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Abstract: In this paper, a novel variational model is proposed for image segmentation via joint
restoration of images corrupted by blurring and Rician noise. The proposed model is built upon
the piecewise constant Mumford–Shah framework and combines an appropriate data fidelity term
with nonconvex total variation (NTV) regularization. The NTV regularization effectively denoises
homogeneous regions while accurately preserving object boundaries to facilitate robust segmentation.
To solve the resulting nonconvex optimization problem, a proximal alternating minimization algorithm
is employed. In addition, an iteratively reweighted ℓ1 algorithm and the alternating direction method of
multipliers are adopted to efficiently handle the corresponding subproblems. Numerical experiments
demonstrate the effectiveness of the proposed model in achieving accurate and robust segmentation
performance when compared with several state-of-the-art methods.
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1. Introduction

Image segmentation is a key topic in image processing. The aim of image segmentation is to
divide an image domain into multiple segments such that each segment represents a meaningful object.
Over the past few decades, numerous numerical algorithms for image segmentation have been studied,
including thresholding-based algorithms [1,2], clustering methods [3–5], and graph-based methods [6–
8]. Variational level set approaches have been widely applied to image segmentation and have yielded
promising results.

The Mumford–Shah model [9] is one of the most well-known variational approaches and
approximates an image by a piecewise-smooth function. Chan et al. [10] proposed a piecewise-
constant active contour model for image segmentation, which is often referred to as the Chan–Vese
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(CV) model. Lee et al. [11] extended the CV model by adopting two shifted Heaviside functions.
A common drawback of these models is that they tend to yield unsatisfactory performance when
segmenting images corrupted by blur and noise. Cai et al. [12] proposed a two-phase segmentation
model that elucidates the relationship between image segmentation and restoration. Bar et al. [13]
integrated the Mumford–Shah model with blind deconvolution of isotropic Gaussian blur. More
recently, Cai et al. [14] proposed a variational model for multiphase image segmentation that combines
a data fidelity term for image restoration with a variational segmentation framework.

Over the past few decades, magnetic resonance imaging (MRI) techniques have been extensively
applied in medical imaging. However, noise is inevitably introduced during the image acquisition
process, which degrades the image quality. Noise arises in the measured magnitude image because the
real and imaginary components are corrupted. Because these components are affected by zero-mean,
uncorrelated Gaussian noise with identical variance, the measured magnitude MR image is commonly
modeled by a Rician distribution.

Many filtering-based approaches have been proposed for Rician noise removal, including
anisotropic diffusion filters [15, 16], wavelet-based filters [17, 18], and nonlocal means filters [19, 20].
To restore images corrupted by blur and Rician noise, several variational models have also been
developed. Basu et al. [21] derived a log-likelihood term based on the Rician distribution. Building
on this work, Getreuer et al. [22] proposed a total variation-based model for Rician noise removal and
deblurring; however, this model is nonconvex due to the data fidelity term, and a convex approximation
was also suggested in [22], which is computationally complex. Chen et al. [23] introduced a convex
variational model by adding a quadratic penalty term to ensure convexity of the data fidelity function.
Martin et al. [24] provided a mathematical analysis demonstrating the effectiveness of nonconvex
data fidelity terms for Rician denoising and proposed an efficient algorithm to solve the resulting
nonconvex minimization problem. More recently, Phan et al. [25] introduced a spatially variant
high-order variational model that adjusts the local regularization strength to reduce staircase artifacts
while preserving edges. Brzostowski et al. [26] proposed a two-step MRI denoising method combining
2D variational mode decomposition with fused lasso to effectively suppress Rician noise. Convergent
plug-and-play frameworks [27] have also been proposed.

On the other hand, MR image segmentation is a fundamental problem in medical image processing.
The quality of MR image segmentation is strongly affected by Rician noise and blur. Despite
the importance of this problem, relatively limited research has been devoted to segmenting images
contaminated by Rician noise. Wu et al. [28] proposed a method for brain MR image segmentation
by fitting a Rician probability density function. More recently, Chen et al. [29] proposed a two-step
variational framework for segmenting images corrupted by Rician noise and blur, inspired by two-stage
methods developed for Poisson noise.

In addition to variational approaches, deep learning approaches have been applied to MRI under
Rician noise. For MR denoising, a residual convolutional network (CNN) [30], a RicianNet with
a progressive network learning strategy [31], and a wider CNN [32] have been proposed to remove
Rician noise effectively. For MR segmentation, deep learning models such as TransUNet, SwinUNet,
and U-Net have been evaluated for robustness to Rician noise in cardiac MR images [33]. These
learning-based approaches complement the theoretical strengths of variational frameworks and provide
a modern benchmark for empirical performance.

In variational models, the objective function typically consists of a data fidelity term and a
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regularization term. Total variation (TV) [34] is a well-known regularizer with edge-preserving
properties. Previous studies [35, 36] have shown that nonconvex regularizers can outperform convex
ones in certain scenarios. For example, Krishnan and Fergus [37] proposed a nonconvex TV-based
model motivated by the observation that natural image gradients exhibit heavy-tailed distributions.
Various other nonconvex TV regularizers have also been proposed [38], including logarithmic,
fractional, and Lq-norm-based formulations.

Nonconvex optimization arises in numerous applications, including image processing, signal
recovery, and machine learning. The proximal alternating minimization algorithm (PAMA) [39]
established a theoretical foundation by proving the convergence of solutions to nonconvex problems
involving coupled functions with two variables. Subsequent to this finding, a general convergence
framework [40] was developed for descent methods applied to functions satisfying the Kurdyka–
Łojasiewicz inequality. Ochs et al. [41] introduced an iterative convex majorization–minimization
algorithm to solve nonsmooth, nonconvex minimization problems. Various extensions of the
alternating direction method of multipliers (ADMM) have been developed to solve linearly constrained
nonconvex problems. These extensions include ADMM for nonconvex problems involving difference-
of-convex functions [42], linearized ADMM for image restoration with nonconvex regularization [43],
and inertial ADMM for image deblurring [44].

In this work, the author proposes a novel variational model for segmenting images corrupted
by Rician noise and blur, formulated through a coupled restoration–segmentation framework.
Inspired by [14], the model involves two data fidelity terms associated with a latent restoration
variable and the segmentation function, respectively. In contrast to existing approaches, the author
incorporates a double-regularization strategy, in which nonconvex total variation (NTV) is employed
to promote piecewise smoothness and preserve sharp boundaries while suppressing noise in the coupled
formulation. To solve the resulting nonconvex and nonsmooth optimization problem, a proximal
alternating minimization algorithm and an iteratively reweighted strategy are employed. Subproblems
are efficiently solved using the alternating direction method of multipliers, leading to an effective
numerical algorithm.

The main contributions of this work are summarized as follows:

• The author extends existing single-regularization models [14] to address the segmentation of
images corrupted by Rician noise and blur by introducing a coupled formulation with double
regularization.
• It is shown that the two regularization terms act complementarily in controlling noise suppression

and geometric regularity within the segmentation process.
• A PAMA-based algorithm with three subproblems is developed, and a rigorous convergence

analysis is established, extending existing PAMA results that involve two subproblems.

The outline of the remainder of this paper is as follows. Section 2 reviews existing variational
models for image segmentation. Section 3 introduces the proposed variational model for image
segmentation based on a coupled restoration–segmentation formulation. In Section 4, we present the
numerical algorithm for solving the proposed model. In Section 5, numerical experiments are presented
to demonstrate the effectiveness of the proposed method and to compare it with several state-of-the-art
models. Finally, Section 6 concludes the paper.
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2. Related image segmentation models

Let Ω be an open bounded domain in R2, and let E ⊆ Ω denote the edge set of Ω. In a variational
framework for image segmentation, the Mumford–Shah model [9] is a fundamental approach and
serves as the basis for many segmentation models:

min
u,S

µ

2

∫
Ω\S

(u − f )2 dx +
λ

2

∫
Ω\S
|∇u|2 dx +

∫
S

dH ,

where λ and µ are positive parameters. The resulting image u approximates the given image f by a
piecewise-smooth function, and the edge set S represents the segmentation boundaries. However, the
original Mumford–Shah model tends to be computationally expensive.

For piecewise-constant segmentation, a simplified variant of the Mumford–Shah model was
proposed:

min
u,S

µ

2

∫
Ω\S

(u − f )2 dx +
∫

S
dH ,

where u is constant on each connected component of Ω \ S .
Based on the Mumford–Shah model, the multiphase CV model [45] was introduced using multiple

level set functions to represent multiple regions:

min
u,S

µ

2

K∑
i=1

∫
Ω

( f − ci)2ui dx +
M∑
j=1

∫
Ω

|∇v j| dx,

s.t.
K∑

i=1

ui = 1, ui ∈ {0, 1},

where K = 2M and each ui represents a region determined by the level set functions v j. For M = 2, ui

can be expressed as

u1 = v1v2, u2 = v1(1 − v2), u3 = (1 − v1)v2, u4 = (1 − v1)(1 − v2).

Because the CV model is nonconvex, it is difficult to solve directly. As a result, convex relaxation
techniques for image segmentation have been developed. A convex relaxation of the CV model was
proposed in [46]:

min
u,S

µ

2

K∑
i=1

∫
Ω

( f − ci)2ui dx +
M∑
j=1

∫
Ω

|∇v j| dx,

s.t.
K∑

i=1

ui = 1, ui ∈ [0, 1].

The TV fuzzy c-means (TVFBS) method [47] was also proposed:

min
u,S

µ

2

K∑
i=1

∫
Ω

( f − ci)2ui dx +
K∑

i=1

∫
Ω

|∇ui| dx,
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s.t.
K∑

i=1

ui = 1, ui ≥ 0.

For fixed ci, i = 1, . . . ,K, this formulation is closely related to the convex TV denoising model [34].
The CV and TVFBS models have demonstrated effectiveness in segmenting piecewise-constant
images, particularly in the presence of Gaussian noise. However, they often fail to produce satisfactory
results for images corrupted by other types of noise or blur.

To address images degraded by Gaussian noise and blur, a two-step algorithm was proposed in [12].
In the first step, the following convex image restoration problem is solved:

min
u

µ

2

∫
Ω

( f − Au)2 dx +
λ

2

∫
Ω

|∇u|2 dx +
∫
Ω

|∇u| dx.

In the second step, segmentation is performed by thresholding the restored image using a clustering
method. This approach was extended in [29, 48] to handle images corrupted by other types of noise,
such as Poisson and Rician noise.

More recently, Cai et al. [14] proposed a variational segmentation model coupled with image
restoration:

min
ui,g

µΦ( f , Ag) + λ
K∑

i=1

Ψ(g, ui, ci) +
K∑

i=1

∫
Ω

|∇ui| dx,

s.t.
K∑

i=1

ui = 1, ui ∈ {0, 1},

where Φ denotes the data fidelity term for image restoration and Ψ represents the data fidelity term for
image segmentation. This model was shown to produce satisfactory segmentation results for images
corrupted by blur and noise. Unlike existing approaches that employ TV regularization on ui, our
proposed model introduces a double NTV regularization strategy. This double regularization decouples
noise suppression from geometric regularity, which cannot be achieved using a single regularization
term. Further details are presented in the next section.

3. Proposed model

First we recall the coupled variational framework proposed in [14] with settingΨ(g, ui, ci) :=
∫
Ω

(g−
ci)2uidx:

min
ui,g

µΦ( f , Ag) + λ
K∑

i=1

∫
Ω

(g − ci)2ui dx +
K∑

i=1

∫
Ω

|∇ui| dx,

s.t.
K∑

i=1

ui = 1, ui ∈ {0, 1},

where A is a linear blurring operator, and Φ is a data fidelity term that can be changed depending
upon the noise distribution. The data fidelity term, denoted by the symbol Φ, serves to approximate
the variable g to the observed image f . However, this model does not include a regularization term
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for g and instead imposes regularization only on the boundaries of the segmented regions through
the variables ui. Consequently, the smoothness of g is enforced only implicitly via the coupling term∫
Ω

(g− ci)2ui dx, which may result in insufficient denoising. This limitation is particularly evident when
the observed image is corrupted by blur and Rician noise, as the reconstruction of g becomes highly
sensitive to noise. In contrast, a model with regularization only on g would not directly control the
geometric complexity of the segmentation because the regularity of region boundaries is primarily
determined by the regularization of ui. These observations suggest that a balanced treatment of both g
and ui is necessary. From a modeling perspective, g represents the latent clean image, and ui encodes
the segmentation of homogeneous regions. Each variable requires dedicated regularization to fulfill its
respective role. This consideration naturally motivates the introduction of regularization terms on both
g and ui, yielding a formulation that enhances segmentation accuracy while simultaneously stabilizing
the restoration of the underlying image. The author proposes a new variational model with double
regularization terms for joint segmentation and restoration of a single image polluted by Rician noise
and blur. The specific description of our model is as follows:

min
ui,g

µ

∫
Ω

G(Ag) dx + γ
∫
Ω

log(1 + ρ|∇g|) dx + λ
K∑

i=1

∫
Ω

(g − ci)2ui dx (3.1)

+

K∑
i=1

∫
Ω

log(1 + ρ|∇ui|) dx

s.t.
K∑

i=1

ui = 1, 0 ≤ ui ≤ 1,

where the data fidelity function G is defined as

G(Ag) =
1

2σ2 (Ag)2 − log I0

( f (Ag)
σ2

)
+

1
σ

(
√

Ag −
√

f )2,

and I0 denotes the modified Bessel function of order zero. From a Rician distribution and maximum
a posteriori estimation, the function 1

2σ2 (Au)2 − log I0

(
f (Au)
σ2

)
can be derived as a data fidelity function.

However, this function is nonconvex. Chen et al. [23] suggested a convex data fidelity function G,
which they obtained by inserting a penalty term. Specifically, it is shown in [23, Remark 1] that the
data fidelity function G(Au) is strictly convex when σ > 4.5. The function |∇ui| or |∇g| represents the
isotropic total variation, defined as

|∇u| =
√
|∇xu|2 + |∇yu|2.

Our model utilizes a nonconvex log function for the NTV. It is important to note that the nonconvex
log functional is similar to the ℓ1-norm, where |∇u| = 0. However, this is smaller than the ℓ1 norm as
|∇u| approaches ∞. This observation shows that the nonconvex log functional enables homogeneous
regions to be well-smoothed with the edges and details preserved. Here, ρ is a positive parameter that
controls the nonconvexity of two regularizing terms.
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(a) our model without NTV for ui (b) our model without NTV for g (c) our model

Figure 1. Comparison of reconstruction and segmentation results under different
regularization strategies. Columns (a)–(c) correspond to: (a) the proposed model without
NTV regularization on ui, (b) the proposed model without NTV regularization on g,
and (c) the proposed model with double regularization. Rows from top to bottom show
restoration results of g, segmentation results, and the corresponding approximated images.
The quantitative performance in terms of (Accuracy, F-measure) is (a) (0.9851, 0.9849), (b)
(0.9846, 0.9844), and (c) (0.9864, 0.9862).

We adopt the convex relaxation u ∈ [0, 1] for constraint u ∈ {0, 1}.
The proposed model (3.1) employs double regularization on both g and ui. To investigate the
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effect of double regularization on segmentation performance, the model is compared with two single-
regularization variants, where regularization is applied only to g or only to ui. The corresponding
results are shown in Figure 1.

When regularization is applied only to g, explicit length control of the segmented curves is not
available. Consequently, to suppress noise and stabilize the segmentation, the regularization on g
must be relatively large. This results in oversmoothing of the reconstructed image g, causing thin
structural regions between adjacent buildings to be blurred. Because the segmentation relies on the
intensity information of g, the loss of these fine structures directly degrades segmentation performance.
Although the main building boundaries are still reasonably captured, thin structures are not accurately
recovered.

When regularization is applied only to ui, no regularization is imposed on g. As a result, the
reconstruction of g remains noisy and slightly blurry, which negatively affects the segmentation
process. The segmented boundaries are consequently less smooth, and fine structures are not accurately
reconstructed.

When double regularization is employed, the reconstruction of g achieves a proper balance between
denoising and deblurring, and the lengths of the segmented boundaries are effectively controlled.
As a result, both the main building boundaries and thin structural regions are segmented more
accurately. These observations clearly demonstrate the necessity and effectiveness of incorporating
double regularization in the proposed model.

4. Proposed algorithm

4.1. Proximal alternating minimization algorithm

To apply a numerical algorithm, we first discretize the proposed model (3.1) as follows:

min
g,ci,ui

µ
∑
Ω

G(Ag) + γ
∑
j∈Ω

log(1 + ρ|∇g|) + λ
K∑

i=1

∑
Ω

(g − ci)2ui +

K∑
i=1

∑
Ω

log(1 + ρ|∇ui|)

s.t.
K∑

i=1

ui = 1, 0 ≤ ui ≤ 1, 0 ≤ Ag ≤ 255, 0 ≤ ci ≤ 255.

Let S := {y ∈ Ω × RK :
∑K

i=1 yi = 1, y ≥ 0}, S 1 = {y ∈ Ω : 0 ≤ y ≤ 255} and S 2 = {y ∈ RK : 0 ≤
yi ≤ 255}. The proposed model (4.1) can be equivalent to the following unconstrained minimization
problem:

min
g,ci,ui

µ
∑
Ω

G(Ag) + γ
∑
j∈Ω

log(1 + ρ|∇g|) + λ
K∑

i=1

∑
Ω

(g − ci)2ui (4.1)

+

K∑
i=1

∑
Ω

log(1 + ρ|∇ui|) + IS (u1, u2, · · · , uK) + IS 1(Ag) + IS 2(c1, · · · , cK),

where IS , IS 1 , and IS 2 are the indicator functions of S , S 1, and S 2, respectively. The indicator function
of a set B is defined as

IB(y) =
{

0, y ∈ B,
∞, otherwise.
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Bacause the discretized model (4.1) has multiple variables and involves the coupled term
λ
∑K

i=1
∑
Ω(g−ci)2ui, it is difficult to solve this model directly. Existing ADMM [42–44] and PAMA [39]

algorithms are primarily designed for two-variable optimization problems, and their direct extension
to a three-variable setting is not theoretically justified. To address this limitation, the author extends
PAMA to handle multiple coupled variables, providing a flexible and convergent framework suitable
for the proposed model. In this extended PAMA, the objective function is alternately minimized with
a proximal term for one variable while keeping the others fixed.

For the proposed model, the PAMA consists of the following iterative steps:

gk+1 = arg min
g
µ
∑
Ω

G(Ag) + γ
∑
j∈Ω

log(1 + ρ|∇g|) + λ
K∑

i=1

∑
Ω

(g − ck
i )

2uk
i + IS 1(Ag)

+
δ

2
∥g − gk∥22,

ck+1
i = arg min

ci
λ
∑
Ω

(gk+1 − ci)2uk
i + IS 2(c1, · · · , cK) +

δ

2
∥ci − ck

i ∥
2
2, i = 1, · · · ,K,

uk+1
1

uk+1
2
...

uk+1
K

 = arg min
ui
λ

K∑
i=1

∑
Ω

(gk+1 − ck+1
i )2ui +

K∑
i=1

∑
Ω

log(1 + ρ|∇ui|) + IS (u1, · · · , uK)

+
δ

2

K∑
i=1

∥ui − uk
i ∥

2
2.

(4.2)

Let F be the objective function of the problem (4.1):

F(g, ci, ui; i = 1, · · · ,K) := µ
∑
Ω

G(Ag) + γ
∑
Ω

log(1 + ρ|∇g|) + IS 1(Ag)

+λ

K∑
i=1

∑
Ω

(g − ci)2ui +

K∑
i=1

∑
Ω

log(1 + ρ|∇ui|)

+IS 2(c1, · · · , cK) + IS (u1, u2, · · · , uK).

For simple notation, we set

F1(g) = µ
∑
Ω

G(Ag) + γ
∑
Ω

log(1 + ρ|∇g|) + IS 1(Ag),

F2(u1, u2, · · · , uK) =
K∑

i=1

∑
Ω

log(1 + ρ|∇ui|) + IS (u1, u2, · · · , uK),

F3(c1, c2, · · · , cK) = IS 2(c1, c2, · · · , cK),

H(g, ci, ui; i = 1, · · · ,K) = λ
K∑

i=1

∑
Ω

(g − ci)2ui.

Then, F(g, ci, ui) = F1(g) + F2(u1, · · · , uK) + F3(c1, c2, · · · , cK) + H(g, ci, ui).
In order to demonstrate the convergence of the PAMA (4.2), it is first necessary to establish the

boundedness of a subgradient of F at (gk+1, ck+1
i , u

k+1
i ).
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Lemma 4.1. Let the sequence {Xk} = {(gk, ck
i , u

k
i ) : i = 1, · · · ,K} be generated by the PAMA (4.2).

There exist a sequence {Pk+1} = {(pk+1
g , p

k+1
i , q

k+1
i ) : i = 1, · · · ,K} ∈ ∂F(Xk+1) and a constant β such

that

∥Pk+1∥2 ≤ β∥Xk+1 − Xk∥2. (4.3)

Proof. The PAMA can be rewritten as follows:

gk+1 = arg min
g

F(g, ck
i , u

k
i ) +
δ

2
∥g − gk∥22, (4.4)

ck+1
1

ck+1
2
...

ck+1
K

 = arg min
ci

F(gk+1, ci, uk
i ) +
δ

2

K∑
i=1

∥ci − ck
i ∥

2
2, (4.5)


uk+1

1
uk+1

2
...

uk+1
K

 = arg min
ui

F(gk+1, ck+1
i , ui) +

δ

2

K∑
i=1

∥ui − uk
i ∥

2
2. (4.6)

By optimality conditions of the subproblems (4.4)–(4.6), we have

0 ∈ ∂gF(gk+1, ck
i , u

k
i ) + δ(g

k+1 − gk)
= ∂gF1(gk+1) + ∇gH(gk+1, ck

i , u
k
i ) + δ(g

k+1 − gk),
0 ∈ ∂c j F(gk+1, ck+1

i , u
k
i ) + δ(c

k+1
j − ck

j)

= ∂c j F3(ck+1
i ) + ∇c j H(gk+1, ck+1

i , u
k
i ) + δ(c

k+1
j − ck

j), j = 1, · · · ,K,

0 ∈ ∂u j F(gk+1, ck+1
i , u

k+1
i ) + δ(uk+1

j − uk
j)

= ∂u j F2(uk+1
i ) + ∇u j H(gk+1, ck+1

i , u
k+1
i ) + δ(uk+1

j − uk
j), j = 1, · · · ,K.

Hence, a subgradient of F at (gk+1, ck+1
i , u

k+1
i ) can be obtained:

pk+1
g := −δ(gk+1 − gk) − ∇gH(gk+1, ck

i , u
k
i ) + ∇gH(gk+1, ck+1

i , u
k+1
i )

∈ ∂gF(gk+1, ck+1
i , u

k+1
i )

pk+1
j := −δ(ck+1

j − ck
j) − ∇c j H(gk+1, ck+1

i , u
k
i ) + ∇c j H(gk+1, ck+1

i , u
k+1
i )

∈ ∂c j F(gk+1, ck+1
i , u

k+1
i ), j = 1, · · · ,K.

qk+1
j := −δ(uk+1

j − uk
j)

∈ ∂u j F(gk+1, ck+1
i , u

k+1
i ), j = 1, · · · ,K.

Because Ag ∈ [0, 255] and A is a bounded linear operator, g is also bounded, so there exists M > 0 s.t.
|g| ≤ M. By using the boundedness of g, c j ∈ [0, 255], u j ∈ [0, 1] and

∇gH(g, ci, ui) = 2λ
K∑

i=1

(g − ci)ui,
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The following inequalities can be obtained:

∥∇gH(gk+1, ck
i , u

k
i ) − ∇gH(gk+1, ck+1

i , u
k+1
i )∥2

=

∥∥∥∥∥∥∥2λ
K∑

i=1

((gk+1 − ck
i )u

k
i − (gk+1 − ck+1

i )uk+1
i )

∥∥∥∥∥∥∥
2

≤ 2λ
K∑

i=1

∥gk+1(uk
i − uk+1

i )∥2 + 2λ
K∑

i=1

∥ck
i u

k
i − ck+1

i uk+1
i ∥2

≤ 2 · Mλ
K∑

i=1

∥uk
i − uk+1

i ∥2 + 2λ
K∑

i=1

√
2552 + 12(|ck

i − ck+1
i | + ∥u

k
i − uk+1

i ∥2),

where third inequality can be obtained by the Lipschitz continuity of the bilinear mapping ϕ(c, u) = cu
on the compact set [0, 255] × [0, 1] with Lipschitz constant

√
2552 + 12 for each coordinate function

ci · ui(ix, iy) at (ix, iy) ∈ Ω. Similarly, the following inequalities are obtained:

|∇c j H(gk+1, ck+1
i , u

k
i ) − ∇c j H(gk+1, ck+1

i , u
k+1
i )|

=

∣∣∣∣∣∣∣2λ∑
Ω

(ck+1
j − gk+1)uk

j − 2λ
∑
Ω

(ck+1
j − gk+1)uk+1

j

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣2λ∑
Ω

(ck+1
j − gk+1)(uk

j − uk+1
j )

∣∣∣∣∣∣∣
≤ 2 · (255 + M)λ

∑
Ω

|uk
j − uk+1

j |

≤ 2 · (255 + M)λ
√
|Ω|∥uk

j − uk+1
j ∥2,

where the last inequality can be obtained from the inequality

∥x∥1 ≤
√

d∥x∥2, ∀x ∈ Rd.

Thus, ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



pk+1
g

pk+1
1
...

pk+1
K

qk+1
1
...

qk+1
K



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ δ∥gk+1 − gk∥2 + (L1 + δ)
K∑

i=1

|ck
i − ck+1

i | + (L2 + δ)
K∑

i=1

∥uk
i − uk+1

i ∥2,

where L1 = 2λ
√

2552 + 12, L2 = L1 + 2 · Mλ + 2 · (255λ + Mλ)
√
|Ω|. □

For the convergence of PAMA, the following two assumptions are imposed:

A1 f ∈ L∞(Ω) with infΩ f > 0 and σ > 4.5.
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A2 Ag0 ∈ S 1, (c0
i ; i = 1, . . . ,K) ∈ S 2, and (u0

i ; i = 1, . . . ,K) ∈ S .

Under assumption A1, it follows from [23, Theorem 1] that G is strictly convex and bounded from
below. Assumption A2 ensures that the sequence of objective function values generated by PAMA
remains bounded. Together, these properties provide the foundation for the convergence analysis
of PAMA. Based on these assumptions, the convergence of PAMA is established in the following
theorem.

Theorem 4.1. Let f be in L∞(Ω) with infΩ f > 0. Assume that σ > 4.5, and the initial value X0 =

(g0, c0
i , u

0
i ; i = 1, · · · ,K) of the PAMA (4.2) is selected by satisfying Ag0 ∈ S 1, (c0

i ; i = 1, · · · ,K) ∈ S 2,
and (u0

i ; i = 1, · · · ,K) ∈ S . The PAMA (4.2) returns a stationary point of the problem (4.1) or, in the
event that it generates an infinite sequence, the following conditions must hold:
For the sequence {Xk} = {(gk, ck

i , u
k
i ) : i = 1, · · · ,K} generated by the PAMA (4.2),

(A) {F(Xk)} is monotonically decreasing and convergent to some F∗.

(B)
∞∑

k=1

∥Xk+1 − Xk∥22 < +∞ is satisfied. Hence, lim
k→∞
∥Xk+1 − Xk∥ = 0.

(C) There exists a subsequence {Xkℓ} of {Xk} converging to a limit point X̄ = (ḡ, c̄i, ūi; i = 1, · · · ,K)
and lim

ℓ→∞
F(Xkℓ)→ F(X̄). Furthermore, any limit point of {Xk} is a stationary point of (4.1).

Proof. The statements (A)–(C) of the theorem are proved.
(A) By the optimality of gk+1, ck+1

i , and uk+1
i in (4.4)–(4.6), it follows that

F(gk+1, ck
i , u

k
i ) +
δ

2
∥gk+1 − gk∥22 ≤ F(gk, ck

i , u
k
i ),

F(gk+1, ck+1
i , u

k
i ) +
δ

2

K∑
i=1

∥ck+1
i − ck

i ∥
2
2 ≤ F(gk+1, ck

i , u
k
i ),

F(gk+1, ck+1
i , u

k+1
i ) +

δ

2

K∑
i=1

∥uk+1
i − uk

i ∥
2
2 ≤ F(gk+1, ck+1

i , u
k
i ),

respectively. By summing the above equations, it follows that

F(gk+1, ck+1
i , u

k+1
i ) +

δ

2
∥gk+1 − gk∥22 +

δ

2

K∑
i=1

∥ck+1
i − ck

i ∥
2
2

+
δ

2

K∑
i=1

∥uk+1
i − uk

i ∥
2
2 ≤ F(gk, ck

i , u
k
i ). (4.7)

This shows that F(Xk) is monotonically decreasing. According to [23, Theorem 1], G is bounded from
below under the conditions that f ∈ L∞(Ω) with infΩ f > 0, and σ > 4.5. Hence, the objective function
F is also bounded from below. Thus, F(Xk) converges.
(B) By summing from k = 0 to N of (4.7), it follows that

δ

2

N∑
k=0

∥gk+1 − gk∥22 +
δ

2

K∑
i=1

N∑
k=0

∥ck+1
i − ck

i ∥
2
2 +
δ

2

K∑
i=1

N∑
k=0

∥uk+1
i − uk

i ∥
2
2
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≤ F(g0, c0
i , u

0
i ) − F(gN+1, cN+1

i , uN+1
i ).

Owing to convergence of the sequence F(gN ,CN
i , u

N
i ), the sequences {

∑N
k=0 ∥g

k+1−gk∥22}N , {
∑N

k=0 ∥c
k+1
i −

ck
i ∥

2
2}N , and {

∑N
k=0 ∥u

k+1
i − uk

i ∥
2
2}N are bounded from above. Because they are monotonically increasing

sequences, the convergence follows, that is,

∞∑
k=1

∥Xk+1 − Xk∥22 < +∞.

(C) Because F(X0) < ∞, and F(Xk) is monotonically decreasing, F(Xk) is bounded. Particularly,
IS (uk

1, u
k
2, · · · , u

k
K), IS 1(Agk), IS 2(c

k
1, · · · , c

k
K) are bounded. Hence, {Xk} is bounded, and there exists a

subsequence of {Xk} converging to a limit point. To establish the continuity condition, a convergent
subsequence Xkℓ = (gkℓ , ckℓ

i , u
kℓ
i ) of Xk is considered such that (gkℓ , ckℓ

i , u
kℓ
i )→ (ḡ, c̄i, ūi) as ℓ → ∞. c̄ and

ū are denoted by (c̄1, · · · , c̄K) and (ū1, · · · , ūK), respectively. Let pkℓ
g ∈ ∂F1(gkℓ), pkℓ

j ∈ ∂c j F3(ckℓ
i ), and

qkℓ
j ∈ ∂u j F2(ukℓ

i ) be sequences satisfying

δ(gkℓ−1 − gkℓ) = ∇gH(gkℓ , ckℓ−1
i , ukℓ−1

i ) + pkℓ
g ∈ ∂gF(gkℓ , ckℓ−1

i , ukℓ−1
i ),

δ(ckℓ−1
j − ckℓ

j ) = ∇c j H(gkℓ , ckℓ
i , u

kℓ−1
i ) + pkℓ

j ∈ ∂c j F(gkℓ , ckℓ
i , u

kℓ−1
i ), j = 1, . . . ,K,

δ(ukℓ−1
j − ukℓ

j ) = ∇u j H(gkℓ , ckℓ
i , u

kℓ
i ) + qkℓ

j ∈ ∂u j F(gkℓ , ckℓ
i , u

kℓ
i ), j = 1, . . . ,K.

Because the sequences (gkℓ , ckℓ
i , u

kℓ
i ) and (gkℓ−1 , ckℓ−1

i , u
kℓ−1
i ) are contained in a compact set, the differences

δ(gkℓ−1 − gkℓ), δ(ckℓ−1
j − ckℓ

j ), and δ(ukℓ−1
j − ukℓ

j ) are bounded. Moreover, since ∇gH, ∇c j H, and ∇u j H
are continuous for all j = 1, · · · ,K, it follows that ∇gH(gkℓ , ckℓ−1

i , ukℓ−1
i ), ∇c j H(gkℓ , ckℓ

i , u
kℓ−1
i ), and

∇u j H(gkℓ , ckℓ
i , u

kℓ
i ) are also bounded on this compact set. Consequently, the sequence (pkℓ

g , p
kℓ
j , q

kℓ
j :

j = 1, · · · ,K) is bounded. Let pkℓ := (pkℓ
1 , · · · , p

kℓ
K ), c := (c1, · · · , cK), qkℓ := (qkℓ

1 , · · · , q
kℓ
K ), and

u := (u1, · · · , uK). Hence, limℓ→∞⟨p
kℓ
g , ḡ−gkℓ⟩ = 0, limℓ→∞⟨pkℓ , c̄−ckℓ⟩ = 0, and limℓ→∞⟨qkℓ , ū−ukℓ⟩ = 0.

By using the lower semicontinuity of F and the convexity of F1, F2, and F3, it follows that

F(ḡ, c̄, ū) ≤ lim inf
ℓ→∞

F(gkℓ , ckℓ ,ukℓ) ≤ lim sup
ℓ→∞

F(gkℓ , ckℓ ,ukℓ)

≤ lim sup
ℓ→∞

H(gkℓ , ckℓ ,ukℓ) + lim sup
ℓ→∞

F1(gkℓ) + lim sup
ℓ→∞

F3(ckℓ)

+ lim sup
ℓ→∞

F2(ukℓ)

≤ H(ḡ, c̄, ū) + lim sup
ℓ→∞

F1(gkℓ) + lim
ℓ→∞
⟨pkℓ

g , ḡ − gkℓ⟩

+ lim sup
ℓ→∞

F3(ckℓ) + lim
ℓ→∞
⟨pkℓ , c̄ − ckℓ⟩

+ lim sup
ℓ→∞

F2(ukℓ) + lim
ℓ→∞
⟨qkℓ , ū − ukℓ⟩

≤ H(ḡ, c̄, ū) + lim sup
ℓ→∞

(F1(gkℓ) + ⟨pkℓ
g , ḡ − gkℓ⟩)

+ lim sup
ℓ→∞

(F3(ckℓ) + ⟨pkℓ , c̄ − ckℓ⟩)

+ lim sup
ℓ→∞

(F2(ukℓ) + ⟨qkℓ , ū − ukℓ⟩)
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≤ H(ḡ, c̄, ū) + F1(ḡ) + F3(c̄) + F2(ū) = F(ḡ, c̄, ū).

Therefore, F(gkℓ , ckℓ ,ukℓ)→ F(ḡ, c̄, ū) as ℓ → ∞.
Lastly, let X̄ be a limit point of Xk. There exists a subsequence {Xkℓ} of {Xk} converging to X̄. By

Lemma 4.1, there exists a sequence {(pk+1
g , p

k+1
i , q

k+1
i ) : i = 1, · · · ,K} ∈ ∂F(Xk+1) satisfying Eq (4.3).

Because the right-hand side of Eq (4.3) goes to zero as k → ∞ according to (B), {pk
g}, {p

k
i }, {q

k
i },

i = 1, · · · ,K also goes to 0 as k → ∞. Clearly, {pkℓ
g }, {p

kℓ
i }, {q

kℓ
i }, i = 1, · · · ,K converge to 0. Owing to

closedness [39, Remark 2.1 (b)] of ∂F and the continuity condition, 0 ∈ ∂F(X̄). □

Remark 4.1. The convergence analysis in Theorem 4.1 is limited to the boundedness of subgradients
and the verification of first-order optimality conditions. Although it guarantees convergence to a
critical value, it does not ensure full global convergence to a critical point. Achieving global
convergence would require the objective function to satisfy the Kurdyka–Łojasiewicz (KL) inequality;
however, due to the data fidelity term G(Ag) associated with g, this condition is not satisfied in the
proposed model. Despite this limitation, the analysis is practically sufficient, as demonstrated by
numerical experiments showing stable and consistent convergence behavior across a wide range of
settings.

The ci-subproblems have the closed form solution

ck+1
i = min

(
255,max

(
0,

2λ
∑
Ω gk+1uk

i + δc
k
i

2λ
∑
Ω uk

i + δ

))
, ∀i = 1, · · · ,K.

The other subproblems are not solved directly, and in addition, they are nonconvex due to the
NTV term. In the following subsections, the author presents iterative algorithms for solving these
subproblems that utilize the iteratively reweighted ℓ1 (IRL1) algorithm.

4.2. Iterative algorithm for the g-subproblem

First, the author recalls the IRL1 method [41] for the following nonconvex and nonsmooth
optimization problem:

min
v

E1(v) + E2(E3(v)), (4.8)

where E1 : Rn → R ∪ {∞} is a proper, lower semicontinuous (l.s.c.), convex function; E2 : Rr →

R ∪ {∞} is assumed to be a proper, l.s.c., concave, and coordinatewise nondecreasing function; and
E3 : Rn → Rr is coordinatewise convex. Furthermore, the objective function E := E1 + E2(E3) of (4.8)
is assumed coercive and bounded from below.

Problem (4.8) is nonconvex due to E2. The IRL1 algorithm iteratively minimizes a convex
majorization of (4.8) instead of the original nonconvex function. At each iteration ℓ, the subproblem is

min
v

E1(v) + ⟨wℓ, E3(v)⟩,

where wℓ is a limiting supergradient of E2 at E3(vℓ).
Applying IRL1 to the g-subproblem, we define E1(g) = µ

∑
ΩG(Ag) + λ

∑K
i=1

∑
Ω(g − ck

i )
2uk

i +

IS 1(Ag) + δ2∥g − gk∥22, E2(v) = γ⟨ 1
ρ

log(1 + ρv), 1⟩, E3(g) = |∇g|. In this setting, all assumptions
required for IRL1 are satisfied.
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Applying IRL1 to the g-subproblem results in the following iterative scheme:

wk,ℓ+1
1 =

1
1 + ρ|∇gk,ℓ|

,

gk,ℓ+1 = arg min
g
µ
∑
Ω

G(Ag) + λ
K∑

i=1

∑
Ω

(g − ck
i )

2uk
i + IS 1(Ag) + γ⟨wk,ℓ+1

1 , |∇g|⟩ (4.9)

+
δ

2
∥g − gk∥22.

The convergence of IRL1 (4.9) for solving g-subproblem can be proved.

Theorem 4.2. It is assumed that the initial value gk,0 of IRL1 (4.9) is chosen by satisfying Agk,0 ∈ S 1.
IRL1 (4.9) returns a stationary point of the g-subproblem in (4.2). Otherwise, if it generates an infinite
sequence, the following conditions hold:
For the sequence gℓ generated by the IRL1 (4.9),

(A) {E(gk,ℓ)} is monotonically decreasing and convergent to some E∗, where E(g) := E1(g)+E2(E3(g)).

(B)
∞∑
ℓ=1

∥gk,ℓ+1 − gk,ℓ∥22 < +∞ is satisfied. Hence, lim
ℓ→∞
∥gk,ℓ+1 − gk,ℓ∥ = 0.

(C) There exists a subsequence {gk,ℓ j} of {gk,ℓ} converging to a limit point gk,∗ and lim
j→∞
{E(gk,ℓ)} →

E(gk,∗). Moreover, any limit point of {gk,ℓ} is a stationary point of the g-subproblem in (4.2).

Proof. The significant properties of IRL1 were proved in [41, Proposition 5] under additional
conditions. First, it is proved that these additional conditions hold in our setting, resulting in satisfying
the properties in [41, Proposition 5].
(1) E2 is a differentiable function, and ∇E2(v) =

γ

1 + ρv
and ∇2E2(v) = diag(−

γρ

1 + ρv
). Hence,

∥∇2E2(v)∥2 ≤ γρ, and E2 has Lipschitz-continuous gradients.
(2) Clearly, the convex function v 7→ ⟨wℓ, v⟩ has a globally Lipschitz-continuous gradient with a
common Lipschitz constant 0.
(3) Trivially, the function v 7→ E1(v) + ⟨wℓ, E3(v)⟩ is strongly convex with modulus δ.
(A) From the first inequality in [41, Proposition 5], E(gk,ℓ) is monotonically decreasing. Clearly, E is
bounded from below. Thus, E(gk,ℓ) converges as ℓ → ∞.
(B) By summing from ℓ = 0 to N of the first inequality in [41, Proposition 5], we obtain

δ

2

N∑
ℓ=0

∥gk,ℓ+1 − gk,ℓ∥22 ≤ E(gk,0) − E(gk,N+1).

Due to convergence of the sequence {E(gk,N)}, the sequence {
∑N
ℓ=0 ∥g

k,ℓ+1 − gk,ℓ∥22}N is bounded from
above. Thus,

∞∑
ℓ=1

∥gk,ℓ+1 − gk,ℓ∥22 < +∞.

(C) Because E(gk,ℓ) < ∞, and E(gk,ℓ) is monotonically decreasing, E(gk,ℓ) is bounded. By the coercivity
of E, {gk,ℓ} is bounded, and there exists a subsequence {gk,ℓ j} converging to a limit point gk,∗. By the third
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property of [41, Proposition 5], lim
j→∞
{E(gk,ℓ)} → E(gk,∗) holds. Let gk,∗ be a limit point of gk,ℓ. There

exists a subsequence {gk,ℓ j} of {gk,ℓ} converging to gk,∗. By the second property in [41, Proposition
5], there exists a sequence ξk,ℓ+1

g ∈ ∂E(gk,ℓ+1) satisfying the second inequality in [41, Proposition 5].
Due to (B), ξk,ℓ

g decays to 0 as ℓ → ∞, and then, ξk,ℓ j
g also converges to 0 as ℓ goes to ∞. Owing to

closedness [39, Remark 2.1 (b)] of ∂E and the third property of [41, Proposition 5], 0 ∈ ∂E(gk,∗). Thus,
gk,∗ is a stationary point of the g-subproblem. □

The subproblem (4.9) for the variable gk,ℓ+1 is considered next. Although this subproblem is
convex, it contains the nondifferentiable term γ⟨wk,ℓ+1

1 , |∇g|⟩. By employing the variable splitting
technique [49], the subproblem can be reformulated as the following constrained minimization
problem:

min
g,d,z,ti
µ
∑
Ω

G(z) + λ
K∑

i=1

∑
Ω

(ti)2uk
i + IS 1(z) +

δ

2
∥g − gk∥22 + γ⟨w

k,ℓ+1
1 , |d|⟩, (4.10)

s.t. d = ∇g, z = Ag, ti = g − ck
i , i = 1, . . . ,K.

Various optimization algorithms for the linearly constrained convex minimization were proposed, such
as the ADMM [50] and the primal-dual algorithm [51]. Here, ADMM, a well-known algorithm for
solving linearly constrained optimization problems, is utilized. The augmented Lagrangian function of
problem (4.10) is given by

L(g, d, z, ti, ad, az, at
i; ν) = µ

∑
Ω

G(z) + λ
K∑

i=1

∑
Ω

(ti)2uk
i + IS 1(z) +

δ

2
∥g − gk∥22

+γ⟨wk,ℓ+1
1 , |d|⟩ − ⟨ad, d − ∇g⟩ +

ν

2
∥d − ∇g∥22 − ⟨az, z − Ag⟩

+
ν

2
∥z − Ag∥22 −

K∑
i=1

⟨at
i, ti − g + ck

i ⟩ +
ν

2

K∑
i=1

∥ti − g + ck
i ∥

2
2. (4.11)

where ad, az, at
i, i = 1, · · · ,K are the Lagrange multipliers defined on Ω, and ν is a penalty parameter.

The ADMM alternately minimizes the augmented Lagrangian function with respect to one variable,
whereas the other variables are fixed, and the Lagrange multipliers are then updated according to the
primal-dual theory.

The ADMM can be applied to problem (4.10), resulting in the following iterative algorithm:
dm+1

zm+1

tm+1
i

 := arg min
d,z,ti
L(gm, d, z, ti, am

d , a
m
z , (a

t
i)

m; ν),

gm+1 := arg min
g
L(g, dm+1, zm+1, tm+1

i , am
d , a

m
z , (a

t
i)

m; ν)

am+1
d = am

d − ν(d
m+1 − ∇gm+1)

am+1
z = am

z − ν(z
m+1 − Agm+1)

(at
i)

m+1 = (at
i)

m − ν(tm+1
i − gm+1 + ck

i ).
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Because problem (4.10) is a convex minimization with linear constraints, the convergence results of
ADMM for (4.10) can be directly applied according to [50]. First, the subproblem for (dm+1, zm+1, tm+1

i )
can be solved independently as follows:

dm+1 = arg min
d
γ⟨wk,ℓ+1

1 , |d|⟩ − ⟨am
d , d − ∇gm⟩ +

ν

2
∥d − ∇gm∥22,

zm+1 = arg min
z
µ
∑
Ω

G(z) + IS 1(z) + ⟨am
z , z − Agk⟩ +

ν

2
∥z − Agm∥22,

tm+1
i = arg min

ti
λ
∑
Ω

(ti)2uk
i − ⟨(a

t
i)

m, ti − gm + ck
i ⟩ +
ν

2
∥ti − gm + ck

i ∥
2
2.

The (d, ti)-minimization problems are also solved as exactly:

dm+1 = shrink(∇gm +
am

d

ν
,
γwk,ℓ+1

1

ν
),

tm+1
i =

(at
i)

m + ν(gm − ck
i )

2λuk
i + ν

, i = 1, · · · ,K,

where shrink is defined as

shrink(a, b) =
a
|a|
·max(|a| − b, 0). (4.12)

The z-subproblem can be solved easily using Newton’s method:

zm+1
l+1 = min

(
255,max

(
0, zm+1

l −
Ḡ(zm+1

l )

Ḡ′(zm+1
l )

))
,

where
Ḡ(z) = µ

∑
Ω

G(z) + ⟨am
z , z − Agm⟩ +

ν

2
∥z − Agm∥22.

Finally, the solution of the g-subproblem can be obtained by solving the following normal equation:

(νAT A + δI + ν∇T∇ + νKI)gm+1 = rhsg, (4.13)

where

rhsg = ∇
T (νdm+1 − am

d ) + AT (νzm+1 − am
z ) +

K∑
i=1

(−(at
i)

m + ν(tm+1
i + ck

i )) + δg
k.

If A is a double symmetric blurring operator, the matrix νAT A + δI + ν∇T∇ + νKI can be diagonalized
using a two-dimensional discrete cosine transform (DCT2) under a symmetric boundary condition.
This allows the solution to Eq (4.13) to be expressed as

gm+1 = D−1
(

D(rhsg)
(νK + δ)D(I) + νD(∇T∇) + νD(KT K)

)
.
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Algorithm 1 The proposed algorithm
1: Input: choose the parameters λ, µ, γ, δ, η, ρ, the maximum numbers of iterations N1, N2.
2: Initialization: let g0 = f , c0

i , u
0
i = the result of FCM2 with initial f .

3: repeat
4: Compute gk+1 by iterating for ℓ = 0, 1, 2, · · · ,N1:

5: wk,ℓ+1
1 =

1
1 + ρ|∇gℓ|

,

6: dℓ+1 = shrink(∇gℓ +
aℓd
δ
,
γwk,ℓ+1

1
δ

),

7: tℓ+1
i =

(at
i)
ℓ+δ(gℓ−ck

i )
2uk

i +δ
, i = 1, · · · ,K,

8: Compute zℓ+1by iterating of Newton’s method for l = 0, 1, · · · ,N3:

9: zl+1 = min
(
255,max

(
0, zl −

Ḡ(zl)
Ḡ′(zl)

))
,

10: gℓ+1 = D−1
(

D(rhsg)
δKD(I)+δD(∇T∇)+δD(KT K)

)
,

11: aℓ+1
d = aℓd − δ(d

ℓ+1 − ∇gℓ+1),
12: aℓ+1

z = aℓz − δ(z
ℓ+1 − Agℓ+1,

13: (at
i)
ℓ+1 = (at

i)
ℓ − δ(tℓ+1

i − gℓ+1 + ck
i ), i = 1, · · · ,K.

14: Compute ck+1
i by the formula

ck+1
i = min

(
255,max

(
0,

2λ
∑
Ω gk+1uk

i + δc
k
i

2λ
∑
Ω uk

i + δ

))
, i = 1, · · · ,K.

15: Compute uk+1
i by iterating for ℓ = 0, 1, 2, · · · ,N2:

16: wk,ℓ+1
2,i = 1

1+ρ|∇uℓi |
, i = 1, · · · ,K,

17: pℓ+1
i = pro jS (uℓi +

bℓi
η

), i = 1, · · · ,K,

18: hℓ+1
i = shrink(∇uℓi +

rℓi
η
,

wk,ℓ+1
2,i

η
), i = 1, · · · ,K,

19: uℓ+1
i = D−1

(
D(rhsu)

ηD(I)+ηD(∇T∇)

)
, i = 1, · · · ,K,

20: bℓ+1
i = bℓi − η(pℓ+1

i − uℓ+1
i ), i = 1, · · · ,K,

21: rℓ+1
i = rℓi − η(h

ℓ+1
i − ∇uℓ+1

i ), i = 1, · · · ,K.
22: until the stopping condition is satisfied.
23: Output: ui for i = 1, · · · ,K.

4.3. Iterative algorithm for the ui-subproblem

In this subsection, the author provides the proposed algorithm for solving the ui-subproblem. In
a way similar to that described in the previous subsection, IRL1 can be applied to the ui-subproblem
in (4.2), which gives rise to the following iterative algorithm:

wk,ℓ+1
2,i =

1
1 + ρ|∇uℓi |

,

uk,ℓ+1
i := arg min

u
λ

K∑
i=1

∑
Ω

(gk+1 − ck+1
i )2ui +

K∑
i=1

⟨wk,ℓ+1
2,i , |∇ui|⟩ + IS (u1, · · · , uK) (4.14)

AIMS Mathematics Volume 11, Issue 2, 3594–3635.



3612

+
δ

2

K∑
i=1

∥ui − uk
i ∥

2
2.

It can be demonstrated that the convergence result of the IRL1 (4.14) is obtained in a similar manner
to that described in Theorem 4.2.

Problem (4.14) is a convex minimization problem with a nondifferentiable term. Hence, the
following equivalent constrained minimization is considered:

min
ui,pi,hi

λ

K∑
i=1

∑
Ω

(gk+1 − ck+1
i )2ui +

K∑
i=1

⟨wk,ℓ+1
2,i , |hi|⟩ + IS (p1, · · · , pK) +

δ

2

K∑
i=1

∥ui − uk
i ∥

2
2 (4.15)

s.t. pi = ui, hi = ∇ui, i = 1, · · · ,K.

ADMM is applied to problem (4.15), yielding(
pm+1

i
hm+1

i

)
:= arg min

pi,hi

{ K∑
i=1

⟨wk,ℓ+1
2,i , |hi|⟩ + IS (p1, · · · , pK) −

K∑
i=1

⟨bm
i , pi⟩

+

K∑
i=1

η

2
∥pi − um

i ∥
2
2 −

K∑
i=1

⟨rm
i , hi⟩ +

K∑
i=1

η

2
∥hi − ∇um

i ∥
2
2

}
, (4.16)

uk
i+1 := arg min

u

{
⟨(gk+1 − ck+1

i )2, ui⟩ + ⟨bm
i , ui⟩ +

η

2
∥ui − pm+1

i ∥
2
2 + ⟨r

m
i ,∇ui⟩

+
η

2
∥∇ui − hm+1

i ∥
2
2 +
δ

2
∥ui − uk

i ∥
2
2

}
, i = 1, · · · ,K, (4.17)

bm+1
i = bm

i − η(pm+1
i − um+1

i ), i = 1, · · · ,K
rm+1

i = rm
i − η(h

m+1
i − ∇um+1

i ), i = 1, · · · ,K.

The variables in the (pi, hi)-subproblem (4.16) are decoupled, so they can be solved separately as

pm+1
i = pro jS (um

i +
bm

i

η
),

hm+1
i = shrink(∇um

i +
rm

i

η
,

wk,ℓ+1
2,i

η
)

for each i = 1, · · · ,K, where pro jS is the projection onto simplex S for which the specific formula is
given in [52].

In (4.17), the ui-subproblem is a least-squares problem, so its solution um+1
i can be obtained by

solving the following normal equation:

(ηI + η∇T∇ + δI)ui = rhsu, (4.18)

where

rhsu = −(gk+1 − ck+1
i )2 + (ηpm+1

i − bm
i ) + ∇T (ηhm+1

i − rm
i ) + δuk

i .

Hence, by taking the DCT2, we obtain the exact solution um+1
i of the problem (4.18).

ADMM typically requires multiple iterations to ensure convergence. However, for each IRL1 step,
only a single iteration of ADMM is performed to maintain computational efficiency, which is sufficient
in practice. In summary, Algorithm 1 presents the complete procedure for solving the proposed
model (4.1).
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5. Numerical results

In this section, the author presents numerical results obtained using the proposed model and
compares them with several representative existing models. The CV model [10] is a region-based active
contour approach that performs image segmentation without relying on explicit edge information. The
fuzzy C-means clustering with level set method (FCMLSM) [53] integrates spatial fuzzy clustering
with level set evolution and has been widely applied to medical image segmentation. The Chen
model [29] is a variational segmentation framework that explicitly accounts for Rician noise through
an image restoration formulation.

All models were tested on several synthetic and real images, including examples from the dataset
in [54]. All test images are shown in Figure 2. Segmentation performance is evaluated using
accuracy, precision, recall, F-measure, and intersection over union (IoU), whose detailed definitions
and corresponding MATLAB implementations are provided in [55]. All numerical experiments were
conducted on a 64-bit macOS system using a MacBook Pro equipped with an Intel Core i9 CPU at
2.40 GHz and 32 GB of RAM.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2. Test images used in the experiments: (a) syn2 (128×128), (b) syn5 (235×237), (c)
113334665744 (300×225), (d) b2chopper008 (300×225), (e) bbmf (300×225), (f) egret face
(300×200), (g) oscar (300×225), (h) guggenheim (300×400), (i) mountain (512×683).

5.1. Implementation setting

The proposed algorithm is terminated when the following stopping criterion is satisfied:√∑K
i=1(ck

i − ck−1
i )2√∑K

i=1(ck−1
i )2

≤ tol or k > 50,

where the tolerance is set to tol = 0.1. The parameter settings used in the numerical experiments are as
follows. The parameters (γ, λ, µ) were tuned to obtain visually satisfactory results as well as favorable
quantitative performance. The parameter ρ in the nonconvex logarithmic regularization was fixed at
0.01, and the penalty parameters in the numerical solvers were set to (δ, η) = (1, 100). The maximum
numbers of iterations for updating g and ui were fixed at N1 = N2 = 10, and the maximum number of
iterations for Newton’s method was set to N3 = 5. The following parameter ranges were considered:
γ ∈ {5, 10, 15, 30, 50, 100}, λ ∈ {0.01, 0.1}, and µ ∈ {100, 500, 1000}.
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Because the proposed model is nonconvex, the results are sensitive to the initialization of ci and
ui. The initial values of ci were obtained using the fuzzy C-means method [56]. For two-phase
segmentation, the initial ui were generated using circular level sets over the image domain, whereas for
multiphase segmentation, they were initialized using the fuzzy C-means method.

Three types of blurring operators were considered: Gaussian blur with a window size of 10 and
standard deviation 10, motion blur with length 15 and angle 60◦, and uniform blur. For two-phase
segmentation, the window size of the uniform blur was set to 3, whereas for multiphase segmentation
it was set to 5. The observed image f was generated by first applying the blurring operator A and then
adding Rician noise with σ = 15 for two-phase segmentation and σ = 5 for multiphase segmentation.

Because motion blur is not doubly symmetric, the DCT-based solver cannot be applied. In this
case, the restoration and segmentation results were obtained using the two-dimensional fast Fourier
transform under symmetric boundary conditions, following the approach in [57]. For the sake of
reproducibility, the MATLAB codes used in the numerical experiments are available at https://
buly.kr/8phgkh4.

5.2. Sensitivity and influence of parameters

This subsection investigates the effect of the model parameters µ, λ, and γ via a single-parameter
sensitivity analysis, where one parameter is varied while the others remain fixed. Unless stated
otherwise, the sensitivity analysis is conducted under the Gaussian blur.

(a) µ = 100 (b) µ = 500 (c) µ = 1000 (d) µ = 1500

(a) µ = 10 (b) µ = 100 (c) µ = 500 (d) µ = 1000

Figure 3. Sensitivity and influence analysis with respect to µ, with all other parameters fixed.
Top row: segmentation results for the guggenheim image. Bottom row: segmentation results
for the mountain image.
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Sensitivity and influence with respect to µ: The parameter µ controls the strength of the data
fidelity term and is critical for compensating for noise and blur. Experiments were conducted with
µ ∈ {10, 100, 500, 1000, 1500}. Figure 3 presents the segmentation results for different values of µ. For
small values (e.g., µ = 100), the data fidelity term becomes too weak, leading to oversmoothing and
preventing accurate capture of fine building structures.

As µ increases, building boundaries are better preserved. However, when µ = 1500, thin structures
unrelated to the true building boundary are incorrectly detected.

A similar trend is observed in the second test image, where the best segmentation performance
occurs at µ = 100. Overall, the parameter µ exhibits moderate sensitivity. Based on these observations,
µ is tuned within the range µ ∈ {100, 500, 1000}.
Sensitivity and influence with respect to λ: The parameter λ weights the data fitting term that
enforces alignment of the segmentation curve with the target object. The values tested were λ ∈
{0.001, 0.01, 0.1, 0.5}. The corresponding segmentation results are shown in Figure 4. When λ = 0.001,
the data fidelity term is too weak, resulting in insufficient object fitting and segmentation failure. For
λ = 0.01 and λ = 0.1, satisfactory and visually similar segmentation results are obtained. In contrast,
when λ = 0.5, the overly strong data fidelity term weakens the regularization effect on the segmentation
curve length, leading to the inclusion of noise. Overall, these results indicate that λ is not highly
sensitive, as the segmentation results remain stable once λ is chosen within a reasonable and practically
relevant range. Accordingly, λ is selected from the range λ ∈ {0.01, 0.1}.

(a) λ = 0.001 (b) λ = 0.01 (c) λ = 0.1 (d) λ = 0.5

Figure 4. Sensitivity and influence analysis with respect to λ, with all other parameters fixed.

Sensitivity and influence with respect to γ: The parameter γ controls the strength of the
regularization for noise suppression and blur compensation. Experiments were conducted with
γ ∈ {1, 5, 30, 50, 100, 150}. Figure 5 presents the segmentation results for two test images.

In the first image, when γ = 1, the regularization is insufficient, causing the segmentation to include
both the target object (aircraft) and background noise. As γ increases, noise is gradually suppressed,
and the target object is more clearly segmented. However, for large values of γ (e.g., γ > 100),
excessive regularization leads to blurred object boundaries. In this case, γ = 5 achieves the best
balance between noise suppression and boundary preservation.

A similar behavior is observed in the second image. For relatively small values of γ (e.g., 5, 30),
undesired artifacts such as fine cracks within the mountain region appear. This phenomenon is
attributed to the abundance of fine details in mountainous textures.

The most satisfactory result is obtained at γ = 100. Further increasing γ to 150 causes distortion of
the boundary between the mountain and the sky. Overall, γ is found to be the most sensitive parameter
among the three. Based on these observations, γ is tuned within the range γ ∈ {5, 10, 15, 30, 50, 100}.

For all competing variational methods, parameters were tuned following the recommendations in
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the original papers to achieve their best performance.

(a) γ = 1 (b) γ = 5 (c) γ = 30 (d) γ = 100

(a) γ = 5 (b) γ = 30 (c) γ = 100 (d) γ = 150

Figure 5. Sensitivity and influence analysis with respect to γ, with all other parameters fixed.
Top row: segmentation results for the b2chopper008 image. Bottom row: segmentation
results for the mountain image.

5.3. Segmentation results

First, the numerical results of segmenting synthetic images will be analyzed in Figures 6–8. The
quantitative evaluation of segmentation performance is reported in Tables 1–3. For the CV and
FCMLSM models, the object boundaries are not accurately detected because these models do not
incorporate a mechanism for blur removal. The original image in Figure 9 consists of five phases.
Thus, the CV model requires three level set functions, which can generate up to eight regions. Due to
the presence of blur in the observed image, parts of the square boundaries are incorrectly assigned to
the additional regions. In contrast, as shown in Figure 6, both the Chen model and the proposed model
achieve nearly perfect segmentation results, owing to the inclusion of a term that explicitly accounts
for image blur. In the multiphase case, the proposed model demonstrates a superior ability to segment
the boundaries of triangles and squares compared to the Chen model, yielding results that are closer to
the ground truth.

Figure 10 presents the results of two-phase segmentation for a natural image corrupted by
Rician noise with σ = 15 and blur. It is observed that the CV model captures the building
boundaries in a jagged manner in all cases. Because the CV model does not include a mechanism
to suppress Rician noise, it tends to falsely detect noise as object boundaries. The FCMLSM model
produces unsatisfactory results under Gaussian and motion blur, leading to inaccurate and less smooth
boundaries. The Chen model successfully captures the overall shape of the building in all three cases.

However, it fails to accurately detect sharp corners and the boundaries between adjacent buildings.
In contrast, the proposed model provides the most accurate and consistent boundary detection across
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all cases. In particular, it precisely identifies the slender structure located in the central area of the
building.

Gaussian blur Uniform blur Motion blur
Segmentation results under Gaussian blur

Segmentation results under uniform blur

Segmentation results under motion blur

(a) CV (b) FCMLSM (c) Chen (d) Proposed

Figure 6. Segmentation results of a synthetic image under different blur kernels. Top row:
blurred and noisy input images. Second to fourth rows: segmentation results under Gaussian
blur, uniform blur, and motion blur, respectively. Columns correspond to CV [10], FCMLSM
[53], Chen [29], and the proposed method.

(a) Observed image (b) CV [10] (c) FCMLSM [53] (d) Chen [29] (e) Proposed

Figure 7. Segmentation results for a synthetic image corrupted by Gaussian blur and Rician
noise. (a) Observed image and approximated images obtained by (b) CV [10], (c) FCMLSM
[53], (d) Chen [29], and (e) the proposed method.
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CV [10]

FCMLSM [53]

Chen [29]

Proposed

Figure 8. Visualization of the five-phase segmentation results corresponding to Figure 7.

AIMS Mathematics Volume 11, Issue 2, 3594–3635.



3619

Table 1. Quantitative segmentation results under Gaussian blur.

Image Model Accuracy F-measure Precision Recall IoU

syn2

CV 0.9970 0.9970 0.9970 0.9970 0.9940
FCMLSM 0.9946 0.9946 0.9946 0.9946 0.9892
Chen 1.0000 1.0000 1.0000 1.0000 1.0000
Proposed 1.0000 1.0000 1.0000 1.0000 1.0000

syn5

CV 0.8662 0.7644 0.9615 0.6642 0.6405
FCMLSM 0.9243 0.9072 0.9204 0.9019 0.8384
Chen 0.9782 0.9619 0.9524 0.9747 0.9296
Proposed 0.9930 0.9885 0.9857 0.9915 0.9775

113334665744

CV 0.9418 0.9166 0.9427 0.8963 0.8494
FCMLSM 0.9278 0.8922 0.9432 0.8596 0.8110
Chen 0.9313 0.8982 0.9453 0.8671 0.8202
Proposed 0.9495 0.9274 0.9561 0.9054 0.8672

b2chopper008

CV 0.6384 0.3899 0.4634 0.3374 0.3193
FCMLSM 0.9827 0.8950 0.9791 0.8379 0.8237
Chen 0.9866 0.9218 0.9827 0.8758 0.8631
Proposed 0.9885 0.9381 0.9573 0.9206 0.8886

bbmf

CV 0.9881 0.9421 0.9516 0.9331 0.8951
FCMLSM 0.9885 0.9423 0.9706 0.9176 0.8954
Chen 0.9903 0.9511 0.9816 0.9247 0.9101
Proposed 0.9909 0.9566 0.9580 0.9553 0.9195

egret face

CV 0.9684 0.9450 0.9726 0.9222 0.8979
FCMLSM 0.9705 0.9488 0.9751 0.9269 0.9045
Chen 0.9689 0.9455 0.9773 0.9200 0.8988
Proposed 0.9803 0.9669 0.9767 0.9577 0.9367

oscar

CV 0.9572 0.9560 0.9640 0.9515 0.9158
FCMLSM 0.9444 0.9426 0.9546 0.9368 0.8916
Chen 0.9566 0.9554 0.9640 0.9507 0.9148
Proposed 0.9637 0.9628 0.9684 0.9592 0.9283

guggenheim

CV 0.9859 0.9857 0.9850 0.9865 0.9718
FCMLSM 0.9843 0.9841 0.9831 0.9853 0.9687
Chen 0.9881 0.9879 0.9868 0.9893 0.9762
Proposed 0.9893 0.9892 0.9882 0.9903 0.9786

mountain

CV 0.9904 0.9825 0.9751 0.9902 0.9658
FCMLSM 0.9903 0.9823 0.9727 0.9926 0.9655
Chen 0.9916 0.9846 0.9759 0.9939 0.9699
Proposed 0.9962 0.9930 0.9897 0.9963 0.9861

*The best segmentation performance is indicated in bold, and the second-best is
underlined when applicable.
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Table 2. Quantitative segmentation results under uniform blur.

Image Model Accuracy F-measure Precision Recall IoU

syn2

CV 0.9998 0.9998 0.9998 0.9998 0.9995
FCMLSM 1.0000 1.0000 1.0000 1.0000 1.0000
Chen 1.0000 1.0000 1.0000 1.0000 1.0000
Proposed 1.0000 1.0000 1.0000 1.0000 1.0000

syn5

CV 0.8085 0.8092 0.8444 0.8504 0.7217
FCMLSM 0.9635 0.9634 0.9795 0.9484 0.9298
Chen 0.9905 0.9836 0.9809 0.9867 0.9682
Proposed 0.9976 0.9960 0.9953 0.9968 0.9921

113334665744

CV 0.9388 0.9090 0.9586 0.8765 0.8374
FCMLSM 0.9205 0.8774 0.9517 0.8368 0.7891
Chen 0.9412 0.9129 0.9601 0.8814 0.8437
Proposed 0.9471 0.9229 0.9610 0.8956 0.8598

b2chopper008

CV 0.9896 0.9404 0.9914 0.8999 0.8925
FCMLSM 0.9881 0.9310 0.9924 0.8843 0.8773
Chen 0.9887 0.9347 0.9936 0.8895 0.8833
Proposed 0.9920 0.9555 0.9884 0.9272 0.9177

bbmf

CV 0.9889 0.9418 0.9932 0.9010 0.8946
FCMLSM 0.9868 0.9293 0.9931 0.8815 0.8746
Chen 0.9884 0.9389 0.9936 0.8962 0.8900
Proposed 0.9940 0.9701 0.9934 0.9493 0.9433

egret face

CV 0.9701 0.9474 0.9820 0.9200 0.9021
FCMLSM 0.9619 0.9315 0.9776 0.8976 0.8752
Chen 0.9727 0.9521 0.9834 0.9267 0.9103
Proposed 0.9750 0.9565 0.9849 0.9330 0.9180

oscar

CV 0.9564 0.9552 0.9633 0.9506 0.9143
FCMLSM 0.9535 0.9522 0.9616 0.9472 0.9089
Chen 0.9562 0.9550 0.9638 0.9502 0.9140
Proposed 0.9621 0.9612 0.9682 0.9570 0.9253

guggenheim

CV 0.9858 0.9857 0.9848 0.9867 0.9717
FCMLSM 0.9856 0.9854 0.9846 0.9864 0.9713
Chen 0.9875 0.9873 0.9862 0.9888 0.9750
Proposed 0.9897 0.9895 0.9885 0.9908 0.9793

mountain

CV 0.9904 0.9824 0.9743 0.9910 0.9657
FCMLSM 0.9890 0.9800 0.9689 0.9921 0.9611
Chen 0.9963 0.9931 0.9898 0.9965 0.9863
Proposed 0.9950 0.9907 0.9857 0.9959 0.9817

*The best segmentation performance is indicated in bold, and the second-best is
underlined when applicable.
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Table 3. Quantitative segmentation results under motion blur.

Image Model Accuracy F-measure Precision Recall IoU

syn2

CV 0.9987 0.9987 0.9987 0.9987 0.9974
FCMLSM 0.9981 0.9981 0.9981 0.9981 0.9962
Chen 1.0000 1.0000 1.0000 1.0000 1.0000
Proposed 1.0000 1.0000 1.0000 1.0000 1.0000

syn5

CV 0.7411 0.6913 0.7590 0.6535 0.5973
FCMLSM 0.9139 0.8938 0.9157 0.8791 0.8163
Chen 0.9791 0.9627 0.9514 0.9782 0.9315
Proposed 0.9957 0.9931 0.9914 0.9949 0.9864

113334665744

CV 0.9404 0.9139 0.9451 0.8905 0.8449
FCMLSM 0.9222 0.8818 0.9443 0.8451 0.7955
Chen 0.9322 0.8979 0.9562 0.8621 0.8200
Proposed 0.9542 0.9259 0.9500 0.9237 0.8815

b2chopper008

CV 0.9821 0.9020 0.9273 0.8798 0.8334
FCMLSM 0.9824 0.8974 0.9556 0.8536 0.8271
Chen 0.9870 0.9250 0.9799 0.8824 0.8680
Proposed 0.9875 0.9325 0.9511 0.9156 0.8797

bbmf

CV 0.9817 0.9192 0.8911 0.9524 0.8585
FCMLSM 0.9846 0.9268 0.9280 0.9255 0.8704
Chen 0.9909 0.9545 0.9787 0.9330 0.9159
Proposed 0.9918 0.9599 0.9707 0.9497 0.9252

egret face

CV 0.9671 0.9426 0.9705 0.9197 0.8938
FCMLSM 0.9627 0.9336 0.9730 0.9034 0.8786
Chen 0.9675 0.9430 0.9742 0.9179 0.8946
Proposed 0.9788 0.9649 0.9668 0.9630 0.9330

oscar

CV 0.9525 0.9512 0.9599 0.9465 0.9071
FCMLSM 0.9415 0.9396 0.9525 0.9336 0.8863
Chen 0.9554 0.9542 0.9631 0.9493 0.9125
Proposed 0.9621 0.9612 0.9673 0.9574 0.9253

guggenheim

CV 0.9828 0.9826 0.9816 0.9838 0.9658
FCMLSM 0.9841 0.9838 0.9834 0.9843 0.9682
Chen 0.9883 0.9882 0.9871 0.9895 0.9766
Proposed 0.9864 0.9862 0.9854 0.9872 0.9729

mountain

CV 0.9894 0.9807 0.9716 0.9905 0.9625
FCMLSM 0.9901 0.9819 0.9730 0.9913 0.9646
Chen 0.9942 0.9893 0.9858 0.9929 0.9790
Proposed 0.9936 0.9883 0.9821 0.9947 0.9769

*The best segmentation performance is indicated in bold, and the second-best is
underlined when applicable.
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(a) Clean image (b) Observed image (c) CV [10]

(d) FCMLSM [53] (e) Chen [29] (f) Proposed

Figure 9. Segmentation results for a natural image corrupted by uniform blur and Rician
noise. (a) Clean image, (b) observed image, and segmentation results obtained by (c) CV
[10], (d) FCMLSM [53], (e) Chen [29], and (f) the proposed method.
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Gaussian blur Uniform blur Motion blur
Segmentation results under Gaussian blur

Segmentation results under uniform blur

Segmentation results under motion blur

(a) CV (b) FCMLSM (c) Chen (d) Proposed

Figure 10. Segmentation results for a natural image corrupted by different blur kernels.
Top row: observed images with Gaussian, uniform, and motion blur. Second to fourth
rows: segmentation results corresponding to Gaussian blur, uniform blur, and motion blur,
respectively. Columns correspond to segmentation results obtained by CV [10], FCMLSM
[53], Chen [29], and the proposed method.
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Figure 9 shows the segmentation results for all models under uniform blur, with corresponding
zoomed-in views presented in Figure 11. Because the blur level is relatively mild, all models yield
visually acceptable results. Nevertheless, the FCMLSM model incorrectly detects the left rotor of the
helicopter, and the Chen model captures a small feature inside the helicopter. Among all methods, the
proposed model yields the smoothest and most accurate helicopter boundary. These observations are
consistent with the quantitative results reported in Table 2.

(a) CV [10] (b) FCMLSM [53] (c) Chen [29] (d) Proposed

Figure 11. Zoomed-in details of the segmentation results shown in Figure 9.

(a) Clean image (b) Observed image (c) CV [10]

(d) FCMLSM [53] (e) Chen [29] (f) Proposed

Figure 12. Segmentation results for a natural image corrupted by Gaussian blur and Rician
noise. (a) Clean image, (b) observed image, and segmentation results obtained by (c) CV
[10], (d) FCMLSM [53], (e) Chen [29], and (f) the proposed method.

Similar behavior is observed in Figure 12, where the CV model fails to accurately capture the
mountain boundaries. Although the other models achieve relatively accurate segmentation, the
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proposed model exhibits the least amount of false detections within the mountain region and provides
more accurate boundaries.

In both the Chen method and our model, restoration is incorporated to assist the segmentation
process. In Chen’s approach, the restoration appears as an intermediate step, whereas in our model,
it is performed jointly with the final segmentation. To illustrate this, the reconstructed images
corresponding to the segmentation results in Figures 10 and 9 under uniform blur are shown in
Figure 13.

These restored images differ from the original images: Fine details are smoothed while edges are
enhanced, providing a piecewise-constant approximation suitable for segmentation. Consequently,
peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) values are not
necessarily high, as the objective is not conventional denoising but rather to facilitate piecewise-
constant segmentation. In comparison, restoration by the Chen model often appears oversmoothed
or slightly noisy, which can reduce segmentation effectiveness. The proposed method better preserves
structural edges and produces restorations that more closely approximate piecewise-constant images.
As a result, it achieves slightly higher PSNR and SSIM values and leads to more accurate and efficient
segmentation.

As summarized in Tables 1–3, the proposed model achieves the highest accuracy, F-measure,
precision, recall, and IoU values in most test cases. These results demonstrate the superiority of the
proposed model over the other three methods in terms of segmentation performance.

(a) Chen [29] (b) Proposed (c) Chen [29] (d) Proposed

Figure 13. Restoration results corresponding to Figures 10 and 9 under uniform blur. (a)
and (b) show the restorations from Figure 10 using Chen [29] and the proposed method,
respectively. (c) and (d) show the restorations from Figure 9 using Chen [29] and the
proposed method, respectively. PSNR and SSIM values are (a) 26.59, 0.8521; (b) 29.02,
0.8581; (c) 25.51, 0.3363; (d) 29.68, 0.9601.

Numerical results are also presented to illustrate the convergence behavior of the proposed
algorithm in practice. Figure 14 shows the evolution of the objective function value and the relative
error curves of the variables ui, g, and ci with respect to the iteration number. The objective
function decreases monotonically as the iterations proceed and stabilizes after a finite number of steps.
Moreover, the relative errors exhibit a consistent and predictable decreasing trend. These observations
are consistent with the theoretical convergence analysis and empirically indicate that the proposed

AIMS Mathematics Volume 11, Issue 2, 3594–3635.



3626

algorithm exhibits stable numerical behavior.
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Figure 14. Numerical convergence behavior of the proposed algorithm for Oscar image. The
evolution of the objective function and the relative error curves of u, g, and c are shown with
respect to the iteration number.

Figures 15–18 illustrate the segmentation results for MR images corrupted by Rician noise and blur,
with Figure 17 showing the approximated images for Figures 15 and 16. All methods successfully
capture the overall structure of thicker vessels. However, the CV and FCMLSM models are unable
to accurately delineate vessel boundaries at the termini and are incapable of properly segmenting thin
vessels. Both the Chen model and the proposed model achieve effective segmentation performance.
For the Tubular image in Figure 15, the proposed model preserves the connectivity of the main vessel,
whereas the Chen model segments it into multiple disconnected components.

In Figure 16, both models achieve similar connectivity, but the proposed model produces much more
accurate vessel boundaries. In both cases, the proposed model provides smoother and more continuous
boundaries while accurately capturing the geometry and branching structure of the vessels, as clearly
seen in the approximated images in Figure 17. Furthermore, in Figure 18, the CV and FCMLSM
models fail to correctly segment the interior dark gray region, whereas both the Chen model and the
proposed model accurately identify interior features. With respect to the outer boundary, the proposed
model provides significantly more accurate and consistent segmentation results. Overall, the proposed
model demonstrates the most reliable performance, combining connectivity preservation, boundary
smoothness, and accurate segmentation of thin vessels and interior features across all images.

Table 4. Average computing time (in seconds) of the proposed method and the comparison
methods.

Model
Blur type CV FCMLSM Chen Proposed
Guassian blur 20.87 12.66 14.06 13.25
Uniform blur 18.84 10.63 10.87 12.75
Motion blur 18.20 14.78 14.67 14.48

In addition to the qualitative and quantitative comparisons, the computational efficiency of the
proposed method is also evaluated. Table 4 reports the average computing time of the proposed method
and the comparison methods. As shown in Table 4, all methods exhibit comparable computational
costs, with average runtimes on the order of tens of seconds. The proposed method requires
approximately 14 seconds on average, which is of the same order as the Chen and FCMLSM models,
whereas the CV model exhibits a relatively higher computing time. Overall, the differences in
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computational time are minor, indicating that the proposed method achieves improved segmentation
and restoration performance without introducing additional computational overhead.

Original image Gaussian blur Uniform blur Motion blur
Segmentation results under Gaussian blur

Segmentation results under uniform blur

Segmentation results under motion blur

(a) CV (b) FCMLSM (c) Chen (d) Proposed

Figure 15. Segmentation results of an MR tubular image corrupted by Rician noise (σ =
5) under different blur kernels. The first row shows the original image and the observed
images degraded by Gaussian, uniform, and motion blur, respectively. Rows 2–4 present
the corresponding segmentation results under Gaussian blur, uniform blur, and motion blur,
respectively. Columns correspond to the results obtained by different methods: CV [10],
FCMLSM [53], Chen [29], and the proposed method.
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Original image Gaussian blur Uniform blur Motion blur
Segmentation results under Gaussian blur

Segmentation results under uniform blur

Segmentation results under motion blur

(a) CV (b) FCMLSM (c) Chen (d) Proposed

Figure 16. Segmentation results of an MR vessel image corrupted by Rician noise (σ =
5) under different blur kernels. The first row shows the original image and the observed
images degraded by Gaussian, uniform, and motion blur, respectively. Rows 2–4 present
the corresponding segmentation results under Gaussian blur, uniform blur, and motion blur,
respectively. Columns correspond to the results obtained by different methods: CV [10],
FCMLSM [53], Chen [29], and the proposed method.
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Tubular: Approximated images under Gaussian blur

Tubular: Approximated images under uniform blur

Tubular: Approximated images under motion blur

Vessel: Approximated images under Gaussian blur

Vessel: Approximated images under uniform blur

Vessel: Approximated images under motion blur

(a) CV [10] (b) FCMLSM [53] (c) Chen [29] (d) Proposed

Figure 17. Approximated MR images under different blur types. Rows 1–3 correspond to
Tubular1 (Gaussian, uniform, and motion blur), rows 4–6 correspond to Vessel3 (Gaussian,
uniform, and motion blur). Columns show results obtained by CV [10], FCMLSM [53],
Chen [29], and the proposed method.
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original image observed image

CV [10]

FCMLSM [53]

Chen [29]

Proposed

Figure 18. Multiphase segmentation results of a real liver tumor image. The first row shows
the original image and the observed image corrupted by motion blur and noise. The second
row shows the approximated images obtained by different methods. Rows 3–5 present the
corresponding segmented phases. Columns correspond to the segmentation results obtained
by different methods: CV [10], FCMLSM [53], Chen [29], and the proposed method.
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6. Conclusions

In this article, the author proposed a coupled variational framework based on nonconvex total
variation for image segmentation of images corrupted by Rician noise and blur. Within this
framework, restoration and segmentation are jointly optimized, with restoration serving as an auxiliary
component to enhance segmentation accuracy. The nonconvex total variation (NTV) regularization
effectively suppresses noise while preserving important edge structures, resulting in clear and accurate
segmentation. To solve the resulting nonconvex and nonsmooth optimization problem, a proximal
alternating minimization algorithm was employed. An iteratively reweighted ℓ1 algorithm was
used to handle the nonconvex regularization terms, and the resulting subproblems were solved
using the alternating direction method of multipliers. Numerical experiments demonstrate that the
proposed method outperforms several state-of-the-art approaches in both visual quality and quantitative
evaluation metrics. Future work will focus on extending the proposed framework to incorporate bias
field correction for MR image segmentation.
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