
https://www.aimspress.com/journal/Math

AIMS Mathematics, 11(2): 3811–3838.
DOI: 10.3934/math.2026155
Received: 28 October 2025
Revised: 19 January 2026
Accepted: 23 January 2026
Published: 09 February 2026

Research article

Periodic solutions and asymptotic properties of first order linear
nonhomogeneous neutral delay differential equations

Ali Fuat Yeniçerioğlu1,*Vildan Yazıcı2 and Cüneyt Yazıcı1
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neutral delay differential equations using the variation of parameters method. These periodic solutions
are expressed analytically. Two examples demonstrating the applicability of our results are also
included. Second, we investigate the asymptotic behavior and estimation of solutions to linear
nonhomogeneous neutral delay differential equations. The results are obtained using an appropriate
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equations with constant coefficients and constant delays, and provide an interesting example.
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1. Introduction and Preliminaries

Neutral delay differential equations (NDDEs) are a type of delay differential equations,
characterized by the incorporation of temporal delays within the derivative terms of the state variables.
NDDEs demonstrate broad applicability throughout multiple disciplines in scientific and engineering
contexts [1, 2]. As an illustration, a previous study [2] introduced a feedback control mechanism
designed for system output stabilization. A further implementation was demonstrated in another study
[3], which employed a NDDE framework for modeling real-time dynamic substructuring experiments.
In particular, these researchers [3] revealed excellent correspondence between theoretical predictions
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and empirical observations. Another piece of research [4] used linear NDDEs, which provide a
more accurate representation of an Escherichia coli bacterial population’s growth than conventional
exponential growth models. Many results on NDDE theory are given in the books by Kolmanovski
and Myshkis [5], and Hale and Verduyn Lunel [6].

Inspired by the pioneering work of Frasson and Tacuri [7], the aforementioned authors showed
the application of Floquet Theory to NDDEs for the case where the delays are denoted as integer
multiples of the common period of the periodic coefficients. Additionally, for the solutions of first-
order NDDEs, they obtained asymptotic behaviors. The authors of a previous study [7] investigated
the asymptotic behavior of solutions to linear homogeneous equations by calculating the resolvent of
the monodromy operator. In this article, we obtain the asymptotic behavior and an estimation of the
solutions of a linear nonhomogeneous equation using a suitable real root of the characteristic equation.
Further recent outcomes were presented by Philos and Purnaras [8, 9]. The asymptotic behavior of
solutions to first-order linear NDDEs with periodic coefficients and constant delays that are multiples
of the common period was considered in a previous article [8]. It is worth noting that in this article, we
extend the results obtained in the aforementioned article [8] to nonhomogeneous differential equations.
The authors of [9] established both lower and upper estimates for the solutions through two admissible,
distinct real roots of the pertinent characteristic equation. Presenting a study similar to the one in the
article mentioned above [9] for periodic linear nonhomogeneous NDDEs will be the subject of a future
study. These articles [7–9] inspired the form of the equation under consideration here.

This paper aims to obtain periodic solutions of a first-order nonhomogeneous linear NDDE, in
which the coefficients are periodic and have constant delays, a common period exists for these
coefficients, and the delays are multiples of the aforementioned period. Furthermore, utilizing a
real root of the characteristic equation corresponding to this (with a suitable property), we obtain
the asymptotic behavior for solutions of the given equation and construct an estimate of the solutions.
The results given in a previous study [10] extended and improved some important results obtained by
Farkas et al. [11] on the periodic solution and asymptotic behavior of a first-order linear (non-neutral)
differential equation with a constant delay, as well as periodic coefficients. In addition to this, another
important result given in the article in question [10] set an exponential estimate for the solutions.
In this article, we extend the results obtained in these articles [10, 11] to nonhomogeneous linear
NDDEs. It should be noted that, to the best of the authors’ knowledge, periodic solutions of linear
nonhomogeneous NDDEs have not been obtained analytically in the existing literature. In summary,
recent results for periodic first-order linear (non-neutral) delay differential equations, given by Farkas
et al. [11] and by Yeniçerioğlu and Yazıcı [10], can be derived (as a special case) from the results of this
paper. The techniques we apply to obtain our results originate from a combination of the methods used
in previous work [8–11]. In the article by Li, Jin and Zhang [12], interesting results were obtained
regarding the existence of nonoscillatory solutions for a class of higher-order nonlinear differential
equations.

In general, the theory of NDDEs presents some additional complexities not found in the
corresponding theory of delay differential equations. Therefore, extending the results related to
homogeneous delay differential equations to nonhomogeneous NDDEs is not easy.

This article consists of four sections: Section 1 provides an introduction to and preliminaries
on first-order linear nonhomogeneous NDDEs containing periodic coefficients and constant delays,
where the coefficients share a common period, and the delays are multiples of this period. Section
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2 presents periodic solutions of the given equation using the variation of parameters method. These
periodic solutions are expressed analytically, and two examples are given. Section 3 demonstrates
the asymptotic behavior of the solutions of the given equation and then derives the estimates of the
solutions. Three examples are shown at the end of the section. The final section presents a special
case of linear nonhomogeneous NDDEs with constant coefficients and constant delays, and provides
an example.

Consider the following neutral delay differential equation:u(x) +
∑
i∈I

diu(x − σi)

′ + α(x)u(x) +
∑
i∈I

βi(x)u(x − τi) = h(x), (1.1)

where I is the initial segment of natural numbers; di for i ∈ I are real numbers; h, α and βi for i ∈ I are
continuous real-valued functions on the interval [0,∞); σi for i ∈ I represents positive real numbers
such that σi1 , σi2 for i1, i2 ∈ I with i1 , i2; and τi for i ∈ I represents positive real numbers such that
τi1 , τi2 for i1, i2 ∈ I with i1 , i2. Assume that at least one of the functions βi for i ∈ I is not identically
zero on [0,∞). Moreover, suppose that the coefficients α and βi for i ∈ I are periodic functions with a
common period P > 0 and positive integers ni for i ∈ I and mi for i ∈ I exist such that σi = niP and
τi = miP for i ∈ I.

We define
τ = max

i∈I
τi and σ = max

i∈I
σi,

and consider the positive real number
γ = max{τ, σ}.

As known, a continuous real-valued function u defined on the interval
[
−γ,∞) will be called a

“solution” of the NDDE (1.1) if the function u(x) +
∑

i∈I diu(x − σi) is continuously differentiable for
x ≥ 0 and u satisfies (1.1) for all x ≥ 0.

Along with the NDDE (1.1), it is customary to specify an “initial condition” in the following form:

u(x) = ψ(x) for − γ ≤ x ≤ 0, (1.2)

where the initial function ψ is a given continuous real-valued function on the interval [−γ, 0] satisfying
the “consistency condition”

ψ′(0) +
∑
i∈I

diψ
′(−σi) + α(0)ψ(0) +

∑
i∈I

βi(0)ψ(−τi) = h(0).

Equation (1.1) and initial function (1.2) constitute an “initial value problem” (IVP). It is well known
(see, for example, Hale and Verduyn Lund [6]) that there is a unique solution u of the NDDE (1.1)
which satisfies the initial condition (1.2); this unique solution u will be called the solution of the IVP
(1.1)–(1.2).

In the case of the function h being identically zero on the interval [0,∞), the NDDE (1.1) is reduced
to u(x) +

∑
i∈I

diu(x − σi)

′ + α(x)u(x) +
∑
i∈I

βi(x)u(x − τi) = 0. (1.3)
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The following notations are used in this article:

a =
1
p

∫ P

0
α(x) dx and bi =

1
p

∫ P

0
βi(x) dx for i ∈ I.

We also associate the following equation with the differential equation (1.3):

µ

1 +∑
i∈I

die−µσi

 + a +
∑
i∈I

bie−µτi = 0, (1.4)

which will be called the “characteristic equation” of (1.3). Sufficient conditions for obtaining the real
roots of the characteristic equation (1.4) are given by Philos and Purnaras [13, Chapter 3].

In the following parts, we use α̂ and β̂i for i ∈ I to denote the P-periodic extensions of the coefficients
α and βi for i ∈ I, respectively, on the interval

[
−γ,∞). Furthermore, for the real root µ0 of (1.4), by

ρµ0 , we use the continuous real-valued function defined on the interval
[
−γ,∞) to denote follows:

ρµ0(x) = α̂(x) +
∑
i∈I

β̂i(x)e−µ0τi for x ≥ −γ. (1.5)

Now, we set up some equalities needed below. For each index i ∈ I, we can use the assumption that
the function β̂i are P-periodic and that τi = miP and σi = niP to solve for x ≥ 0 and i ∈ I∫ x

x−τi

β̂i(s) ds =
∫ τi

0
βi(s) ds =

[
1
τi

∫ τi

0
βi(s) ds

]
τi =

[
1
P

∫ P

0
βi(s) ds

]
τi = biτi.

Similarly ∫ x

x−σi

β̂i(s) ds = biσi.

We can verify that for every x ≥ 0 and i ∈ I∫ x

x−τi

∣∣∣β̂i(s)
∣∣∣ ds = b̃iτi, (1.6)

where

b̃i =
1
P

∫ P

0
|βi(s)| ds for i ∈ I.

We clearly have
|bi| ≤ b̃i for i ∈ I.

Moreover, we have |bi| = b̃i for i ∈ I in the case where each one of the coefficients βi for i ∈ I is
assumed to be of one sign on the interval [0,∞).

Our goal in this paper is to obtain periodic solutions of the NDDE (1.1) when the function h is
P-periodic, as well as to obtain an asymptotic criterion and exponential estimates of the solutions of
Equation (1.1).

The principal findings of this work are given together with the proofs of the first theorem in Section
2 and the two theorems in Section 3. In Section 4, the main results are applied to the special case of
nonhomogeneous constant coefficient NDDEs.
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2. Periodic solutions

In this section, we establish conditions under which Equation (1.1) has a periodic solution. We
assume that h is always P-periodic, even if this is not explicitly stated. Consider the equation

u′(x) + α(x)u(x) = 0. (2.1)

As known, the general solution of Equation (2.1) is

u(x) = c exp
{
−

∫ x

0
α(s) ds

}
,

where c is a constant. We apply the variation of constants formula to find the solution of (1.3). Suppose
that

u(x) = c(x) exp
{
−

∫ x

0
α̂(s) ds

}
, (2.2)

where

α̂(x) =
{

α(x) , x ≥ 0,
α(x + γ) , −γ ≤ x ≤ 0,

is a solution of (1.3). Replacing (2.2) into (1.3) yields the condition

c′(x) +
∑
i∈I

di
(
c′(x − σi) − α(x) c (x − σi)

)
exp

{∫ x

x−σi

α̂(s) ds
}

+
∑
i∈I

βi(x) c (x − τi) exp
{∫ x

x−τi

α̂(s) ds
}
= 0

(2.3)

for all x ≥ 0 on c(x).
We define

b(x) =
∑
i∈I

β̂i(x),

where

β̂i(x) =
{

βi(x) , x ≥ 0,
βi(x + γ) , −γ ≤ x ≤ 0.

Suppose that (2.3) has a solution of the form

c(x) = exp
{∫ x

0
(λ1α̂(s) + λ2b(s)) ds

}
. (2.4)

Then, from (2.3), we obtain

(λ1α̂(x) + λ2b(x)) +
∑
i∈I

di

[
(λ1α̂(x − σi) + λ2b(x − σi)) exp

{
−

∫ x

x−σi

(λ1α̂(s) + λ2b(s)) ds
}

−α(x) exp
{
−

∫ x

x−σi

(λ1α̂(s) + λ2b(s)) ds
}]

exp
{∫ x

x−σi

α̂(s)ds
}

+
∑
i∈I

βi(x) exp
{
−

∫ x

x−τi

(λ1α̂(s) + λ2b(s)) ds
}

exp
{∫ x

x−τi

α̂(s)ds
}
= 0
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or

(λ1α̂(x) + λ2b(x)) +
∑
i∈I

di

[
λ1α̂(x − σi) + λ2b(x − σi) − α(x)

]
exp

{∫ x

x−σi

((1 − λ1) α̂(s) − λ2b(s)) ds
}

+
∑
i∈I

βi(x) exp
{∫ x

x−τi

((1 − λ1) α̂(s) − λ2b(s)) ds
}
= 0.

Since the functions α and b are P-periodic, from the last equation, we have

(λ1α(x) + λ2b(x)) +
∑
i∈I

di

[
(λ1 − 1)α(x) + λ2b(x)

]
exp

{∫ σi

0
((1 − λ1)α(s) − λ2b(s)) ds

}
+

∑
i∈I

βi(x) exp
{∫ τi

0
((1 − λ1)α(s) − λ2b(s)) ds

}
= 0.

(2.5)

Next, for each index i ∈ I, we assume that α and βi are P-periodic and that σi = niP to solve for x ≥ 0∫ σi

0
[(1 − λ1)α(s) − λ2b(s)] ds =

 1
σi

∫ σi

0

(1 − λ1)α(s) − λ2

∑
i∈I

βi(s)

 ds

σi

=

 1
P

∫ P

0

(1 − λ1)α(s) − λ2

∑
i∈I

βi(s)

 ds

σi

=

(1 − λ1)
1
P

∫ P

0
α(s)ds − λ2

∑
i∈I

[
1
P

∫ P

0
βi(s)ds

]σi

=

(1 − λ1) a − λ2

∑
i∈I

bi

σi.

Similarly, for each index i ∈ I, we assume that α and βi are P-periodic and that τi = miP to solve for
x ≥ 0 ∫ τi

0
[(1 − λ1)α(s) − λ2b(s)] ds =

(1 − λ1) a − λ2

∑
i∈I

bi

 τi.

Thus, from (2.5), we obtain

(λ1α(x) + λ2b(x)) +
∑
i∈I

di

[
(λ1 − 1)α(x) + λ2b(x)

]
exp


(1 − λ1) a − λ2

∑
i∈I

bi

σi


+

∑
i∈I

βi(x) exp


(1 − λ1) a − λ2

∑
i∈I

bi

 τi

 = 0

or, by taking the definition of b into account, we get

α(x)

λ1 + (λ1 − 1)
∑
i∈I

di exp


(1 − λ1) a − λ2

∑
i∈I

bi

σi




+
∑
i∈I

βi(x)

λ2 + λ2

∑
i∈I

di exp


(1 − λ1) a − λ2

∑
i∈I

bi

σi


+ exp


(1 − λ1) a − λ2

∑
i∈I

bi

 τi


 = 0.

(2.6)
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If we assume that α(x) , 0 and
∑

i∈I βi(x) , 0 for x ≥ 0 and

(1 − λ1) a − λ2

∑
i∈I

bi = 0 (2.7)

hold. Then, from (2.6), we get

λ1 + (λ1 − 1)
∑
i∈I

di = 0 and λ2 + λ2

∑
i∈I

di + 1 = 0.

From both equations, we obtain

λ1 =

∑
i∈I di

1 +
∑

i∈I di
and λ2 = −

1
1 +

∑
i∈I di

,

where
∑

i∈I di , −1. If we substitute these values (2.7), we get the following condition:

a +
∑
i∈I

bi = 0. (2.8)

Moreover, by taking the definitions of λ1 and λ2 into account, from (2.4), it follows that

c(x) = exp

 1
1 +

∑
i∈I di

∫ x

0

α̂(s)
∑
i∈I

di − b(s)

 ds


is a solution of (2.3). Hence, from (2.2), it follows that

u(x) = k exp
{
−

1
1 +

∑
i∈I di

∫ x

o
(α̂(s) + b(s)) ds

}
, (2.9)

where k is a constant, is a solution of Equation (1.3). Furthermore, due to Condition (2.8), it can be
easily seen that ∫ ω

0

α(s) +
∑
i∈I

βi(s)

 ds = 0,

where
ω = min

{
min

i∈I
τi,min

i∈I
σi

}
.

Then (2.9) is a ω-periodic solution of Equation (1.3).
We now turn our attention to the original nonhomogeneous equation (1.1). By implementing the

variation of parameters method once more, we postulate that Equation (1.1) possesses a solution
expressed in the following form:

uP(x) = K(x) exp
{
−

1
1 +

∑
i∈I di

∫ x

o
[α̂(s) + b(s)] ds

}
. (2.10)
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Using the condition (2.8), substituting (2.10) into (1.1) gives the equation

K′(x) −
1

1 +
∑

i∈I di
[α(x) + b(x)] K(x)

+
∑
i∈I

di

{
K′ (x − σi) −

1
1 +

∑
i∈I di

[α(x) + b(x)] K (x − σi)
}

× exp
{

1
1 +

∑
i∈I di

∫ x

x−σi

[α̂(s) + b(s)] ds
}
+ α(x)K(x)

+
∑
i∈I

βi(x)K (x − τi) exp
{

1
1 +

∑
i∈I di

∫ x

x−τi

[α̂(s) + b(s)] ds
}

= h(x) exp
{

1
1 +

∑
i∈I di

∫ x

0
[α(s) + b(s)] ds

}
or

K′(x) +
∑

i∈I di

1 +
∑

i∈I di
α(x)K(x) +

∑
i∈I

βi(x)
[
K (x − τi) −

1
1 +

∑
i∈I di

K(x) −
∑

i∈I di

1 +
∑

i∈I di
K (x − σi)

]
+

∑
i∈I

di

[
K′ (x − σi) −

1
1 +

∑
i∈I di

α(x)K (x − σi)
]

= h(x) exp
{

1
1 +

∑
i∈I di

∫ x

0
[α(s) + b(s)] ds

}
.

The substituted (2.10) is a periodic solution of (1.1) if and only if K(x) is periodic. However, this
indicates that K(x) = K(x − τi) and K(x) = K(x − σi) so the differential equation for i ∈ I, and thus,
taking into account that it will be K′(x) = K′(x − σi), the last differential equation for K is

K′(x) +
∑
i∈I

diK′(x) = h(x) exp
{

1
1 +

∑
i∈I di

∫ x

0
[α(s) + b(s)] ds

}
or

K′(x) =
1

1 +
∑

i∈I di
h(x) exp

{
1

1 +
∑

i∈I di

∫ x

0
[α(s) + b(s)] ds

}
.

It follows that

K(x) =
1

1 +
∑

i∈I di

∫ x

0
h(v) exp

{ 1
1 +

∑
i∈I di

∫ v

0

[
α(s) +

∑
i∈I

βi(s)
]
ds

}
dv. (2.11)

Specifying that this function is the integral of a ω-periodic function, one can observe that it is a ω-
periodic function if and only if∫ ω

0
h(v) exp

 1
1 +

∑
i∈I di

∫ v

0

α(s) +
∑
i∈I

βi(s)

 ds

 dv = 0.

Substituting (2.11) into (2.10), the following result is obtained.
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Theorem 1. Suppose that α(x) , 0,
∑

i∈I βi(x) , 0 for x ≥ 0, and
∑

i∈I di , −1. Assume that

a +
∑
i∈I

bi = 0,

where

a =
1
P

∫ P

0
α(s)ds, bi =

1
P

∫ P

0
bi(s)ds, i ∈ I.

Assume also that ∫ ω

0
h(v) exp

 1
1 +

∑
i∈I di

∫ v

0

α(s) +
∑
i∈I

βi(s)

 ds

 dv = 0,

where

ω = min
{
min

i∈I
τi,min

i∈I
σi

}
.

Then, for each k ∈ R, we have

u(x) =k exp
{
−

1
1 +

∑
i∈I di

∫ x

0

α(s + γ) +
∑
i∈I

βi(s + γ)

 ds
}
+ uP(x), x ≥ −γ,

where

uP(x) = exp

− 1
1 +

∑
i∈I di

∫ x

0

α(s + γ) +
∑
i∈I

βi(s + γ)

 ds


×

 1
1 +

∑
i∈I di

∫ x

0
h(v) exp

{ 1
1 +

∑
i∈I di

∫ v

0

[
α(s + γ) +

∑
i∈I

βi(s + γ)
]
ds

}
dv


is a ω-periodic solution of Eq (1.1).

Example 2.2. Consider

u′(x) + u′(x − 1) − u′(x − 2) − (2 + sin 2πx)u(x) + (1 + sin2πx)u(x − 1)
+ (1 + cos 2πx)u(x − 2) = cos 2πx, x ≥ 0.

(2.12)

In this equation,
∑2

i=1 di = 0 , −1, α(x) = −(2 + sin 2πx) , 0, and
∑2

i=1 βi(x) = 2 + sin 2πx +
cos 2πx , 0 for x ≥ 0. Since a =

∫ 1

0
(−2 − sin2πs)ds = −2, b1 =

∫ 1

0
(1 + sin2πs)ds = 1, and

b2 =
∫ 1

0
(1 + sin2πs)ds = 1, we have a + b1 + b2 = 0. Also, since ω = 1, we get∫ 1

0
h(v) exp

{∫ v

0
(cos 2πs) ds

}
dv =

∫ 1

0
(cos 2πv) exp

{
1

2π
sin2πv

}
dv = 0.

Thus, the conditions of Theorem 1 are satisfied. Then, for each k ∈ R, we have

u(x) = k exp
{
−

1
2π

sin2πx
}
+ uP(x) for x ≥ −2,
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where

uP(x) = exp
{
−

1
2π

sin2πx
} (

exp
{

1
2π

sin2πx
}
− 1

)
.

Thus, for each k ∈ R, we have

u(x) = (k − 1) exp
{
−

1
2π

sin2πx
}
+ 1 for x ≥ −2

is a 1-periodic solution to Equation (2.12).
Example 2.3. Consider

u′(x) + u′(x − π) +
(
1 −

cos 2x
2

)
u(x) −

(
1 −

sin 2x
2

)
u(x − π) = cos 2x − sin 2x, x ≥ 0. (2.13)

In this equation, d1 = 1 , −1, α(x) = 1 − cos 2x
2 , 0, and β1(x) = −1 + sin 2x

2 , 0 for x ≥ 0. Since
a = 1

π

∫ π

0

(
1 − cos 2x

2

)
ds = 1, and b1 =

1
π

∫ π

0

(
−1 + sin 2x

2

)
ds = −1, we have a + b1 = 0. Since ω = π, we

get ∫ π

0
(cos 2v − sin 2v) exp

{
1
2

∫ v

0

(
sin 2s − cos 2s

2

)
ds

}
dv = 0.

Thus, the conditions of Theorem 1 are fulfilled. Then, for each k ∈ R, we have

u(x) = k exp
{

1
8

(cos 2x − sin 2x − 1)
}
+ uP(x) for x ≥ −π,

where

uP(x) = −2
(
1 − exp

{
1
8

(cos 2x − sin 2x − 1)
})
.

Thus, for each k ∈ R, we have

u(x) = (k + 2) exp
{

1
8

(cos 2x − sin 2x − 1)
}
− 2 for x ≥ −π

is a π-periodic solution to Equation (2.13).

3. An asymptotic result and estimation of the solutions

The main results of this section are presented in Theorems 2 and 4. Specifically, Theorem 2
establishes an asymptotic criterion for the solutions of the linear nonhomogeneous NDDE given by
(1.1), while Theorem 4 provides an estimate for the solutions of the same equation. Examples are
given at the end of this section.
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Theorem 2. Assume that α and βi for i ∈ I are periodic continuous real-valued functions having a
common period P > 0 , and that h is a continuous real-valued function on interval [0,∞). Suppose
that µ0 be a real root of the characteristic equation (1.4) and set

Γµ0 = 1 +
∑
i∈I

die−µ0σi . (3.1)

Let the root µ0 satisfy ∑
i∈I

|di|
(
|Γµ0 | +Gµ0σi

)
e−µ0σi + |Γµ0 |

∑
i∈I

b̃iτie−µ0τi

+ |Γµ0 |

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds < |Γµ0 |,

(3.2)

where Gµ0 =
1
P

∫ P

0
|ρµ0(s)|ds, and also ρµ0 and b̃i are defined as in (1.5) and (1.6), respectively. Then,

for any ψ ∈ C([−γ, 0],R), the solution u of the IVP (1.1)–(1.2) satisfies

lim
x→∞

{
u(x) exp

[
1
Γµ0

∫ x

0
ρµ0(s)ds

]}
=

Lµ0(ψ)
1 + ξµ0

, (3.3)

where

Lµ0(ψ) = ψ(0) +
∑
i∈I

di

{
ψ(−σi) +

e−µ0σi

Γµ0

∫ 0

−σi

ρµ0(s)ψ(s) exp
[ 1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

}
−

∑
i∈I

e−µ0τi

∫ 0

−τi

β̂i(s)ψ(s) exp
[ 1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds +

∫ ∞

0
h(s) exp

[ 1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

(3.4)

and

ξµ0 =
∑
i∈I

[
di (1 − µ0σi) e−µ0σi − biτie−µ0τi

]
. (3.5)

Proof. From (3.2), it follows immediately that

|Γµ0 |
∑
i∈I

|di|e−µ0σi < |Γµ0 |, i.e. |Γµ0 |

(
1 −

∑
i∈I

|di|e−µ0σi

)
> 0.

Therefore, we always have

1 −
∑
i∈I

|di|e−µ0σi > 0.

However, from (3.1), we get

Γµ0 = 1 +
∑
i∈I

die−µ0σi ≥ 1 − |di|e−µ0σi

and, consequently, Γµ0 is necessarily positive. Hence, (3.2) becomes

φµ0 ≡
∑
i∈I

|di|

(
1 +

Gµ0

Γµ0

σi

)
e−µ0σi +

∑
i∈I

b̃iτie−µ0τi +

∫ ∞

0
|h(s)| exp

[ 1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds < 1. (3.6)
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In what follows, we proceed to establish several equalities that are essential for the subsequent
developments. The P-periodicity of the functions α̂ and β̃i for i ∈ I implies that the function ρµ0 is
also P-periodic. Therefore, accounting for fact the that σi = niP for i ∈ I, we solve for i ∈ I and x ≥ 0∫ x

x−σi

ρµ0(s)ds =
∫ σi

0
ρµ0(s)ds =

[
1
σi

∫ σi

0
ρµ0(s)ds

]
σi =

[
1
P

∫ P

0
ρµ0(s)ds

]
σi

=


[

1
P

∫ P

0
α(s)ds

]
+

∑
i∈I

[
1
P

∫ P

0
βi(s)ds

]
e−µ0τi

σi

=

a +∑
i∈I

bie−µ0τi

σi.

Thus, since µ0 is a root of (1.4), we have

1
Γµ0

∫ x

x−σi

ρµ0(s)ds = −µ0σi for every x ≥ 0 and all i ∈ I. (3.7)

In similar way, considering the fact that τi = miP for i ∈ I and again using the hypothesis that µ0 is a
root of (1.4), we can obtain

1
Γµ0

∫ x

x−τi

ρµ0(s)ds = −µ0τi for every x ≥ 0 and all i ∈ I. (3.8)

Moreover, again, by taking the fact that σi = niP for i ∈ I into account, we get for i ∈ I and x ≥ 0, we
get ∫ x

x−σi

∣∣∣ρµ0(s)
∣∣∣ ds =

∫ σi

0

∣∣∣ρµ0(s)
∣∣∣ ds =

[ 1
σi

∫ σi

0

∣∣∣ρµ0(s)
∣∣∣ ds

]
σi =

[ 1
P

∫ P

0

∣∣∣ρµ0(s)
∣∣∣ ds

]
σi.

So, it holds that ∫ x

x−σi

∣∣∣ρµ0(s)
∣∣∣ ds = Gµ0σi for every x ≥ 0 and all i ∈ I. (3.9)

By using (3.7) and (3.9) for a point x = x0 ≥ 0 and an index i0 ∈ I, we obtain

|µ0| =
1
Γµ0σi0

∣∣∣∣∣∣∣
∫ x0

x0−σi0

ρµ0(s)ds

∣∣∣∣∣∣∣ ≤ 1
Γµ0σi0

∫ x0

x0−σi0

∣∣∣ρµ0(s)
∣∣∣ ds =

Gµ0

Γµ0

,

i.e., |µ0| ≤
Gµ0
Γµ0
. Thus, using (1.6) and (3.5), we have∣∣∣ξµ0

∣∣∣ ≤∑
i∈I

[
|di| (1 + |µ0|σi) e−µ0σi + |bi|τie−µ0τi

]
≤

∑
i∈I

[
|di|

(
1 +

Gµ0

Γµ0

σi

)
e−µ0σi + b̃iτie−µ0τi

]
+

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ ∞

0
ρµ0(v)dv

]
ds ≡ φµ0 ,

where φµ0 is defined as in (3.6). We have thus proved that
∣∣∣ξµ0

∣∣∣ ≤ φµ0 . Nevertheless, in view of (3.6),
φµ0 < 1 and thus we always have 1 + ξµ0 > 0.
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Now, consider an arbitrary function ψ(x) ∈ C([−γ, 0],R). Let u be the solution of the IVP (1.1)–
(1.2) and define

y(x) = u(x) exp
{

1
Γµ0

∫ x

0
ρµ0(s)ds

}
for x ≥ −γ.

By using (3.7), for every x ≥ 0, we then obtain

u(x) +
∑
i∈I

diu(x − σi) =
{
y(x) +

∑
i∈I

diy(x − σi) × exp
[

1
Γµ0

∫ x

x−σi

ρµ0(s)ds
] }

exp
[
−

1
Γµ0

∫ x

0
ρµ0(s)ds

]
=

y(x) +
∑
i∈I

die−µ0σiy(x − σi)

 exp
[
−

1
Γµ0

∫ x

0
ρµ0(s)ds

]
,

and by virtue of (3.8), for any x ≥ 0, we get

∑
i∈I

βi(x)u(x − τi) =

∑
i∈I

βi(x)y(x − τi) exp
[

1
Γµ0

∫ x

x−τi

ρµ0(s)ds
] exp

[
−

1
Γµ0

∫ x

0
ρµ0(s)ds

]
=

∑
i∈I

βi(x)e−µ0τiy(x − τi)

 exp
[
−

1
Γµ0

∫ x

0
ρµ0(s)ds

]
.

Thus, using (1.5) and (3.1), from (1.1), we have
u(x) +

∑
i∈I

diu(x − σi)

′ + α(x)u(x) +
∑
i∈I

βi(x)u(x − τi)

 exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
= h(x) exp

[
1
Γµ0

∫ x

0
ρµ0(s)ds

]
,

y(x) +
∑
i∈I

diy(x − σi)e−µ0σi

′ − 1
Γµ0

ρµ0(x)

y(x) +
∑
i∈I

die−µ0σiy(x − σi)

 + α(x)y(x)

+
∑
i∈I

βi(x)e−µ0τiy(x − τi) = h(x) exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
,

y(x) +
∑
i∈I

diy(x − σi)e−µ0σi

′ − 1
Γµ0

ρµ0(x)

y(x) +
∑
i∈I

die−µ0σiy(x − σi)


+

gµ0(x) −
∑
i∈I

βi(x)e−µ0τi

 y(x) +
∑
i∈I

βi(x)e−µ0τiy(x − τi) = h(x) exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
,

y(x) +
∑
i∈I

diy(x − σi)e−µ0σi

′ + (
1 −

1
Γµ0

)
ρµ0(x)y(x) −

1
Γµ0

ρµ0(x)
∑
i∈I

die−µ0σiy(x − σi)

−
∑
i∈I

βi(x)e−µ0τiy(x) +
∑
i∈I

βi(x)e−µ0τiy(x − τi) = h(x) exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
,
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3824y(x) +
∑
i∈I

diy(x − σi)e−µ0σi

′ + 1
Γµ0

∑
i∈I

die−µ0σi

 ρµ0(x)y(x) −
1
Γµ0

ρµ0(x)
∑
i∈I

die−µ0σiy(x − σi)

−
∑
i∈I

βi(x)e−µ0τiy(x) +
∑
i∈I

βi(x)e−µ0τiy(x − τi) = h(x) exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
,

y(x) +
∑
i∈I

diy(x − σi)e−µ0σi

′ + 1
Γµ0

ρµ0(x)
∑
i∈I

die−µ0σi
[
y(x) − y(x − σi)

]
−

∑
i∈I

βi(x)e−µ0τi
[
y(x) − y(x − τi)

]
= h(x) exp

[
1
Γµ0

∫ x

0
ρµ0(s)ds

]
for every x ≥ 0. Therefore, the fact that u satisfies (1.1) for all x ≥ 0 is equivalent toy(x) +

∑
i∈I

die−µ0σiy(x − σi)

′ = − 1
Γµ0

ρµ0(x)
∑
i∈I

die−µ0σi
[
y(x) − y(x − σi)

]
+

∑
i∈I

βi(x)e−µ0τi
[
y(x) − y(x − τi)

]
+ h(x) exp

[
1
Γµ0

∫ x

0
ρµ0(s)ds

]
.

(3.10)

Moreover, the initial condition (1.2) takes the following equivalent form:

y(x) = ψ(x) exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
for x ∈

[
−γ, 0

]
. (3.11)

Furthermore, considering that the functions ρµ0 and β̂i for i ∈ I exhibit P-periodicity, and recognizing
that the delays σi, i ∈ I are integer multiples of P, it can be demonstrated that (3.10) is mathematically
equivalent to

y(x) +
∑
i∈I

die−µ0σiy(x − σi) = Lµ0(ψ) −
1
Γµ0

∑
i∈I

die−µ0σi

∫ x

x−σi

ρµ0(s)y(s)ds

+
∑
i∈I

e−µ0τi

∫ x

x−τi

β̂i(s)y(s)ds −
∫ ∞

x
h(s) exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds,

(3.12)

where Lµ0(ψ) is defined as in (3.4).

Next, we define

z(x) = y(x) −
Lµ0(ψ)
1 + ξµ0

for x ≥ 0.

By using (3.5) and (3.7), it is not difficult to verify that (3.12) is equivalent to the following equation:

z(x) +
∑
i∈I

die−µ0σiz(x − σi) = −
1
Γµ0

∑
i∈I

die−µ0σi

∫ x

x−σi

ρµ0(s)z(s)ds

+
∑
i∈I

e−µ0τi

∫ x

x−τi

β̂i(s)z(s)ds −
∫ ∞

x
h(s) exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

(3.13)
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for x ≥ 0. Moreover, the initial condition (3.11) can be equivalently expressed as

z(x) = ψ(x) exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
−

Lµ0(ψ)
1 + ξµ0

for x ∈
[
−γ, 0

]
. (3.14)

By definitions of y and z, we should prove the equality (3.3), i.e.,

lim
x→∞

z(x) = 0. (3.15)

In the remaining part of the proof, we determine (3.15). Since 0 < φµ0 < 1, then

0 <
∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds < φµ0 < 1.

Therefore, we can obtain an expression as follows:

lim
x→∞

∫ ∞

x
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds = 0.

Hence, we can inductively define a sequence of points (xn)n≥1 in [0,∞) with

xn+1 − xn ≥ γ (n = 1, 2, . . . )

such that, for all n = 1, 2, . . . ,∫ ∞

xn

|h(s)| exp
[

1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds ≤

(
φµ0

)n−1
∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds. (3.16)

Set x0 = −γ, and we define

Fµ0(ψ) = max
{

1, max
x∈[x0,x1]

|ψ(x) exp
[

1
Γµ0

∫ x

0
ρµ0(s)ds

]
−

Lµ0(ψ)
1 + ξµ0

}
. (3.17)

Hence, Fµ0(ψ) ≥ 1. In this case, from (3.14)

|z(x)| ≤ Fµ0(ψ) for x ∈ [x0, x1] . (3.18)

We now prove the following inequality:

|z(x)| ≤ Fµ0(ψ) for x ≥ x0. (3.19)

Therefore, consider an arbitrary number ε > 0. We assume the following:

|z(x)| < Fµ0(ψ) + ε for x ≥ x0. (3.20)

Let us assume that the inequality (3.20) is not satisfied. Due to (3.18) and by the continuity of z, a point
x∗ > x1 exists such that

|z(x)| < Fµ0(ψ) + ε for x ∈ [x0, x∗) and |z(x∗)| = Fµ0(ψ) + ε.
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By using (1.6), (3.6), and (3.9), from (3.13), we obtain

Fµ0(ψ) + ε = |z(x∗)| ≤
∑
i∈I

|di|

[
|z(x∗ − σi)| +

1
Γµ0

∫ x∗

x∗−σi

∣∣∣ρµ0(s)
∣∣∣ |z(s)| ds

]
e−µ0σi

+
∑
i∈I

e−µ0τi

∫ x∗

x∗−τi

∣∣∣β̂i(s)
∣∣∣ |z(s)| ds +

∫ ∞

x∗
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

≤
(
Fµ0(ψ) + ε

) ∑
i∈I

|di|

[
1 +

1
Γµ0

∫ x∗

x∗−σi

∣∣∣ρµ0(s)
∣∣∣ ds

]
e−µ0σi

+
∑
i∈I

e−µ0τi

∫ x∗

x∗−τi

∣∣∣β̂i(s)
∣∣∣ ds +

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds


=

(
Fµ0(ψ) + ε

) ∑
i∈I

|di|

[
1 +

Gµ0

Γµ0

σi

]
e−µ0σi +

∑
i∈I

b̃iτie−µ0τi +

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds


<

(
Fµ0(ψ) + ε

)
φµ0 <

(
Fµ0(ψ) + ε

)
.

This is a contradiction; therefore, (3.20) holds true. Since (3.20) is provided for all ε > 0, (3.19) is
always satisfied. Now, by virtue of (3.19), from (3.13), we get

|z(x)| ≤
∑
i∈I

|di|

[
|z(x − σi)| +

1
Γµ0

∫ x

x−σi

∣∣∣ρµ0(s)
∣∣∣ |z(s)| ds

]
e−µ0σi

+
∑
i∈I

e−µ0τi

∫ x

x−τi

∣∣∣β̂i(s)
∣∣∣ |z(s)| ds +

∫ ∞

x
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

≤ Fµ0(ψ)

∑
i∈I

|di|

[
1 +

1
Γµ0

∫ x−σi

x

∣∣∣ρµ0(s)
∣∣∣ ds

]
e−µ0σi

+
∑
i∈I

e−µ0τi

∫ x

x−τi

∣∣∣β̂i(s)
∣∣∣ ds +

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds


≤ Fµ0(ψ)

∑
i∈I

|di|

[
1 +

Gµ0

Γµ0

σi

]
e−µ0σi +

∑
i∈I

b̃iτie−µ0τi +

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

 .
Therefore, in view of (3.6), we obtain

|z(x)| ≤ Fµ0(ψ)φµ0 for all x ≥ x1. (3.21)

Next, by using (3.6), (3.19), and (3.21), we show by induction that z satisfies the following inequality:

|z(x)| ≤ Fµ0(ψ)
(
φµ0

)n
, x ≥ xn (n = 0, 1, 2, 3, . . . ) . (3.22)

We observe that (3.22) with n = 0 coincides with (3.19), while (3.22) with n = 1 is the same as (3.21).
Suppose that (3.22) is true for n = k, where k is a positive integer, i.e.,

|z(x)| ≤ Fµ0(ψ)
(
φµ0

)k
, x ≥ xk.
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Using (3.16) and the fact that Fµ0(ψ) ≥ 1, from (3.13), it follows that for x ≥ xk+1, we have

|z(x)| ≤
∑
i∈I

|di|

[
|z(x − σi)| +

1
Γµ0

∫ x

x−σi

∣∣∣ρµ0(s)
∣∣∣ |z(s)| ds

]
e−µ0σi

+
∑
i∈I

e−µ0τi

∫ x

x−τi

∣∣∣β̂i(s)
∣∣∣ |z(s)| ds +

∫ ∞

x
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

≤ Fµ0(ψ)
(
φµ0

)k
∑

i∈I

|di|

[
1 +

1
Γµ0

∫ x−σi

x

∣∣∣ρµ0(s)
∣∣∣ ds

]
e−µ0σi

+
∑
i∈I

e−µ0τi

∫ x

x−τi

∣∣∣β̂i(s)
∣∣∣ ds +

∫ ∞

xk+1

|h(s)| exp
[

1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds


≤ Fµ0(ψ)

(
φµ0

)k
∑

i∈I

|di|

[
1 +

Gµ0

Γµ0

σi

]
e−µ0σi +

∑
i∈I

b̃iτie−µ0τi

+
(
φµ0

)k
∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

}
≤ Fµ0(ψ)

(
φµ0

)k
∑

i∈I

|di|

[
1 +

Gµ0

Γµ0

σi

]
e−µ0σi +

∑
i∈I

b̃iτie−µ0τi +

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds


= Fµ0(ψ)

(
φµ0

)k+1
.

We thus obtain

|z(x)| ≤ Fµ0(ψ)
(
φµ0

)k+1
, x ≥ xk+1.

Therefore, by the induction principle, we conclude that (3.22) holds true for all non-negative integers
n. Finally, because of (3.6), we have limx→∞

(
φµ0

)n
= 0. So, as (3.22) is true for all n = 0, 1, 2, . . . , we

can easily find (3.15), that is, limx→∞ z(x) = 0. Hence, this completes the proof of the theorem.
□

Corollary 3. Suppose that

α(x) +
∑
i∈I

βi(x) = 0 for x ∈ [0,∞) (3.23)

and ∑
i∈I

[
|di| + b̃iτi

]
+

∫ ∞

0
|h(s)| ds < 1. (3.24)

For any ψ ∈ C
([
−γ, 0

]
,R

)
, the solution u of the IVP (1.1)–(1.2) satisfies

lim
x→∞

u(x) =
ψ(0) +

∑
i∈I

[
diψ(−σi) −

∫ 0

−τi
β̂i(s)ψ(s)ds

]
+

∫ ∞
0

h(s)ds

1 +
∑

i∈I [di − biτi]
.

Note: It is established from (3.24) that 1 +
∑

i∈I [di − biτi] > 0.
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Proof. It immediately follows from (3.23) that a +
∑

i∈I bi = 0 and hence µ0 = 0 is a real root of (1.4).
By using (3.23) again, we see that, for µ0 = 0, we have ρµ0 = 0 on the interval

[
−γ,∞), and Gµ0 = 0.

Moreover, according to (3.24), it is not difficult to verify that the root µ0 = 0 of (1.4) has the property
(3.6). Therefore, applying Theorem 2 with µ0 = 0 leads to Corollary 3.

□

Theorem 4. Let µ0 be a real root of the characteristic equation (1.4) with the property (3.6), and let
ξµ0 and φµ0 be defined by (3.5) and (3.6), respectively. Set

Ω (µ0) =

(
1 + φµ0

)2

1 + ξµ0

+ φµ0 .
(3.25)

For any ψ ∈ C
([
−γ, 0

]
,R

)
, the solution u of the IVP (1.1)–(1.2) satisfies

|u(x)| ≤ Ω (µ0) Yµ0(ψ) exp
[
−

1
Γµ0

∫ x

0
ρµ0(s)ds

]
for all x ≥ 0, (3.26)

where

Yµ0(ψ) = max
{

1, max
−γ≤x≤0

|ψ(x)| , max
−γ≤x≤0

{
|ψ(x)| exp

[
1
Γµ0

∫ x

0
ρµ0(s)ds

]}}
. (3.27)

Proof. Assume that u is the solution of (1.1)–(1.2), and hat y and z are as in the proof of Theorem 2,
i.e., for x ≥ −γ

y(x) = u(x) exp
{

1
Γµ0

∫ x

0
ρµ0(s)ds

}
and z(x) = y(x) −

Lµ0(ψ)
1 + ξµ0

,

where ρµ0 , Γµ0 , and Lµ0 are defined as in (1.5), (3.1), and (3.4), respectively. Moreover, let Fµ0(ψ) be
defined by (3.17). As in the proof of Theorem 2, it can be demonstrated that z satisfies (3.21); in other
words

|z(x)| ≤ Fµ0(ψ)φµ0 for all x ≥ 0.

By the definition of z, it follows that

|y(x)| ≤ Fµ0(ψ)φµ0 +

∣∣∣Lµ0(ψ)
∣∣∣

1 + ξµ0

for all x ≥ 0. (3.28)
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On the other hand, using (3.6) and (3.27), from (3.4), we get∣∣∣Lµ0(ψ)
∣∣∣ ≤ |ψ(0)| +

∑
i∈I

|di|

[
|ψ(−σi)| +

1
Γµ0

∫ 0

−σi

∣∣∣ρµ0(s)
∣∣∣ |ψ(s)| ds

]
e−µ0σi

+
∑
i∈I

e−µ0τi

∫ 0

−τi

∣∣∣β̂i(s)
∣∣∣ |ψ(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds +

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

≤

{
1 +

∑
i∈I

|di|

[
1 +

1
Γµ0

∫ 0

−σi

∣∣∣ρµ0(s)
∣∣∣ ds

]
e−µ0σi +

∑
i∈I

e−µ0τi

∫ 0

−τi

∣∣∣β̂i(s)
∣∣∣ ds

+

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

}
Yµ0(ψ)

≤

1 +
∑
i∈I

|di|

[
1 +

Gµ0

Γµ0

σi

]
e−µ0σi +

∑
i∈I

b̃iτie−µ0τi +

∫ ∞

0
|h(s)| exp

[
1
Γµ0

∫ s

0
ρµ0(v)dv

]
ds

 Yµ0(ψ),

i.e., ∣∣∣Lµ0(ψ)
∣∣∣ ≤ (

1 + φµ0

)
Yµ0(ψ). (3.29)

Additionally, using (3.27) and (3.29), from (3.17), we obtain

Fµ0(ψ) ≤ max

1,Yµ0(ψ) +

∣∣∣Lµ0(ψ)
∣∣∣

1 + ξµ0

 = Yµ0(ψ) +

∣∣∣Lµ0(ψ)
∣∣∣

1 + ξµ0

≤ Yµ0(ψ) +

(
1 + φµ0

)
Yµ0(ψ)

1 + ξµ0

=

(
1 +

1 + φµ0

1 + ξµ0

)
Yµ0(ψ).

Thus, by combining (3.28) and (3.29), we get

|y(x)| ≤
(
1 +

1 + φµ0

1 + ξµ0

)
Yµ0(ψ)φµ0 +

1 + φµ0

1 + ξµ0

Yµ0(ψ) =


(
1 + φµ0

)2

1 + ξµ0

+ φµ0

 Yµ0(ψ) = Ω (µ0) Yµ0(ψ),

where Ω (µ0) is defined as in (3.25). Using the definition of y, we obtain

|u(x)| ≤ Ω (µ0) Yµ0(ψ) exp
{
−

1
Γµ0

∫ x

0
ρµ0(s)ds

}
for all x ≥ 0.

This completes the proof of Theorem 4.
□

In the examples that follow, we will apply Theorem 2 to the asymptotic behavior of the solutions
and Theorem 4 to the exponential estimation of solutions. To do this, in each example, a suitable root
of the characteristic equation (1.4) is first found. Later, it is checked whether Condition (3.2) (or (3.6))
holds for the suitable root µ0. Finally, (3.3) from Theorem 2 and (3.26) from Theorem 4 are applied.
Let us look at the following examples for easier understanding.

Example 3.4. We consider

[u(x) + u(x − 2π)]′ +
(
e−2π cos x − 1

)
u(x) − (cos x + 1) u(x − 2π) =

x
2

(3.30)
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for x ≥ 0 and

u(x) = ψ(x), −2π ≤ x ≤ 0, (3.31)

where ψ(x) is an arbitrary continuous function on the interval [−2π, 0]. Since

a =
1

2π

∫ 2π

0

(
e−2π cos x − 1

)
dx = −1 and b1 =

1
2π

∫ 2π

0
(− cos x − 1) dx = −1,

the characteristic equation of the homogeneous equation of (3.30) is from (1.4)

µ
(
1 + e−2πµ

)
− 1 − e−2πµ = 0. (3.32)

We clearly observe that µ0 = 1 is a unique real root of the characteristic equation (3.32). In Figure
1, we show the location of the root of (3.32). We check the condition (3.2) or (3.6) in Theorem 2.
Since Γµ0 = 1 + e−2π, ρµ0(x) = −

(
1 + e−2π

)
, b̃1 = 1, and Gµ0 = 1 + e−2π, from (3.6), we obtain

φµ0 = (1 + 2π)e−2π + 2πe−2π +

∫ ∞

0

s
2

exp
[

1
1 + e−2π

∫ s

0
−(1 + e−2π)dv

]
ds

� 0, 014 + 0, 012 +
∫ ∞

0

s
2

e−sds � 0, 026 +
1
2
< 1.

Figure 1. Location of the root of (3.32).
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Therefore, (3.6) is satisfied. From (3.3) and (3.26), the solution u of (3.30) and (3.31) then satisfies

lim
x→∞

{
u(x)e−x} = Lµ0(ψ)

1 + e−2π ,

where

Lµ0(ψ) =ψ(0) +
[
ψ(−2π) −

∫ 0

−2π
ψ(s)ds

]
e−2π + e−2π

∫ 0

−2π
(cos s + 1)e−sψ(s)ds +

1
2
,

and also

|u(x)| ≤ Ω(1)Y1(ψ)ex for all x ≥ 0,

where

Ω(1) =

(
3
2 + 0, 026

)2

1 + e−2π + 0, 026

and

Y1(ψ) = max
{
1, max
−2π≤x≤0

|ψ(x)| , max
−2π≤x≤0

[
ψ(x)e−2x

]}
.

Example 3.5. Consider[
u(x) +

1
2

u(x − 1)
]′
−

(
1
3
+ sin(2πx)

)
u(x) +

(
1
3
+ sin(2πx)

)
u(x − 1) = e−(x+2) (3.33)

for x ≥ 0 and

u(x) = ψ(x), −1 ≤ x ≤ 0, (3.34)

where ψ(x) is an arbitrary continuous function on the interval [−1, 0]. Since

a =
∫ 1

0
−

(
1
3
+ sin(2πx)

)
dx = −

1
3

and b1 =

∫ 1

0

(
1
3
+ sin(2πx)

)
dx =

1
3
,

the characteristic equation of the homogeneous equation of (3.33) is from (1.4) as follows:

µ

(
1 +

1
2

e−µ
)
−

1
3
+

1
3

e−µ = 0. (3.35)

We clearly that µ0 = 0 is a unique real root of the characteristic equation (3.35). In Figure 2, we
show the location of the root of (3.35). Since α(x) + β1(x) = 0, we look directly at Corollary 3. Since
b̃1 =

1
3 , from (3.24), we obtain [

1
2
+

1
3

]
+

∫ ∞

0
e−(s+2)ds =

5
6
+

1
e2 < 1.
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Figure 2. Location of the root of (3.35).

Therefore, (3.24) is satisfied. Then, the solution u of (3.33) and (3.34) satisfies

lim
x→∞

u(x) =
ψ(0) +

[
1
2ψ(−1) −

∫ 0

−1

(
1
3 + sin(2πs

)
ψ(s)ds

]
+ 1

e2

7
6

.

Likewise, from Theorem 4, we obtain

|u(x)| ≤ Ω(0)Y0(ψ) for all x ≥ 0,

where

Ω(0) =

(
11
6 +

1
e2

)2

7
6

+
5
6
+

1
e2 and Y0(ψ) = max

{
1, max
−1≤x≤0

|ψ(x)|
}
.

Example 3.6. Consider[
u(x) −

1
e2 u(x − 1)

]′
− cos(2πx)u(x) +

1
e2 u(x − 1) = 0 for x ≥ 0, (3.36)

and

u(x) = ψ(x), −1 ≤ x ≤ 0, (3.37)
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where ψ(x) is an arbitrary continuous function on the interval [−1, 0]. Since

a =
∫ 1

0
−cos(2πx)dx = 0 and b1 =

∫ 1

0

1
e2 dx =

1
e2 ,

the characteristic equation of the homogeneous equation of (3.36) is from (1.4) as follows:

µ

(
1 −

1
e2 e−µ

)
+

1
e2 e−µ = e−µ−2(1 − µ) + µ = 0. (3.38)

We see that µ1 � −1.485 and µ2 � −0.197 are real roots of the characteristic equation (3.38). In
Figure 3, we give the locations of the roots of (3.38). Let µ0 = −1.485. We check the condition (3.2)
or (3.6) in Theorem 2. Since Γµ0 = 1 − e−0.515, b̃1 =

1
e2 , and Gµ0 = e−0.515, from (3.6), we obtain

φµ0 =
1
e2

(
1 +

e−0.515

1 − e−0.515

)
e1.485 +

1
e2 e1.485 = e−0.515

(
1 +

1
1 − e−0.515

)
� 2.082 > 1.

Figure 3. Locations of the roots of (3.38).

Therefore, Theorem 2 and Theorem 4 cannot be applied to Eq (3.36). On the other hand, for
µ0 = −0.197, we get Γµ0 = 1 − e−1.803, Gµ0 = e−1.803, and

φµ0 =
1
e2

(
1 +

e−1.803

1 − ee−1.803

)
e0.197 +

1
e2 e0.197 = e−1.803

(
1 +

1
1 − e−1.803

)
� 0.362 < 1.
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Therefore, (3.6) is satisfied. The solution u of (3.36) and (3.37) then satisfies

lim
x→∞

{
u(x) exp

[
1

1 − e−1.803

∫ x

0

(
1
e2 + cos(2πs)

)
ds

]}
=

Lµ0(ψ)
1 − 2.197e−1.803 ,

and

|u(x)| ≤ Ω(µ0)Yµ0(ψ) exp
[
−

1
1 − e−1.803

∫ x

0

(
1
e2 + cos(2πs)

)
ds

]
for all x ≥ 0,

where

Ω(µ0) =
(1 + 0.362)2

1 − 2.197e−1.803 + 0, 362

and

Yµ0(ψ) = max
{

1, max
−1≤x≤0

|ψ(x)| , max
−1≤x≤0

{
ψ(x) exp

[
1

1 − e−1.803

∫ x

0

(
1
e2 + cos(2πs)

)
ds

]}}
.

4. The special case of linear nonhomogeneous delay differential equations with constant
coefficients

In this section, we focus on the special case of first-order linear nonhomogeneous NDDEs with
constant coefficients. The linear autonomous NDDE represents a specific variant of the NDDE (1.1).u(x) +

∑
i∈I

diu(x − σi)

′ + αu(x) +
∑
i∈I

βiu(x − τi) = h(x), (4.1)

where α, βi, and di for i ∈ I are the real constants; τi for i ∈ I are positive real numbers with τi1 , τi2

for i1 , i2; and σi for i ∈ I are positive real numbers with σi1 , σi2 for i1 , i2. Moreover, h(x) is a
continuous real-valued function on the interval [0,∞).

The characteristic equation of the homogeneous equation of (4.1) is

µ

1 +∑
i∈I

die−µσi

 + α +∑
i∈I

βie−µτi = 0. (4.2)

The constant coefficients α and βi in (4.1) can be considered to be P-periodic functions, for each real
value P > 0. Furthermore, as it concerns the autonomous NDDE (4.1), the hypothesis that positive
integers ni and mi for i ∈ I exist such that σi = niP and τi = miT holds by itself. Given these
considerations, the primary results of this study, namely, Theorem 2, Corollary 3, and Theorem 4, can
be readily applied to the specific instance of the autonomous linear nonhomogeneous NDDE (4.1).
Since Eq (4.1) features constant coefficients, the proofs for Theorem 5, Corollary 6, and Theorem 7
presented below become unnecessary.

Theorem 5. Suppose that µ0 is a real root of (4.2) with

φ̃µ0 ≡
∑
i∈I

|di|

(
1 + |µ0|σi

)
e−µ0σi +

∑
i∈I

|βi|τie−µ0τi +

∫ ∞

0
|h(s)|e−µ0 sds < 1. (4.3)
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For any ψ ∈ C
(
[−γ, 0],R

)
, the solution u of the IVP (4.1) and (1.2) then satisfies

lim
x→∞
{eµ0 xu(x)} =

L̃µ0(ψ)

1 +
∑

i∈I

[
di(1 − µ0σi)e−µ0σi − βiτie−µ0τi

] ,
where

L̃µ0(ψ) =ψ(0) +
∑
i∈I

di

[
ψ(−σi) − µ0e−µ0σi

∫ 0

−σi

e−µ0 sψ(s)ds
]
−

∑
i∈I

βie−µ0τi

∫ 0

−τi

e−µ0 sψ(s)ds

+

∫ ∞

0
h(s)e−µ0 sds.

Note: It is guaranteed by the property (4.3) that

1 +
∑
i∈I

[
di(1 − µ0σi)e−µ0σi − βiτie−µ0τi

]
> 0.

Application of Theorem 5 with µ0 = 0 leads to the following corollary.

Corollary 6. Suppose that

α +
∑
i∈I

βi = 0 and
∑
i∈I

[
|di| + |βi|τi

]
+

∫ ∞

0
|h(s)|ds < 1. (4.4)

For any ψ ∈ C
(
[−γ, 0],R

)
, the solution u of the IVP (4.1) and (1.2) then satisfies

lim
x→∞

u(x) =
ψ(0) +

∑
i∈I

[
diψ(−σi) − βi

∫ 0

−τi
ψ(s)ds

]
+

∫ ∞
0

h(s)ds

1 +
∑

i∈I
[
di − βiτi

] .

Theorem 7. Suppose that Theorem 5 is satisfied. Set

Ỹµ0(ψ) = max
{

1, max
−γ≤x≤0

|ψ(x)|, max
−γ≤x≤0

[
e−µ0 x|ψ(x)|

]}

For any ψ ∈ C
(
[−γ, 0],R

)
, the solution u of the IVP (4.1) and (1.2) then satisfies

|u(x)| ≤ Ω̃(µ0)Ỹµ0(ψ)eµ0 x for all x ≥ 0,

where

Ω̃(µ0) =

(
1 + φ̃µ0

)2

1 +
∑

i∈I

[
di(1 − µ0σi)e−µ0σi − βiτie−µ0τi

] + φ̃µ0 .
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Example 4.4. Consider the following for x ≥ 0:

[
u(x) +

1
4

u(x − σ1) −
1
5

u(x − σ2)
]′
+

1
4

u(x) +
1
4

u(x −
1
2

) −
1
2

u(x −
1
4

) =
e−x

4
, (4.5)

u(x) = ψ(x), −γ ≤ x ≤ 0, (4.6)

where σ1, σ2 are any arbitrary constants, γ = max
{
σ1, σ2,

1
2 ,

1
4

}
, and ψ ∈ C

(
[−γ, 0],R

)
.

The characteristic equation of the homogeneous equation of (4.5) is

µ
(
1 +

1
4

e−µσ1 −
1
5

e−µσ2

)
+

1
4
+

1
4

e−
µ
2 −

1
2

e−
µ
4 = 0. (4.7)

Here, we easily see that µ = 0 is real root of (4.7). In Figure 4, we present the locations of the roots of
(4.7) for different σ1 and σ2 values. From (4.3), for µ0 = 0, we obtain

φ̃0 ≡
1
4
+

1
5
+

1
4
.
1
2
+

1
2
.
1
4
+

∫ ∞

0

e−s

4
ds =

19
20

< 1.

Figure 4. Locations of the roots of (4.7).

For any ψ ∈ C
(
[−γ, 0],R

)
, the solution u of the IVP (4.5)–(4.6) then satisfies

lim
x→∞

u(x) =
ψ(0) + 1

4ψ(−σ1) − 1
5ψ(−σ2) − 1

4

∫ 0

− 1
2
ψ(s)ds + 1

2

∫ 0

− 1
4
ψ(s)ds + 1

4

21
20

and

|u(x)| ≤ Ω̃(0)Ỹ0(ψ) for all x ≥ 0,
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where

Ω̃(0) =
(1 + φ̃0)2

21
20

+ φ̃0 =

(
1 + 19

20

)2

21
20

+
19
20
=

32
7

and Ỹ0(ψ) = max
{

1, max
−γ≤x≤0

|ψ(x)|
}
.

5. Conclusions

In this work, we first establish sufficient conditions ensuring the existence of periodic solutions for
Equation (1.1). Subsequently, we prove that a fundamental asymptotic criterion exists for the solutions
of the IVP (1.1)–(1.2). Ultimately, by using this asymptotic criterion, we reach a useful exponential
estimate for the solutions of (1.1)–(1.2). These results are obtained by using an appropriate real root
for the characteristic equation. This real root serves a significant function in determining the results
of this study. We also present the application of the obtained results to the special case with constant
coefficients. We provide six examples in this article.
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