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Abstract: This paper proposes an intelligent regulation method for dynamically adjusting the
convergence rate of nonlinear Chua’s circuits subject to impulsive effects and stochastic disturbances,
based on a Takagi-Sugeno (T-S) fuzzy model. First, an interval stability criterion for variable
convergence rate is established through generalized pole assignment principle, constructing a unified
analytical framework that simultaneously incorporates stability margin and dynamic convergence rate
indicators. Second, a state feedback fuzzy controller with convergence rate constraints is designed. By
constructing a constrained eigenvalue domain, the controller enables active regulation of the system’s
convergence rate. Furthermore, an intelligent convergence rate regulation algorithm is developed to
achieve precise on-demand adjustment for Chua’s circuit. Finally, simulation experiments conducted
on the original system using the proposed fuzzy controller verify the effectiveness and practical utility
of the control strategy.

Keywords: Chua’s circuit; stability of variable convergence rate; T-S fuzzy control; impulsive
system; stochastic disturbance
Mathematics Subject Classification: 34D20, 93B36, 93C42, 93D09, 93D20

1. Introduction

The Chua’s circuit, which comprises an inductor, a resistor, two capacitors, and a Chua’s diode [1],
can demonstrate diverse nonlinear dynamical phenomena such as bifurcations [2, 3] and chaos [4]. As a
fundamental characteristic of complex dynamical systems, chaos has established the nonlinear Chua’s
circuit as a canonical prototype for chaos research. However, chaotic behavior can lead to unpredictable
system dynamics and performance degradation; consequently, control strategies for Chua’s circuit have
attracted considerable attention [5, 6]. For instance, capacitor synchronization has been a research
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focus [7], while pulse stabilization for time-varying Chua’s circuit systems under input disturbances
has also been investigated [8].

The nonlinearity of the diode in Chua’s circuit complicates its analysis. The T-S fuzzy model,
first proposed by Takagi and Sugeno in 1985 [9], allows for the application of linear system theory
to nonlinear systems [10–12]. This model achieves a global approximation of a nonlinear system
by representing its local dynamics as linear subsystems and integrating them through membership
functions [13–15]. Modeling Chua’s circuit within the T-S fuzzy framework provides a systematic
approach for in-depth analysis of its nonlinear dynamics and facilitates control synthesis. For example,
a fuzzy pulse control criterion has been proposed for Chua’s circuit [16], and a subsequently developed
fuzzy sliding mode control scheme has been successfully applied to it [17].

In control theory, an impulse is defined as an instantaneous change of state, typically manifested
as a sudden change in signal amplitude [18, 19]. In practice, such impulses are often induced
by the instantaneous switching of components or rapid changes in voltage or current in Chua’s
circuits [20, 21]. Systems subject to such effects, known as impulsive systems, have become a focal
research area because they incorporate both continuous and discrete dynamical characteristics [22,
23]. Reference [24] systematically analyzed the impulse effects in Chua’s circuit and established
stabilization criteria to ensure system stability and controllability. Consequently, the behavioral
uncertainty induced by impulses underscores the critical importance of designing effective control
strategies for Chua’s circuit.

Furthermore, the operation of these systems is inevitably subject to external stochastic noise, which
poses significant challenges to control system robustness [25–27]. The effect of stochastic resonance
on Chua’s circuit dynamics has been thoroughly investigated, revealing complex phenomena that can
be triggered by stochastic perturbations in nonlinear systems [28, 29]. Additionally, Gaussian noise has
been employed to simulate the stochastic phenomena in this circuit, with its effective intensity range
also being determined [30]. In summary, a comprehensive investigation into the combined effects of
impulsive perturbations and stochastic noise on Chua’s circuit is of great theoretical importance and
provides practical guidance for optimizing real-world systems and designing robust control strategies.

Current control strategies for Chua’s circuit primarily focus on improving steady-state
performance [31–34], with insufficient attention paid to dynamic performance regulation, particularly
the convergence rate (CR). The CR directly determines the system’s application in various engineering
scenarios, such as signal synchronization in chaotic communications and response speed adjustment in
emergency control, making its regulation critically important. Literature [35] provides core research on
convergence performance in nonlinear systems. Through in-depth analysis of the relationship between
uncertainties and convergence, it clearly reveals the essential challenge of convergence regulation
under complex disturbances. This approach offers valuable inspiration, drawing further attention to
the coupled impulsive and stochastic disturbances often encountered by Chua’s circuit in practice.
Consequently, controlling the CR under such composite disturbances becomes a central research
objective. As research progresses, some scholars have begun exploring the correlation between system
poles and performance metrics, highlighting the importance of interval stability [36–38]. These studies
establish a solid theoretical foundation for optimizing control strategies. Building on this groundwork,
this paper proposes a fuzzy control scheme with a variable CR for Chua’s circuit under simultaneous
impulsive and stochastic disturbances. The scheme aims to ensure both steady-state performance
and dynamic response quality, enabling the system to achieve stability at a desired CR even under
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composite disturbances. The main contributions of this paper are as follows:

(1) A unified stability analysis framework with a variable CR is proposed. Specifically, for Chua’s
circuit systems under simultaneous impulsive and stochastic disturbances, an interval stability criterion
is established based on the generalized pole placement principle and the T-S fuzzy model. This criterion
integrates both the stability margin and the dynamic CR, overcoming the limitation of traditional
stability theory that merely assesses stability. It thereby enables a quantitative characterization and
comprehensive analysis of the CR as a key dynamic performance metric.

(2) A fuzzy controller with actively tunable CR has been designed. Unlike traditional approaches,
this work explicitly incorporates the CR as a direct design constraint into the controller synthesis
process. This method not only guarantees the mean-square asymptotic stability of the system but also
enables active and precise CR regulation, achieving an on-demand design of the system’s dynamic
performance.

(3) An intelligent algorithm for adjusting the CR has been developed. As an engineering
implementation of the theoretical framework, this algorithm dynamically tunes CR parameters
according to the system’s real-time state. Consequently, it enables intelligent switching of dynamic
response modes in Chua’s circuit to meet varying application demands.

Notation: E[·] mathematical expectation operator. ∂min(ρ) denotes the set of impulse time
sequences satisfying ∂min(ρ) := {{tκ}∞κ=0| infκ{tκ − tκ−1} ≥ ρ}, and ∂max(ρ) satisfying ∂max(ρ) :=
{{tκ}∞κ=0| supκ{tκ − tκ−1} ≤ ρ}. L2[0,∞] := {x ∈ Rp|(

∫ ∞
0
‖ x(t) ‖2 dt)

1
2 < ∞}, where x = (x1, x2, · · · , xp)T .

In symmetric block matrices, the symbol ∗ denotes the transpose of the off-diagonal block.

2. Model description and preliminaries

2.1. Chua’s circuit system modeling

This section focuses on the modeling of Chua’s circuit system. As shown in Figure 1(a), it is a
typical chaotic system consisting of an inductor L, a resistor R, two capacitors C1 and C2, and a Chua’s
diode R2. The circuit is a typical chaotic system. Consider the circuit under impulsive and stochastic
disturbances as illustrated in Figure 1(b), while Figure 1(c) depicts the distinctive piecewise-linear
voltage-current relationship of R2.

Figure 1(a). Physical realization of Chua’s
circuit.

Figure 1(b). Chua’s circuit affected by
impulses.
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Figure 1(c). The piecewise-linear current-voltage characteristic of the Chua’s diode.

The dynamic performance of the Chua’s circuit can be described by the following equations:

dv1

dτ
=

1
C1

(
1
R

(v2 − v1) − f (v1)) + u1(τ), τ , τκ,

dv2

dτ
=

1
C2

(
1
R

(v1 − v2 + i) + u2(τ), τ , τκ,

di
dτ

= −
1
L

v2 + u3(τ), τ , τκ,

v1(τ) = (ς1 + 1)v1(τ−), τ = τκ,

v2(τ) = (ς2 + 1)v2(τ−), τ = τκ,

i(τ) = (ςi + 1)i(τ−), τ = τκ,

(1)

where f (v1(τ)) = Jbv1 + 1
2 (Ja − Jb)(| v1 + V | − | v1 − V |). {τκ} are the impulsive time series, which

satisfy 0 ≤ τ0 < τ1 < τ2 < · · · < τκ < · · · , lim
κ→+∞

τκ = +∞. Define ∆x(τκ) = x(τ+
κ ) − x(τ−κ ), and

x(τ+
κ ) = lim

τ→τ+
κ

x(τ) = x(τκ), x(τ−κ ) = lim
τ→τ−κ

x(τ). Define x1 = v1/V , x2 = v2/V , x3 = Ri/V , t = τ/RC2,

a = RJa, b = RJb, x3 = Ri/V , $ = C2
C1

, and ϕ = C2R2

L . (1) is normalized into the dimensionless canonical
form: 

ẋ1(t) = $(x2(t) − x1(t) − f (x1(t))) + u1(t), t , tκ,

ẋ2(t) = x1(t) − x2(t) + x3(t) + u2(t), t , tκ,

ẋ3(t) = −ϕx2(t) + u3(t), t , tκ,

x1(t) = (ς1 + 1)x1(t−), t = tκ,

x2(t) = (ς2 + 1)x2(t−), t = tκ,

x3(t) = (ςi + 1)x3(t−), t = tκ,

(2)

where ẋ = dx/dt, f (x1(t)) = bx1 + 1
2 (a − b)(| x1 + V | − | x1 − V |), and f (x1) ∈ [−e, e] (e > V > 0).

2.2. Chua’s circuit model based on T-S fuzzy system

In practical circuit systems, proactive impulsive control actions or external abrupt interference
manifest as impulsive effects, while persistent uncertainties such as component thermal noise and
parameter fluctuations can be modeled as stochastic disturbances [24]. To capture this, the system
is modeled using a T-S fuzzy approach with the following rules:
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Rule i: If %1(t) is zi1 and %2(t) is zi2 and, · · · , and %p(t) is zip, then,dx(t) = Aix(t)dt + Biu(t)dt + Gix(t)dω(t), t , tκ,

4x(t) = Aiκx(t−), t = tκ,

where i = 1, l, l represents the number of rules, zi j( j = 1, p) denotes the fuzzy set, % j(t) is the j-th
premise variable, and matrices Ai ∈ R

n×n, Gi ∈ R
n×n, and Aiκ ∈ R

n×n are certain system matrices.
Using the singleton fuzzifier, the product inference engine and the center average defuzzifier,

system (2) can be written as
dx(t) =

l∑
i=1

ωi(%(t))[Aix(t) + Biu(t)]dt + Gix(t)dω(t), t , tκ,

4x(t) =

l∑
i=1

ωi(%(t−))Aiκx(t−), t = tκ,

(3)

where ωi(%(t)) =
νi(%(t))

l∑
i=1
νi(%(t))

, νi(%(t)) =
p∏

j=1
zi j(% j(t)), and zi j(% j(t)) is the membership function grade of

premise % j(t) in zi j. Suppose νi(%(t)) ≥ 0, then ωi(%(t)) ≥ 0 and
l∑

i=1
ωi(%(t)) = 1 hold.

Definition 1. [39] ∀x(0) ∈ Rn. System (3) is asymptotically mean-square stable (AMSS) if

lim
t→∞
E[‖x(t)‖2] = 0.

Definition 2. [40] Let LAi,Gi denote the linear operator associated with system (3) defined by

LAi,Gi : X 7→ AiX + XAT
i + GiXGT

i ∈ Sn,

if there exist λ ∈ C and nonzero X ∈ Sn satisfying the spectral equation LAi,Gi X = λX, where λ is
termed an eigenvalue of the operator and X is the corresponding eigenvector. The spectrum σ(LAi,Gi)
denotes the set of all such eigenvalues.

Definition 3. [24] The system (3) achieves asymptotically mean-square stable with a variable
convergence rate (AMSSVCR), if there exists<(σ(LAi,Gi)) ⊂ (−m,−n).

Remark 1. Through the definition of the system operatorLAi,Gi , the convergence behavior of the system
can be characterized. Given that the system is AMSS, its CR changes according to the intervals of the
real parts of the eigenvalues.

Lemma 1. [41] Consider stochastic differential systems

dx(t) = g1(t, x(t))dt + g2(t, x(t))dω(t),

on t > 0 and x(t0) = x0 ∈ R
n. If V ∈ C2,1(Rn × R+;R), then V(x, t) represents an Itô process fulfilling

the equation below:

dV(x, t) =LVdt + VT
x g2(x, t)dω(t)

=[Vt(x, t) +
1
2

trace[gT
2 (x, t)Vxx(x, t)g2(x, t)] + Vx(x, t)g1(x, t)]dt

+VT
x (x, t)g2(x, t)dω(t).
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Lemma 2. [39] System (2) is said to be AMSS if

AiP + PAT
i + GiPGT

i < 0,

or

AT
i P + PAi + GT

i PGi < 0,

where P > 0.

3. Main results

3.1. Stability of variable CR

In this section, we discuss the AMSS of variable CR driven by m and n. Setting u(t) = 0 in
system (3) yields the following system:

dx(t) =

l∑
i=1

ωi(%(t))Aix(t)dt + Gix(t)dω(t), t , tκ,

4x(t) =

l∑
i=1

ωi(%(t−))Aiκx(t−), t = tκ.

(4)

Theorem 1. Let m and n be real numbers with strict hierarchy m > n ≥ 0, and assume there exists ζ,
the existence of a positive definite matrix X and scalar ξ > 0 satisfying[

−ξX X(Aiκ + I)T

∗ −X

]
< 0, (5)

[
Υ1i XGT

i
∗ −X

]
< 0, (6)

[
Υ2i XGT

i
∗ −X

]
< 0, (7)

where

Υ1i =
ln ξ
ζ

X + (Ai + nI)X + X(Ai + nI)T ,

Υ2i =
ln ξ
ζ

X − (Ai + mI)X − X(Ai + mI)T .

Then, system (4) is AMSSVCR on ∂γ,δ driven by m and n. For arbitrary nonnegative scalars γ and δ,
let ∂γ,δ indicate that tκ satisfies

ln ξN(t, l) ≤ γ + (
ln ξ
ζ
− δ)(t − l), t ≥ l ≥ t0. (8)
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Proof. Based on Definition 3, the system achieves AMSSVCR if system (4) is AMSS and satisfies
<(σ(LAi,Gi)) ∈ (−m,∞) and<(σ(LAi,Gi)) ∈ (−∞,−n). Accordingly, it is analyzed as follows:

dx(t) =

l∑
i=1

ωi(%(t))((Ai + nI)x(t)dt + Gix(t)dω(t)), t , tκ,

4x(t) =

l∑
i=1

ωi(%(t−))Aiκx(t−), t = tκ,

(9)

and 
dx(t) =

l∑
i=1

ωi(%(t))(−(Ai + mI)x(t)dt + Gix(t)dω(t)), t , tκ,

4x(t) =

l∑
i=1

ωi(%(t−))Aiκx(t−), t = tκ.

(10)

Let X−1 = P. By performing a congruence transformation on both sides of Eq (6) with the
block-diagonal matrix diag {P, P}, followed by applying Schur’s complement lemma, the following
transformed inequality is established:

ln ξ
ζ

P + P(nI + Ai) + (nI + Ai)T P + GT
i PGi < 0.

For any given ε > 0, one can find a scalar ς ∈ (0, ε) satisfying the inequality constraints:

ξ′P+P(nI + Ai) + (nI + Ai)T P +GT
i PGi< 0, (11)

where ξ′ =
ln ξ
ζ

+ ς.
Similarly, performing a congruence transformation on both sides of Eq (5) with the block-diagonal

matrix diag {P, P}, and then applying Schur’s complement lemma leads to

(Aiκ + I)T P(Aiκ + I) − ξP < 0. (12)

For system (9), the Lyapunov functional is defined as V(x(t)) = xT (t)Px(t), leading to the following
result:

V(x(tκ)) =

l∑
i=1

ωi(%(t−))xT (t−κ )(Aiκ + I)T P(Aiκ + I)x(t−κ )

≤ξ

l∑
i=1

ωi(%(t−))xT (t−κ )Px(t−κ )

≤ξV(x(t−κ )).

(13)

Itô′s formula yields, for any t ∈ [tκ, tκ+1),

LV(x(t)) =

l∑
i=1

ωi(%(t))xT (t)[P(Ai + nI) + (Ai + nI)T P]x(t)

+xT (t)GT
i PGix(t).

(14)
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Substituting (11) into (14) gives

LV(x(t)) ≤ −ξ′V(x(t)), t ∈ [tκ, tκ+1), (15)

which leads to the following result:

dV(x(t)) ≤
l∑

i=1

ωi(%(t))2xT (t)PGi(t)x(t)dω(t) − ξ′V(x(t))dt. (16)

Applying the stochastic product rule to eξ
′tV(x(t)) and substituting Eq (16) yields

d(eξ
′tV(x(t))) ≤

l∑
i=1

ωi(%(t))2eξ
′txT (t)PGi(t)x(t)dω(t). (17)

By integrating the preceding expression over [tκ, t] and applying the expectation operator, we obtain
the stochastic evolution inequality:

E[V(x(t))] ≤ e−ξ
′(t−tκ)E[V(x(tκ))], t ∈ [tκ, tκ+1). (18)

Substituting (13) into the above equation, we obtain

E[V(x(t))] ≤ ξe−ξ
′(t−tκ)E[V(x(t−κ ))], t ∈ [tκ, tκ+1). (19)

For t ∈ [tκ, tκ+1), integrating (19) yields

E[V(x(t))] ≤E[ξιe−ξ
′(t−t0)V(x(t0))]

≤eγ + (
ln ξ
ζ
− δ)(t − t0)E[e−ξ

′(t−t0)V(x(t0))] (20)

≤E[eγe−ς(t−t0)V(x(t0))].

Invoking the Rayleigh quotient λmin(P)‖x(t)‖2 ≤ V(x) ≤ λmax(P)‖x(t)‖2, we obtain

E[‖x(t)‖2] ≤
λmax(P)eγ

λmin(P)
E[ξe−ς(t−t0)‖x(t0)‖2]. (21)

This consequently yields the AMSS condition lim
t→∞
E[‖x(t)‖2] = 0, which establishes that system (9)

is AMSS under the perturbation bounds ∂γ,δ. Furthermore, the spectral characterization<(σ(LAi,Gi)) ∈
(−∞,−n) is derived.

By analogous methodology, the stability criteria (5) and (7) for system (10) can be obtained
through parallel derivations, thereby guaranteeing its AMSS property with the following formal
characterization:

−P(Ai + mI) − (Ai + mI)T P + GT
i PGi < 0. (22)

Since GT
i PGi ≥ 0, therefore,

−P(Ai + mI) − (Ai + mI)T P −GT
i PGi < 0. (23)

By Definition 2, we get<(σ(LAi,Gi)) ∈ (−m,∞). This completes the proof.
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Remark 2. Under the condition ξ ≥ 1, the impulsive dynamics manifest as perturbative disturbances.
Under this regime, Eq (8) can be reformulated into

N(t, l) ≤
t − l
φ

+N ′, t0 ≤ l ≤ t, (24)

where φ =
ln ξ

ln ξ/ζ−δ and N ′ =
γ

ln ξ . The parameter φ specifies the minimum allowable average inter-
impulse interval, which effectively excludes the occurrence of unlimited pulses within a limited period
of time.

Remark 3. When the impulse gain satisfies ξ < 1, the impulsive control actions exhibit stabilizing
properties. Under this condition, Eq (8) can be reformulated as

N(t, l) ≥
t − l
φ
− N ′, t0 ≤ l ≤ t, (25)

where φ =
ln(1/ξ)

ln(1/ξ)/ζ+δ , N
′ =

γ

ln(1/ξ) , and where φ quantifies the maximum allowable average interval
between consecutive stabilizing impulses.

Remark 4. Theorem 1 establishes a sufficient condition for analyzing the system’s stochastic stability
and characterizing its CR. Specifically, when the system satisfies the AMSS condition with all
eigenvalues confined within the interval (−m,−n), system (4) is guaranteed to maintain AMSS
properties while exhibiting distinct exponential mean-square convergence characteristics.

Remark 5. The selection of convergence rate parameters m and n (satisfying m > n ≥ 0) directly
determines the dynamic performance. Shifting the interval (−m,−n) leftward accelerates convergence,
but their ratio must be properly coordinated to ensure linear matrix inequality (LMI) feasibility. The
design of impulse parameters aims to simulate the impulsive dynamics of practical systems: The
interval threshold ζ is set according to the impulse frequency density of the simulated system, while
the strength constraint ξ is determined based on the nature of the impulses, with ξ > 1 for suppressing
disturbing impulses and ξ < 1 for assisting stabilizing impulses.

Let ∂ave
1 [φ,N ′] and ∂ave

2 [φ,N ′] denote the admissible impulsive sequences corresponding to
constraints (23) and (24), respectively. This characterization leads to the following fundamental
conclusions.

Corollary 1. Given a scalar ζ > 0, if there exists a matrix X and a scalar ξ > 0, satisfying
conditions (6)–(8), then system (4) exhibits AMSSVCR under specific impulsive sequences; for all
N ′ ≥ 0, when ξ ≥ 1 with φ ≥ ζ, this stability is achieved over ∂ave

1 [φ,N ′], whereas for ξ < 1 with
φ ≤ ζ, the stability holds over ∂ave

2 [φ,N ′].

3.2. Stabilization of variable CR

Next, we will study the calibration of (3) and design a fuzzy controller to realize the calibration of
variable CR driven by m and n.

The design of the controller is given below:
Plant rule i: If %1(t) is zi1 and, · · · , and %p(t) is zip, then,

ui(t) = Kix(t), i = 1, 2, · · · , s, (26)
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where Ki ∈ Rm×n represent the matrices yet to be recognized, and the integral controller is

ui(t) =

l∑
i=1

ωi(%(t))Kix(t). (27)

Substituting (27) into system (3), we can obtain
dx(t) =

l∑
i=1

ωi(%(t))[(Ai + BiKi)x(t)]dt + Gix(t)dω(t), t , tκ,

4x(t) =

l∑
i=1

ωi(%(t−))Aiκx(t−), t = tκ.

(28)

Theorem 2. Let m and n be real numbers with strict hierarchy m > n ≥ 0, and assume there exists
ζ > 0, the existence of a positive definite matrix X, and scalar ξ > 0 satisfying[

−ξX X(Aiκ + I)T

∗ −X

]
< 0, (29)

[
Υ′1i XGT

i
∗ −X

]
< 0, (30)[

Υ′2i XGT
i

∗ −X

]
< 0, (31)

where

Υ′1i =
ln ξ
ζ

X + (Ai + nI)X + X(Ai + nI)T + BiYi + YT
i BT

i ,

Υ′2i =
ln ξ
ζ

X − (Ai + mI)X − X(Ai + mI)T − BiYi − YT
i BT

i .

When ξ ≥ 1, system (28) is AMSSVCR on ∂1−ave[φ,N0] driven by m and n, under the action of the
controller (27) with Ki = YiX−1. Conversely, under the same conditions, when ξ < 1, system (28) is
AMSSVCR on ∂2−ave[φ,N0] driven by m and n under the action of the controller (27) with Ki = YiX−1.

Proof. Replace Ai in Theorem 1 with Ai + BiKi, and let Ki = YiX−1. The remaining components of the
proof share similarities with Theorem 1 and will not be redundantly discussed.

A less conservative criterion ensuring the AMSS of system (28) can be established by relaxing the
requirements in Theorem 2, as presented in the following proposition.

Corollary 2. Let ζ be a positive scalar, and assume the existence of X > 0 and a scalar ξ > 0, satisfying[
−ξX X(Aiκ + I)T

∗ −X

]
< 0, (32)

[
Υ′′i XGT

i
∗ −X

]
< 0, (33)
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where

Υ′′i =
ln ξ
ζ

X + AiX + XAT
i + BiYi + YT

i BT
i .

When ξ ≥ 1, system (28) is AMSS on ∂1−ave[φ,N0] driven by m and n under the action of the
controller (27) with Ki = YiX−1. Conversely, under the same conditions, when ξ < 1, system (28)
is AMSS on ∂2−ave[φ,N0] driven by m and n under the action of the controller (27) with Ki = YiX−1.

Remark 6. Although the controller design in Corollary 2 shares structural similarities with existing
stabilization-oriented controllers, its primary limitation lies in the lack of explicit parameter
adjustment guidance for modifying the CR. Theorem 2 addresses this practical challenge by
establishing an eigenvalue regulation strategy. Through explicit characterization of the pole-
performance relationship, systematic CR tuning can be achieved by strategically constraining the
closed-loop eigenvalues within prescribed intervals via parameter adaptation.

3.3. Design of variable CR algorithm

Algorithm 1 The variable CR algorithm for Chua’s circuit
Require: m > 0 or n > 0;
Ensure: Adjusts system convergence rate;
1: Set L such that −m < L < −n;
2: Use [Theorem2] to solve the fuzzy controller gain matrix K1;
3: if The real parts of the eigenvalues are within the interval (−m,−n) then
4: Proceed to step 4;
5: else
6: Determine appropriate values for m and n;
7: end if
8: while m and n do not meet the system convergence requirements do
9: if The system converges slowly then

10: Increment m (i.e., m = m + 1);
11: Increment n (i.e., n = n + 1);
12: else
13: Decrement m (i.e., m = m − 1);
14: Decrement n (i.e., n = n − 1);
15: end if
16: Use [Theorem2] to solve the fuzzy controller gain matrices K2,K3, . . . ,Ki;
17: end while
18: Use Eq (28) to solve the fuzzy controller u(t);

Remark 7. The proposed algorithm establishes a systematic framework for the normalized co design
of controller parameters m and n. While an arbitrary 0 ≤ n < m does not ensure the existence
of a solution for Theorem 2, the algorithm can be adapted to adjust the values of m and n to
resolve Theorem 2. The CR of the system is bounded by setting the values of m and n to obtain the
corresponding controllers.

4. Simulation example

To comprehensively validate the control strategy, this section conducts simulations for two typical
impulse scenarios. Disturbing impulses are utilized to simulate external interference for testing the
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controller’s robustness and dynamic recovery capability, while stabilizing impulses are employed to
reflect proactive control, demonstrating their unique performance in on-demand customization of the
convergence rate. The results show the effectiveness of the proposed method.
Example 1. Consider the Chua’s circuit equations after parametric transformation:

ẋ1 = $(x2(t) − x1(t) − f (x1(t))) + b1u1(t),
ẋ2 = x1(t) − x2(t) + x3(t) + b2u2(t),
ẋ3 = −ϕx2(t) + b3u3(t),

(34)

employing parameters $ = 9.38, ϕ = 16.25, a = −1.24, b = −0.68, and V = 1. The chaotic
system was initialized with state variables (x1, x2, x3) = (1.6,−0.3,−1.2). Figure 2(a) characterizes
the resultant attractor topology under uncontrolled conditions (u = 0), revealing the intrinsic nonlinear
dynamics of the open-loop system.

Meanwhile, Figure 2(b)–(d) delineates the evolutionary trajectories of system states, revealing
inherent instabilities within the system dynamics.

(a) Three-dimensional trajectory diagram of system
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(b) The trajectory of open-loop system state x1(t).
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(c) The trajectory of open-loop system state x2(t).
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(d) The trajectory of open-loop system state x3(t).

Figure 2. The state response of uncontrolled systems.

The membership functions are designed in close alignment with the nonlinear physical mechanism
of Chua’s circuit.

The capacitor voltage x1(t), which directly governs the chaotic dynamics, is chosen as the premise
variable %(t). The membership functions are constructed directly from the characteristic function of the
nonlinear resistor, expressed as ω1(%(t)) = 1

2 (1−ψ(x1(t))/h) and ω2(%(t)) = 1
2 (1+ψ(x1(t))/h), where h =

1.8. This value is determined based on the actual amplitude range of x1(t) during chaotic oscillations,
ensuring the validity of the membership functions across the entire operating range. The auxiliary
function ψ(x1(t)), which accurately captures the piecewise linear nature of the nonlinear resistor, is
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defined as:

ψ(x1(t)) =

 f (x1)/x1, x1 , 0,
Ja, x1 = 0.

The dynamical system under investigation admits an equivalent mathematical representation
formulated by the following:

Plant Rule 1: If %(t) is about M1, then,

dx(t) = (A1x(t) + B1u(t))dt + G1x(t)dω(t),

Plant Rule 2: If %(t) is about M2, then,

dx(t) = (A2x(t) + B2u(t))dt + G2x(t)dω(t),

where

A1 =


$(h − 1) $ 0

1 −1 1
0 −ϕ 0

 , A2 =


−$(h + 1) $ 0

1 −1 1
0 −ϕ 0

 ,
B1 = B2 = I3×3, G1 = G2 = diag{0.1 0.1 0.1}.

The impulsive state jump dynamics in the circuit are governed by

∆x(t) =


0.5 0 0
0 0.5 0
0 0 0.5

 x(t−), t = tκ.

Following Corollary 2, setting impulse parameters ξ = 3.2, ζ = 0.2 in Matlab gives

K1 =


−12.0194 −5.1900 0.0000
−5.1900 −3.5194 7.6250
−0.0000 7.6250 −4.5194

 , K2 =


21.7446 −5.1900 0.0000
−5.1900 −3.5194 7.8900
−0.0000 7.8900 −4.5194

 .
The efficacy of the nonlinear control strategy is demonstrated through implementation of the

proposed controller (34) in the original dynamical system. As evidenced by the state trajectories in
Figure 3, the controlled system exhibits asymptotic convergence to equilibrium beyond t = 2 s with all
states maintaining bounded operation.

0 1 2 3 4 5
t

-1

0

1

2

 x
(t)

 

x
1
(t)

x
2
(t)

x
3
(t)

2 3
-0.01

0

0.01

Figure 3. State trajectories under Corollary 2.
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Following Theorem 2 with prescribed interval constraints (−m,−n) = (−3.5,−1.5), the
corresponding LMIs are formulated and solved to obtain the stabilizing feedback gain matrices:

K1 =


−10.0000 −5.1900 0.0000
−5.1900 −1.5000 7.6250
−0.0000 7.6250 −2.5000

 , K2 =


23.7640 −5.1900 0.0000
−5.1900 −1.5000 7.8900
−0.0000 7.8900 −2.5000

 .
The system demonstrates delayed convergence characteristics as evidenced in Figure 4, where all

state variables satisfy | xi(t) |< 0.01 (i = 1, 2, 3) for t > 10 s.

0 5 10 15
t

-1

0

1

2

 x
(t)

 

x
1
(t)

x
2
(t)

x
3
(t)

10 12
-0.01

0

0.01

Figure 4. State trajectories in the interval (−3.5,−1.5).

Comparative analysis reveals that prescribing the eigenvalue cluster within the accelerated
convergence region (−8.5,−6.5) through Theorem 2’s LMI framework significantly improves transient
dynamics. The synthesized control gains are as follows:

K1 =


−15.0000 −5.1900 −0.0000
−5.1900 −6.5000 7.6250
−0.0000 7.6250 −7.5000

 , K2 =


18.7640 −5.1900 0.0000
−5.1900 −6.5000 7.8900
0.0000 7.8900 −7.5000

 .
Induce rapid stabilization as demonstrated in Figure 5, with all system states achieving convergence

within t > 0.9 s.
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Figure 5. State trajectories in the interval (−8.5,−6.5).
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Remark 8. As demonstrated in Figures 4 and 5, the proposed eigenvalue interval adjustment method
enables systematic control of CR through dynamic pole configuration. This tunable mechanism offers
significant implementation advantages for Chua’s circuit-based systems, particularly in achieving
adaptable transient responses and enhanced signal processing capacity through controlled attractor
manipulation.

To compare the convergence rates of different fuzzy control schemes under impulsive disturbances,
refer to Table 1.

Table 1. Convergence time of different fuzzy control strategies under impulsive disturbances.

Methods Traditional method This paper (fast) This paper (slow)
Parameters (−8.5,−6.5) (−3.5,−1.5)

Time t at |x(t)|=0.01 2 s 0.9 s 10 s

As can be seen from Table 1, in the presence of impulsive disturbances, the conventional fuzzy
controller requires approximately 2 s to drive the system state to the steady-state interval (±0.01). In
contrast, the convergence time is significantly reduced to 0.9 s with the controller developed in this
work. These results convincingly demonstrate that the proposed scheme possesses superior dynamic
recovery capability and enhanced robustness when subjected to abrupt external disturbances, thereby
effectively improving the system’s performance and disturbance rejection.

Example 2. This subsection discusses the Chua’s circuit under the influence of a calming pulse.
Consider system (34), where the pulse is changed to a pulse of the following form:

∆x(t) =


−0.4 0 0

0 −0.4 0
0 0 −0.4

 x(t−), t = tκ,

employing parameters $ = 9.38, ϕ = 16.25, a = −1.24, b = −0.68, and V = 1. Set the initial
conditions of the system as x1 = 1.6, x2 = −0.3, and x3 = −1.2.

From Corollary 2, setting impulse parameters ξ = 0.85 and ζ = 0.8 in Matlab gives

K1 =


−8.0059 −5.1900 0.0000
−5.1900 0.4941 7.6250
0.0000 7.6250 −0.5059

 , K2 =


25.7581 −5.1900 −0.0000
−5.1900 0.4941 7.8900
−0.0000 7.8900 −0.5059

 .

The state stabilization process is quantitatively captured in Figure 6, revealing equilibrium
attainment with t > 3.2 s.
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Figure 6. State trajectories under Corollary 2.

Following Theorem 2 with constraint parameters (−m,−n) = (−0.3,−0.1), the LMI solutions
produce the following control gains:

K1 =


−7.7000 −5.1900 0.0000
−5.1900 0.8000 7.6250
−0.0000 7.6250 −0.2000

 , K2 =


26.0640 −5.1900 0.0000
−5.1900 0.8000 7.8900
−0.0000 7.8900 −0.2000

 .
The resultant closed-loop dynamics exhibit delayed stabilization (settling time t > 3.9 s), as shown

in Figure 7, requiring 3.9 seconds to achieve | xi(t) |< 0.01(i = 1, 2, 3).
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Figure 7. State trajectories in the interval (−0.3,−0.1).

Adopting accelerated convergence parameters (−3.5,−1.5) in Theorem 2, the LMI solutions
generate optimized gains as follows:

K1 =


−10.0000 −5.1900 −0.0000
−5.1900 −1.5000 7.6250
−0.0000 7.6250 −2.5000

 , K2 =


23.7640 −5.1900 −0.0000
−5.1900 −1.5000 7.8900
−0.0000 7.8900 −2.5000

 .
Figure 8 depicts the closed-loop system’s transient response, showing all state variables converging

to equilibrium within approximately t > 1.5 s.
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Figure 8. State trajectories in the interval (−3.5,−1.5).

Remark 9. By flexibly adjusting the convergence rate of Chua’s circuit under different impulsive
influences, the proposed strategy enables the system to demonstrate high efficiency in fast-response
scenarios (e.g., real-time communication and emergency control) while also functioning effectively
in scenarios requiring slow dynamic responses (e.g., cryptographic security and bionics). The
engineering implementation of this strategy features low barriers, as its core algorithm has
manageable computational complexity and can be embedded into low-cost hardware for real-time
operation without requiring additional specialized equipment. Hardware costs remain compatible
with existing systems. This combination of high feasibility and on-demand programmability provides
key technical support for customized applications of chaotic systems in fields such as communications,
control, security, and healthcare, significantly enhancing the adaptability of the system from theoretical
design to engineering implementation.

To compare the convergence rates of different fuzzy control schemes under stabilizing impulses,
refer to Table 2.

Table 2. Convergence time of different fuzzy control strategies under stabilizing impulses.

Methods Traditional method This paper (fast) This paper (slow)
Parameters (−3.5,−1.5) (−0.3,−0.1)

Time t at |x(t)|=0.01 3.2 s 1.5 s 3.9 s

As can be seen from Table 2, in control scenarios that use stabilizing impulses, it works together
with the impulses to achieve faster convergence (1.5 s) than traditional methods (3.2 s). Moreover,
the convergence process can also be adjusted as needed, for example, to a slower 3.9 s duration. This
wide range of control, from fast stabilization to slow operation, overcomes the limited performance of
conventional controllers. It allows the system’s dynamic response to be intelligently shaped for both
fast and slow needs.

5. Conclusions

This paper systematically addresses the intelligent control of dynamic CR in Chua’s circuits
subject to impulsive and stochastic disturbances. First, a unified analytical framework capable of
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simultaneously quantifying stability margin and CR is established by integrating generalized pole
placement with T-S fuzzy modeling. Subsequently, based on this framework, a fuzzy controller is
designed to actively regulate the CR, enabling precise shaping of the system’s dynamic performance.
Finally, an intelligent adjustment algorithm is developed, successfully achieving online dynamic
optimization of the CR. Simulations validate the effectiveness of the proposed approach in enhancing
system response performance. Future work will focus on the engineering transformation of the
proposed control strategy, including in-depth analysis and optimization of its hardware implementation
cost, computational complexity, and real-time processing capability. Meanwhile, the established
analytical framework exhibits strong generality and will be extended to other nonlinear circuit systems
as well as broader application scenarios such as distributed coordination control in multi-agent systems.
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