ly ()
i ol [ oo - L

and
1 (1
()| < Q(uo)Y,,, () exp R ; e + cos(2ns)|ds| forall x>0,
where
(1+0.362)°
Q = 0,362
(Ho) = 15 79701508 ©
and

Y,,(¥) = max {1, max, lyr(x)|, max {l//(x) exp [ﬁ fox (é + cos(27rs)) ds]}} )

4. The special case of linear nonhomogeneous delay differential equations with constant
coefficients

In this section, we focus on the special case of first-order linear nonhomogeneous NDDEs with
constant coefficients. The linear autonomous NDDE represents a specific variant of the NDDE (1.1).

’

+au(x) + ) iulx—1;) = h(x), 4.1)

i€l

u(x) + Z diu(x — o)

i€l

where a, B;, and d; for i € I are the real constants; 7; for i € [ are positive real numbers with 7;, # 7,
for iy # ip; and o; for i € I are positive real numbers with o, # o, for i; # i,. Moreover, h(x) is a
continuous real-valued function on the interval [0, c0).

The characteristic equation of the homogeneous equation of (4.1) is

u [1 + Z d,-e—”‘ff) +a+ Z Bie ™ = 0. (4.2)

i€l i€l

The constant coefficients @ and §; in (4.1) can be considered to be P-periodic functions, for each real
value P > 0. Furthermore, as it concerns the autonomous NDDE (4.1), the hypothesis that positive
integers n; and m; for i € I exist such that o; = n;P and 7; = m;T holds by itself. Given these
considerations, the primary results of this study, namely, Theorem 2, Corollary 3, and Theorem 4, can
be readily applied to the specific instance of the autonomous linear nonhomogeneous NDDE (4.1).
Since Eq (4.1) features constant coefficients, the proofs for Theorem 5, Corollary 6, and Theorem 7
presented below become unnecessary.

Theorem 5. Suppose that u is a real root of (4.2) with

Buo = Z |d,-|(1 + |,uo|0',~)e_“°”" + Z BilTie " + f lh(s)le™*ds < 1. (4.3)

iel iel 0

AIMS Mathematics Volume 11, Issue 2, 3811-3838.



3835

Forany y € C ([—7, 0], R), the solution u of the IVP (4.1) and (1.2) then satisfies

L)
L+ Yier [dz(l — HoO;)e HoTi —ﬁﬂ'ie—llo‘ri]

lim {e"*u(x)} =

X—00

where

0

O I Y(s)ds| = ) e f

iuo(’ﬁ) =y(0) + Z d,-[(//(_o-i) — loe Ho f
il i iel -

+ f h(s)e™ds.
0

Note: It is guaranteed by the property (4.3) that

1+ [di(l — poori)e o — ,BiTie_“OT"] > 0.
i€l
Application of Theorem 5 with 1y = 0 leads to the following corollary.
Corollary 6. Suppose that
a+ ) Bi=0 and [Id;] + |BilTi] + f |h(s)lds < 1.
2, 2, :

i€l i€l
Forany y € C ([—y, 0], R), the solution u of the IVP (4.1) and (1.2) then satisfies
WO0) + St |- = Bi [ (s | + [ hs)ds
lim u(x) = .

x—00 1+ Yier ldi = Biti]

Theorem 7. Suppose that Theorem 5 is satisfied. Set

Yﬂo(lp) = rnax{l, max [¥(x)|, max [e_"""lgl/(x)l]}
—y<x<0 —y<x<0

Forany y € C ([—y, 0], R), the solution u of the IVP (4.1) and (1.2) then satisfies

u(x)] < Quo)Y,,, W)™ forall x>0,
where
- 2
(1 + goﬂo)

Q(uo) =
1+ Ziel [d,(l - /J()O',-)e_/‘o"'i — BiTie HoTi

+ Gup-

e M (s)ds

(4.4)
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Example 4.4. Consider the following for x > 0:

1
21/{
wx) = Y(x), —y<x<0, (4.6)

u(x) + lu(x -0y)— lu(x - 0'2)]’ + iu(x) + %u(x - %) - —u(x — %) = — 4.5)

4 5

where o071, 0, are any arbitrary constants, y = max {0'1 , 09, %, %}, and ¢ € C([-y,0],R).

The characteristic equation of the homogeneous equation of (4.5) is

1 1 1 1 « 1 _u
,u(l + Ze_lm-l - ge_’”z) + Z + Ze_f - 56_1

Here, we easily see that ¢ = 0 is real root of (4.7). In Figure 4, we present the locations of the roots of
(4.7) for different oy and o, values. From (4.3), for uy = 0, we obtain

i 1+1+11+11+f“5u 9 _
=S —+-—+-=+=.— —ds=—<1.
P=RTSTE2T T ) 4 20

=0. 4.7)

11
10.5 }y,,
08 06 04 -02 02 04 06 08
T T T
R -05
2
P /”/ 1
—
o :7121 s :7222
15 0122 ‘ 0223
| 01214'2 g (7221
-2 o, =1,0,=112
o, =112, 0 =114
125 ‘72 f1
(71— .(72—

Figure 4. Locations of the roots of (4.7).

For any ¢ € C([-y, 0], R), the solution u of the IVP (4.5)—(4.6) then satisfies

W(0) + fu(=0) = du=o) — § [ wisds + § [ w(srds +

21
20

lim u(x) =

X—00
and

lu(x)] < QO)Yo(y) forall x>0,
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where
2
- 1+¢ 1+%) 19 32 ;
a0) = LE2 g ( 2120) +— =7 and To()=max]1, max ().
0 %0 20 7 —y<x<0

5. Conclusions

In this work, we first establish sufficient conditions ensuring the existence of periodic solutions for
Equation (1.1). Subsequently, we prove that a fundamental asymptotic criterion exists for the solutions
of the IVP (1.1)—(1.2). Ultimately, by using this asymptotic criterion, we reach a useful exponential
estimate for the solutions of (1.1)—(1.2). These results are obtained by using an appropriate real root
for the characteristic equation. This real root serves a significant function in determining the results
of this study. We also present the application of the obtained results to the special case with constant
coeflicients. We provide six examples in this article.
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