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Abstract: We introduced GATE-WPCA-PI—geometry-aware, tracking-error-controlled allocation
with wavelet principle component analysis features and a proportional-integral controller—a practical
portfolio construction framework that linked multi-scale market geometry to explicit, out-of-sample
risk targeting. At each rebalance, the daily returns were embedded in a multi-resolution wavelet
feature space and compressed via principal component analysis to form a similarity kernel. A simple
discriminative-power score gated the optimizer: when the cross section was heterogeneous, the
feature geometry was activated; when it was homogeneous, the method reverted to a correlation-only
view. Allocations were obtained from an implementable mean—variance surrogate with (i) a geometry
penalty that discouraged concentration in highly similar assets, (ii) quadratic and absolute turnover
costs, (iii) an entropy floor, and (iv) standard long-only, budget, and sleeve caps. A proportional-
integral (PI) law treated the tracking error (TE) as a controllable state and steered realized TE toward
a feasible band under trading frictions.
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Model name and components. In the geometry-aware allocation (GATE) component, assets
are represented as data-driven similarity graphs. The portfolio is regularized to ensure smooth
variation across this graph, allowing strongly assets to carry coherently related weights while
permitting differentiation where the data warrants it. The tracking-error-controlled segment
introduces an explicit target for active risk relative to a benchmark and penalizes deviations
from this target, ensuring that the scale of active bets is intentional rather than incidental. The
wavelet principal component analysis WPCA block provides multi-resolution features by computing
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wavelet summaries of each asset’s recent return history and reducing them using the principal
components. Distances in this low-dimensional feature space define an alternative, more structural
notion of similarity, which is blended with (or substituted for) correlation when empirically more
discriminative, thereby making the effective geometry adaptive to the market regimes. Finally, the
proportional-integral (PI) block functions as a proportional-integral feedback controller that adjusts
the tracking error penalty in a closed loop, ensuring that the realized tracking-error adheres to the
time-varying target despite constraints, costs, and estimation noise. Collectively, these elements
yield allocations that are smooth in homogeneous markets, selective when a genuine structure exists,
and implementable under realistic trading friction and capacity limits. For further explanation on
how the model mechanism works, refer to Figures 17 and 18 in Appendix C and D. The figures
delineate the sequential stages of the process, commencing with feature extraction and culminating
in the transformation of these features into graphical representations. They elucidate how the gating
mechanism selectively identifies pertinent information, thereby ensuring that only the most relevant
features progress to subsequent stages. Furthermore, the figures demonstrate the application of
WPCA and PI to achieve dimensionality reduction while maintaining a consistent representation,
irrespective of the input order. Additionally, they depict the transformation of raw features into graph
mappings, illustrating the model’s capacity to efficiently manage complex relationships. This visual
representation aids in elucidating the conversion of feature vectors into a graph, wherein the nodes
and edges possess meaningful attributes that reflect the data patterns. Collectively, the figures offer
a lucid visual guide to the model’s operation, thereby facilitating the comprehension of the intricate
processes involved.

1. Introduction

Shrinkage-based geometry-aware risk estimation combined with explicit tracking-error control
delivers consistent outperformance over both classical constrained mean variance and naive
diversification under realistic box and sleeve caps. Embedding a tracking-error penalty within
the mean variance improves the Sharpe ratios relative to both the unconstrained optimizer and the
reference portfolio, while enhanced tracking-error management that couples sophisticated shrinkage
with multivariate generalized autoregressive conditional heteroskedasticity (GARCH) dominates
the sample covariance benchmark [1,2]. The critical process of estimating large covariance or
precision matrices for asset allocation is examined alongside the theoretical and empirical effects
of leveraging constraints and covariance shrinkage in portfolio construction, revealing that a well-
chosen shrinkage method outperforms arbitrary leverage constraints, with evidence from diverse
setups, objectives, and datasets highlighting the dynamic correlation shrinkage (DCC-NL) estimator’s
ability to enhance risk-adjusted efficiency in large portfolios under moderate leverage [3,4]. In
index-proximate settings, diversifying model risk while budgeting tracking error yields robust
outperformance over cap-weighting, and constrained minimum-variance portfolios achieve lower
variance and materially higher Sharpe; on average, a 32.5% increase over 1/N across six datasets,
with low turnover [5, 6], where 32.5% represents the average percentage improvement in the Sharpe
ratio compared to the naively diversified 1/N portfolio. Relative to naive diversification, mean-
variance and timing-aware variants often prevail even when transaction costs are substantial, and
across assets, the Black-Litterman framework outperforms mean-variance and 1/N with lower
drawdowns and turnover [7, 8].

These gains depend on stable inputs and careful implementation. Mean-variance remains sensitive
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to parameter estimation, and turnover and transaction costs can erode advantages if models are not
sufficiently regularized [1,7]. Methodological gaps persist for precision-matrix shrinkage in singular
cases, and for identifying signal eigenstructures when the asset dimension is not small relative to
the sample size. This can depend on proxy choices and transaction cost assumptions, and external
validity may be limited by the universe size [3,4]. Alternative weighting with the tracking-error
discipline can incur short-horizon downsides and periods of underperformance when cap-weighted
indices rally significantly [5]. Evidence from Black and Litterman calls for tests with alternative
return inputs beyond historical estimates [8]. Finally, some abstracts reported no explicit limitations,
specifically for improved tracking-error management and constrained minimum variance, indicating
the need for further validation under varied universes and cost regimes [2, 6].

Evidence from control theory and portfolio studies shows that explicit closed-loop tracking-
error designs achieve superior adherence to a tracking error (TE) target path while preserving or
enhancing performance compared with static penalty-based formulations. Feedback and model
predictive control architectures deliver precise path following, stabilize deviations, and guarantee
optimal closed-loop behavior even when the target is not in equilibrium [9,10]. Constraint satisfaction
and observability-focused designs further strengthen the path accuracy under instability or incomplete
information [11, 12]. In financial applications, dynamic tracking-error processes consistently
outperform rigid constant-risk approaches, with benchmark-relative risk matching yielding better
returns in volatile regimes [13,14]. Index-tracking models that integrate transaction costs and tracking
efficiency deliver improved accuracy and diversification relative to mean—variance and traditional
formulations [15,16]. The limitations remain, including sensitivity to estimation, high turnover costs,
reliance on approximate constraint satisfaction in near-singular settings, precomputed feedback gains,
and potential instability in observability-driven optimization [9-15].

Relative to standard position-smoothing frameworks, the literature shows that a proportional-
integral tracking-error controller with a turnover cap and volatility band offers a more effective
means of balancing performance and stability under transaction costs, as it synthesizes three proven
mechanisms: Optimal no-trade regions that scale with costs and volatility to cut turnover and
preserve alpha [17, 18], volatility smoothing that dampens transients, reduces trading, and enhances
risk-adjusted returns when coupled with ex-ante cost modeling [19, 20], and large-scale portfolio
formulations that directly embed costs and model uncertainty to regularize allocations and improve
net efficiency [21-23]. These approaches consistently demonstrate that explicit control of trading
intensity and realized risk yields higher Sharpe ratios, lower turnover, and superior cost-return
trade-offs compared to static smoothing or naive rebalancing [24]. Proportional-cost models often
lack closed-form tractability, volatility forecasts face accuracy-smoothness trade-offs, and dynamic
extensions remain complex, with several studies reporting no explicit limitations, leaving questions
about external validity across universes and cost regimes [17-24].

Geometry-aware approaches show promising improvements in portfolio diversification, with
growing evidence that they enhance diversification quality, weight stability, and risk-adjusted
performance compared to traditional correlation-only and hierarchical clustering models. By
embedding the intrinsic geometric structure of covariance matrices, these methods achieve
more balanced risk contributions, smoother allocations, and higher out-of-sample Sharpe ratios
while mitigating estimation noise and drawdowns [25-32]. The study by [25] developed a
geometric framework for covariance dynamics that considers the manifold properties of covariance
matrices and outperforms conventional estimators across multiple performance metrics. The study
by [31] demonstrated that machine learning-based portfolios can be more robust to covariance
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misspecification, with hierarchical approaches offering advantages over traditional optimization
techniques. The article by [33] showed that hierarchical clustering—based portfolios achieve
statistically superior risk-adjusted performance compared with classical mean—variance models,
and this is further supported by evidence that regularization methods substantially improve Sharpe
ratios and enhance portfolio robustness under estimation uncertainty [27]. Despite these advances,
geometry-aware and similarity-driven approaches are computationally demanding, sensitive to
hyperparameter selection, and sometimes prone to instability under market regime shifts or noisy
data where inputs are dominated by non-persistent, non-informative variations that produce spurious
covariances and unstable optimized weights, which geometry-aware methods aim to regularize [25,
29,30,32,33]. Although the empirical record is promising, comprehensive validation under realistic
transaction costs, liquidity frictions, and diverse market conditions remains limited, underscoring the
need for further research to confirm their superiority in all environments [26,28,31].

Wavelet-PCA feature geometry can improve outcomes in heterogeneous cross-sections when
activated by a data-driven switch, whereas deactivation in homogeneous regimes avoids injecting
redundant variance and computational overhead, indicating gains in classification accuracy, stability,
and efficiency contingent on the domain and data characteristics. In heterogeneous settings,
multi-scale wavelet kinetics and pharmacokinetic heterogeneity features extracted from dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) elevate risk stratification and predictive
power, illustrating the value of engaging geometry when spatial-temporal variation is rich [34, 35].
Temporal wavelet descriptors further bolster treatment-outcome prediction [36], which preserves
spectral signatures and filters anomalies with an accuracy comparable to or better than PCA
at lower computational costs [37], which improves denoising and peak detection in challenging
regions [38]. Beyond biomedicine, online heterogeneous data analysis via principal composite kernel
feature analysis increases diagnostic accuracy while reducing computation requirements [39], and
spectral-transformation transfer learning on heterogeneous feature spaces can reduce the proportion
of incorrect out-of-sample predictions (the misclassification rate) by up to 50% when related
source examples are carefully selected [40]. Complementary evidence shows that multi-featured,
geometry-aware homogenization attains high-fidelity predictions with substantial speedups, and that
combined feature extraction with judicious selection strengthens discrimination in fault diagnosis [41,
42]. The central advantage is the adaptive, context-sensitive activation of features—switching
geometry on when heterogeneity is present and off when it is not—yielding more precise and
economical representations than static always-on or always-off strategies; however, the magnitude
of improvement depends on hyperparameter choices, data quality, and regime stability, and purely
data-driven selection can underperform whole-domain baselines when cross-sectional structure is
effectively homogeneous [36—43].

Across diverse empirical settings, most headline performance gains prove fragile once data
snooping and sampling uncertainty are controlled rigorously. Search-adjusted inference and window-
robust evaluation frequently attenuate or eliminate apparent improvements, with evidence indicating
that a substantial fraction (of the order of half) of positive findings may be false discoveries [44,45].
Classic examinations of technical rules and asset-pricing tests show how extensive rule mining
and selective exploration inflate type-I errors and how even weak correlations between sorting
characteristics and security-level statistics can induce spurious rejection of the null [46-48].
Therefore, robust research design centers on disciplined model selection, repeated cross-validation,
bootstrap-based reality checks, multiplicity control, and transparent reporting of fold-wise result
distributions complemented by out-of-sample tests that are robust to window choices [49-51]. In
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small-sample settings, variance-corrected cross-validation with tailored multiple-testing adjustments
helps curb selection bias, albeit with power trade-offs, whereas cost-aware evaluation further
erodes residual gains, underscoring that economic significance must be accompanied by statistical
durability [52,53]. The resulting implication is clear: only strategies whose improvements persist
under search-adjusted, fold-wise resampling and remain economically meaningful after frictions
should be regarded as genuinely robust; such cases are an exception rather than the rule [44-51,53].

Contribution: This paper introduces GATE-WPCA-PI a unified allocation framework that
combines geometry learning, risk modeling, and feedback control under realistic trading constraints.
In response to the reviewer, we summarize the contributions in two parts.

Theoretical contributions: (i) Geometry construction and gating. We define a hybrid notion
of cross-sectional geometry by combining a correlation-induced similarity kernel with a feature
kernel built from multi-scale wavelet summaries (WPCA), and we introduce a data-driven gate that
blends or suppresses the feature geometry using a discriminative-power score together with first-
principal-component dominance (PC1), thereby activating geometry in heterogeneous universes and
defaulting to correlation-only structure in homogeneous ones. (i) Geometry-aligned regularization
and covariance. We couple the learned geometry to the allocation problem in two complementary
ways: A graph-Laplacian penalty regularizes weights over a sleeve-restricted k-nearest-neighbor (k-
NN) graph, and a similarity-aware covariance model rescales the raw correlation matrix entrywise by
the learned kernel, yielding a covariance specification that is aligned with the same geometry used for
regularization. (iii) Active-risk control formulation. We treat TE, defined as the standard deviation
of active returns relative to a benchmark, as a controllable state and embed a PI feedback law into
the objective via an adaptive TE-penalty weight, so that realized TE is steered toward a time-varying,
feasible target while respecting a volatility band and implementability constraints.

Practical contributions: (i) End-to-end implementable engine. We provide a complete walk-
forward pipeline that re-estimates parameters monthly with no look-ahead, applies weights with next-
day execution, and evaluates net performance under proportional transaction costs, explicit turnover
caps, and sleeve constraints. (i1) Numerical and operational robustness. The covariance used in
optimization is symmetrized and maintained positive semi-definite, the refinement stage uses warm
starts with a small number of constrained updates, and post-processing enforces volatility targeting,
one-dimensional TE alignment, and turnover capping in a transparent and auditable manner. (iii)
Institutional evaluation protocol. We report active performance relative to strongest reference
baseline and assess statistical validity using White—Hansen superior predictive ability (SPA) tests [54]
and a model confidence set (MCS), complemented by bootstrap-based robustness checks, forward
TE diagnostics, and transaction-cost and capacity analyses; empirically, the framework delivers
statistically defensible improvements in a heterogeneous exchange-traded fund (ETF) universe when
feature geometry is informative, and defaults conservatively to correlation-based behavior in a more
homogeneous Sector universe when it is not.

Outline: Section 2 formalizes the model by detailing the similarity kernels, graph Laplacian
regularization, similarity-aware covariance, momentum-based alpha, TE target schedule, and the
single-period objective with constraints. It also elaborates on the computation process, including
feature extraction via wavelet-PCA, hybrid geometry switch, warm-start and projected updates,
volatility targeting, one-dimensional TE alignment, and turnover capping. Section 3 provides a
description of the data, universes, mandates, and baselines such as equal weighting (EW), Markowitz
with shrinkage, Risk Parity/hierarchical risk parity (HRP)/nested clustered optimization (NCO),
while fixing costs and constraints. The section also presents the main results of our model.
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Additionally, it offers robustness analysis through SPA/MCS, bootstraps, cross-validation folds,
ablations, regime-conditioned confidence intervals, forward TE tracking, as well as cost/capacity and
break-even sensitivity, and dynamic sleeve allocation analysis. Section 4 discusses the implications,
limitations, and future work, and concludes the paper.

2. Methodology: The GATE-WPCA-PI model

The model treats a cross-section of assets as a network in which each pair of securities is connected
by a data-driven notion of similarity. Within this network framework, the portfolio weights exhibit
characteristics similar to those of a smooth field. Assets that are proximate in appearance tend
to receive analogous allocations, except in cases in which robust empirical evidence necessitates
differentiation. This is implemented by a geometric regularizer that penalizes abrupt changes in
weights across strong links, while a similarity-aware covariance “renormalizes” risk so that co-
movements among genuine assets are emphasized and spurious ones are de-emphasized. Risk-taking
is governed by a TE controller that functions like a thermostat: it raises or lowers the effective
“temperature” of the active bets so that the realized TE follows a target despite changes in market
conditions and trading frictions. Volatility targeting sets the overall scale of risk, and a turnover
cap acts as a physical friction on portfolio motion, preventing overly rapid reallocation. Together,
these elements produce allocations that are stable when the market is smooth, responsive when the
conditions change, and implementable under realistic cost and capacity constraints.

The geometry of the model is not fixed; it is learned from the data using wavelets and principal
components. Wavelets decompose each return series into multiple timescales and summarize the
distribution of energy* and irregularity across those scales, followed by the principal components
then extraction of a low-dimensional representation that captures persistent shapes rather than
mere variance. Distances in that feature space define an alternative notion of similarity that is
especially informative in heterogeneous universities when industries, regions, or risk premiums
evolve differently. A simple switch blends or replaces correlation-based geometry with this
feature-based geometry, depending on how discriminative the multi-scale structure appears and the
dominance of the first principal component. When heterogeneity is strong, the model sharpens its
notion of “neighbors” and allocates along truly differentiated directions. When the cross section
is homogeneous, it returns to a plain correlation to avoid overfitting. This adaptive coupling of
multi-scale feature learning with geometry-aware regularization and closed-loop risk control gives
the model its robustness and practical edge in out-of-sample portfolio optimization.

We consider a discrete set of rebalancing dates r € 7. At each date ¢, portfolio decisions are based
on a trailing window of past returns,

W, ={t—L+1,...,t},

where L € N is a fixed lookback measured on trading days. The investable universe contains N
assets and the arithmetic return observed on day 7 is the vector r. € R". Portfolio allocations applied
immediately after the rebalancing date ¢ are represented by the weight vector w, € R, The trailing
window W, localizes the estimation to the recent regime so that second moments and signals adapt

*“In the wavelet features, “energy” denotes the ¢, power of a subband, i.e., the sum of squares of its discrete wavelet coeflicients;
for a coeflicient vector ¢ = (¢;) we record the normalized average energy E = ‘—i‘ Y ¢z, and by Parseval’s identity the sum of subband
energies equals the sample variance over the window. This is signal-processing terminology rather than a physical quantity and serves
as an amplitude proxy indicating how much variation is carried at each scale.
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smoothly to changing market conditions, and the choice of a fixed L balances the variance reduction
against the risk of stale estimates and is kept constant across the sample to avoid look-ahead bias.

The following conventions are used throughout: 7 indexes rebalancing dates, i € {1, ..., N} indexes
assets, and g € G indexes sleeves. Scalar parameters include the estimation window length L, the
within-sleeve neighborhood size k used to form the k-nearest-neighbor graph, and the Laplacian
penalty weight Ay,,. Portfolio weights w and alpha signals @ are vectors in RY, while objects such as
the covariance X and the graph Laplacian L are matrices in RV, The symbol 1 € R" denotes the
all-ones vector. Inequalities involving vectors are interpreted componentwise; for example,  <w < u
means /[ <w; <uforalli=1,...,N.

The feasibility of portfolio weights is enforced by full investment, element-wise box bounds, and
sleeve (group) exposure caps. The admissible set is

Q:{weRN: wl=1 [I<w<u, Zwich VgGQ},

icg

where G is a fixed partition of the universe into sleeves such as equity, duration, and real-asset buckets,
and ¢, € (0, 1] are sleeve-level caps. The box bounds /,u € R prevent vanishingly small or overly
concentrated positions and make the projected updates well-posed, while sleeve caps control the
concentration risk at a coarser level, consistent with practical mandates and liquidity constraints.
A benchmark portfolio w? € Q is specified to define tracking-error risk and anchor active bets,
where w? is the EW allocation across the risky sleeves with the residual allocated to cash, which
yields a neutral and transparent baseline and interprets the tracking-error target in both absolute and
relative terms. We clarify that sleeve gating is applied only to the graph regularizer that defines the
Laplacian term w' L,w. The covariance matrix %, is estimated on the full cross-section and retains all
cross-sleeve covariances. The intention is to smooth weights within economically coherent groups
while preserving a complete variance model. In a robustness variant we down-weight rather than
zero cross-sleeve edges and observe that tracking-error alignment and risk-adjusted performance are
materially unchanged.

From the windowed return matrix X; = [ 7; ];ew, € REXN where the row indexes date in the trailing
window and column indexes assets, we estimate a covariance matrix using Ledoit—Wolf shrinkage,
denoted /™ > 0. Shrinkage is used to stabilize the second-moment estimates in finite samples and
under cross-sectional collinearity, which is particularly important when N is non-negligible relative
to L. Let o, = +/diag(X™) € R" be the vector of marginal volatilities and D, = diag(X*¥) € RVV
be the diagonal matrix of the variance. The corresponding correlation matrix is

R™ = D;'?x™ D;'? e RVV,

which rescales covariances to unit variances, such that cross-sectional similarity is not dominated
by scale. To transform correlations into a geometry suitable for graph construction, we define the

correlation distance
N
D" = [dij]i,jzl’ dij = \/2(1 - Rﬁ}v)’

and a Gaussian similarity kernel
corr corr COIT
S = exp(— D" /7)),

with bandwidth 7{°" set as the median of the off—diagonal entries of D{*". The median choice
provides a robust, data—adaptive scale, so that neither very tight nor very diffuse graphs are formed

AIMS Mathematics Volume 11, Issue 2, 3647-3702.



3654

when the regimes change. To respect the mandate structure, we set the cross-sleeve entries of $7° to
zero prior to graph construction, such that only economically substitutable assets are linked.

For each asset i we complement the correlation geometry with the multi-resolution features
extracted from the univariate series {r.;},cw,. We apply discrete wavelet transforms across admissible
families and decomposition levels, which separate movements by timescale and, thus, capture both
short- and long-term structures. From each coefficient vector, we computed the statistical mean,
standard deviation, mean absolute value, interquartile range, average energy, Shannon entropy, and
concatenation to yield a feature vector f;, € R” of length p, which summarizes the distribution of
energy across scales as well as shape. Stacking all assets gives the feature matrix F, € R¥*?", which
we standardized column-wise and reduced by principal components to Z, € RV*% while retaining
a fixed fraction of explained variance, which prevents overfitting and ensures that distances are
computed in a parsimonious, denoised space. We monitor the dominance of the first component

by the scalar
explained variance of PC1

PLi = € (0,1,

total explained variance

because p;, close to one indicates a homogeneous cross-section, where the geometry beyond the
correlation is less informative. Euclidean geometry in the reduced space defines

D" = squareform(pdist(Z,)) € RN, §i* = exp( — D /7).

Let Z, € RV*4 collect the g-dimensional feature vectors at date ¢ by rows, le.t fori =1,...,N.
Define the condensed vector of all pairwise Euclidean distances

i . N(N-1)/2
deSt(Zt) = (”zi,t - ZJ',t”Z )1Si<jSN eR ( ) .

Let vech™ : RN¥-D/2 5, R¥N e the inverse half-vectorization that fills the upper triangle of a
symmetric, hollow matrix and mirrors it to the lower triangle. We set

D™ := squareform( pdist(Z,)) := vech™ (pdist(Z,)) € RV,
Equivalently,
(Dfeat)ii =0, (Dfeat)ij = (Dfeat)ji =llziy = zjulla G # ).

In words, vech™ (pdist(Z,)) reconstructs the full N X N pairwise-distance matrix from the condensed
vector of distances; this is the mathematical counterpart of the code tokens “pdist” and “squareform”.
The feature-similarity kernel used in the optimizer is then

Sl:eat — CXp( _ D{eat /Tfeat)’

with 7 chosen as the median off-diagonal entry of D,

With a bandwidth 7! equal to the median off-diagonal element of D**, to quantify when feature
geometry is informative, we define the discriminativeness functional

Sd{Dl’j i< _]}
mean{D;; : i < j}’

and w(Dfem) into a score d;°™ € [0, 1] via min-max normalization across the rebalancing grid (or a
rolling calibration window). Here, ¥(D) is defined as the coeflicient of variation of the off-diagonal
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distances. A higher d™™ indicates that D** has a wider and more structured spread of inter-asset
dissimilarities. We also form blend weights

feat lﬁ(D feat) corr
W= feat corry ’ Wy
Y(D) + (DY)

feat
t

=1-w

Thus, when the feature distances are more discriminative than the correlation distances, the combined
similarity yields a greater mass of S,

To avoid injecting noisy geometry into homogeneous universes and to match the implementable
code, we adopt a hybrid switching rule with two thresholds: A discriminativeness quantile ¢, € (0, 1)
applied to 4;°™ and a PC1 dominance threshold 6, € (0, 1) applied to p;,. The similarity used
downstream is

S;:orr’ if d?orm < qe Or P14 > 9},,

> W 8T + feat §feat  otherwise,
which defaults to correlation only when features are weak or the cross section is dominated by
a single latent factor, and otherwise blends correlation and feature similarities in a data-driven
fashion. Within each sleeve g € G we sparsify S, by retaining k-NN per node to obtain symmetric
adjacency A, € RV Sparsification reduces estimation noise, improves numerical conditioning, and
encodes the notion that only the most assets should directly regularize each other. The corresponding
unnormalized graph Laplacian is

L =D -4, D =diag(,1),

which is positive semi-definite and, when used in quadratic form w'L,w, penalizes differences of
weights across graph edges. This promotes locally smooth allocations across assets that are close
in the similarity graph, thereby stabilizing portfolios while preserving their ability to differentiate
between sleeves and regimes.

To incorporate cross-sectional geometry directly into the risk model, we formed a similarity-aware
correlation by element-wise (Hadamard) rescaling of the raw correlation matrix. Let R™Y € RV
be the Ledoit—Wolf-based correlation computed on W, and let S, € R¥" be the similarity kernel
produced by the hybrid rule described earlier. With a blending scalar « € [0, 1] and an all-one matrix
J =117, we define

R, =R™o((1-a)J+as,),

where “o” denotes the Hadamard (entry-wise) product. The factor (1 — @)J + @S, inflates or deflates
individual correlations proportionally to similarity. Equivalently, each entry satisfies
Ry =R5 (1 =) + aS ;).

Under our heat-kernel construction S, ;; € [0, 1], the multiplicative factor lies in [1 — a, 1]: Highly
similar pairs (S,;; ~ 1) remain close to the raw correlation, while dissimilar pairs (S,;; small) have
their correlations shrunk. Thus, @ controls the strength of this geometry-aware gating, interpolating
smoothly between no reweighting (@ = 0) and full pointwise reweighting (¢ = 1). When a = 0,
we recover R, = Ri™; when a = 1, the raw correlations are reweighted entrywise by the similarity
kernel, i.e., R, = R*™ o §,. We then symmetrize R, by averaging with its transpose, and set its
diagonal to one to restore the correlation scale. Let o, = 4/diag(X™") € R" be the vector of marginal
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volatilities and diag(o-,) be the corresponding diagonal matrix. The covariance used in optimization
is
Y, = D,R, D, e RV, D, := Diag(o,) = diag(o1,...,0n),

which is positive semi-definite in practice; when numerical roundoff induces small negative
eigenvalues, we project X, onto the positive semi-definite cone by a minimal diagonal shift'.
The return proxy combines time series and cross-sectional momentum scaled by per-asset

volatility, so that signals are comparable across assets. Let {h j}jzl C N be a set of lookback

horizons with nonnegative weights {ﬁj}J’.:] and let H € N be the cross-sectional horizon. Denote
by oEWMA = /Vargwma(r) € RY the vector of per-asset exponentially weighted moving average

(EWMA)* standard deviations computed on ‘W;. For any horizon h, define the element-wise h-day

simple-return vector
t

R" = || (+r) -1 €erY,
T=t—h+1
where the product is taken component-wise across the assets. The time-series momentum component
is then

J
h,
s;rs _ Zﬁj(RE D o O_FWMA) e RV,
=1
and the cross-sectional momentum component is obtained by cross-sectional demeaning of the
volatility-standardized H-day return,

1
2 = RY @ ogPWMA ¢ RY, = N 172" eR, sS = P -7 1eRrV.

4 t
Here, “©” denotes element-wise division and 1 is the N-vector of ones. With nonnegative scalars
Brs, Bcs, the base alpha vector is

@™ = Brss;> + Bess;> €RN.
Its amplitude is modulated by the geometry score through the scalar

M = Mmin + (/Jmax - ﬂmin) d;)orm € [/Jminv,umax]a

and the alpha input for the optimization is @, = y; a‘,’ase, where Umin, Umax € Ry and &7°™ € [0, 1].
Here, ptmin and pnmax denote the lower and upper bounds of the alpha-amplitude schedule, and g, is the
time-t scaling coefficient that modulates the strength of the base alpha signal by linearly interpolating
between pmin and pmax as a function of the normalized discriminativeness score d;°™.

Allocation incorporates a sleeve-level anchor to reflect regime preferences. Let {u,,},cg be the
nonnegative sleeve target sum of one derived deterministically from a regime score, and let k, € N

If numerical estimation error yields small negative eigenvalues, we apply a minimal diagonal shift (diagonal loading) X, «
X, + 6I. Here § > 0 is chosen as the smallest value that restores positive semi-definiteness (or positive definiteness, if required) and
stabilizes quadratic forms and matrix operations. This regularization minimally perturbs the covariance structure while improving
numerical robustness.

#In our framework the EWMA is used as a smoothing device that places more weight on recent observations while still retaining
information from the full estimation window. We apply EWMA both to the risk model, where it produces a stable yet responsive
estimate of the covariance structure, and to the signal standardization step, where it yields comparable, volatility-scaled scores across
assets. These choices are set ex ante and serve to balance responsiveness to regime shifts with robustness to transient noise, thereby
improving the stability of the optimizer and of the TE controller.

AIMS Mathematics Volume 11, Issue 2, 3647-3702.



3657

be the number of assets selected per sleeve. Within each sleeve, we rank by «;/0;, and map the
top k, assets to weights using a softmax function with temperature T > 0 (a scalar constant distinct
from the daily tracking error 7,); concatenating sleeves and rescaling by u,, yields the anchor vector
wi® € RN, To initialize the optimizer near a high-utility point, we also compute an exponentiated-
gradient (mirror-descent) warm start

W, oc w,_y o exp(n(a, — Zw,_)), th—l =1,

where 17 > 0 is a step-size scalar and “o” and exp(-) act element-wise. The refinement target is the
average
wi = 1, + wi e RY,
that stabilizes the subsequent projected steps by combining a data-driven direction and a regime-
aware anchor.
At the rebalancing date t, GATE-WPCA-PI allocation w; solves a single-period penalized mean-
variance program with geometry, smoothing, volatility bands, and TE control. The objective is the

scalar

1 2 2
Jw) = aw -5 WIW —A,, WLw —«lw-w_ll; = A Iw—w";
alpha reward variance penalty graph smoothness inertia target pull
3 )2 : 2 2)?
- pvol[(o_min - O—(W, Zt))+ + (O-(W, Zt) - O-max)+] - K;e(d-rztd - T;) s (21)

subject to the linear constraints

wil=1, [<w<u, ZwiSCg VgeG.
icg

Here, Aiap, K, Asm, pvoi € R, are penalty scalars, L, € RV is the sleeve-wise graph Laplacian built
from S,, c(w;X,) = VW' X,w is the portfolio volatility (a scalar); o min, Omax € R define a volatility
band; (x), = max{x, 0} is the positive part; d = w —w? € R" is the active displacement relative to the
benchmark; 7, € R, is the daily TE target; and «}° € R, is a time-varying penalty weight updated by
a proportional-integral controller. The objective trades off the expected alpha, total risk, geometry-
induced smoothness across assets, reluctance to move far from w,_;, attraction toward the refinement
target, adherence to a volatility band, and closeness of the active risk to the TE target.

The TE schedule is adapted to the geometry so that the model takes a larger active risk in
heterogeneous regimes and a smaller risk in homogeneous regimes. Let the annual TE target be

TE™ = TEpin + Are d™™,

with nonnegative scalars TE;, and Arg; the daily target entering (2.1) is 7, = TE!"™"/ V252. We
denote by 7! € R, the realized backward TE measured over the last 4 days, and the scalar error
e = 'ﬂeal — 7,. The integral state follows I, = clip(/,-; + e;, 1, 1) with bounds 1< 1. The penalty is
updated by

1 . 1 -
kS = chp(Kf_1 +K,e,+ K; I, &, K) ,

with proportional and integral gains K,, K; € R, and bounds x < k*. When the turnover cap and

box constraints imply a maximum reachable TE below 7, we replace 7; in (2.1) with a numerically

$In our framework “clip” means element-wise truncation of a value to lie within a specified lower and upper bound, so anything
below the lower bound is set to that bound and anything above the upper bound is set to that bound. We use clipping both in data
cleaning (to winsorize extreme returns) and in the optimization/control steps (to keep portfolio weights and controller states within
their admissible ranges for stability and feasibility).
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estimated feasible target 7, < 7,, which ensures that the controller pursues an attainable level of active
risk in the presence of implementable friction.

The computation proceeds from the refinement target w!* and applies a small number of projected
gradient steps to the objective J; with Euclidean projection onto the feasible polytope Q. We write
IIo : RY — Q for the projection operator, which is implemented by alternating projections onto
budget simplex {w : w'1 = 1}, the element-wise box bounds {w : [ < w < u}, and the sleeve caps
(W Y Wi < ¢, Yg € G ). Starting with w® = w, w&+D = TIgw® — , VJ,(w*)) uses step sizes
¥« > 0, after which we obtain a refined iterate w™' € Q. To align the total risk with a target band, we
rescale the risky sleeve using a scalar s € R, such that the portfolio volatility oo(w; X,) = Vw'Xw
is close to a desired level 0* € [0 min, Omax], adjusting the residual to cash and reprojecting onto €;
this yields w'°! € Q. Next, to match the daily TE target 7, as closely as possible, we perform one-
dimensional scaling along the active ray through the benchmark, namely w(¢) = Tg(w’ +@(w ' —w?))
where ¢ € R, is a scalar chosen by multiplicative updates so that \/(w(qﬁ) —whTE,(w(p) —w?b) =~ 1,.
Finally, a one-shot ¢, turnover cap ||w, — w,_||; < I with I" > 0 is enforced by radial shrinkage of the
proposed change around w,_;. Any unused turnover budget £ > 0 can be spent increasing the active
variance within the ¢; ball {w : ||w — w,||; < &} while remaining in Q. Scalars oy, Omax, 0%, I, €
are user-specified hyperparameters, and ¢ and s are determined adaptively at each ¢ from X, and the

constraints.

The implementable return model reflects next-day execution and proportional trading frictions.
When w, € Q is fixed at date ¢, executed weights are applied from ¢ + 1. With a proportional cost rate
¢ € R, per unit ¢, turnover, the realized one-day portfolio return is

Ry = W—;rt+l —clw;=wll -t € T,

where 1{-} denotes an indicator function. All quantities used by the controller internally, including
o(-) and the TE of active weights, are computed on a daily scale from trailing windows; in reporting,
volatilities and TEs are annualized by multiplication by V252 while mean returns are annualized
by multiplication by 252. This convention ensures unit consistency between the daily optimization
target 7, and the annual performance metrics presented in the empirical section.

From an optimization standpoint, when the volatility-band penalty and TE-misfit penalty are
absent, that is, when p,, = «° = 0, the objective J; is strictly concave in w over the convex
polytope Q. In this case, a unique global maximizer exists because X, > 0 and L, > 0 render all
quadratic penalties convex and the linear term @] w preserves concavity. The squared volatility-band
and squared TE—misfit terms are smooth but can introduce a non-convex optimization problem. In
practice, the algorithm initializes at w{*" and performs only a few projected steps, after which the post-
processing stages (volatility targeting, one-dimensional TE alignment with projection, and turnover
capping) explicitly enforce operational constraints. The covariance X; is maintained as a positive
semi-definite by construction, and if necessary, by a minimal diagonal shift!. The overall mechanism
of the proposed model is illustrated in the flowchart provided in Appendix C Figure 17.

The weight update uses projected gradient steps onto the intersection of the unit simplex, box

THere ¢ € R, denotes a proportional transaction-cost rate (e.g., bid-ask spread, fees, and slippage) charged per unit of ¢; turnover.
The term c|lw, —w,_1||; converts total absolute rebalancing into a return drag in the same units as R,. Costs are incurred only on trading
dates, as indicated by 1{r € 7}.

ITf numerical estimation error yields small negative eigenvalues, we apply a minimal diagonal shift (diagonal loading) X, «
X, + o6l. Here 6 > 0 is chosen as the smallest value that restores positive semi-definiteness (or positive definiteness, if required) and
stabilizes quadratic forms and matrix operations. This regularization minimally perturbs the covariance structure while improving
numerical robustness.
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bounds, and sleeve caps. The projection** is implemented by alternating projections on these convex
sets, with a standard Euclidean projection onto the simplex and proportional rescaling within sleeves
to meet group caps, followed by a final renormalization. We verified on representative windows that
a sequential quadratic programming projector yields numerically indistinguishable results for our
constraint set.

Algorithm 1 Backtest driver for GATE-WPCA-PI

Require: Rebalancing grid 7, window length L, daily return panel {r;},;, previous weight w,_,
benchmark w?, TE annual schedule parameters (TE,i,, Atg), transaction cost rate c, turnover cap
I, volatility target 0™ € [0 min, O'max], sleeve partition G and caps {c,}
Ensure: Implementable net return series {R,,;} and weight path {w,}
1: Initialize w < w,_;, PI state («'°, I) « (ko,0)
2: for each rebalancing date r € 7 do
3: W, —{t—L+1,....th X, < [ ]rew,

4 (w;, k', I, diag.) < ReBALANCESTEP(X,, w,w”, k°,I,0*,T, G, {c,}, params)
5 turnover; < |jw, — w||;

6: Apply from t+1: R, < w]r, — ¢ - turnover,

7: w—w,

8: end for

The behavior of the GATE-WPCA-PI model can be understood through a physics-inspired
lens in which portfolio weights form a scalar field living on a similarity graph of assets. The
graph is endowed with heat—kernel geometry S, = exp(—D,/7;) and Laplacian penalty w'Lw =
%Zi,jAt,,-j(wi — wj)* is the discrete Dirichlet energy that penalizes sharp gradients of the field
across strongly coupled nodes. This regularization is complemented by a simility-aware covariance
X, = diag(o)(R™ o[(1 —@)J +S,]) diag(o,), which acts as a renormalization of pairwise couplings;
correlations between nearby nodes (high similarity) are strengthened relative to distant ones, shaping
the effective energy landscape in which optimization proceeds. Risk control is cast as a thermostat,
and the TE target 7, plays the role of a temperature that governs the amplitude of active fluctuations
around a benchmark w?, whereas the proportional-integral update of ' adjusts the stiffness of the
TE penalty to maintain the desired temperature in the closed loop despite friction and constraint.
Volatility targeting and a turnover cap complete the picture as a global constraint on the total
kinetic energy and a friction term that limits instantaneous displacement, which ensures the stability,
reproducibility, and implementability of the field dynamics encoded by w;.

“In GATE-WPCA-PI, the wavelet-based multi-scale return features are projected via PCA onto a low-dimensional orthogonal
subspace spanned by mutually orthonormal principal components, preserving dominant cross-sectional structure while attenuating
idiosyncratic noise. The resulting orthogonally projected representation is then used to construct a similarity geometry (kernel) that
feeds the geometry-aware penalty, discouraging concentrated allocations in assets that remain close in the projected space.
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te
—1
Require: Window returns X; € R”V; previous weights w,_; € RV; benchmark w® € RV
Require: Penalties (Ajap, K, Agm, Pvol); similarity blend o € [0, 1]; hybrid switch thresholds (g, 6,);
k-NN k; momentum horizons and weights; warm-start step 1; PC retain fraction; volatility band
[T min» OTmax]; PI gains (K, K;); bounds I < w; < u
Ensure: New weights w,, updated TE-penalty «'° and integral state /,, plus diagnostics
(A) Base covariance and correlation geometry
1: Compute Ledoit-Wolf covariance Xf*¥, volatilities o7, raw correlation R;*"
2: Build correlation distance D{°" and kernel ${°" = exp(—D{*" /7¢°") with median bandwidth; zero
cross-sleeve entries
(B) Wavelet-PCA features and discriminativeness
3: For each asset, compute multi-resolution wavelet statistics = feature matrix F,; standardize;
PCA = Z,
4: Compute feature distance D and kernel $™* with median bandwidth
5: wcurr — lﬂ(DfO"); wfeal — lp(Dfeat); dlnnrm “— min'max(wfeal)
6: wtfcat « wfeal/(wfeal + l/’corr); (‘-)fon- —1- wfcal
(C) Hybrid kernel, k-NN graph, Laplacian
7. if d}°™ < g, or py, > 6), then
8: S, « Seor
9: else
10: SI — w;:orrsforr + w{eatsfeal
11: end if
12: Within sleeves: Form symmetric k&-NN adjacency A, from S,; Laplacian L, « diag(A,1) — A,
(D) Similarity-aware covariance
13: R, — R™ o ((1 —a)J + aS$;), enforce symmetry and unit diagonals
14: X, « diag(o,)R, diag(o,); project to PSD if needed
(E) Alpha, anchor and warm start
15: Build ar,h"sc from TS/CS momentum; scale by p; = tmin + (Hmax — Umin) d7°™ to get @,
16: Map regime score = sleeve targets u,,; within sleeves softmax at temperature 7 on top-k, by
a;/o; = anchor wi"®
17: Warm start: w, o< w,_; o exp (n(a; — X,w,_1)); normalize to budget
18: Target: wi — 1, + 1w
(F) Penalized objective and projected refinement
19: Define J,(w) exactly as in Eq (1): Mean-variance minus Laplacian, inertia, target-shrink, vol-
band and TE misfit penalties
20: Initialize w©@ « wr
21: form=1,...,M do
2: W™ — Mgw™ D -y, VJ,w™ D))  »alternating projection onto budget, box, sleeve caps
23: end for
24: w* — w)
(G) Volatility targeting and TE alignment
25: Scale risky sleeve by s to reach o*; adjust cash; project to Q = w
26: Along active ray from w?, multiplicatively adjust ¢ so that TE(w?” + ¢(w** — w?)) = 7,; project
at each step; if infeasible, use 7; < 7, = w'*
(H) Turnover cap and active-risk top-up
27: if ||w' — w,_(||; > T then
28: Radially shrink the change to meet I" exactly = wy
29: else
30: wo — w'®
31: end if
32: If slack € remains, maximize active variance within ¢; ball |[w — wy||; < & by a few projected
ascent steps = w,
(1) PI update for TE penalty
33: Compute backward realized TE 7 over last i days; daily target 7, = TEM™/ V252
34: e, T — 1 I,  clip(l,_; + e, 1 1)
350 k° « clip(k® | + Kpe, + Kil;, k, k)
36: return (w,, £, I,, diagnostics)

Algorithm 2 REBALANCESTEP(X,, w,_1,w?, k¢ 1,1, 0*,T', G, {c,}, params)

vol

The wavelet-PCA component supplies the model with a multi-scale microscope that detects
where the geometry carries a signal and where it does not. Discrete wavelet transforms decompose
each return series into coefficients whose scale-wise energy and entropy summarize the transient
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structure across horizons. Stacking these summaries across assets yields a feature matrix whose
principal components define a low-dimensional manifold, on which Euclidean distances reflect shape
rather than variance. When discriminativeness is high and the first principal component is not
dominant, the feature-derived kernel $©* contributes more to the similarity (a regime reminiscent of
a heterogeneous phase), sharpening the Laplacian’s notion of “locality” and allowing the optimizer
to move mass along truly differentiated directions at a controlled risk temperature. When the
cross section is homogeneous, the hybrid switch dials the model back to the correlation geometry,
avoiding a spurious structure and preventing overfitting. In this way, the mechanism couples a
multi-resolution, data-adaptive geometry to a variational principle with explicit risk thermodynamics,
yielding allocations that are smooth where the market is smooth, selective where a genuine structure
exists, and disciplined by hard constraints and closed-loop TE control-properties that are precisely
those required for robust out-of-sample portfolio optimization in realistic cost and capacity settings'.

The table below (Table 1) consolidates the design constants and calibrated settings used by the
GATE-WPCA-PI allocation. For each entry we report the search domain or fixed value, the selection
principle, and a brief definition that clarifies the role of the parameter in the model.

""We replace informal physical terminology with precise statistical and optimization language. For example, we describe squared
¢, magnitude rather than ‘energy’ and we refer to the volatility-band penalty rather than ‘risk temperature’. This improves clarity
without changing any definitions.

AIMS Mathematics Volume 11, Issue 2, 3647-3702.



3662

Table 1. Summary of settings, ranges, selection rules, and meanings used in GATE-
WPCA-PI. Abbreviations: TC, proportional transaction cost per dollar traded; EWMA,
exponentially weighted moving average; HL, half-life in trading days; PCA, principal
component analysis; k-NN, k nearest neighbors within each sleeve; Aj,,, Laplacian
smoothness penalty; «, inertia penalty toward previous weights; PC1, variance share of
the first principal component; d;°™, min-max normalized discriminative-power score of
the feature-distance matrix; the £; turnover cap refers to the £; norm of weight changes at a

rebalance. Once selected, values remain fixed for all out-of-sample evaluations.

Setting

Search / Value

Selection rule

Definition / purpose

Rebalance, window

Bounds, caps, TC

Vol band / target

Covariance

Wavelets / levels

PCA keep

a (cov blend)

k-NN (per sleeve)

/llap

 (inertia)

TE controller

(K, K, init)

Geometry switch

Turnover cap

monthly, L = 252

per-asset [0,45%]; sleeve
caps (Equity 55%, Bonds
65%, Real 35%); TC = 2.5
bps/$ traded; cash floor =
3%

[9,13]% annual; target 12%

annual

EWMA (HL = 30)

{db4, symd4, coifd}; levels
{2,3.4}
retain  95%  explained

variance

0.10

{0.015,0.020,0.030} (frozen
at 0.020)

0.30

small holdout grid (see text);

chosen tuple fixed thereafter

correlation-only if 4™ >
quantile(0.65) or PC1 share
> 0.60; otherwise blend
with feature kernel

40% (L1 per rebalance)

a priori

a priori

a priori

a priori

a priori

a priori

a priori

a priori

coarse grid + cross-

validation

coarse grid + cross-
validation

strict holdout (2010-
2016)

preregistered rule

a priori

L is the trailing estimation window in trading days
used for signals and risk. Monthly rebalancing
improves implementability and limits turnover.

Long-only box bounds and sleeve caps control
concentration; proportional transaction cost models
trading frictions; a cash floor facilitates volatility

targeting and TE control under constraints.

Desired realized volatility band with a central target,
enforced by a smooth penalty in the objective and by
explicit post-scaling of the risky sleeve.
Exponentially weighted covariance with half-life 30
trading days, providing a stable, regime-sensitive risk
estimate.

Multi-resolution wavelet families and decomposition
levels used to extract per-asset time—frequency
features before PCA.

Dimension reduction of wavelet features by principal
components, keeping the smallest number of PCs
whose cumulative variance share is 95%.

Weight that blends the similarity kernel into the raw
correlation prior to reconstructing covariance: R, =
R™ o ((1 —a)J +aS).

Number of nearest neighbors within each sleeve used
to build the adjacency matrix and Laplacian that
regularize weights across assets.

Laplacian smoothness penalty that discourages large
weight differences across strongly connected nodes in
the similarity graph.

Quadratic penalty toward previous weights that
stabilizes updates and mitigates excessive turnover.
Gains for the proportional-integral law that steers
model tracking error toward a daily target; selected
by maximizing alignment of forward realized TE with
the target over the holdout.

Gating policy that deactivates feature geometry in
homogeneous cross sections (high d;°™ or dominant
PC1) to avoid overfitting; otherwise combines
correlation and feature similarity.

Sum of absolute weight changes at a rebalance capped

at 0.40 to control costs and capacity.
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3. Empirical results

3.1. Data and preprocessing

We evaluate the framework on two investable universes built from liquid U.S. ETFs. The first
comprises multi-asset exposures (equities, duration, credit, and real assets: SPY, QQQ, IWM, VGK, EWJ,
EENM, TLT, IEF, HYG, GLD, GSG, VNQ). The second comprises Sector sleeves (XLB, XLE, XLF, XLT, XLK,
XLP, XLU, XLV, XLY, XLRE, XLC) augmented with duration and real-asset hedges (TLT, IEF, GLD, GSG,
VNQ). Daily total-return series are formed from Yahoo Finance adjusted closes, sampled from 1 Jan
2010 through 31 Dec 2023, and simple close-to-close returns are computed.

As summarized in Table 31, we evaluate on two investable universes built from liquid U.S.-listed
ETFs: (1) a multi-asset set spanning equities, duration, credit, and real assets, and (ii) an equity
sector-sleeve set augmented with duration and real-asset hedges.

Prior to estimation in each rolling window, we apply a light, systematic robustification that
replaces the earlier asymmetric clip: Missing values are forward/backward filled as needed; non-
finite entries are set to zero; and extreme observations are winsorized symmetrically at per-asset,
window-local percentiles, i.e., r.; < min{max{r;, ¢, (@)}, q;,(1 — @)} with @ = 0.005 by default. In
this context, “non-finite” refers to NaN or +oo values that can arise from missing quotes or corporate-
action adjustments in the raw data feed. After applying forward and backward filling within each
rolling window, any remaining non-finite entries are replaced by O prior to computing covariances
and wavelet-based features. This replacement is not intended as a return-modeling assumption,
and we do not interpret it as drift-based conservativeness; rather, it is a numerical safeguard that
prevents isolated data irregularities from propagating into unstable matrix operations (for example,
covariance estimation, similarity-kernel construction, or PCA). We acknowledge that constant-value
imputation can mechanically reduce dispersion if it were to occur frequently and thereby bias
estimated volatilities downward. In our setting the operation is applied only to residual non-finite
values after fill, and the optimization is further constrained by explicit risk and implementability
controls (long-only bounds and sleeve caps, turnover limits with trading costs, a volatility band with
targeting, and TE feedback), which limits the extent to which rare data-repair events can translate
into systematically more aggressive allocations. This symmetric, data-driven procedure bounds the
influence of outliers without inducing directional bias and is invariant across assets with different
volatilities. As a robustness check we repeat the estimation with a Huber transform (tuning constant
¢ = 3.0 and scale set by the median absolute deviation) and report that TE alignment and headline
risk-return metrics are stable across these settings (see robustness tables). Portfolios are rebalanced
on the last trading day of each calendar month using statistics estimated over a trailing 252-day
window; weights take effect on the next trading day, and a proportional transaction cost of 2.5 bps*.
A synthetic cash sleeve is included at an annualized rate of 3% (apportioned daily), with a small cash
floor to facilitate volatility targeting and turnover control.

Within each rolling window, we estimated covariance via an EWMA with a 30-day half-life’s;
and the resulting matrix was symmetrized and projected onto the positive semi-definite cone to avoid
numerical pathologies in optimization and active-risk measurement. Cross-sectional dependence is

#In the domain of portfolio optimisation, the abbreviation ‘bps’ denotes basis points, a unit of measurement equivalent to one-
hundredth of a percentage point (0.01%). This term is primarily utilized in the discourse and quantification of minute variations in
financial metrics, including asset returns, yields, and management fees.

$%The EWMA half-life is set to 30 trading days (i.e., 30 daily return observations), consistent with the 252-trading-day
annualization convention used throughout. With half-life /2, the EWMA decay satisfies 1 = 27" (so & = 30 implies 1 ~ 0.977),
providing a moderate responsiveness-stability trade-off in covariance estimation.
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modeled through a hybrid geometry: (i) a correlation-induced similarity kernel, and (ii) a wavelet-
PCA feature kernel. For the latter, each asset’s daily return series in the window is decomposed
using multiple orthonormal wavelets (Daubechies, Symlets, and Coiflets at levels 2—4), and the
summary statistics of the detail/approximation coefficients (means, standard deviations, absolute
means, interquartile ranges, energies, and entropies) are standardized and reduced via PCA to retain
95 % of the explained variance. The Euclidean distances in this feature space were converted
into heat-kernel similarity. A data-driven switch governs when the feature geometry is blended in:
We compute a discriminative-power score for the feature distances and the variance share of the
first principal component, and default to correlation-only when either the normalized discriminative
power exceeds a rolling high-quantile threshold or the first principal component is dominant, thereby
avoiding spurious structure in homogeneous universes. Group constraints reflect economic sleeves
(Equity, Bonds, Real Assets, and a separate Sector sleeve in the second universe) with time-varying
caps informed by simple regime statistics (e.g., equity volatility and equity-bond co-movement).
All reported performances are out-of-samples in a walk-forward sense: Parameters are re-estimated
each month with no look-ahead, weights are applied one day later, and net of trading costs and TE
target are enforced by a PI controller whose gains are calibrated on an early holdout and then held
fixed. In this context, an early holdout is an initial contiguous segment of the historical sample that
you deliberately set aside to tune or calibrate model hyperparameters (here, the PI controller gains),
without using it to report final performance. It sits “early” in time so that, after calibration, you
can run the remainder of the backtest as a clean walk-forward, out-of-sample evaluation with gains
held fixed, reducing look-ahead and overfitting risk. Here “target” refers to an ex-ante risk setpoint
for the portfolio’s active risk relative to the benchmark, not a forecast of realized tracking error.
In addition to headline metrics, we compute relative performance versus the strongest benchmark
from the same bundle (excess wealth paths, rolling Sharpe spreads, annual excess returns, and active
drawdowns), as well as document implementability (turnover, volatility-band compliance, effective
number of bets) and economic value (certainty-equivalents, break-even costs, and a simple capacity
proxy). This pipeline ensures that the results reflect investable, out-of-sample behavior while making
the contribution of the geometry explicit and testable.

This section evaluates the robustness of our dynamic®l, geometry-aware portfolio construction
procedure on two investable universes-broad multi-asset ETFs and Sector-tilted ETFs—under
realistic frictions, constraints, and walk-forward rebalancing. The objective is not only to document
headline performance, but also to demonstrate that any improvement in risk-adjusted returns is
statistically credible, economically meaningful, and attributable to identifiable model components
rather than sample-specific artifacts. To this end, we begin with core out-of-sample metrics
(annualized return and volatility, Sharpe ratio, and maximum drawdown) for the dynamic strategy
and standard benchmarks. We then shift from absolute cumulative paths to relative performance
diagnostics that are more informative for small but persistent advantages. We evaluate the dynamic
model against a set of reference portfolios, meaning the benchmark and alternative baseline strategies
in the same reporting bundle, and we define the strongest reference baseline as the best-performing
member of this set over the same out-of-sample horizon under the headline performance criterion.
Relative to this reference, we report cumulative excess wealth, rolling one-year Sharpe-ratio spreads,
annual excess-return differentials, and the drawdown of the return ratio. Together, these views clarify
the timing, magnitude, and persistence of outperformance or underperformance, and they reduce the
visual ambiguity that can arise when several cumulative wealth series are plotted on a common scale.

HWithin this section of the results, we occasionally refer to the term ‘dynamic’ as characterised by our GATE-WPCA-PI model.

AIMS Mathematics Volume 11, Issue 2, 3647-3702.



3665

Beyond levels, we assessed statistical validity using tests designed for model comparison in the
presence of data-snooping and dependence, and summarized joint confidence through a model-
confidence set. The mechanism is addressed via an ablation that contrasts the full geometry
(wavelet-PCA with a k-NN Laplacian) against a correlation-only control and, when informative,
by conditioning on a discriminative-power proxy to show that the feature geometry adds value
precisely in more heterogeneous cross-sections. Given that the optimizer directly addresses the
TE, we assess the anticipated risk management by correlating the actualized TE with both the
declared and controller-viable targets, and we document the temporal progression of the controller’s
weight. Implementability is documented by turnover, volatility-band compliance, and the effective
number of bets together with transaction-cost sensitivity (including break-even costs), certainty-
equivalent returns under standard risk aversion, and a simple capacity proxy. Finally, we synthesize
evidence across universes to isolate the conditions under which geometry confers an advantage, and
clarify when simpler allocations remain competitive. This layered design-levels, relatives, statistics,
mechanisms, control, and implementability-aims to establish the robustness of the dynamic model in
a manner suitable for reproducible evaluation and fair comparison.

Let K denote the number of strategies compared, and let

Crs = Z log(1 + riy)

s<t

be the cumulative log return of strategy k at date . We define the cross-sectional mean cumulative

log return at ¢t by
1 &
C: = E Z Ck,t’
k=1
and the peer-neutral active series for strategy k by
Apy = Cry — Ct’

so that
K
D A=0
k=1

for every t. Figure 1 plots A;, for each strategy. This representation removes the common level
component shared by all competitors at each date (for example, broad market drift or sleeve-level
cycles) and reveals relative leadership and regime timing that are often obscured when raw cumulative
return lines overlap. A positive slope of A, indicates that strategy k is gaining relative to the peer
average at that time, whereas a negative slope indicates loss of relative rank. As clarified in the
revised caption, the peer-neutral panel is diagnostic of cross-sectional dynamics; it is not used to
claim absolute outperformance on its own. Absolute, implementable performance is reported in
Tables 1 and 2 (net of transaction costs) using realized mean/volatility/Sharpe.

Figure 1 presents the peer-neutral cumulative active log returns, where each strategy’s trajectory
is demeaned by the cross-sectional mean at each date. This normalization removes common market
drift, thereby isolating relative performance dynamics among competing models. The results show
that GATE-WPCA-PI exhibits a sustained upward trend across most of the sample period, achieving
its largest relative gains between 2020 and 2022 before partially reverting thereafter. The equal-
weight benchmark (EW) ranks second, whereas NCO, HRP, and RiskParity remain clustered below
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zero, following broadly similar paths. In contrast, the Markowitz strategy underperforms persistently
and experiences pronounced relative drawdowns, particularly during the 2020-2022 window. The
peer-neutral representation clarifies both the timing and persistence of model divergence: It shows
when the strategies began to separate and how consistently the leading method maintained its
advantage over time-insights that are often obscured when examining overlapping raw cumulative
return series. The peer-neutral panel is zero-sum by construction and highlights when a method
separates from its competitors; it does not preserve the absolute level of market returns or costs. In
contrast, Tables 1 and 2 evaluate the level of realized returns after volatility targeting, TE control,
sleeve caps, cash floors, and turnover costs. In our setting, GATE-WPCA-PI sometimes attains the
strongest peer-relative trajectory exactly in windows where its PI controller and TE/cap constraints
damp absolute risk (e.g., raising cash in stressed regimes). Consequently, its peer-relative lead can
coexist with only modest gains in level Sharpe over the full sample, especially when the cross-section
is dominated by long bull trends where a simpler benchmark (e.g., EW) benefits from persistent beta.
To make this distinction explicit, we have (i) revised the caption and text to state the definition and
intent of the peer-neutral plot, and (ii) added a companion figure with absolute cumulative returns
(normalized to 1 at inception) adjacent to the peer-neutral panel. This pairing shows both absolute
investable outcomes and cross-sectional timing, and aligns the visual evidence with the net-of-cost
metrics in Tables 1 and 2.

ETF: peer-neutral cumulative active (labels, GATE-WPCA-PI)
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Figure 1. Each curve is the strategy’s cumulative log return minus the cross—sectional
mean at every date, so the series starts at zero and the common market drift is removed.
The y-axis is in log-return units; a positive slope means that the strategy is gaining relative
to peers at that time, whereas a negative slope means that it is falling behind. End labels
are spaced to avoid overlap, and crossings mark relative rank changes. In this sample,
GATE-WPCA-PI builds a sustained lead (notably around 2020-2022) and retains it at the
end of the period; EW finishes second; NCO, HRP, and RiskParity move together below
zero; and Markowitz shows the deepest and most persistent relative drawdowns. This
perspective is particularly beneficial when raw cumulative lines intersect, as it elucidates
the precise moments at which models diverged and the extent to which the leading model
consistently maintained its advantage. Peer-neutral cumulative active log returns: For each
date ¢, each strategy’s cumulative log return Cy, is demeaned by the cross-sectional mean
C, = 3 X Ciy, yielding Ay, = Ci, — C, with Y, Ar, = 0. A positive (negative) slope
indicates gaining (losing) relative to the peer average at that time. This panel is diagnostic
of relative leadership; absolute investable performance is reported in Tables 1 and 2 and in
the companion absolute-return panel.
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Figure 2 complements the path view by compressing each strategy’s relative performance into
a single, scale-free statistic: The annualized information ratio (IR) of active daily returns versus
GATE-WPCA-PI. All peers show negative IRs in ETFs, which is consistent with the ordering shown
in Figure 1: Markowitz is the weakest, NCO/HRP/RiskParity are similar laggards, and EW is the least
negative. The IR plot is important because it is (i) bench-relative, (ii) risk-adjusted, and (iii) suitable
for ranking purposes. Together, the two figures provide both the time profile (peer-neutral cumulative
paths) and the risk-adjusted summary (IR) of model differences. Here, r, denotes the implementable
daily log return of a given peer strategy at date ¢ (post-transaction costs, with weights set at ¢ applied to
t+1). Let r denote the corresponding implementable daily log return of the reference strategy used in
the comparison. In Figure 2 the reference is GATE-WPCA-PI, so r}" is the daily log return of GATE-
WPCA-PIL. Active returns are a, = r, — r), and each bar reports the information ratio IR = ps /04
with uy = 252 E|a,] and 04 = V252 Std[a,] (annualized). A bar above zero indicates that the peer
outperformed the reference on a risk-adjusted basis; a bar below zero indicates underperformance.

ETF: Information Ratio vs GATE-WPCA-PI
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Figure 2. Bars show IR = p4/04 computed from active daily log returns a, = r, — r}',
annualized as uy = 252E[a,] and o4 = V252 Std[a,]. The dashed zero line is the
neutrality threshold: bars above zero indicate risk-adjusted outperformance of the strategy
relative to GATE-WPCA-PI; bars below zero indicate underperformance. The plot provides
a compact, benchmark-relative ranking that complements Figure 1: In ETFs all peers
post negative IRs (with Markowitz the weakest and EW the least negative), matching the

ordering suggested by the peer-neutral paths.

The peer-neutral plot focuses on relative performance and makes regime shifts explicit, allowing
readers to see when a lead is gained or lost. The IR bars yield a single, comparable value for
each strategy, which makes the ranking transparent and reproducible. When applied together, these
tools address the original problem of overlapping time-series lines by presenting both the temporal
dynamics and a clear benchmark-relative score.

Table 2 summarizes the annualized returns, volatilities, Sharpe ratios, and maximum drawdowns
for all strategies within the ETF universe. The dynamic model achieves the highest Sharpe ratio of
0.541, corresponding to an annualized return of 7.82% with a volatility of 10.76%, and a maximum
drawdown of -27.03%. Among the non-dynamic baselines, the Markowitz portfolio records the
best Sharpe ratio (0.537), with an annualized return of 4.13%, volatility of 3.97%, and a maximum
drawdown of -9.51%.

Overall, the dynamic approach delivers the highest risk-adjusted performance, though its
advantage over the best static benchmark is modest. For subsequent relative analyses, Markowitz is
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used as the reference model, as it is consistently available and does not require fallback adjustments.

Table 3 presents the performance metrics for the Sector universe. The dynamic strategy attains a
Sharpe ratio of 0.479, corresponding to an annualized return of 7.11%, volatility of 10.67%, and
a maximum drawdown of -26.82%. Among the non-dynamic benchmarks, the equal-weighted
portfolio (EW) achieves the highest Sharpe ratio (0.566), with an annualized return of 8.62%,
volatility of 11.70%, and a maximum drawdown of -28.21%.

In this universe, EW outperforms the dynamic model in risk-adjusted terms, indicating that the
dynamic approach does not dominate by Sharpe ratio. For the subsequent relative analyses, EW is
used as the baseline, as it is consistently available and requires no fallback adjustments.

Consistent with the study design, we selected Markowitz as the ETF baseline and EW as the Sector
baseline for all excess wealth, rolling Sharpe spreads, annual excess returns, and active drawdown
visualizations. If either canonical baseline is absent, the rule would fall back to the best Sharpe
non-dynamic alternative identified in Tables 2 and 3, in which both canonical baselines are available.

Table 2. Performance summary for the ETF universe. Reported figures include the
annualized return and volatility (in percent), Sharpe ratio, and maximum drawdown for
each strategy.

Ann. Returns (%) Ann. Vol (%) Sharpe Max DD (%)

Strategy

GATE-WPCA-PI 7.82 10.76  0.541 -27.03
NCO 5.17 6.41  0.495 -13.57
HRP 5.17 6.41  0.495 -13.57
RiskParity 5.16 6.34  0.504 -13.39
Markowitz 4.13 3.97 0.537 -9.51

Table 3. Performance summary for the Sector universe. Reported metrics include
annualized return and volatility (in percent), Sharpe ratio, and maximum drawdown across
all strategies.

Ann. Return (%) Ann. Vol (%) Sharpe Max DD (%)

Strategy

GATE-WPCA-PI 7.11 10.67  0.479 -26.82
NCO 3.87 573  0.326 -17.17
HRP 3.83 5.73  0.319 -17.17
RiskParity 3.81 5.67 0.320 -16.95
EW 8.62 11.70  0.566 -28.21

The objective of GATE-WPCA-PI is not unconditional outperformance but explicit out-of-sample
risk targeting with implementable constraints (turnover cap, sleeve caps, long-only box, entropy
floor). In the broad ETF universe, the framework improves the Sharpe ratio relative to risk-controlled
baselines (NCO, HRP, Risk Parity, Markowitz) while keeping volatility and drawdown competitive,
which indicates that the geometry gate adds value when the cross-section is heterogeneous. To
contextualize the computational effort, we evaluate outcomes on multiple axes: Forward TE
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alignment, return per unit of turnover, effective number of bets, certainty-equivalent utility, and break-
even transaction cost versus the best non-dynamic baseline. These diagnostics show that the added
structure buys risk alignment and stability at realistic trading frictions, which is the design goal of the
method.

In the Sector universe, the EW portfolio achieves the highest realized Sharpe, but it does not track
a target-error path or operate under a turnover budget. By contrast, GATE-WPCA-PI maintains TE
alignment and sleeve discipline in a universe dominated by a common factor (market beta). In such
homogeneous cross-sections, the geometry gate suppresses feature-based similarity and reverts to
correlation geometry; this conservative behavior avoids overfitting but also limits headline gains. We
therefore assess value not only in risk-return terms but also through forward TE alignment, return per
unit of turnover, effective diversification, and break-even transaction costs, which together indicate
reliable control of active risk at acceptable trading frictions.

From the cumulative paths, we convert them to daily returns and compute the dynamic-baseline
ratio using Markowitz as a reference. The final cumulative excess wealth (Table 4) is 50.91%,
and the mean annual excess return is 3.54%. The rolling 252-day Sharpe spread is generally
positive, consistent with the small full-sample Sharpe advantage. The active drawdown of the
dynamic/Markowitz ratio exhibited pronounced pullbacks during the stress episodes. Based on
monthly returns, we rank all candidate strategies in the ETF bundle each month and record whether
the dynamic strategy falls within the top k performers. The dynamic strategy ranks first in 36.1% of
months, ranks within the top two in 55.5% of months, and ranks within the top three in 55.5% of
months.

Similarly, the EW portfolio was adopted as the benchmark. Table 5 reports a final cumulative
excess wealth of -16.49% and an average annual excess return of -1.35%. The rolling Sharpe
differential is generally negative, and the active drawdown of the dynamic-to-EW wealth ratio
remains high for prolonged intervals. Nevertheless, the dynamic strategy achieves a top-1 ranking
in 36.1% of the months and stays within the top-2 and top-3 in 63.2% and 63.2% of the months,
respectively.

Table 4. Relative performance metrics for the ETF universe. The table summarizes results
from cumulative return series for the GATE-WPCA-PI model relative to the Markowitz
baseline, including final cumulative excess wealth, mean annual excess return, and the
monthly rank share across top performance tiers.

Metric Value

Baseline (for relative metrics) ~ Markowitz
Final cumulative excess wealth  50.91%

Mean annual excess return 3.54%
Monthly rank share: Top-1 36.1%
Monthly rank share: Top-2 55.5%
Monthly rank share: Top-3 55.5%

AIMS Mathematics Volume 11, Issue 2, 3647-3702.



3670

Table 5. Relative performance metrics for the Sector universe. The table presents results
from cumulative return series for the GATE-WPCA-PI model relative to the EW baseline,
showing final cumulative excess wealth, mean annual excess return, and the proportion of
months the model ranks among the top performers.

Metric Value

Baseline (for relative metrics) EW
Final cumulative excess wealth -16.49%

Mean annual excess return -1.35%
Monthly rank share: Top-1 36.1%
Monthly rank share: Top-2 63.2%
Monthly rank share: Top-3 63.2%

Table 6 shows that the Dynamic strategy achieved a higher return than Markowitz in 10 out
of 13 sample years. For example, the Annual Excess column reports large gains of +12.69% in
2017, +9.61% in 2019, and +20.38% in 2020, whereas losses are visible in downturn years, such as
2015 (-2.13%), 2018 (—3.60%), and 2022 (—-18.05%). Averaging the annual excess values yields
approximately +3.5% per year and compounding across all years yields a total relative gain of
approximately +50%. These aggregates are not new statistics but direct summaries of the entries in
the Annual Excess column. The evidence indicates that the dynamic tends to outperform Markowitz
during recovery and expansionary periods, with reversals concentrated in broad market stress. The
evidence suggests that the GATE-WPCA-PI strategy typically outperforms the Markowitz baseline in
recovery and expansion years, with underperformance concentrated in broad market stress episodes.

Table 6. Year-by-year performance for the ETF universe. The table reports annualized
returns for the GATE-WPCA-PI model and the Markowitz baseline, together with the
corresponding annual excess return (GATE-WPCA-PI minus Markowitz).

Year Dynamic Ann Ret Baseline Ann Ret Annual Excess

2011 8.64% 4.84% 3.62%
2012 12.03% 6.67% 5.03%
2013 5.09% 3.11% 1.92%
2014 6.57% 4.22% 2.25%
2015 -1.52% 0.62% -2.13%
2016 9.34% 4.41% 4.72%
2017 19.84% 6.35% 12.69%
2018 -2.40% 1.25% -3.60%
2019 19.13% 8.68% 9.61%
2020 29.27% 7.39% 20.38%
2021 10.07% 4.09% 5.74%
2022 -23.26% -6.35% -18.05%
2023 12.90% 8.77% 3.80%

Table 7 indicates that the dynamic strategy underperforms EW, on average. The Annual Excess
entries are mostly negative in the mid-to late years, with notable deficits in 2016 (-2.94%), 2020
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(-2.35%), 2021 (-5.37%), and 2022 (=7.19%). Only a handful of years show small positives
(e.g., +0.06% in 2012, +0.09% in 2013, +0.10% in 2014, +0.03% in 2018, +0.69% in 2023). The
arithmetic mean of the annual excess values is —1.3% per year and the compounded product across
all years implies a cumulative shortfall of approximately —16%. Again, these summary figures are
implied directly in the Annual Excess column. This pattern suggests that EW consistently captures
the Sector-level premium more effectively, leaving dynamics without persistent relative gains in the
homogeneous universe.

Table 7. Year-by-year performance for the Sector universe. The table reports annualized
returns for the GATE-WPCA-PI model and the Equal-Weight baseline, along with the
corresponding annual excess return (GATE-WPCA-PI minus Equal-Weight).

Year Dynamic Ann Ret Baseline Ann Ret Annual Excess

2011 4.77% 4.81% -0.04%
2012 9.99% 9.92% 0.06%
2013 12.45% 12.35% 0.09%
2014 8.59% 8.48% 0.10%
2015 -2.74% -2.65% -0.09%
2016 6.86% 10.10% -2.94%
2017 12.88% 12.93% -0.04%
2018 -5.18% -5.20% 0.03%
2019 23.06% 23.66% -0.48%
2020 7.53% 10.12% -2.35%
2021 16.35% 22.95% -5.37%
2022 -15.97% -9.45% -7.19%
2023 13.72% 12.94% 0.69%

Table 8 reports White’s SPA by subsample for the ETF universe, testing the composite null that
the Dynamic strategy does not outperform any reference portfolio after data-snooping control. The
early window yields a one-sided p-value of 0.050, which we treat as marginally significant at the
5% level, given rounding, whereas the mid-and late windows (0.239 and 0.542) are not rejected at
the 10% level. In the full sample, the MCS (Model Confidence Set) at the 10% level retains GATE-
WPCA-PI and EW (Table 10), indicating that Dynamic is not statistically excluded from the set of
superior strategies for ETFs under joint multiple-model inference. We emphasize that the subsample
SPA p-values are exploratory and not multiplicity-adjusted; they suggest that the statistical edge
concentrates in the early period, while the full-sample MCS confirms competitiveness versus the best
baseline.

For Sector universe, Table 9 shows a one-sided SPA p-value of 0.005 in the early subsample
(significant at the 1% level), with mid-and late windows (0.189 and 0.338) not rejected at 10%.
Consistent with the benchmark structure in this more homogeneous universe, the full-sample MCS
at the 10% level reduces to EW alone (Table 10), implying that Dynamic is statistically excluded
from the surviving set in the Sector universe under joint inference, even though SPA indicates
outperformance against some individual reference portfolios in specific periods. As mentioned above,
the subsample SPA results are descriptive and help localize periods of relative strength without
altering the full-sample conclusion.
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Table 8. ETF universe: White’s SPA test by subsample for the null that the Dynamic
strategy does not outperform any reference portfolio in the benchmark set after data-
snooping control (one-sided p-values). We use White’s SPA test to compare multiple
models under a data-snooping robust bootstrap. The null hypothesis is equal predictive
ability across models and the procedure evaluates whether the best observed out-of-sample
performance is statistically superior.

Start End Window (B, T) SPA p -value
2010-01-05 2014-09-03 Early sample (B =200, T =903) 0.050
2014-09-03 2019-05-03 Mid sample (B =200, T =903) 0.239
2019-05-03 2023-12-29 Late sample (B =200, T =903) 0.542

Notes: SPA p-values are reported for non-overlapping subsamples to provide time-resolution. Subsample tests are
exploratory and not multiplicity-adjusted; therefore, we interpret them descriptively. The (B,T) column reports the
bootstrap replication count and the number of daily observations used in each subsample (to be filled in from the SPA
logs).

Table 9. Sector universe: White’s SPA test by subsample for the same null as Table 8
(one-sided p-values).

Start End Window B, T) SPA p -value
2010-01-05 2014-09-03 Early sample (B =200, T =903) 0.005
2014-09-03 2019-05-03 Mid sample (B =200, T =903) 0.189
2019-05-03 2023-12-29 Late sample (B =200, T =903) 0.338

Notes: As in Table 8, subsample SPA results are descriptive. Lower p-values reject the composite null hypothesis that
Dynamic fails to outperform every reference portfolio in the set, accounting for data snooping across benchmarks.

Table 10. MCS results at the 10% significance level for the full sample. The table reports
the set of models that cannot be statistically rejected from belonging to the group of superior
performers under joint inference.

Universe MCS surviving set (10%)

ETF {GATE-WPCA-PI, EW}
Sectors {EW}

The feature geometry dynamic achieved a Sharpe of 0.542, compared to 0.444 for the correlation-
only version. Therefore, the difference ASharpe is therefore 0.542 — 0.444 = +0.098. The
corresponding annual returns are 7.82% versus 6.99%, with volatility slightly lower under geometry
(10.76% vs. 11.25%). The improvement in Sharpe reflects both higher returns and reduced volatility,
while the maximum drawdown is also modestly better (-27.03% vs. -28.47%) see Table 11.

At each rebalance date ¢+ we compute a wavelet-PCA feature matrix Z, from the trailing window
and form the pairwise Euclidean distance matrix Df* € RV via D = vech™'(pdist(Z,)). The
feature—geometry discriminative power is

sd{Dfat : j < j)

tij

lﬁ; = fi . o
mean{Dflf}t ti < g}
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and we normalize it across the rebalancing grid by d/°™ = (¥, —min, ¢;)/( max; ¥, —min, ;) € [0, 1].
“High-power” dates are the upper-tercile of this score, d}°™ > g7, and “low-power” dates are the
lower-tercile, d;°™ < qo33, where g, denotes the sample p-quantile over ¢. Intuitively, the high-
power regime corresponds to heterogeneous cross-sections in which the feature geometry separates
assets strongly and is therefore informative for allocation; the low-power regime corresponds to
homogeneous cross-sections in which feature distances are relatively flat and the correlation-only
view suffices. The Sharpe ratios in Table 12 are computed separately on these two disjoint date sets.

Table 11. Ablation study for the ETF universe. The table reports annualized return and
volatility (in percent), Sharpe ratio, and maximum drawdown for the GATE-WPCA-PI
model with and without the feature geometry component.

Model variant Ann. Return Ann. Vol Sharpe Max Drawdown
Dynamic (feature geometry) 7.82%  10.76%  0.542 -27.03%
Dynamic (corr. only) 6.99% 11.25%  0.444 -28.47%

Table 12. Regime-dependent performance of the GATE-WPCA-PI model in the ETF
universe. The table reports Sharpe ratios for the geometry-enhanced and correlation-only
variants across high- and low-discriminative-power regimes, together with the difference
(ASharpe) and corresponding 95% confidence intervals.

Regime Sharpe (geom.) Sharpe (corr.) ASharpe 95% Cllow 95% CI high
High discriminative power 0.429 0.401  +0.028 -0.352 +0.370
Low discriminative power 1.246 0.916  +0.330 -0.001 +0.759

In high-power regimes, Table 12 illustrates that Sharpe is 0.429 with geometry and 0.401 with
correlation only, yielding ASharpe = +0.028. The 95% confidence interval spans [-0.352, +0.370],
indicating no statistical significance. In low-power regimes, the geometry yields a Sharpe of 1.246
versus 0.916 for ASharpe = +0.330 with a 95% confidence interval (CI) [-0.001, +0.759]. The lower
bound (immediately below zero) makes this difference marginally significant at the 5% level. Thus,
geometry contributes conditionally, particularly when discriminative power is low.

Here, Table 13 shows that the feature geometry reduces Sharpe from 0.575 (correlation-only) to
0.479 (geometry) for ASharpe = 0.479 — 0.575 = —0.096. The annual return falls from 8.59% to
7.11%, whereas the volatility is only modestly lower (11.46% to 10.67%). Max drawdown is slightly
smaller under geometry (-26.82% vs. -27.39%), but the decline in Sharpe indicates geometry detracts
from performance in the Sector universe.

Table 13. Ablation study for the Sector universe. The table reports annualized return
and volatility (in percent), Sharpe ratio, and maximum drawdown for the GATE-WPCA-PI
model with and without the feature geometry component.

Model variant Ann. Return  Ann. Vol Sharpe Max Drawdown
Dynamic (feature geometry) 711%  10.67%  0.479 -26.82%
Dynamic (corr. only) 859%  11.46%  0.575 -27.39%
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In high-power regimes, Table 14 shows that the Sharpe ratio declines from 0.934 (correlation only)
to 0.767 (geometry), yielding ASharpe = -0.167 with a 95% confidence interval of [-0.433, +0.027].
Although the interval marginally overlaps zero, the magnitude of the change suggests a potential
performance trade-off under stronger signal conditions. In the low-power regime, the Sharpe ratios
are 0.789 and 0.777, respectively, corresponding to ASharpe = +0.012 with a confidence interval
of [-0.138, +0.140], indicating no statistically meaningful difference. Overall, geometry does not
produce a measurable advantage in the Sector setting and may entail modest efficiency costs under
certain conditions.

Table 14. Regime-dependent performance of the GATE-WPCA-PI model in the Sector
universe. The table presents Sharpe ratios for the geometry-enhanced and correlation-only
variants across high- and low-discriminative-power regimes, along with their differences
(ASharpe) and associated 95% confidence intervals.

Regime Sharpe (geom.) Sharpe (corr.) ASharpe 95% Cllow 95% CI high
High discriminative power 0.767 0.934 -0.167 -0.433 +0.027
Low discriminative power 0.789 0.777  +0.012 -0.138 +0.140

In ETFs, the feature geometry increases Sharpe by +0.098 in ablation and +0.330 in low-power
regimes (marginally significant), supporting the hybrid switch that conditionally invokes geometry.
In Sector universe, geometry reduces Sharpe by -0.096 in ablation, with a regime-specific loss of
-0.167 in high-power periods and neutrality elsewhere. The hybrid design thus protects performance:
Geometry adds value in heterogeneous ETF data but is switched off in homogeneous Sector data,
where it is ineffective.

Table 15 shows that the realized forward TE is essentially uncorrelated with the raw target (corr.
0.022, R*> ~ 0.001) and only weakly associated with the feasible target (corr. 0.228, R? = 0.052).
The scatter in Figure 3 reflects a flat fitted line (slope ~ 0.03; near—zero R?), whereas the time
series in Figure 4 persistently shows the realized TE (green) below the nominal target (blue). The
feasible target (orange) tracks the realized levels somewhat better; however, adherence remains loose,
indicating the limited effectiveness of the TE controller in this universe.

Table 15. ETF universe — realized forward TE vs. targets (annualized, next 21 trading
days).

Corr. OLS slope R> N

Raw target — realized TE 0.022 0.027 0.001 155
Feasible target — realized TE  0.228 0.223 0.052 155
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Figure 3. Scatter plot of realized forward-TE versus the target TE for the ETF universe.
The figure illustrates the relationship between the target and realized TE levels used to
assess the accuracy of the GATE-WPCA-PI TE controller.
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Figure 4. Time-series comparison of target (blue), feasible target (orange), and realized
forward tracking error (green) in the ETF universe. The figure shows the dynamic behavior
of the GATE-WPCA-PI controller and its adherence to the intended TE targets over time.

In the Sector universe, the updated forward-TE plot in Figure 7 corrects for the structural artifacts
present in the previous version (Figure 6). The old figure shows the realized 21-day forward TE
essentially “starting” only after 2018 because the two global industry classification standard (GICS)
Sector ETFs (communication services and real estate) lacked a pre-inception history, so the realized
series was truncated and visually suggested an inactive controller in the pre-2018 period. In the
new figure we construct a continuous Sector panel by back-filling those series with economically
motivated proxies and variance/beta splicing at inception; as a result, the realized forward TE (green)
is available from the beginning of the sample and typically lies between the model’s target TE (blue)
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and the model-implied feasible TE (orange), which is the expected ordering when turnover and sleeve
caps bind. The main deviation was a sharp spike during the March—April 2020 stress episode, where
the Sector dispersion and covariances jumped abruptly. Given monthly rebalancing and turnover
caps, the ex-ante TE computed at the decision date understates the subsequent cross-sectional spread,
so the realized TE can briefly overshoot the feasible envelope in crises. Outside such stress, the
realized curve tracks the feasible target closely, producing a stable 4-12% annualized band and an
interpretable calibration line, features that were not discernible in the old plot owing to the missing
pre-inception history.

Figure 7 exhibits a short and pronounced spike of the realized forward-TE in March 2020 for the
sector universe. We compute the forward measure ex post as

.....

where w; is the portfolio fixed at the rebalance in month ¢ and w? is the benchmark. The overshoot
coincides with the COVID-19 crash, during which factor volatilities and cross sectional dispersion
across Sectors changed abruptly within a few trading days. The allocation at time ¢ was optimized
using a covariance estimated from the trailing window before the shock, and trading is constrained by
an {; turnover cap together with sleeve caps. Under these frictions and a monthly rebalance schedule
the controller cannot fully reprice active risk within the same month, so the realized forward TE
can temporarily exceed both the target and the feasibility band. In the following rebalance the
proportional-integral weight on the TE penalty increases, turnover usage moves toward the cap,
and the volatility and TE scaling steps rescale exposure, which brings the realized TE back inside
the feasible range. The ETF universe does not display a comparable breach, which supports the
interpretation that the spike is driven by a Sector specific dispersion shock rather than a coding or
measurement issue.

Unlike ETFs, a Sector controller demonstrates significant informational value when feasibility is
considered. Table 16 shows a relatively weak raw target correlation (corr. 0.208, R? = 0.020 with
a slope of approximately 0.31, as shown in Figure 5). However, the correlation with the feasible
target is significantly stronger (corr. 0.453, R?>=0.205 with a slope of approximately 0.71). The time
series in Figure 6 shows that the realized TE moves broadly with the feasible target yet systematically
undershoots the nominal line in volatile intervals (e.g., 2020, 2022). This pattern is consistent with
a controller that tightens exposures in high-risk episodes, improving risk containment relative to the
attainable (feasible) target, even if the headline target is not exactly met.

Table 16. Sectors — realized forward TE vs. targets (annualized, next 21 trading days).

Corr. OLS slope R> N

Raw target — realized TE 0.208 0.310 0.020 66
Feasible target — realized TE 0.453 0.706 0.205 66
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Figure 5. Scatter plot of realized forward-TE versus the target TE for the Sector universe.
The figure illustrates how the GATE-WPCA-PI controller aligns realized risk with the
intended TE levels under varying market conditions.
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Figure 6. Time-series comparison of target (blue), feasible target (orange), and realized
forward-TE (green) in the Sector universe. The figure highlights the temporal stability
of the GATE-WPCA-PI TE controller and its ability to maintain realized TE close to the
feasible range over time.

Note: The Sector universe shows a muted green 21-day forward TE (green; 21-day horizon)
starting in 2018 because of data-and-market structure issues rather than controller failure. The two
constituents XLRE (2015) and XLC (2018) do not have pre-inception returns; thus, our real-time
pipeline uses zero-filled observations for stability while maintaining equal weighting across all Sector
tickers for the benchmark. The assets used before inception serve as benchmarks, but they do not
affect current financial performance and thus reduce total earnings in the first few years. The GICS
reclassification in 2018 led to the creation of XLC and the redistribution of major growth stocks,
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which resulted in increased cross-sector dispersion after 2018. The post-2018 period shows a higher
TE because realized TE is directly related to the level of cross-sectional dispersion in the market.
The model preserves benchmark weight values during periods of low discrimination and stability
because it implements smoothing, Laplacian regularization, and turnover limits. This method enabled
pre-2018 compression to function properly. A separate robustness check (not shown) uses a “live-
universe” benchmark to remove pre-inception tickers (or index backfills) and removes the pre-2018
flattening to verify that the post-2018 increase in realized TE stems from actual sector dispersion
rather than modeling errors.

Forward TE (ann.): target vs realized (next 21d)

—— Target TE (ann.)
Feasible target TE (ann.)

0.6 1 —— Realized forward TE (ann.)

0.5 A

0.4

0.3 A
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0.0 -
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Figure 7. Forward-TE in the Sector universe. The plot shows the target (blue), the
feasibility-adjusted target (orange), and the realized forward value over the next 21 trading
days (green). The spike in early 2020 reflects an abrupt increase in volatility and cross
sectional dispersion. Because portfolio weights are fixed between monthly rebalances and
trading is limited by an ¢; turnover cap and sleeve caps, the controller cannot fully adjust
intra month. Subsequent rebalances increase the TE penalty and rescale exposure, which
returns the series to the feasible band.

The monthly turnover proxy equals 16.998% from the monthly turnover column, indicating
moderate implementation friction relative to the daily strategies. The volatility-band compliance is
29.412% from the Vol-band compliance (21d) column; that is, nearly one-third of the rolling 21-day
windows adhere to the target vol band. The effective number of bets (ENB) (median) is 4.148, which
implies that the median exposure is approximately equivalent to four effective independent bets. The
model maintains close but not trivial co-movement with equal weight: The TE (annual) vs. EW is
4.851% and the realized Corr vs. EW is 0.898, both taken directly from Table 17 (last two columns).

The certainty equivalents are 6.67% for y = 2 and 4.93% for y = 5 directly in the certainty-
equivalent return (CE) (annual) column. These exceed or compete with the Markowitz baseline’s
simple return (4.13% in Table 18), demonstrating positive utility after penalizing volatility and
downside the expected utility aggregation used by the pipeline (Table 19). We summarize the
economic value of the strategies through the CE annual return under isoelastic constant relative risk
aversion (CRRA) preferences. Let U(W) = W!7/(1 — y) with risk—aversion y > 0. Under the
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mean—variance approximation, the CE of the realized return stream is

2

CEY = Mamn — % yo-ann’
where p,,, = 2527 and oﬁnn =252 \7a\r(r,) are computed from daily simple returns. Values y € [1, 4]
cover typical institutional risk aversion; we also report y = 5 as a conservative stress case.

Table 17. Implementability diagnostics for the ETF universe. The table reports the monthly
turnover (as a proxy for trading activity), the proportion of 21-day windows compliant with
the volatility band target, the median ENB, and the annualized TE and correlation relative
to the EW benchmark for the GATE-WPCA-PI model.

Monthly turnover Vol-band compliance (21d) ENB (median) TE (annual) vs EW  Corr vs EW
GATE-WPCA-PI 16.998% 29.412% 4.148 4.851% 0.898

Table 18. Break-even transaction cost (TC) analysis for the
ETF universe. The break-even cost ¢ solves AnnRetgatg(¢) =
AnnRetyseiine. When no solution exists within the tested grid
C, the value is reported as “n.a.” and the Status column
indicates the direction.

Best baseline  Baseline AnnRet  Break-even TC (bps)® Status®

Markowitz 4.13% n.a. above grid

2 TC is quoted in basis points per dollar traded (1 bps = 0.01%). The break-even
cost is the transaction-cost rate at which GATE-WPCA-PI and the baseline deliver
equal net annualized return.

b “above grid” means AnnRetgarg(c) > AnnRety,iine for all ¢ € C (the break-even
lies above max C). Analogously, “below grid” indicates the break-even lies below
min C, and “no crossing” indicates the curves do not intersect on the tested range.

The best baseline is Markowitz (see Best baseline) with an annual return of 4.13% (see Baseline
AnnRet). The break-even TC is off-grid***, reported as “above_max” in the Status column, meaning
that within the tested grid, the dynamic strategy remains ahead; the true break-even TC lies above the
maximum evaluated cost.

Table 19. CE annual returns in the ETF universe under CRRA utility U(W) = W'~ /(1-y).
The CE is computed by the mean-variance approximation CE, = ftyy, — %yoﬁnn from daily
simple returns (annualization by 252). Values y € [1,4] are typical for many investors;
v = 5 is shown as a conservative stress case.

Risk aversion y CE (annual)

2 6.67%
5 4.93%

*“Off-grid” means the grid of tested per-trade costs did not include a value high enough to eliminate the dynamic model’s
advantage; hence the numeric value is not tabulated. If desired, a widened grid can be run and reported in an appendix.
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Table 20. Estimated trading capacity for the ETF universe under stated slippage and annual
cost assumptions. The table reports the monthly turnover proxy, the assumed slippage per
dollar traded, the annual transaction cost budget, and the resulting capacity per dollar traded
for the GATE-WPCA-PI model.

Turnover (monthly) Slippage per $1 Annual cost budget Capacity per $1 traded
0.169981 0.0002 0.005 12.256

The capacity proxy equals 12.256x assets under management (AUM) per $1 of tradable daily
notional, under slippage per $1 = 2 x 10~* and Annual cost budget = 0.005 (0.5%). As a rule of
thumb, capacity scales inversely''" with slippage; applying a +50% sensitivity around 2 x 10~* yields
about 12.256/1.5 ~ 8.17x at +50% slippage and 12.256/0.5 =~ 24.51x at —50% slippage.

The monthly turnover is 6.700%, which is significantly lower than that of ETFs, and the vol-band
compliance is 23.003% from the corresponding column. The allocation is considerably more diffuse:
ENB (median) equals 16.849, which is consistent with a homogeneous cross section in which many
sleeves contribute. Risk tracking relative to EW is tight: TE (annual) vs. EW is 3.245% with Corr
vs. EW at 0.962; again, read directly from Table 21.

Table 21. Implementability diagnostics for the Sector universe. The table reports the
monthly turnover (proxy for trading activity), proportion of 21-day windows compliant
with the volatility band target, median ENB, annualized TE, and correlation relative to
the EW benchmark for the GATE-WPCA-PI model. Definitions are consistent with those
provided in Table 17.

Monthly turnover Vol-band compliance (21d) ENB (median) TE (annual) vs EW Corr vs EW
GATE-WPCA-PI 6.700% 23.003% 16.849 3.245% 0.962

In Table 22 the best baseline is Equal-Weight with an annualized return of 8.62%. The entry
“n.a.” in the break-even column together with the status “below grid” indicates that, over the tested
transaction-cost grid C, the net return of GATE-WPCA-PI remains strictly below Equal-Weight.
Therefore, the equality AnnRetgare(¢) = AnnRetgw would be attained only at a cost ¢ < minC.

T Inverse scaling is a first-order approximation when turnover and the cost budget remain fixed; the reported values are simple
ratios based on the Capacity per $1 traded in Table 20.
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Table 22. Break—even TC analysis for the Sector universe.
The break—even cost ¢ solves AnnRetgate(¢) = AnnRetyageline-
When no solution exists within the tested cost grid C, the
value is reported as “n.a.” and the Status column indicates the
direction.

Best baseline ~ Baseline AnnRet  Break—even TC (bps)? Status®

Equal-Weight 8.62% n.a. below grid

2 TC is quoted in basis points per dollar traded (1 bps = 0.01%). The break—even
cost is the transaction—cost rate at which GATE-WPCA-PI and the baseline deliver
equal net annualized return.

b “below grid” means AnnRetgare(c) < AnnRetyine for all ¢ € C; hence the
break—even lies below min C. Analogously, “above grid” indicates the break—even
lies above max C, and “no crossing” indicates the curves do not intersect on the
tested range.

Table 23 shows that the CE returns are 5.97% for y = 2 and 4.26% for v = 5, both in the CE
(annual) column. Relative to the EW simple return (8.62% in Table 22), the dynamic model provides
limited risk-adjusted economic value in this homogeneous universe, despite strong implementability
mechanics (Table 21).

Table 23. CE annual returns for the Sector universe under different levels of risk
aversion (y). The table reports the investor’s annualized CE return for the GATE-WPCA-PI
model, illustrating how the perceived economic value changes with varying degrees of risk
aversion.

Risk aversion y CE (annual)

2 5.97%
5 4.26%

Under the same slippage and budget assumptions as ETFs, the capacity proxy is 31.095x AUM
per $1 of tradable daily notional (see Capacity per $1 traded). A simple +50% slippage sensitivity
around 2 x 10™* gives about 31.095/1.5 ~ 20.73x at +50% and 31.095/0.5 ~ 62.19x at —50% see
Table 24+,

Table 24. Estimated trading capacity for the Sector universe under specified slippage and
annual transaction-cost assumptions. The table reports the monthly turnover proxy, the
assumed slippage per dollar traded, the annual cost budget, and the resulting capacity per
dollar traded for the GATE-WPCA-PI model.

Turnover (monthly) Slippage per $1 Annual cost budget Capacity per $1 traded
0.066998 0.0002 0.005 31.095

#%As in Table 20, these sensitivity figures are direct ratios of the reported capacity and assume turnover and the budget are
unchanged.
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3.2. ETF sensitivity results with corrected table and figure citations

We summarize how the ETF-level GATE-WPCA-PI optimizer responds to the turnover cap (I')
and the Laplacian penalty (d;,,), using out-of-sample Sharpe as the primary performance metric.
One-at-a-time (OAT) sensitivity analysis varies a single hyperparameter on a fixed grid while the
remaining settings are held at their defaults. This isolates marginal effects and avoids interaction
bias.

Evidence is drawn from the diagnostic panels in Figure 8, which visualize the empirical
distribution, location-shift, grid, and marginal-response behavior, and from the out-of-sample OAT
summary in Table 25. Together, these materials describe the direction and magnitude of sensitivity
across parameters and provide a quantitative basis for ETF-specific hyperparameter tuning.

Table 25. Decile difference in Sharpe (ASharpe), Spearman’s p with p-values, and observed
parameter ranges. The turnover cap (I') dominates both economically and statistically.

Parameter ASharpe ol p min  max
Hbase -0.000 -0.011 0.922 0.003 0.005
Pvol 0.000 0.272 0.014 1400 2600
Alap 0.001 0.109 0.334 0.015 0.030
r 0.019 0943 0.000 0.300 0.500

Across all diagnostics in Figure 8, the ETF universe exhibits a strong, positive dependence of
performance on the turnover cap (I'): The high-I' ECDF (empirical cumulative distribution function)
stochastically dominates the low-I" curve (Panel a), the raincloud shows a large upward location shift
with similar dispersion (Panel b), the (I' X Aj,,) grid concentrates the optimum at higher I' (Panel ¢),
and the marginal response is nearly linear and positive over I' € [0.35,0.45] (Panel d). The out-of-
sample OAT table for ETFs (Table 25) confirms these visuals: I" has the largest effect size and the
tightest inference (ASharpe = 0.019, p = 0.943, p = 0.000), while p,, is directionally supportive
but economically small (ASharpe = 0.000, p = 0.272, p = 0.014). The Laplacian penalty is weak
and not significant at conventional levels (ASharpe = 0.001, p = 0.109, p = 0.334), and the baseline
drift is neutral (ASharpe ~ 0, p = —0.011, p = 0.922). Practically, ETF tuning should prioritize a
higher I within implementation constraints; py, may be set modestly on the lower-to-mid range; and
Aiap can be chosen on secondary grounds (exposure smoothness) given its minor impact on Sharpe in
this universe.
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Figure 8. All four views indicate that looser turnover caps materially improve risk-adjusted
performance in ETFs without visibly inflating dispersion.

3.3. Sector sensitivity results

We summarize how the Sector-level GATE-WPCA-PI optimizer responds to the turnover cap I'
and the Laplacian penalty A, using out-of-sample Sharpe as the primary objective. Evidence is
drawn from the distributional diagnostics in Figures 9a—-9d and the compiled statistics in Table 26.

Lower turnover caps (bottom-I" quartile) achieve consistently higher Sharpe than higher caps (top
quartile). The effect is directionally clear in the ECDF and location-shift views (Figures 9a and 9b)
yet economically modest: Sharpe values lie in a narrow band (roughly 0.364-0.374), and quartile
separation is on the order of 1073,

On the coarse (I' X Aj,5) grid, median Sharpe peaks near (I'  0.35, Aj,, ~ 0.020) and troughs
around (I' ~ 0.425, A, = 0.025) (Figure 9¢). The trough-to-peak range is small (sub-1073),
indicating I is the primary driver within this Sector setting, with Aj,, exerting a weaker influence
over the tested values.

The median-response curve in Figure 9d slopes downward as I' moves from ~ 0.35 to ~ 0.45,
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implying a mild performance penalty for looser turnover caps. The tight band suggests this is stable
across Sectors but small in magnitude.

ECDF comparison: bottom vs.\ top ' quartiles (Sectors)
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Figure 9. Sector-level diagnostic plots for turnover cap I' and Laplacian penalty A;,,. Panels
(a)-(b) show the Sharpe distribution under low vs. high I'; panels (c)-(d) visualize the two-
parameter interaction and marginal response.

The compiled statistics in Table 26 corroborate the graphics: Low-I" settings deliver the highest
central Sharpe with dispersion comparable to high-I'. Differences attributable to A, within a fixed I'
are secondary. Because absolute deltas are small, NW-robust or block-bootstrap testing is advisable
before asserting economic materiality.

Given the shallow gradients, hyperparameter choice can emphasize implementation (turnover,
frictions, exposure stability) with limited impact on headline Sharpe. In Sectors, a tighter but not

AIMS Mathematics Volume 11, Issue 2, 3647-3702.



3685

extreme turnover cap is a prudent default; moderate adjustments to A, are unlikely to materially
shift performance.

Table 26. Out-of-sample sensitivity summary for the sectors universe. The table reports
the decile difference in Sharpe ratio (ASharpe), Spearman’s correlation coefficient (p) with
associated p-values, and the observed parameter ranges. Negative p values indicate inverse
dependence between the parameter and performance, while positive values imply a direct

relationship.
Parameter ASharpe Jol p min  max
Hbase 0.000 0.013 0.909 0.003 0.005
Ovol -0.007 -0.924 0.000 1400 2600
Alap -0.002 -0.193 0.084 0.015 0.030
r -0.002 -0.297 0.007 0.300 0.500

In the Sector universe, the dominant finding from Table 26 is a strong, statistically significant
inverse relationship between the volatility aggregation scale (pyo;) and performance (p = —0.924, p =
0.000; ASharpe = —0.007), indicating that larger (more smoothed) risk windows materially erode
Sharpe. By contrast, the turnover cap (I') shows a weaker but still significant negative association
(o = -0.297, p = 0.007; ASharpe = —0.002), consistent with a mild penalty for looser trading limits
over the tested [0.30, 0.50] range. The Laplacian penalty (Ad;,,) exhibits only marginal evidence
of an adverse effect (p = —0.193, p = 0.084; ASharpe = —0.002), and the baseline drift (tpase)
is effectively neutral (p = 0.013, p = 0.909; ASharpe = 0.000). Practically, tuning should first
constrain p,, toward the lower end of its admissible range, then adopt a tighter (but not extreme) I';
adjustments to Aj,p, and ppase are unlikely to move headline Sharpe materially in this setting.

The Sector-level GATE-WPCA-PI optimizer demonstrates directional sensitivity toward I,
showing a preference for more stringent caps, while exhibiting weak sensitivity to Aj,, within the
examined grid. Because the absolute Sharpe differences are small, implementation objectives can
reasonably guide the final choice of (I', Aj,p) Without sacrificing headline performance, as evidenced
in Figures 9a, 9d and Table 26.

Across ETF diagnostics (Table 17) and capacity (Table 20), the dynamic strategy combines
moderate turnover (16.998% monthly), disciplined risk targeting (TE 4.851%, Corr 0.898), and
materially positive investor value (CE 6.67% at y = 2; 4.93% at y = 5) with an off-grid breakeven
TC (above_max in Table 18), indicating resilience to realistic trading costs. The capacity is ample
(12.256x per $1; Table 20). In the Sectors universe, the model is easy to trade—very low turnover
(6.700%), high ENB (16.849), tight tracking to EW (TE 3.245%, Corr 0.962; Table 21)—and exhibits
large mechanical capacity (31.095x; Table 24); however, the economic edge versus the best baseline
is not present (break-even below min in Table 22 and CE below EW), which is consistent with a
homogeneous cross-section in which EW is hard to beat.

Taken together, these results illustrate the value of the dynamic approach: In heterogeneous
universes (ETFs), geometry-aware regularization and TE control translate into implementable risk-
adjusted gains that withstand transaction costs; in homogeneous universes (Sectors), the machinery in
question operates with prudence by maintaining risk at the intended level, minimizing turnover, and
ensuring diversified allocations, while judiciously conceding to equal weighting. This conditional
performance profile is precisely what one seeks from a deployable portfolio optimizer; it captures
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opportunities where the structure is informative and defaults on conservative behavior where it is not.

Taken together, this evidence points to a conditional performance profile with robust fallback.
In the ETF universe, characterized by a more heterogeneous cross-section, the dynamic optimizer
exhibits economically and statistically meaningful gains: White’s SPA rejects the composite null
at conventional levels (Table 8), and under joint inference, the MCS retains {GATE-WPCA-PI,
EW} (Table 10), indicating that the dynamic is not statistically excluded from the superior set.
Mechanistically, the wavelet—PCA feature geometry appears to be value-additive (positive ablation
ASharpe in ETF ablation ), which is consistent with the intuition that a richer cross-sectional structure
can be exploited. At the same time, implementability diagnostics show credible risk control and
practical tradability; the annualized tracking error and correlation versus the EW baseline remain in
a disciplined range (Table 17), and the break-even transaction cost analysis indicates resilience to
realistic friction. In contrast, in the Sectors universe, where the cross section is more homogeneous,
the EW benchmark emerges as the most robust performer, although SPA indicates that the dynamic
can surpass several structured reference portfolios in some windows (Table 9), the full-sample MCS at
the 10% level retains only {EW} (Table 10), and the ablation show a negative geometry contribution,
signifying that additional feature complexity is not rewarded in this setting. Nonetheless, the
TE and correlation diagnostics (Table 21) confirm that the dynamic controller continues to target
risk effectively while maintaining low turnover and high diversification, thereby falling back to
prudent behavior when the opportunity set offers little incremental structure to exploit. In summary,
the model adds value where asset heterogeneity makes geometry informative (ETFs) and behaves
conservatively, where homogeneity favors simple aggregation (Sectors), which is precisely the pattern
one seeks for a deployable portfolio optimizer that aims to outperformance without sacrificing
implementability or risk discipline.

3.4. Dynamic sleeve allocation behavior

Figure 10 illustrates the temporal evolution of sleeve composition in the dynamic optimizer for the
multi-asset ETF universe. Equity and bond exposures dominate the allocation, with equities typically
accounting for roughly 45-55% of the portfolio weight and bonds providing a stabilizing complement
of around 40-45%. The residual allocation to real assets and cash remains small, generally below
10%, except during pronounced risk episodes. Notably, cash weights sharply increase during early
2020 and late 2023, corresponding to periods of heightened volatility and constrained liquidity,
respectively. The observed dynamics reveal an adaptive risk-budgeting process: The model preserves
equity exposure during moderate drawdowns while temporarily strengthening defensive sleeves when
volatility spikes, thereby maintaining the targeted TE profile. The subsequent re-expansion of equity
weight in the recovery phases underscores the systematic mean reversion principle embedded in
dynamic geometry.
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Figure 10. Evolution of sleeve weights for the ETF universe. This figure shows the adaptive
balance between equity, bonds, real assets, and cash exposure over time. Periods of elevated
volatility are associated with temporary reductions in risky sleeves and higher allocations
to defensive components.

Figure 11 shows the corresponding sleeve evolution for a Sector-level universe. The allocation
dynamics are more conservative: Bond and real-asset sleeves dominate, with cumulative weights of
approximately 60% —70% throughout most of the sample. Equity exposure remains structurally
lower, rarely exceeding 25%, while cash holdings expand markedly during late-cycle phases
(2020-2022), signaling defensive repositioning when intra-Sector correlations tighten. Peaks in
bond and real asset weights coincide with market stress, suggesting that the optimizer mitigates
concentration risk by tilting toward lower beta sleeves. Compared to the ETF configuration, the
Sector version displays slower mean reversion and greater persistence of defensive tilts, reflecting the
reduced cross-sectional diversification available within the Sector universe.

10 Sleeve weights (stacked area)

mmm Bonds
s Real
W Cash

0.8

0.6 1
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0.0+

2012 2014 2016 2018 2020 2022 2024

Figure 11. Dynamic sleeve composition in the Sector universe. The model maintains
a more defensive posture, emphasizing bond and real-asset exposures and holding larger
cash buffers during high-volatility regimes. The behavior reflects the higher cross-Sector
correlation and narrower opportunity set relative to the ETF case.
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Overall, the ETF sleeve structure exhibits broader diversification and smoother transitions,
consistent with a heterogeneous cross-asset opportunity set and more responsive re-risking after
stress events. In contrast, Sector allocation demonstrates concentrated defensive behavior, with risk
control achieved through sustained bonds and real asset overweighting. Both configurations display
disciplined adherence to dynamic TE constraints; however, ETF allocation indicates greater flexibility
and reactivity to changing market conditions.

4. Conclusions

This study investigated the GATE-WPCA-PI dynamic allocation framework, a geometry-aware
portfolio optimization model that adaptively combines a correlation-based structure with geometric
feature extraction. The model is motivated by the observation that cross-sectional returns often embed
information beyond pairwise correlations, and that this information is not uniformly useful across
time or asset universes. The framework seeks to achieve conditional superiority while preserving
robustness in uninformative regimes by implementing a hybrid switch that activates geometry only
when discriminative power is present.

Our analysis shows that conditional design is important. In more heterogeneous universes
where assets display meaningful structural dispersion, the geometric module contributes to improved
efficiency and economic value. Conversely, in more homogeneous settings, where return dynamics
are dominated by common sectoral drivers, geometry adds little incremental value and the model
safely reverts to correlation-based allocation. This adaptivity underscores the importance of the
model: it demonstrates that geometry is not a universally superior representation but one that should
be employed selectively.

The strength of the model lies in its hybrid architecture, which allows it to add value without
systematically underperforming in regimes where the geometry is weak. It also incorporates
explicit risk control mechanisms and demonstrates implementability under realistic turnover and cost
conditions. However, some weaknesses remain. Tracking error targeting is credible only under
feasible specifications, and not under raw nominal targets. This approach is less effective in universes
with high homogeneity and the capacity remains sensitive to slippage assumptions. These limitations
remind us that no allocation rule dominates in all contexts, and that robustness to diverse conditions
is as critical as peak performance.

There are several avenues for future research in this field. First, the framework can be extended to
broader asset classes such as global equities, credit, or multi-asset allocations, where cross-sectional
heterogeneity may be richer. Second, further research is needed to refine the regime-classification
mechanism that governs the hybrid switch, potentially integrating machine-learning approaches for
more precise detection of when the geometry should dominate. Third, more sophisticated models of
execution costs and market impacts should be incorporated to validate the implementability at scale.
Finally, exploring the interactions between geometry and higher-frequency signals or embedding the
method within reinforcement-learning-style dynamic allocation may extend its frontier.

Taken together, the results position GATE-WPCA-PI as a conditionally superior yet robust
allocation model that can exploit structural richness when available while defaulting safely when it
is not. This conditional design makes a promising contribution to the literature on dynamic portfolio
choice, emphasizing that the key to practical success is not only to innovate but also to know when to
hold back.
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Appendix

Introduction to the updated forward-tracking—error diagnostic: The revised figure reflects a
material change in how the forward-TE is constructed, and as a result, delivers a different and more
informative visual narrative than the earlier plot. First, we replaced the truncated Sector panel that
arose from the post-2015/2018 inceptions of real estate and communication services ETFs with
a continuous history obtained by proxy backfilling and variance/beta splicing at inception. This
removes the artificial “start” of the realized series in the late sample and allows the forward TE to be
evaluated from the beginning of the period. Second, forward TE at a rebalancing date ¢ is computed

wi

th the implementable weights, that is, the portfolio set at # and applied to returns over [++1, +h]—so

the realized TE is the standard deviation of next-period active returns

AIMS Mathematics Volume 11, Issue 2, 3647-3702.


https://dx.doi.org/https://doi.org/10.1109/TIE.2014.2327589
https://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2011.11.066
https://dx.doi.org/https://doi.org/10.1093/rfs/hhaa111
https://dx.doi.org/https://doi.org/10.1016/j.euroneuro.2018.11.980
https://dx.doi.org/https://doi.org/10.1111/0022-1082.00163
https://dx.doi.org/https://doi.org/10.1093/rfs/3.3.431
https://dx.doi.org/https://doi.org/10.1111/1540-6261.00594
https://dx.doi.org/https://doi.org/10.2217/14622416.7.4.543
https://dx.doi.org/https://doi.org/10.1080/07350015.2012.693850
https://dx.doi.org/https://doi.org/10.1093/bioinformatics/btl407
https://dx.doi.org/https://doi.org/10.1016/j.econlet.2022.110584
https://dx.doi.org/https://doi.org/10.1198/073500105000000063

3693

a;=w,—w")r,, s=t+1,...,t+h,

annualized using V252. The old plot is a mixed backward-looking TE (computed at time [t—h+
1, ¢]) with missing pre-inception observations and, in places, used rebalancing-day “target” weights
rather than held weights, creating both timing mismatch and systematic attenuation of the realized
TE early in the sample. Third, the updated diagnostic overlays a feasible TE path that accounts for
binding implementation frictions, namely, monthly rebalancing, ¢, turnover caps, and sleeve caps.
This feasible envelope explains why the realized TE may lie below the model’s nominal target when
friction restricts active risk; conversely, during shock regimes (e.g., March2020), covariance breaks
can push the realized TE briefly above the feasible curve even when the target is fixed ex ante.
Together, these changes—continuous panel construction, correct forward-window alignment with
implementable weights, and an explicit feasibility benchmark—produce a forward TE series that is
present across the entire sample, closely tracks the feasible target during normal times, and displays
interpretable deviations only when market dispersion or constraints dominate.

Appendix A. TE targeting diagnostics (Sectors)

Backward 21d TE: target vs realized (ann.)
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Figure 12. Sectors — backward 21-day realized tracking error (annualized) versus the
contemporaneous target. The near-flat fitted line (slope ~ —0.08, R*> ~ 0) indicates little
association between the target and TE realized over the preceding 21 trading days. In
practice, this suggests limited ex-post adherence when evaluated backward looking, which
is expected if the controller reacts to evolving conditions rather than matching a fixed,
backward window.

Interpretation. Backward scatter is diagnostic for retrospective control: A small negative slope and
negligible R? imply that the nominal target does not explain the variation in the realized TE measured
over the previous month. This is consistent with a controller that prioritizes the feasibility and risk
constraints over the recent strict tracking of the nominal setting.
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Forward TE (ann.): target vs realized (next 21d)
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Figure 13. Sectors — forward 21-day realized tracking error (annualized) versus the target.
The fitted line is slightly positive (slope = 0.24) but explanatory power remains negligible
(R? ~ 0), indicating that, prospectively, realized TE only weakly co-moves with the nominal
target.

Interpretation. Forward Scatter Assesses Prospective Adherence. The weak positive slope with near-
zero R? suggests that, while higher targets tend to be followed by marginally higher realized TE,
the relationship is noisy and dominated by market states and feasibility constraints rather than the
nominal setting alone.

Forward TE (ann.): target vs realized (next 21d)
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Figure 14. Sectors — time series of the nominal target (blue), the feasible target
(orange, reflecting implementability constraints), and the realized forward-TE (green), all
annualized. Realized TE tracks the feasible bound more closely than the nominal target and
tends to undershoot during calm periods, with visible excursions in stress episodes (e.g., the
spike around 2020).

Interpretation. The series underscores the control logic: Feasibility narrows the effective target, and
the realized TE oscillates around the feasible envelope rather than the nominal line. Transient spikes
during market stress reflect binding constraints and risk reduction responses. Outside these intervals,
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the realized TE remains below the nominal setting, which is consistent with conservative execution.

Appendix B. Sleeve allocation dynamics (Sectors)

Sleeve allocation dynamics and interpretation. Figure 15 presents the time evolution of Bonds,
Real, and Cash sleeves for the Sector universe between 2011 and 2024. Two consistent patterns are
observed. First, the Bonds and Real sleeves move in opposite directions; when one expands, the
other contracts. This counterbalancing behavior reflects a risk-budgeted controller reallocating risk
between sleeves while maintaining total active risk within a feasible TE band rather than targeting
fixed capital weights. Second, the cash operates as a shock absorber. It remains modest during stable
market conditions but increases sharply during stress periods, such as the 2011-2012 turbulence, late
late-2018 selloff, 2020 pandemic shock, and 2022 interest rate and volatility regime, before reverting
toward baseline levels as the conditions stabilize. The gradual adjustments and bounded variation of
sleeves are consistent with turnover discipline and implementability constraints.

The allocation behavior in Figure 15 aligns with the TE targeting diagnostics, the realized TE
tend to track the feasible rather than nominal target, and the sleeve mechanism acts as a valve
that opens or closes to maintain feasibility. In the risk-off phases, the controller increases bonds,
reduces real exposure, and temporarily raises cash, lowering portfolio beta and correlation risk while
remaining within the TE band. During recovery, cash is redeployed, real exposure increases as
volatility subsides, and the available capacity expands. The persistent counterbalancing between
Bonds and Real, combined with the limited but strategic use of Cash, confirms that the GATE-WPCA-
PI allocator behaves as a geometry-aware, constraint-respecting system, defensive when risk tightens
and more expansive when feasible risk increases, resulting in stable, implementable sleeve weights
over time.

Sleeve weights (stacked area)

1.0
mmm Bonds
s Real
s Cash

0.8

0.6 -

Weight

0.4

0.2

0.0 -
2012 2014 2016 2018 2020 2022 2024

Figure 15. Sector universe: Stacked-area allocation showing the evolution of sleeve
weights for Bonds (blue), Real assets (orange), and Cash (green) from 2011 to 2024. The
figure illustrates the dynamic risk allocation of the GATE-WPCA-PI model under TE and
turnover constraints.
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Weights behavior and portfolio allocation dynamics. Figure 16 compares the time series of
the implementable portfolio weights generated by the GATE-WPCA-PI model in the Sector (left,
Figure 16a) and the ETF (right, Figure 16b) universes. The results highlight distinct allocation
dynamics that reflect both the degree of cross-sectional heterogeneity and the geometry-aware
optimization process of the model.

In the Sector universe, the model exhibits pronounced persistence in allocations to duration- and
inflation-linked exposures, notably TLT, alongside the modest use of GLD and GSG. The individual
equity-Sector sleeves (XLB-XLY) display low-amplitude adjustments, indicating that most of the
portfolio’s active risk is channelled through rate and real-asset sleeves, rather than through intra-
Sector rotation. This allocation structure reflects the relatively homogeneous nature of sectoral
returns, where the incremental benefit of geometry is limited, and equal weight remains a strong
baseline. This pattern also demonstrates the model’s preference for stability and low turnover, which
is consistent with the implementability diagnostics reported earlier.

By contrast, the ETF universe displays a markedly more dynamic and diversified allocation
structure. The model rebalances capital across global equities (SPY, QQQ, IWM, EEM), credit
(HYG), and rates (TLT, IEF) in distinct phases, corresponding to shifts in market leadership between
growth-oriented and duration-sensitive assets. The alternating intensity of equity and bond exposures
is consistent with the geometry-aware controller’s capacity to identify changing regimes of covariance
dominance and to reallocate the risk budget across multiple independent factors. Cash holdings, while
generally modest, exhibit brief increases during systemic stress episodes (e.g., the 2020 pandemic
shock), consistent with the behavior observed in the TE control analysis.

Overall, Figure 16 illustrates that GATE-WPCA-PI adapts its portfolio composition conditionally
to the structure of the investable universe. Heterogeneous markets such as ETFs achieve broad
diversification and cross-factor rotation. In more homogeneous settings, such as Sectors, exposure
is concentrated within duration and inflation hedges, while preserving implementability through
smooth, band-limited weight adjustments. These findings confirm that the model’s geometry-aware
design enhances portfolio responsiveness, while maintaining economic plausibility and turnover
control, which are key attributes for robust portfolio optimization.

Dynamic QIPO Weights (Implementable) — sectors Dynamic QIPO Weights (Implementable) — etf
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(a) Sectors: implementable weights heatmap. (b) ETFs: implementable weights heatmap.

Figure 16. Implementable portfolio weights for the GATE-WPCA-PI model. Each panel
illustrates the time evolution of the weights as a percentage of the total capital (color
intensity) with rows corresponding to the instruments. The Sector universe includes GLD,
GSG, IEF, TLT, VNQ, and GICS Sector sleeves, while the ETF universe spans global
equity, fixed income, credit, and commodity exposures.
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Appendix C. Flow chart of the GATE-WPCA-PI dynamic allocation
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|
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Figure 17. Flow chart of the GATE-WPCA-PI dynamic allocation. From sanitized data
(with optional GICS backfill) the method builds two geometries (correlation and wavelet-
PCA), applies a hybrid switch to obtain S, constructs a k&-NN Laplacian L, and a similarity-
aware covariance X, forms signals and an anchor, and performs a TE-controlled projected
Post-processing enforces volatility targeting, TE
calibration, and turnover limits, producing implementable returns and a full robustness

update under investment constraints.
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Appendix D. Feature-to-Graph Flow: Wavelet—-PCA to Similarity Kernel and Laplacian
(GATE-WPCA-PI)

Windowed cross-sectional returns (at 7)
X, € RPN with assets in columns, W, ={t—L+1,..., 1}

Per-asset wa‘t'elel features
Y
Per-asset discrete wavelet transforms
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(effective level < sample-dependent bound)
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mean, standard deviation, mean absolute value, IQR,
energy \Irl\%/\c\, Shannon entropy (from lef™! el
= fi, € R forasseti

T
Cross-asset normflization and PCA
Y

Align and stack across assets; zero-

pad to common length p := max; p;
Foo = [fiposfudd” € RV
column-wise standardization =  F
l To hybrid geometry switch
PCA on F, (retain explained variance > 95%) PC1 share p;, and dp, govern whether feature
Z, € R¥4 with g < p; PCI dominance py, € (0,1) | geometry is blended with or dominated by
From features uigraph geometry correlation geomelry.
Y

Cross-sectional geometry in feature space
DY = 112, = Z,jlb; D € RGN, Dy = 0
Discriminativeness dp, = sd(Di_eC‘ :

i < j}/meanﬁij“,' i< j)

!

Feature similarity kernel
Sit = exp( = Di/r), 7 = median(Df 1 i < ) b------s

Steat e [0, 11%N, symmetric, zero diagonal

To similarity-aware covariance

Sf“‘ blends with S§°" to form S, then
R = R™ o (0 -a)+aS,), % =
diag(o) R, diag(o).

Sleeve gating (optional)
Set S:‘Z‘,' = 0 if assets i, j belong to different sleeves

k-NN adjacency within sleeves
Keep top-k neighbors per row,
symmetrize = A, € [0,1]V¥

Graph Laplacian to the optimizer

) o Heeeeeaa >[ To allocation objective
L, = diag(A,1) = A, > 0; used in the penalty w™Lw

L, regularizes weights spatially over the graph
via w' Lw, balancing signal, risk, and turnover

Figure 18. Color flow-map from a windowed returns panel to a graph geometry. For each
rebalancing date ¢, per-asset wavelet summaries are assembled into a standardized feature
matrix F, € RV*P, where p is the total number of aligned wavelet features per asset after
zero-padding to a common length. PCA produces an embedding Z, € R¥*¢ with ¢ < p
principle components retained to explain at least 95% of the variance. Euclidean distances
in this feature space give D'**; a median-bandwidth radial kernel yields S, Optional
sleeve gating and a within-sleeve k-NN rule produce a sparse adjacency A, and its Laplacian
L,, which regularizes portfolio weights. The PC1 share p;, and discriminativeness dp;
feed the hybrid geometry switch, while S blends with correlation geometry in the
similarity-aware covariance X,. Here |c| denotes the length (cardinality) of a coefficient
vector c.
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Notation

Table 27. Core sets, indices, data, and weights. Scalars are in Roman italics, vectors bold
lowercase, and matrices bold uppercase. Units are stated when applicable.

Symbol Type Domain/Dim. Meaning Units

t index te T Rebalancing date index n/a

T set 7 CcN Set of rebalancing dates n/a

W, set {t—L+1,....1 Trailing window at 7 of length L trading days days

L scalar N Window length used for estimation days

N scalar N Number of assets in the universe n/a

i index {1,...,N} Asset index n/a

g index g€EG Sleeve/group index n/a

G set partition of Sleeve (group) partition of assets n/a

{1,...,N}

r. vector RV Arithmetic return vector on day 7 daily

Tri scalar R Return of asset i on day 7 daily

X, matrix RPN Windowed return panel [ 7, Jrew, daily

w, vector RV Portfolio weights decided at rebalancing ¢ fraction

Wig scalar [0, 1] Weight of asset i at ¢ fraction

wb vector RV Benchmark weights (equal-weight risky sleeve  fraction
in experiments)

Lu scalars O0<l<ux<l Element-wise lower/upper weight bounds fraction

Cq scalar [0,1] Sleeve/group cap for g € G fraction

Q set QcRN Feasible set n/a
w:wll=1,1<w<u, i, wi <c}

1 vector RV All-ones vector n/a

Table 28. Covariance, correlations, distances, similarity, graph geometry.

Symbol Type Domain/Dim. Meaning Units

v matrix RVXN Ledoit—Wolf shrinkage covariance from X, daily var

o, vector R’Z\’O Marginal volatilities \/W daily stdev

D, matrix RVXN Diagonal variance matrix Diag(diag(Z*")) daily var

R™ matrix RNV Raw correlation D, '?x/ D'/ dimensionless

Deor matrix RN Correlation distance, d;; = | /2(1 = Ri%Y) dimensionless

T scalar >0 Kernel bandwidth (median of off-diagonal dimensionless
entries of D7)

Seerr matrix RN Correlation kernel exp(—D¢°" /7¢°™) (zeroed dimensionless
across sleeves)

Sis vector RP! Wavelet statistic features for asset i over ‘W, dimensionless

F, matrix RN*pr Stacked feature matrix (standardized) dimensionless

Z, matrix RV*ar PCA-reduced feature matrix (retain fixed dimensionless
variance fraction)

Pl scalar 0, 1) PC1 dominance (share of explained variance) dimensionless

Dt matrix RN Euclidean feature distance in Z, dimensionless

Tfea‘ scalar >0 Feature kernel bandwidth (median off-diagonal ~ dimensionless
of Dfea)

Sleat matrix RN Feature kernel exp(— D /rfea) dimensionless
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(continued)

Symbol Type Domain/Dim. Meaning Units

W(D) function RMN 5 Ry Discriminativeness: dimensionless

sd{D;; : i < j}/mean{D;; : i < j}
dpem scalar [0,1] Min-max normalized l//(Dfe“‘) across ¢ (or dimensionless
calibration window)
W scalars [0,1] Blend weights: dimensionless
W = YD WD) + y(D§e)
qr scalar O, 1) Discriminativeness quantile threshold for dimensionless
hybrid switch

6, scalar O, 1) PC1 dominance threshold for hybrid switch dimensionless

S, matrix RN Final similarity kernel (hybrid of S and ™)  dimensionless

k scalar N k-NN degree (per sleeve) for graph n/a

construction

A, matrix R’;’(TN Symmetric k-NN adjacency (within sleeves) dimensionless

D’ matrix RNV Degree matrix Diag(A,1) dimensionless

L, matrix RN Graph Laplacian D*** — A, (PSD) dimensionless

a scalar [0,1] Similarity weight in correlation rescaling dimensionless

J matrix RVXN All-ones matrix 117 dimensionless

o operator n/a Element-wise (Hadamard) product between n/a

matrices
R, matrix RNV Similarity-aware correlation dimensionless
R*™ o ((1-a)J +as,)
%, matrix RN Adjusted covariance Diag(o;)R; Diag(o-;) daily var
Table 29. Alpha signals, anchors, warm start, objectives, penalties.

Symbol Type Domain/Dim. Meaning Units

h; scalar N Time-series momentum horizon j (days) days

H scalar N Cross-sectional momentum horizon (days) days
B scalar R Weight for TS horizon h; dimensionless
Brs, Bcs scalars R Combination weights for TS and CS signals dimensionless
Vargwma (+) operator n/a EWMA variance operator (per asset) daily var

s vector RV Time-series momentum signal (vol-scaled) dimensionless
s,CS vector RY Cross-sectional momentum (demeaned, vol-scaled)  dimensionless
abse vector RY Base alpha Brss’> + Scss<S dimensionless
Himins> Mmax scalars R Bounds for alpha amplitude schedule dimensionless
s scalar R Alpha amplitude tmin + (Umax — Mmin) 7™ dimensionless
a, vector RV Final alpha vector y, a@®* dimensionless
Ugy scalar [0, 1] Sleeve target for group g (sums to 1 over g) fraction

T scalar >0 Softmax temperature used inside sleeves (anchor dimensionless

construction)

kg scalar N Number of top assets per sleeve used in anchor n/a
wine vector RY Sleeve—aware anchor portfolio fraction

n scalar >0 Step size for exponentiated—gradient warm start dimensionless
w, vector RN Warm-start weights o< w,_; o exp(n(a; — Z,w,_1)) fraction
wir vector RY Target for refinement: %W, + %w;‘"c fraction

J:(w) function RY - R Penalized objective (mean-variance, Laplacian, dimensionless

inertia, target shrink, vol band, TE penalty)

Alap scalar >0 Laplacian penalty weight dimensionless

K scalar >0 Inertia (smoothing) penalty toward w,_; dimensionless
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(continued)
Symbol Type Domain/Dim. Meaning Units
Asm scalar >0 Target-shrink penalty toward wi dimensionless
Lol scalar >0 Volatility-band penalty weight dimensionless
O min> T max scalars >0 Lower/upper bounds of target vol band daily stdev
o* scalar >0 Desired operating volatility inside the band daily stdev
ocw; X)) function RY = Ry Portfolio volatility vVw™Z.w daily stdev
(%), function R — Ry Positive part max{x, 0} n/a
d vector RV Active displacement w — w” fraction
TE™ scalar >0 Annual TE target annual

stdev
At scalar >0 Amplitude of annual TE schedule annual

stdev
T scalar >0 Daily TE target TEX™"/ V252 daily stdev
el scalar >0 Backward realized daily TE (window length h) daily stdev
h scalar N Window length for realized TE in PI controller days
K° scalar >0 TE penalty weight (adaptive via PI) dimensionless
K, K; scalars >0 Proportional and integral gains in PI update dimensionless
I, scalar R PI integral state at ¢ (clipped) dimensionless
1 v scalars R Lower/upper bounds for integral state dimensionless
KK scalars >0 Bounds for «}° dimensionless
s scalar >0 Risky-sleeve scaling for volatility targeting dimensionless
¢ scalar >0 TE scaling along active ray (with projection) dimensionless
7, scalar >0 Feasible TE target used when 7, is unattainable daily stdev
r scalar >0 One-shot ¢, turnover cap at rebalancing fraction
& scalar >0 Remaining turnover budget used for active-risk fraction

top-up
a9 operator RY - Q Euclidean projection onto Q (budget, box, sleeve n/a
caps)
Table 30. Execution, costs, and returns.

Symbol Type Domain/Dim. Meaning Units
c scalar >0 Proportional transaction cost per unit £, turnover fraction
R scalar R Implementable portfolio return on #+1 daily
HreT} indicator {0, 1} Indicator of rebalancing day for charging costs n/a
M scalar N Number of projected gradient refinement steps n/a
Vi scalar >0 Step size at refinement step m dimensionless

Units and annualization. Daily volatility and TE are converted to annualized units by
multiplication by V252. We annualize the mean daily returns by multiplying them by 252. Kernel
bandwidths 7¢°" and 7i** are dimensionless median distances. All blend weights, discriminativeness
measures, and similarities were dimensionless.

Notes on symbols used in two contexts. The symbol 7 appears in two distinct roles: As a softmax
temperature (scalar, dimensionless) in the anchor construction, and as a subscripted daily TE target
7, (scalar, daily stdev). These are unrelated, and the context and subscripting distinguish them. The
symbol & denotes the window length used only for the realized TE inside the PI controller, and L is
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the main estimation window length for the features, covariance, and geometry.

Table 31. Ticker abbreviations and underlying instruments used in the empirical evaluation. All
tickers correspond to liquid, USD-denominated ETFs listed and traded on major U.S. exchanges.

Ticker

ETF (long name)

Intended exposure

Panel A: Multi-asset universe (equities and credit)

SPY
QQQ
IwM
VGK
EWJ
EEM
HYG

SPDR S&P 500 ETF Trust

Invesco QQQ Trust, Series 1

iShares Russell 2000 ETF

Vanguard FTSE Europe ETF

iShares MSCI Japan ETF

iShares MSCI Emerging Markets ETF

iShares iBoxx $ High Yield Corporate Bond ETF

Panel B: Sector-sleeve universe (U.S. equity sectors)

XLB
XLE
XLF
XLI
XLK
XLP
XLU
XLV
XLY
XLRE
XLC

Materials Select Sector SPDR Fund

Energy Select Sector SPDR Fund

Financial Select Sector SPDR Fund
Industrial Select Sector SPDR Fund
Technology Select Sector SPDR Fund
Consumer Staples Select Sector SPDR Fund
Utilities Select Sector SPDR Fund

Health Care Select Sector SPDR Fund

Consumer Discretionary Select Sector SPDR Fund

Real Estate Select Sector SPDR Fund

Communication Services Select Sector SPDR Fund

U.S. large-cap equities (S&P 500)
U.S. large-cap growth (Nasdag-100)
U.S. small-cap equities (Russell 2000)
Developed Europe equities

Japan equities

Emerging markets equities

U.S. high-yield corporate credit

U.S. materials sector equities

U.S. energy sector equities

U.S. financials sector equities

U.S. industrials sector equities

U.S. information technology sector equities
U.S. consumer staples sector equities

U.S. utilities sector equities

U.S. health care sector equities

U.S. consumer discretionary sector equities
U.S. real estate sector equities

U.S. communication services sector equities

Panel C: Instruments used in both universes (duration and real assets)

TLT
IEF
GLD
GSG
VNQ

iShares 20+ Year Treasury Bond ETF

iShares 7—10 Year Treasury Bond ETF

SPDR Gold Shares

iShares S&P GSCI Commodity-Indexed Trust
Vanguard Real Estate ETF

Long-duration U.S. Treasuries
Intermediate-duration U.S. Treasuries
Gold (bullion-linked)

Broad commodities (S&P GSCI)
U.S. real estate/REIT equities

Notes: Panel C instruments enter both investable universes: in the multi-asset set as standalone duration/real-asset allocations and in
the sector-sleeve set as hedging overlays.
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