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full system of multivariate order statistics. A truncated version of the distribution was also 

established to account for realistic price limit regimes, showing how probability mass redistributes 

within constrained domains. These theoretical properties were supplemented by a numerical study 

based on real high-low data and confirmed that the model can capture clustered volatility, attenuation 

of tail risk, and joint range behavior more precisely than unconstrained formulations. The proposed 

framework offers a mathematically coherent and computationally practical tool for the analysis of 

range-based behavior in constrained financial markets. 
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1. Introduction 

Using the high-low spread of a Wiener process over a specified interval provides a more 

informative and accurate depiction of price variability than traditional models based solely on closing 

prices. This modeling preference is further backed by a body of theoretical and empirical results in 

the finance econometrics literature. In contrast to volatility measures based on close-to-close returns, 

which are based on a single observation for each time interval, the price range captures the full 

intraperiod set of observations, leading to a superior form of efficiency in working with discrete 

financial data. Parkinson [1] demonstrated that the range-based estimator significantly outperforms the 

classical squared-return estimator under a Brownian motion framework, while Garman and Klass [2] 

showed that incorporating opening and closing prices further improves efficiency and reduces 

estimation bias. These results also indicate greater robustness of range-based estimators to 

microstructure noise. In parallel, the literature has proposed alternative approaches for modeling 

volatility and dependence in financial markets, including stochastic volatility and jump diffusion 

models to capture time-varying volatility and tail risk [3], copula-based multivariate frameworks for 

nonlinear dependence modeling [4,5], and market microstructure models incorporating price limits 

and circuit breakers to mitigate extreme price movements [6]. While these approaches address 

different aspects of market behavior, we focus on discrete range-based modeling with explicit 

truncation in this study, providing a coherent framework that reflects bounded price dynamics in 

constrained financial markets   

This measure finds widespread use in short term volatility estimation, risk metric calibration, 

and the pricing of derivatives sensitive to extreme price changes. The pioneering work in [7], 

followed by subsequent contributions in [8], established a theoretical framework for the distribution 

of the continuous range. Further developments in [9] introduced bounded and piecewise variants that 

incorporate price limit mechanisms observed in real financial markets.  These results together support 

the price range as a strong and reliable instrument for financial data modeling, particularly when the 

dynamics of asset prices occur over bounded intervals. 

In addition to its theoretical advantages and empirical support, the price range has proven to be 

highly relevant in practical financial applications.  Building on the documented empirical efficiency 

and robustness of range-based volatility measures in discretely observed financial data, the following 

analysis focuses on modeling the price range within a discrete and constrained probabilistic 

framework.  Actual financial data are often measured at discrete points in time, such as days or 

months, which calls for the use of discrete distributions rather than continuous ones. Discrete 

versions of several well known distributions, such as the normal distribution as in [10,11] and the 

Weibull distribution as in [12,13], have been developed to suit the nature of discrete data. Based on 

this, El-Hadidy [14] proposed a discrete distribution of the range of the Wiener process by a number 

dependent transformation and demonstrated that it has very good agreement with real financial data. 

El-Hadidy and Alfreedi [15] introduced a new model for a Wiener process range distribution by the 

application of internal truncation, with a view to remove low stochastic volatility intervals and 

redistributing their probability to the active intervals. Their results showed that the modified 

distribution captures price moves more effectively in volatile markets and is, hence, appropriate for 

use in financial modeling. 

On the other hand, most previous studies have been confined to univariate models, whereas 

modern financial markets increasingly rely on multivariate frameworks to characterize dependence 

and correlation among multiple assets. Accordingly, multivariate distributions play a central role in 

risk management and portfolio analysis, including the multivariate normal distribution and 
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copula-based models, as discussed in [4,5,16].  These researchers have proposed several alternative 

approaches for modeling multivariate dependence in financial markets. Copula-based models 

construct dependence by first specifying marginal distributions and then imposing a dependence 

structure through a copula function, thereby enabling flexible nonlinear and tail dependence. Other 

approaches include multivariate stochastic volatility and jump diffusion models, which introduce 

latent volatility dynamics and discontinuities to capture time varying risk and extreme events [3]. In 

a related line of research, Alraddadi and El-Hadidy [17] developed a multivariate distribution of the 

continuous Wiener process range using probability range vectors, enabling the characterization of 

complex temporal relationships among asset price behaviors. In contrast to these approaches, the 

model proposed in this study differs conceptually in that dependence arises directly from the joint 

distribution of the discrete price ranges, within a unified, discrete, and truncated framework that 

provides a structurally coherent representation of joint range behavior under regulatory constraints, 

rather than imposing dependence ex post as in copula-based formulations.  

However, discretizing the range of a Wiener process poses substantially greater technical 

challenges than discretizing its levels or increments. While levels and increments are local quantities 

defined at fixed time points or over disjoint intervals and benefiting from the independence and 

stationarity of Brownian increments, the range is a global, path-dependent functional defined through 

the joint behavior of the supremum and infimum of the process over a time interval. As a result, the 

range inherently couples two extreme values and exhibits strong nonlinear dependence that cannot be 

captured through standard discretization schemes applied to levels or increments. In particular, naïve 

discretization may distort tail probabilities or violate probabilistic normalization. In the univariate 

case, this difficulty was addressed in [14] by discretizing the survival function of the continuous 

Wiener range and defining the discrete probability mass function via successive differences. 

Extending this construction to the multivariate setting, as carried out in this present work, is 

nontrivial since it requires preserving the global extreme value structure of each marginal range 

while ensuring joint consistency, proper normalization over a multidimensional lattice, and analytical 

tractability for multivariate reliability measures and truncation under market-imposed bounds  

In recent studies, researchers have examined truncated Wiener process models, particularly in 

reliability and risk analysis under bounded conditions. In the continuous framework, Pan et al. [18] 

developed reliability models based on truncated Wiener processes using truncated normal 

distributions, which are conceptually related to this work but differ from thier discrete formulation. 

Related contributions include [19] on truncated distributions and information measures, and [20] on 

multivariate models for finance and reliability. Moreover, Alraddadi and El-Hadidy [17] proposed a 

continuous multivariate Wiener range model under stochastic volatility and truncation. In contrast, 

we introduce a fully discrete, multivariate Wiener range distribution with explicit truncation and 

closed-form reliability measures, tailored to discretely observed and constrained financial data. The 

Wiener process assumption is adopted here as a standard modeling approximation, without formal 

empirical validation. 

The originality and scientific contribution of this work lie in the distinction it offers from other 

studies by introducing a new statistical framework that combines discreteness, multiplicity, and 

truncation, making it more suitable for the nature of financial data observed at discrete intervals and 

subject to daily price constraints. While in previous literature, researchers have focused on the range 

distributions of the Wiener process in continuous or single period versions, the current model fills an 

important research gap by directly representing regulatory constraints and deriving risk indicators 

(such as survival and hazard functions and rank statistics). Real  world data is employed to 

demonstrate that the proposed model effectively reflects the dynamics of constrained markets, 
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enhancing its potential for use in pricing and risk management, outperforming classical continuous or 

single period models. Accordingly, we aim to develop and present a multivariate, independent, 

discrete distribution of the Wiener process range, where each variable is used to represent the 

difference between the highest and lowest prices of an independent stock over discrete time periods. 

This includes deriving the bivariate case of this distribution and its truncated version under stochastic 

volatility to analyze the joint interaction between the ranges of two independent stocks and its impact 

on the accuracy of financial modeling. Additionally, we study the basic statistical properties of this 

distribution, including reliability functions, moments, stress-strength parameter, and ordered 

statistics.  The proposed framework yields closed-form expressions for the joint probability mass 

function, survival and hazard functions (with monotonicity properties), and a complete system of 

multivariate order statistics, thereby highlighting the analytical depth of the model. 

The paper is organized as follows: In Section 2, we study the discrete multivariate distribution 

of the n independent Wiener processes range, which captures the difference between the highest and 

lowest stock prices over fixed time intervals. In Section 3, we discuss the bivariate case of this 

distribution, its truncated version, and some basic distributional properties. In Section 4, a detailed 

numerical application is carried out using randomly generated data that simulates the behavior of real 

life restricted markets. This application includes statistical analysis and simulation of the joint 

movement of the price range under truncated distribution conditions, with the aim of verifying the 

practical suitability of the proposed model. Concluding remarks and future recommendations are 

discussed in Section 5. 

2. n-multivariate discrete distribution for a Wiener process range 

Definition 1. If the range of a Wiener process }0);({ ttW  is defined as 

𝑅(𝑇) = 𝑠𝑢𝑝
(0,𝑇)

𝑊(𝑡) − 𝑖𝑛𝑓
(0,𝑇)

𝑊(𝑡), 

(a difference between the maximum and minimum values of a Brownian path measured at a finite 

number of discrete points in time), and if n  points are assumed in the interval ),0( T , then a discrete 

distribution of )(TR  is obtained by applying a number dependent transformation, via discretization of 

the survival function, of the corresponding continuous range distribution. Specifically, the probability 

mass function (PMF) of the discrete Wiener range is defined as, 
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where 

𝑟 = 0,1,2, . .., 0 < 𝑟 < ∞, 𝑇 > 0,𝐶𝑘 =
8

(2𝑘−1)2𝜋2
 

and the survival function ])([ rTRP   is derived from the continuous distribution of the Wiener process 

range. This construction guarantees a valid discrete PMF while preserving the extreme-value nature of 

the continuous range distribution [7,8]. 

Function (2.1) is derived using a method based on the maximum and minimum distribution of the 

process, and then mathematically integrated to obtain an accurate range distribution, as in [14]. In 

practical financial applications, asset prices are recorded at discrete time points rather than 
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continuously. Accordingly, the continuous range )(TR  is discretized by assuming that the Wiener 

process is observed at a finite number of discrete intervals within (0, 𝑇). The difference between the 

high and low values at these discrete observations creates valued variable that captures the high-low 

range of the process. Therefore, the continuous range distribution is estimated by discrete increments, 

and the probability of every value of the potential range is determined as 

𝑃[𝑅(𝑇) = 𝑟] = 𝑃[𝑅(𝑇) ≥ 𝑟] − 𝑃[𝑅(𝑇) ≥ 𝑟 + 1]. 

This change preserves the Wiener process's stochastic nature while enabling the model to be sensitive 

to the empirical nature of financial data over discrete (say, daily or hourly) intervals. It is evident that: 




=

===+−+−==

0

)( 1)0(]0)([...]2)([]1)([]1)([]0)([])([

r

TRSTRPTRPTRPTRPTRPrTRP , 

where (.))(TRS  is the survival function of ).(TR  Accordingly, we formulate a multivariate discrete 

distribution representing the differences between the maximum and minimum prices (ranges) of n  

independent stocks, each modeled by a discrete range of an independent Wiener process over the time 

interval ),0( T , as given by: 
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where  )(),...,(),( 21 tWtWtW n  is a vector of n  independent Wiener process. 

Theorem 1. Let )](),...,(),([ 21 TRTRTR n=R(T)  be a vector of discrete ranges of  )(),...,(),( 21 tWtWtW n  over 

the interval ),,0( T where the marginal PMF of )(TRi  is defined as in Definition 1, then the joint PMF 

of the multivariate discrete Wiener range vector R(T)  is, 

𝑓𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(𝑟1, 𝑟2, . . . , 𝑟𝑛; 𝑇) = ∏ 𝑓𝑅𝑖(𝑇)(𝑟𝑖)
𝑛
𝑖=1 .      (2.2) 

Moreover, the joint distribution is properly normalized, that is, 

∑. . . ∑ 𝑓𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(𝑟1, 𝑟2, . . . , 𝑟𝑛; 𝑇)

∞

𝑟𝑛=0

∞
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=∏(∑ 𝑓𝑅𝑖(𝑇)(𝑟𝑖)
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)

𝑛

𝑖=1

= 1. 

Proof. The result follows from the fact that each univariate marginal PMF )(
~

)( rf TRi
 is a properly 

defined discrete probability distribution with total mass one, and independence implies that the joint 

PMF is the product of the marginal’s. Thus, this completes the proof, where 

∑. . . ∑ 𝑓𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(𝑟1, 𝑟2, . . . , 𝑟𝑛; 𝑇)

∞
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∞
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=∏(∑ 𝑓𝑅𝑖(𝑇)(𝑟𝑖)

𝑛

𝑟𝑖=0

)

𝑛

𝑖=1

= 1. 

In addition, to avoid ambiguity in the discrete formulation, the joint cumulative distribution function 

(CDF) is derived explicitly as follows: By independence of the components )(TRi , ni ,...,2,1= , we 

have, 

𝐹𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(𝑟1, 𝑟2, . . . , 𝑟𝑛; 𝑇) = ∏ 𝑃[𝑅𝑖(𝑇) ≤ 𝑟𝑖]
𝑛
𝑖=1 . 

Since the range is a discrete nonnegative random variable, each marginal CDF satisfies 



3568 
 

AIMS Mathematics  Volume 11, Issue 2, 3563–3593. 

𝑃[𝑅𝑖(𝑇) ≤ 𝑟𝑖] = 1 − 𝑃[𝑅𝑖(𝑇) ≥ 𝑟𝑖] + 𝑃[𝑅𝑖(𝑇) = 𝑟𝑖] 

which makes the discrete shift 1+ir  explicit. Therefore, the joint CDF can be written as 

𝐹𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(𝑟1, 𝑟2, . . . , 𝑟𝑛; 𝑇) =∏(1 − 𝑃[𝑅𝑖(𝑇) ≥ 𝑟𝑖 + 1])

𝑛

𝑖=

 

= ∏ ∑ [(𝐶𝑘 + 8𝑇(𝑟𝑖 + 1)−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘
−1(𝑟𝑖 + 1)−2]]∞

𝑘=1
𝑛
𝑖=1 .     (2.3) 

Since the sequence {𝐶𝑘}𝑘≥1 is defined in Definition 1 and satisfies 1

1

=


=k

kC , then 

𝐹𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(∞,∞, . . . ,∞; 𝑇) = 1. 

This will also give the joint survival function by, 

𝑆𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(𝑟1, 𝑟2, . . . , 𝑟𝑛; 𝑇) = 1 − 𝐹𝑅1(𝑇),𝑅2(𝑇),...,𝑅𝑛(𝑇)(𝑟1, 𝑟2, . . . , 𝑟𝑛; 𝑇) 

= 1 −∏ ∑ [(𝐶𝑘 + 8𝑇(𝑟𝑖 + 1)−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘
−1(𝑟𝑖 + 1)−2]]∞

𝑘=1
𝑛
𝑖=1 .   (2.4) 

3. Discrete bivariate distribution and its truncated version 

When analyzing high frequency financial data, the discrete binomial distribution is an effective tool 

for modeling the interdependence of stock price changes at discrete points in time. Koopman et al. [21] 

presented an advanced model based on the distribution of Skellam [22] that uses a discrete copula 

function to represent price differences. This distribution gives the difference between two 

independent random variables that follow a Poisson distribution. This distribution is a natural 

extension of continuous distributions such as the Wiener process to the discrete case, as the discrete 

distribution enables an accurate representation of minute price changes in financial markets. These 

distributions contribute to the fair pricing of digital options, joint risk assessment, and understanding 

the temporal structure of price correlation between stocks, which increases the efficiency of trading 

and forecasting strategies, as in [23]. Therefore, from (2.2), the joint PMF of a Wiener range random 

variables 𝑅1(𝑇) and 𝑅2(𝑇) is, 

( )   ( )   ,4exp8)1(4exp)1(8);,(

2

1 1

212212
21)(),( 21 

=



=

−−−−−− −+−+−++=

i k

ikikikikTRTR rTCTrCrTCrTCTrrf  (3.1) 

0 ≤ 𝑟𝑖 ≤ ∞, 𝑖 = 1, 2, as shown in Figure 1. 

Remark 1. All figures presented in this paper (Figures 1–12) follow a unified visualization scheme 

in which the continuous Wiener range distribution is displayed side by side with its discrete 

counterpart (and truncated versions where applicable). This parallel presentation provides a clear 

conceptual comparison between the theoretical continuous formulation and the discrete model 

developed in this study, clarifies the transition from the continuous to the discrete framework, and 

highlights the theoretical coherence of the proposed discrete multivariate Wiener range distribution. 

For all numerical figures presented in this paper, the time horizon is fixed at 1=T . The 

truncation bounds are kept unchanged across all simulations and are directly indicated by the visible 

support of the plotted distributions in the figures. Figure 1(a) represents the joint probability density 

function of the two random variables 𝑅1(𝑇) and 𝑅2(𝑇) in the continuous case, where the distribution 
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is accurately represented in two-dimensional space. Figure 1(b) represents the joint PMF of the same 

variables after discretization (i.e., converting continuous random variables to discrete ones). Thus, 

Figure 1(a) is a numerical approximation of Figure 1(b), demonstrating how the theoretical 

continuous distribution can be represented in a form that is applicable numerically or 

programmatically. 

  
(a) (b) 

Figure 1. The joint bivariate probability function in (a) continuous case; and (b) discrete case. 

On the other hand, the truncated joint probability density function of )(
1

TR  and )(
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where )(TRi  is a corresponding double truncated (truncation from left and right) of )(TR and 

,,...,
~

,..., iiii biaar += and i
~

 is a non negative real number. In this case, the probabilistic support is 

restricted to a known range that reflects constraints imposed on variables, such as the high and low 

price limits of stocks. In this context, using a truncated version of this distribution enables modeling 

price differences within a precisely defined range, while preserving the basic properties of the 

original distribution. This distribution is essential in high-frequency applications, where data are 

effectively restricted to narrow ranges due to market regulations or institutional constraints. 

Truncated versions are also used to estimate the probability of exceeding critical limits, which 

increases the accuracy of forecasts of price spikes and stop-out probabilities in instruments such as 

binary or marginal options. Figure 2 illustrates how the continuous distribution function transforms 

into a discrete form through numerical approximation. Figure 2(a) represents the joint truncated 

probability density function in the continuous case, while Figure 2(b) shows the corresponding 

discrete form. 

In cases where stock price differences are treated over small time intervals, the discrete bivariate 

distribution of quantiles is used to represent the joint cumulative distribution function at specific 

points in time. This discrete version of the cumulative distribution function enhances the reliability of 
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time correlation analyses, pricing derivatives across multiple assets, and guiding optimal 

diversification policies in investment portfolios. From (2.3), the joint CDF of 𝑅1(𝑇) and 𝑅2(𝑇) is 

given by, 

( )   ,)1(4exp)1(8);,(

2

1 1

212
21)(),( 21 

=



=

−−− +−++=

i k

ikikTRTR rTCrTCTrrF 2,1,0 = iri .  (3.3) 

see Figure 3, where Figure (3c) shows the joint CDF of a continuous bivariate distribution, where the 

cumulative probability values are smoothly projected into 2-dimensional space. After applying a 

discretization process to the random variables, this distribution is transformed into a discrete 

representation as in Figure (3d), where the function takes values on a grid of discrete points. This 

transformation demonstrates how a theoretical continuous distribution can be approximated to a 

numerical form suitable for computation, without losing the overall structure of the cumulative 

function, enabling it to be used in quantitative modeling of risk and co-dependency in a practical way. 

  
(a) (b) 

Figure 2. The joint bivariate truncated probability function in (a) continuous case; and (b) 

discrete case. 

  
(a) (b) 

Figure 3. The joint bivariate CDF (a) continuous case; and (b) discrete case. 

The truncated CDF of the discrete bivariate distribution is used to represent the joint 

probabilities of stock price fluctuations within a specified price range, such as in markets that impose 

upper and lower limits on daily movement. This representation enables an accurate description of the 
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dependence between assets when random variables are confined to a grid of discrete values within a 

closed domain. From a market microstructure perspective, the truncation considered in this bivariate 

model is directly motivated by regulatory mechanisms such as daily price limits and circuit breakers, 

which impose explicit bounds on price movements and may interrupt trading during extreme 

volatility episodes. Such institutional features are widely documented in financial markets and have 

been shown to affect price dynamics and volatility behavior [6, 24]. Hence, from (3.2) and for a 

bounded range 𝑎𝑖 < 𝑟̄𝑖 < 𝑏𝑖 , 𝑖 = 1,2, the joint double truncated CDF is given by, 

( )   ( )   
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TrrF  (3.4) 

(see Figure 4). The joint truncated CDF of bivariate distribution over a specified range is reflected in 

Figure (4c). Figure (4d) shows its counterpart after numerical approximation to a discrete 

distribution. This demonstrates how the cumulative structure does not change even as it is confined 

to fit into a numerical expression to facilitate its effective use in bound constraint models by price 

ceilings. 

  
(a) (b) 

Figure 4. The joint bivariate truncated CDF (a) continuous case; and (b) discrete case. 

The joint survival function of a discrete bivariate distribution is used to estimate the probability 

of stock price fluctuations exceeding certain thresholds, making it a powerful tool in extreme risk 

analysis. Using (3.3), we can compute it by, 

𝑆𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇) = 1 − 𝐹𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇). 

When the domain is restricted by truncated support, the function becomes even more important 

because it represents the remaining probabilities within a realistic range that reflects the limits of 

price movement. Additionally, one can compute the truncated case of this function from (3.4) by, 

𝑆̄𝑅̄1(𝑇),𝑅̄2(𝑇)(𝑟̄1, 𝑟̄2; 𝑇) = 1 − 𝐹̄𝑅̄𝑖(𝑇),𝑅̄2(𝑇)(𝑟̄1, 𝑟̄2; 𝑇). 

Figures 5 and 6, which contain Figures 5(c,d) and 6(c,d), reflect the transformation from the joint 

survival function of the continuous bivariate distribution to its discrete counterpart, while keeping the 

probability structure in the right tail within a specified range. The discrete survival function enables 

the characterization of tail dependence and is used in practical applications in marginal option 

valuation models and in detecting co-excesses in multi-asset portfolios. 
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(a) (b) 

Figure 5. The joint bivariate survival function (a) continuous case; and (b) discrete case. 

  
(a) (b) 

Figure 6. The joint bivariate truncated survival function (a) continuous case; and (b) discrete case. 

3.1. Some reliability properties 

Given the need to measure stock price behavior over specific time periods (daily, monthly, or 

annually), studying the basic distributional properties of this distribution as a discrete distribution is 

crucial. This includes analyzing the reliability properties, which measure the stability of the price range, 

as well as the moments used to calculate the mean and variance, which describe the centralization and 

dispersion characteristics of price differences. The stress-strength parameter is also used to estimate 

the probability of one price change being larger than another. Bonferroni and Lorenz curves are useful 

for summarizing the variance of a distribution, and the Gini index provides a quantitative estimate of 

the asymmetrical distribution of returns. Together, these indices enable us to estimate the probability 

structure and variance of price changes in a realistic discrete probability model. 

Reliability theory provides a natural and powerful framework for analyzing range-based financial 

risk, as it focuses on time-to-event behavior and conditional risk evolution rather than marginal price 

changes. When applied to the high-low price range, reliability measures such as the hazard rate, 

reversed hazard rate, and mean residual life offer interpretable indicators of the likelihood, timing, and 

persistence of extreme price movements within bounded markets. This perspective is particularly 

suitable for range-based modeling, where risk accumulation is inherently linked to the widening of 

price spreads under regulatory or structural constraints. In economic risk analysis, the discrete 

multivariate hazard ratio is used as a tool to measure the probability of a sudden change in stock prices 
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over discrete time periods. This indicator expresses the probability of a price change in a financial asset, 

provided the price has remained within specified upper and lower bounds up to that point, making it 

suitable for price-constrained market models. When applied to distributions such as the discrete 

bivariate distribution of the Wiener process range, the hazard ratio can reflect the interdependence of 

different assets and the timing of risk occurrences, making it of practical importance in the fields of 

reliability theory, time-risk estimation, and modeling extreme changes in multi-asset portfolios. 

In price constrained market models, the discrete multivariate distribution hazard function is a 

powerful tool for analyzing the intertemporal risks associated with asset price changes. Using the 

discrete Wiener process range distribution, the probability of sharp price changes at a given point in 

time can be estimated, given that the price range remains within a specified range up to that point. 

Marshall and Olkin [25] have pointed out the importance of hazard functions in characterizing the 

behavior of breakdowns or structural transformations in economic systems. Therefore, using the 

hazard function within this framework enhances the accuracy of extreme risk estimation and 

contributes to the design of derivative instruments based on the conditional probability of price 

overshoot in regulated markets. 

Proposition 1. If 𝑅1(𝑇) and 𝑅2(𝑇) are two independent discrete range variables of Wiener processes 

over the interval (0, 𝑇), then the joint discrete hazard rate function of the bivariate range vector 

[𝑅1(𝑇), 𝑅2(𝑇)] is defined by, 

𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇) = 𝑃(𝑅1(𝑇) = 𝑟1, 𝑅2(𝑇) = 𝑟2|𝑅1(𝑇) ≥ 𝑟1, 𝑅2(𝑇) ≥ 𝑟2), 𝑟1, 𝑟2 = 0,1,2, . .. 

= ∏ [
∑ [(𝐶𝑘+8𝑇(𝑟𝑖+1)

−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘
−1(𝑟𝑖+1)

−2]−(𝐶𝑘+8𝑇𝑟𝑖
−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘

−1𝑟𝑖
−2]]∞

𝑘=1

1−∑ [(𝐶𝑘+8𝑇(𝑟𝑖+1)
−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘

−1(𝑟𝑖+1)
−2]]∞

𝑘=1
]2

𝑖=1 .   (3.5) 

Proof. By definition, the joint discrete hazard rate of the bivariate range vector [𝑅1(𝑇), 𝑅2(𝑇)] is 

given by the conditional probability, 𝑃(𝑅1(𝑇) = 𝑟1, 𝑅2(𝑇) = 𝑟2|𝑅1(𝑇) ≥ 𝑟1, 𝑅2(𝑇) ≥ 𝑟2). Using the 

definition of conditional probability and since 𝑃[𝑅𝑖(𝑇) ≥ 𝑟𝑖] > 0, then, as in [26], the joint discrete 

hazard rate function can be written as, 

𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇) =∏
𝑃[𝑅𝑖(𝑇) = 𝑟𝑖]

𝑃[𝑅𝑖(𝑇) ≥ 𝑟𝑖]

2

𝑖=1

, 

Since )(1 TR and )(2 TR  are assumed to be independent random variables, the joint probability in the 

numerator factorizes into the product of the marginal probability mass functions, and the joint survival 

probability in the denominator factorizes into the product of the marginal survival functions. Hence, 

𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇) =
𝑓𝑅1(𝑇)(𝑟1; 𝑇). 𝑓𝑅2(𝑇)(𝑟2; 𝑇)

𝑃[𝑅1(𝑇) ≥ 𝑟1]. 𝑃[𝑅2(𝑇) ≥ 𝑟2]
 

=∏[
∑ [(𝐶𝑘 + 8𝑇(𝑟𝑖 + 1)−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘

−1(𝑟𝑖 + 1)−2] − (𝐶𝑘 + 8𝑇𝑟𝑖
−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘

−1𝑟𝑖
−2]]∞

𝑘=1

1 − ∑ [(𝐶𝑘 + 8𝑇(𝑟𝑖 + 1)−2) 𝑒𝑥𝑝[−4𝑇𝐶𝑘
−1(𝑟𝑖 + 1)−2]]∞

𝑘=1

]

2

𝑖=1

, 

which is non-decreasing in both 1r  and 2r  under the assumption that the marginal range distributions 

satisfy an increasing failure rate (IFR) property, i.e., for fixed T , 

𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1 + 1, 𝑟2; 𝑇) ≥ 𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇) 

and 
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𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2 + 1; 𝑇) ≥ 𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇) . 

This reflects the intuitive financial insight that, as the observed high-low range increases, the risk (or 

hazard) of observing that exact range also increases relative to the remaining tail probability. This 

formulation and its monotonicity properties are consistent with standard results in discrete reliability 

and multivariate hazard theory [25,27,28]. 

The hazard rate function is utilized in the censored discrete multivariate distribution for 

probability estimation of price movement in a specified range with an upper and lower bound. The 

depiction provides a realistic representation of the dynamics of price-constrained markets and the 

timing of cross-asset risk. For our distribution, the joint truncated hazard rate function in the bivariate 

case is given by, 

1
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 (3.6) 

It should be noted that the truncated hazard function in (3.6) is defined with respect to the 

truncated joint distribution and follows the standard discrete hazard formulation 

𝑓̄𝑅̄1(𝑇),𝑅̄2(𝑇)
(𝑟̄1,𝑟̄2;𝑇)

1−𝐹̄𝑅̄1(𝑇),𝑅̄2(𝑇)
(𝑟̄1,𝑟̄2;𝑇)

. 

This definition represents a different multivariate hazard construction from the product of marginals 

formulation in Proposition 1 and is commonly adopted in the reliability literature when truncation or 

conditioning is involved [25,27,28]. 

Figures 7 and 8 illustrate the shift from the continuous to the discrete joint hazard rate functions 

for the original and truncated distributions, respectively. 

Additionally, at 𝑟1 = 𝑟2 = 0, one can notice that, 

𝐻𝑅1(𝑇),𝑅2(𝑇)(0,0; 𝑇) = 𝑓𝑅1(𝑇),𝑅2(𝑇)(0,0; 𝑇) = (∑ (𝐶𝑘 + 8𝑇) 𝑒𝑥𝑝[−4𝐶𝑘
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(a) (b) 

Figure 7. The joint bivariate hazard rate function (a) continuous case; and (b) discrete case. 

  
(a)  (b)  

Figure 8. The joint bivariate truncated hazard rate function (a) continuous case; and (b) 

discrete case. 

Corollary 1. For the original bivariate case, the joint mean residual life function is given by, 
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where 𝑟 = 0,1,2, . ... 

Corollary 2. As in Roy and Gupta [29], another formula for this function is given by, 
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The mean residual life function of a discrete multivariate distribution is an important analysis 

measure for calculating the expected value of the remaining price variation after a designated amount 

is attained within a limited price range. For the distribution of ranges of the Wiener process, the 

function is utilized to estimate the mean length or lag of prices remaining within the lower and higher 

limits such that the stability of prices can be assessed, and whether there is a likelihood of an ongoing 

trend continuing can be ascertained. Barlow and Proschan [27] pointed out that this function is a 

fundamental tool in reliability models, as it reflects the temporal characteristics of the system or asset 

under study. This can be translated in financial contexts into an analysis of the risk of the price 

remaining in a certain region before a significant change occurs. 

Remark 2. In this context, the standard hazard rate is forward  looking and quantifies the conditional 

probability of observing a given range value given the survival beyond it. In contrast, the reversed 

hazard rate is backward looking and describes the likelihood that the range has already reached a given 

level. The second failure rate captures the cumulative evolution of risk and reflects how risk builds up 

as the range increases. 

The reversed hazard rate function is an important measure of analysis in the multivariate discrete 

distribution of the Wiener process, specifically in the study of stock price motions in a finite price 

range. The function is different from the conventional hazard function as it focuses on estimating the 

probability that a price movement will be observed up to a point in time and, thus, comes into play in 

studies on backward looking risk and pre-exceedance behavior. Thus, the joint reversed hazard rate 

function of the this distribution is given by, 
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Samaniego [30] demonstrated that such a function is used in an effort to determine historical 

dependence and determine previous events, which is relevant in the event of markets with price upper 

and lower bounds. Thus, in the truncated case, the joint truncated reversed hazard rate function of the 

this distribution is, 
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  (3.13) 

Figures 9 and 10 demonstrate the transition from the continuous to the discrete joint reversed 

hazard rate function for both the original and truncated distributions, respectively. 

  
(a) (b) 

Figure 9. The joint bivariate reversed hazard rate function (a) continuous case; and (b) discrete case. 

  
(a)  (b)  

Figure 10. The joint bivariate truncated reversed hazard rate function (a) continuous case; 

and (b) discrete case. 

The second rate of failure function of a discrete multivariate distribution is used to model how 

risk evolves with time. It is a useful method for examining the dynamic pattern of the behavior of 

stock price movement, particularly for markets with upper and lower price limits. In the framework 

of the Wiener process range distribution, the function enables the analysis of the buildup of the 

probability of large price movements after reaching certain levels, providing advanced information 

on the timing and risk buildup. It is utilized as well to calculate cumulative risk and analyze the 

dynamics of price volatility in a discrete and truncated distribution framework, providing support for 

quantitative models in constrained financial markets. Using the method that devolved in [13], we 
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obtain the joint second rate of failure function by, 

𝑆𝐻𝑅1(𝑇),𝑅2(𝑇)(𝑟1, 𝑟2; 𝑇) = ∏ (𝑙𝑜𝑔 {
𝑆𝑅𝑖(𝑇)(𝑟𝑖)]

𝑆𝑅𝑖(𝑇)(𝑟𝑖+1)
})2

𝑖=1 . 

On the other hand, the joint truncated version of this function is used to analyze the change in price 

risk within a bounded range, which helps understand the dynamics of asset price volatility as it 

approaches upper and lower bounds over a specific time period. Additionally, the joint truncated 

second rate of failure function is given from, 

𝑆𝐻̄𝑅̄1(𝑇),𝑅̄2(𝑇)(𝑟̄1, 𝑟̄2; 𝑇) = ∏ (𝑙𝑜𝑔 {
𝑆̄𝑅̄𝑖(𝑇)

(𝑟̄𝑖)]

𝑆̄𝑅̄𝑖(𝑇)
(𝑟̄𝑖+1)

})2
𝑖=1 . 

Figures 11 and 12 depict the transition from the continuous to the discrete joint second rate of failure 

function for both the original and truncated distributions, respectively. 

  
(a) (b) 

Figure 11. The joint bivariate second rate of failure function (a) continuous case; and (b) discrete case. 

  
(a) (b) 

Figure 12. The joint bivariate truncated second rate of failure function (a) continuous case; 

and (b) discrete case. 

3.2. Moments 

Moments about the origin are inherent properties in identifying the statistical behavior of the 

multivariate discrete distribution of the Wiener process range, specifically in analyzing stock price 
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movements within a finite price boundary. They record parameters such as mean, first and second 

order variance, central tendency, and probability dispersion of the price movement. These measures 

are utilized to interpret direction in the market, stability of price, and quantify underlying risk. As 

Kotz et al. [31] demonstrated, such instances near the beginning are invaluable aides in the study of 

non-conventional distributions, especially in price restricted environments that require discrete form 

multivariate models. From a computational perspective, the evaluation of multivariate discrete 

moments is commonly carried out using series representations closely related to probability 

generating functions (PGFs). In such settings, exact closed-form expressions are rarely available, and 

numerical evaluation relies on controlled truncation of infinite series with guaranteed convergence 

properties. Standard references on discrete multivariate distributions and generating-function 

methods provide the theoretical justification for this approach, including convergence control and 

truncation accuracy [32–34]. 

In the multivariate case, the joint moment about the origin is defined using a multi-index 

notation. Specifically, let   n
nqqq 021 ,...,, N=q  be a vector of non-negative integers, where n

0N  denotes 

the set of all n -dimensional vectors with non-negative integer components. Then, the joint th
q  

moment about the origin of the random vector [𝑅1(𝑇), 𝑅2(𝑇), . . . , 𝑅𝑛(𝑇)] is then defined by, 














= 

=

n

i

q
i

iTRE

1

))((q . 

This definition clarifies that each component )(TRi is raised to its corresponding power iq . Thus, for 

the original distribution, Eq (3.14) below is formulated according to this standard multivariate 

moment definition as follows: 
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For a truncated case, the joint 
thq  moment of [𝑅̄1(𝑇), 𝑅̄2(𝑇), . . . , 𝑅̄𝑛(𝑇)] about the origin is, 
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 (3.15) 

The exact evaluation of the above moments is analytically challenging; however, they can be 

computed numerically. Since the analytical evaluation of the joint moments involves infinite series, 

all numerical computations are carried out using truncated sums. The series terms decay 

exponentially due to the factor  TCk4exp − , ensuring rapid convergence. In practice, truncation at 

moderate upper indices is sufficient, as numerical stability is achieved, and further increases in the 

truncation level do not affect the computed moments. 

3.3. Order statistics 

Order statistics are important in discrete multivariate distribution theory, especially in Wiener 

process range distribution theory of differences between upper and lower price limits of stock prices. 



3580 
 

AIMS Mathematics  Volume 11, Issue 2, 3563–3593. 

They are used for maximum and minimum value identification and internal ranking of samples, which 

help in analyzing price behavior at the extremes or when close to price stops. They are particularly 

handy in models that attempt to describe the relationship between the upper and lower bounds of a 

stock price within a time horizon. David and Nagaraja [35] averred that order statistics play a key role 

in relative performance measurement of assets and marginal and conditional probability estimation, 

especially in non-standard or discrete multivariate distributions. 

Let 𝑅𝑖1, 𝑅𝑖2, . . . , 𝑅𝑖𝑛̃, 𝑖 = 1,2, . . . , 𝑛  be a random sample of independent and identically 

distributed discrete random variables, each representing the discretized range of an independent 

Wiener process over the time interval (0, 𝑇) . Denote by 𝑅(1:𝑛̃) ≤ 𝑅(2:𝑛̃) ≤. . . ≤ 𝑅(𝑛̃:𝑛̃)  the 

corresponding order statistics obtained by arranging the sample in nondecreasing order. Here, 𝑅(𝑝:𝑛̃) 

represents the thp  order statistic, that is, the thp  smallest observed range among the n  components. 

Accordingly, let 

[𝑅1(1:𝑛̃), 𝑅1(2:𝑛̃), . . . , 𝑅1(𝑛̃:𝑛̃)]  [𝑅2(1:𝑛̃), 𝑅2(2:𝑛̃), . . . , 𝑅2(𝑛̃:𝑛̃)] ≤. . . ≤ [𝑅𝑛(1:𝑛̃), 𝑅𝑛(2:𝑛̃), . . . , 𝑅𝑛(𝑛̃:𝑛̃)] 

denote the order statistics of  𝑅𝑖1, 𝑅𝑖2, . . . , 𝑅𝑖𝑛̃, then under the assumption of independence,  the joint 

PMF of the 𝑝𝑖
𝑡ℎ order statistic 𝑅𝑖(𝑝𝑖:𝑛̃), 𝑖 = 1,2, . . . , 𝑛 is, 

( ) ( )
=

−−








−

−−
=

n

i

iTR
pn

iTR
p

iTR
ii

nnpnpnpTRTRTR rfrFrF
pnp

n
Trrrf

i

i

i

i

inn

1

)(

~

)(
1

)(21)~:,...,~:,~:)((),...,(),( )()(1)(
)!~()!1(

!~
);,...,,(

~
2121

 

( )    
=

−


=

−−





















+−++

−−
=

n

i

p

k

ikik
ii

i

rTCrTC
pnp

n

1

1

1

22 )1(4exp)1(8
)!~()!1(

!~
 

( )   
ipn

k

ikik rTCrTC

−


=

−−














+−++−

~

1

22 )1(4exp)1(81.  

( )   ( )    .4exp8)1(4exp)1(8.

1

2222





















−+−+−++



=

−−−−

k

ikikikik TrCTrCrTCrTC       (3.16) 

The joint distribution of discrete order statistics in (3.16) is obtained using the standard 

distribution function approach under the assumption of independent and identically distributed 

components. Since these derivations follow classical and well-established results in discrete order 

statistics theory, the detailed algebra is omitted for brevity. Interested readers are referred to [32,35,36] 

for comprehensive derivations and theoretical background. 

In addition, the joint CDF of the random vector [𝑅1(𝑝1:𝑛̃), 𝑅2(𝑝2:𝑛̃), . . . , 𝑅𝑛(𝑝𝑛:𝑛̃)] is, 
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Additionally, the joint PMF of minimum price changes is a fundamental tool for modeling cases 

where the minimum price change is the primary determinant of the behavior of a financial asset. 
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Within the framework of the discrete multivariate distribution of the Wiener process range, this 

function enables one to give an exact description of the probability of minimum price movements on 

various components (e.g., various assets or time periods), within a set of prices bounded from above 

and below. This type of analysis is important in applications focused on estimating minimum risks or 

price inertia. Balakrishnan and Nevzorov [37] pointed out that the analysis of minimum order statistics 

in discrete distributions is essential for assessing reliability and probability concentration in 

constrained markets, especially when using models belonging to the class of stochastic processes 

associated with the Wiener process. At a knowing time T , this function is given by, 
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Equation (3.18) follows directly from the general expression in Eq (3.16) by setting 1=p , 

which corresponds to the minimum order statistic, that is, the smallest observed discrete Wiener 

process range among the n  components. 

On the other hand, the joint probability mass function of the largest price difference in the discrete 

multivariate distribution of the Wiener process range is used to analyze the probability of extreme 

fluctuations within specific price ranges, which helps in assessing marginal risks and estimating the 

chances of prices breaking through their extreme ranges. This function is given by, 
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Determining the probability of reaching maximum or minimum values within a specific data set 

over a given period requires finding these statistics for the truncated distribution. These probabilities 

help characterize the marginal behavior of prices, the statistics enhance the accuracy of edge risk 

assessment and provide a quantitative framework for analyzing the relative performance of assets in 

markets subject to regulatory restrictions on price change. Thus, if 

 ):(1):2(1):1(1 ,...,, mmmm RRR   ):(2):2(2):1(2 ,...,, mmmm RRR  ...   ):():2():1( ,...,, mmnmnmn RRR  

denote to the order statistics of a random sample niRRR imii ,...,2,1,,...,, 21 = , then a truncated joint PMF of 

the jth order statistic 𝑅𝑖(𝑗:𝑚), 𝑖 = 1,2, . . . , 𝑛 is, 
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Additionally, a truncated joint CDF of 𝑅̄𝑖1, 𝑅̄𝑖2, . . . , 𝑅̄𝑖𝑚, 𝑖 = 1,2, . . . , 𝑛 is, 
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The two truncated joint probability functions for the maximum and minimum spreads are 

powerful tools for characterizing extreme and local changes in asset prices within a specified price 

range. This representation contributes to supporting probabilistic measurement models for maximum 

and minimum spreads in a realistic financial environment based on the multivariate, discrete Weiner 

distribution. The joint truncated PMF of the minimum and maximum differences between the prices at 

knowing time T  are given by: 
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and 
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respectively. 

3.4. Stress-strength parameter 

The stress-strength parameter is an important probability measure in the discrete multivariate 

distribution of the Wiener process range. It is used to estimate the probability that one component of 

price change (strength) will outperform another (stress) within a confined price range. This is a highly 

applicable concept in price-limited financial markets, as it characterizes the asset behavior in the cases of 

crossover or extreme price divergence. This parameter, according to the literature, e.g., Kotz et al. [38], 

has a variety of applications in reliability theory and in the assessment of relative asset performance; 

and hence, it is a highly useful analytical instrument for relative risk assessment in truncated 

multivariate discrete distribution-based models. If the random variable vector  )(),...,(),(
21

TRTRTR
n  for 

the variation of stock price is the strength of an element placed on a random stress vector  
n

ZZZ ,...,,
2 , 

then the model for stress-strength is, 

𝑃([𝑅1(𝑇), 𝑅2(𝑇), . . . , 𝑅𝑛(𝑇)] > [𝑍1, 𝑍2, . . . , 𝑍𝑛]) = ∏ ∑ 𝑓𝑅𝑖(𝑇)(𝑟𝑖)
∞
𝑟𝑖=0

𝐹𝑅𝑖(𝑇)(𝑟𝑖)
𝑛
𝑖=1 . 

We assume that nii TR ...1)}({ =  and niiZ ...1}{ =  are mutually independent collections of independent 

random variables. These assumptions are standard in classical stress-strength reliability models and 

ensure the rigorous derivation of the multivariate discrete stress-strength parameter given by, 
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Moreover, for the truncated version of this distribution, we consider the values 

,,...,ˆ,..., iiii biaar += ni ,....,2,1=  ( î  is a non-negative real number) and describe the changing of 

stock price on the random variable vector  )(),...,(),(
21

TRTRTR
n . Therefore, when the changing of stock 

price is the strength of an element placed on a random stress vector  
n

ZZZ ,...,,
2 , then the stress-strength 

parameter is given by, 
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4. Applications 

To demonstrate the practical application of the proposed discrete multivariate Wiener process 

range distribution in constrained financial markets, we simulate a scenario involving two independent 

real world stocks: Apple Inc. (AAPL) and Microsoft Corp. It should be emphasized that the Wiener 

process framework adopted in this empirical illustration is used purely as a modeling approximation. 

The Wiener process assumption is adopted here as a standard modeling approximation commonly used 

in financial time series analysis [23]. No formal statistical validation of the Brownian motion 

assumption is conducted for the AAPL and MSFT high-low range data considered here. Our purpose 

of this section is to illustrate the practical implementation and interpretability of the proposed discrete 

multivariate Wiener range distribution, rather than to empirically verify the underlying diffusion 

assumption. Both AAPL and MSFT are traded on the NASDAQ stock exchange and are two of the 

most heavily traded technology companies in the world. These two stocks have high liquidity, huge 

market capitalization, and daily price movements that can be modeled within bounded range 

assumptions. In this empirical illustration, the independence assumption between AAPL and MSFT is 

adopted for methodological clarity to validate the baseline behavior of the proposed discrete bivariate 

Wiener range distribution. This assumption enables isolating the intrinsic probabilistic characteristics 

of the model. In future extensions, this restriction can be relaxed by introducing dependence structures 

through dynamic copula models to capture realistic cross asset correlations. 

Specifically, we assume a market condition in which the high and low price ranges of each stock 

are bounded, with Microsoft constrained in the interval [2,8] units and Apple in the interval [1,7] 

units, reflecting bounded price movement mechanisms imposed for illustrative modeling purposes. A 

real dataset of hourly high-low price ranges is obtained from publicly available financial data sources 

(e.g., NASDAQ via Alpha Vantage API (source of data: https://www.alphavantage.co/)) and processed 

across discrete time intervals, as shown in Table 1. This data is restricted in the ranges 𝑟̄1 ∈ [2,8], and 

𝑟̄2 ∈ [1,7], and the time interval 1=T . 

Remark 3. The truncation intervals [2,8] for MSFT and [1,7] for AAPL are adopted for illustrative 

purposes only. They are not claimed to represent empirically estimated market specific bounds, nor are 

they intended to characterize emerging market mechanisms for the assets considered. Instead, these 

intervals are chosen to lie within the empirically observed range of the high-low data and may be 

viewed as approximating interior empirical quantiles of the sample. This choice enables a clear 

demonstration of the effect of truncation on the proposed distribution while maintaining consistency 

with the observed data. 
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Table 1. Hourly Trading Data for Microsoft (MSFT) and Apple (AAPL) with High-Low 

price range differences. 

Timestamp 
MSFT 
High 

MSFT LOW 1r  AAPL High AAPL Low 2r  

2025-08-24 07:24:26 340.61 335.22 5.39 177.15 175.02 2.13 
2025-08-24 08:24:26 339.17 336.79 2.38 177.98 173.58 4.4 

2025-08-24 09:24:26 340.6 335.27 5.33 176.12 174.89 1.23 

2025-08-24 10:24:26 340.38 333.49 6.89 177.75 173.21 4.54 

2025-08-24 11:24:26 340.5 334.27 6.23 176.16 174.16 2 

2025-08-24 12:24:26 342.1 335.28 6.82 177.19 172.12 5.07 

2025-08-24 13:24:26 340.29 335.31 4.98 175.04 173.91 1.13 

2025-08-24 14:24:26 342.53 335.24 7.29 175.29 172.43 2.86 

2025-08-24 15:24:26 339.8 337.15 2.65 176.4 169.77 6.63 

2025-08-24 16:24:26 341.8 334.55 7.25 175.17 170.94 4.23 

2025-08-24 17:24:26 340.19 335.96 4.23 176.52 170.65 5.87 

2025-08-24 18:24:26 338.48 335.93 2.55 175.14 170.19 4.95 

2025-08-24 19:24:26 340.84 335.12 5.72 175 170.34 4.66 

2025-08-24 20:24:26 340.65 335.92 4.73 173.36 171.21 2.15 

2025-08-24 21:24:26 340.11 335.54 4.57 173.92 169.47 4.45 

2025-08-24 22:24:26 341.22 334.11 7.11 172.83 171.59 1.24 

2025-08-24 23:24:26 338.17 335.34 2.83 174.8 168.99 5.81 

2025-08-25 00:24:26 339.39 333.69 5.7 176.18 169.42 6.76 

2025-08-25 01:24:26 339.35 334.87 4.48 175.39 169.27 6.12 

2025-08-25 02:24:26 338.66 333.49 5.17 173.21 171.91 1.3 

2025-08-25 03:24:26 338.32 333.32 5 173.94 170.91 3.03 

2025-08-25 04:24:26 337.3 334.5 2.8 173.43 170.52 2.91 

2025-08-25 05:24:26 339.07 334 5.07 173.16 171.48 1.68 

2025-08-25 06:24:26 340.93 333.76 7.17 174.61 169.85 4.76 

2025-08-25 07:24:26 338.58 335.55 3.03 175.48 169.7 5.78 

2025-08-25 08:24:26 337.66 335.59 2.07 174 171.12 2.88 

2025-08-25 09:24:26 338.1 335.69 2.41 175 168.82 6.18 

2025-08-25 10:24:26 339.06 334.3 4.76 174.74 168.96 5.78 

2025-08-25 11:24:26 340.41 332.56 7.85 172.77 171 1.77 

2025-08-25 12:24:26 338.27 336 2.27 175.26 169.66 5.6 

2025-08-25 13:24:26 342.13 334.18 7.95 175.06 168.76 6.3 

2025-08-25 14:24:26 340.92 335.7 5.22 172.98 170.8 2.18 

2025-08-25 15:24:26 339.56 336.84 2.72 173.08 168.64 4.44 

2025-08-25 16:24:26 340.79 336.28 4.51 173.66 168.83 4.83 

2025-08-25 17:24:26 339.03 335.79 3.24 172.93 168.27 4.66 

2025-08-25 18:24:26 340.54 334.26 6.28 170.31 168.73 1.58 

2025-08-25 19:24:26 339.38 334.13 5.25 171.96 166.99 4.97 

2025-08-25 20:24:26 340.06 336.33 3.73 172.54 167.75 4.79 

2025-08-25 21:24:26 340.39 336.86 3.53 172.2 166.26 5.94 
2025-08-25 22:24:26 342.31 335.11 7.2 171.49 165.67 5.82 

2025-08-25 23:24:26 341.89 335.29 6.6 169.61 166.65 2.96 

2025-08-26 00:24:26 339.39 334.77 4.62 170.12 164.79 5.33 

2025-08-26 01:24:26 339.73 335.3 4.43 170.78 164.58 6.2 

2025-08-26 02:24:26 341.7 335.28 6.42 170.38 164.02 6.36 

2025-08-26 03:24:26 341.96 334.14 7.82 167.75 165.78 1.97 

2025-08-26 04:24:26 339.7 337.22 2.48 167.69 166.53 1.16 

2025-08-26 05:24:26 340.37 337.42 2.95 169.11 164.21 4.9 

2025-08-26 06:24:26 340.05 335.88 4.17 168.06 165.77 2.29 

2025-08-26 07:24:26 341.05 336 5.05 168.53 164.15 4.38 

2025-08-26 08:24:26 340.56 338.13 2.43 168.94 162.27 6.67 
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Table 2. The joint truncated PMF, CDF, survival and hazard rate functions of 1r  and 2r . 

1r  2r  );,( 21)(),( 2
Trrf

TRTRi
 );,( 21)(),( 2

TrrF
TRTRi

 );,( 21)(),( 2
TrrS

TRTRi
 );,( 21)(),( 2

TrrH
TRTRi

 

5.39 2.13 0.027057 0.1496 0.8504 0.031817 

2.38 4.4 0.024648 0.0264 0.9736 0.025317 

5.33 1.23 0.021813 0.0396 0.9604 0.022713 

6.89 4.54 0.024435 0.42 0.58 0.042129 

6.23 2 0.020681 0.148 0.852 0.024273 

6.82 5.07 0.027967 0.5576 0.4424 0.063216 

4.98 1.13 0.021514 0.0104 0.9896 0.02174 

7.29 2.86 0.014152 0.282 0.718 0.019711 

2.65 6.63 0.01987 0.1536 0.8464 0.023476 

7.25 4.23 0.019261 0.368 0.632 0.030476 

4.23 5.87 0.033205 0.2952 0.7048 0.047113 

2.55 4.95 0.031612 0.0896 0.9104 0.034723 

5.72 4.66 0.031685 0.3888 0.6112 0.05184 

4.73 2.15 0.028896 0.1152 0.8848 0.032658 

4.57 4.45 0.034001 0.2112 0.7888 0.043105 

7.11 1.24 0.014869 0.0688 0.9312 0.015968 

2.83 5.81 0.031225 0.1716 0.8284 0.037693 

5.7 6.76 0.018513 0.7 0.3 0.061709 

4.48 6.12 0.033278 0.344 0.656 0.050728 

5.17 1.3 0.023767 0.06 0.94 0.025284 

5 3.03 0.022008 0.2052 0.7948 0.02769 

2.8 2.91 0.018122 0.068 0.932 0.019444 

5.07 1.68 0.02842 0.0812 0.9188 0.030931 

7.17 4.76 0.025079 0.4928 0.5072 0.049446 

3.03 5.78 0.030943 0.1976 0.8024 0.038563 

2.07 2.88 0.013194 0.0064 0.9936 0.013279 

2.41 6.18 0.025065 0.0704 0.9296 0.026963 

4.76 5.78 0.039578 0.38 0.62 0.063835 

7.85 1.77 0.012364 0.1568 0.8432 0.014663 

2.27 5.6 0.027499 0.0288 0.9712 0.028315 

7.95 6.3 0.012543 0.92 0.08 0.156787 

5.22 2.18 0.02817 0.1612 0.8388 0.033584 

2.72 4.44 0.027774 0.0828 0.9172 0.030281 

4.51 4.83 0.038253 0.252 0.748 0.05114 

3.24 4.66 0.029069 0.1512 0.8488 0.034247 

6.28 1.58 0.019263 0.0912 0.9088 0.021196 

5.25 4.97 0.040062 0.4224 0.5776 0.06936 

3.73 4.79 0.029461 0.1856 0.8144 0.036175 

3.53 5.94 0.027638 0.252 0.748 0.03695 

7.2 5.82 0.024566 0.72 0.28 0.087737 

6.6 2.96 0.015175 0.288 0.712 0.021313 

4.62 5.33 0.040955 0.322 0.678 0.060405 

4.43 6.2 0.031544 0.342 0.658 0.047939 

6.42 6.36 0.021415 0.7332 0.2668 0.080266 

7.82 1.97 0.012906 0.1728 0.8272 0.015603 

2.48 1.16 0.016358 0.0048 0.9952 0.016437 

2.95 4.9 0.03231 0.1488 0.8512 0.037958 

4.17 2.29 0.023724 0.0952 0.9048 0.02622 

5.05 4.38 0.034152 0.2352 0.7648 0.044655 

2.43 6.67 0.017919 0.098 0.902 0.019866 
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Next, we calculate the joint truncated empirical PMF, CDF, survival function, and hazard function 

for the observed data. The simulation results show good agreement with the theoretical structure of the 

truncated probability mass function, as presented in Eq (3.2), with the highest probabilities 

concentrated in the low to middle values of the price range, as shown in Figure 13. This Figure shows 

that most of the range values are concentrated in the range between 2 and 7, which is consistent with 

the nature of low volatility markets. This result is consistent with the literature; for example, El-Hadidy 

and Alfreedi [15] reported on their investigation of the endogenous truncated Wiener process range 

distribution, where they established that price volatility is most appropriately explained through the 

application of truncated models for restricted markets, and that the probability of price change is most 

appropriately explained in comparison to general continuous models. 

 

Figure 13. Histogram of simulated ranges 1r  and 2r . 

Figure 13 also indicates that stock price difference values tend to cluster around median values, 

which is behavior typical of the theoretical distribution of the binary range of the discontinuous Wiener 

process. The natural truncation tails of the randomly generated data are also consistent with the 

concept of a truncated distribution achieved in Eq (3.2) of the work, with probabilities being 

redistributed in a restricted range. The slightly different pattern between the price differentials of the 

first stock, 1r , and the price differentials of the second stock, 2r , is also the difference in their 

volatilities, substantiating the use of a multivariate range distribution model over a univariate model. 

This model is suitable for a restricted market; however, in cases of high volatility, modification or 

expansion of the model may be necessary. Therefore, it is important to know the period during which 

stock prices are not subject to high volatility to clarify the extent of the effectiveness of our proposed 

model. 

As shown in Figure 14, the PMF for the truncated joint is greatest at (𝑟̄1, 𝑟̄2) = (2,5) and (4,6), 

implying that it is most likely to have co-occurring range values are in the interior of the admissible 

region, which agrees with moderate price volatility in the presence of market constraints. The 

probability mass is packed in these middle ranges and declines toward the boundaries, which suggests 

the effect of truncation imposed by price movement constraints and fits the regime of clustering in 

Figure 13. Figure 15 also illustrates the way cumulative probabilities increase steadily as 1r  and 2r  

increase, which strongly establishes that mid-range values hold most of the probability mass. 

Figure 16 shows the truncated joint survival function, which illustrates the probability that price 

fluctuations will exceed certain limits. We observe that the function declines steeply as the values 

increase, so the likelihood of highly large fluctuations is low because market constraints are imposed. 

This is an explicit measure of constrained markets' properties, where large fluctuations are prevented. 



3588 
 

AIMS Mathematics  Volume 11, Issue 2, 3563–3593. 

Therefore, such a function is very important in analyzing the risk of exposure to volatility in 

investment portfolios, especially in extreme cases. The estimated truncated hazard function shows an 

increasing pattern with increasing range values, as in Figure 17, indicating a higher risk of severe 

fluctuations the closer the price approaches the imposed limits. 

 

Figure 14. Truncated Joint PMF of 1r  and 2r . 

 

Figure 15. Truncated Joint CDF with probability values accumulate incrementally as the 

values of 1r  and 2r increase. 

 

Figure 16. Truncated Joint survival function that represents the probability that the values 

1r  and 2r  exceed certain limits. 
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Figure 17. Truncated Joint hazard rate function that represents the probability of a sudden 

change in prices at values 1r  and 2r , provided they remain constant until that moment. 

On the other hand, this type of graph is used practically to predict the chances of reaching certain 

price levels within short periods, especially in evaluating options or hedging instruments. This 

numerical experiment confirms that the proposed model can represent the constrained volatility 

environment and the probabilistic structure of price movements in multi-asset markets, supporting its 

use in financial market modeling, option pricing, and risk management. Furthermore, in practical 

implementation, the bounds ],[ ii ba  and the time horizon 1=T  are assumed to be known to reflect 

realistic regulatory and empirical constraints of financial markets. These bounds correspond to the 

upper and lower daily price limits or to the empirically observed high-low ranges, as illustrated in 

Table 1. 1=T  assumption provides a normalized day of trading, and uniform time scale over assets. 

Calibration of the model within these known parameters with actual high-low observations greatly 

increases its practicability by aligning theoretical truncated probability framework to empirical market 

behavior. This calibration enhances the realism of the joint PMF, CDF, and hazard functions, improves 

the reliability of the model in forecasting volatility, and makes it more meaningful for real world 

applications to risk management, option pricing, and financial market analysis. 

Based on the real financial data in this paper, the truncated and truncated Wiener multiple range 

model convincingly outperforms the unconstrained or closure  only models. At the structure level, the 

model mimics the effect of price limit regimes by reconcentrating the mass of probability within the 

admissible region and condensing the tails near the limits, an empirical regularity documented in 

markets traded under price limit belts, as in [39]. Empirically, on the truncated ranges  8,21r , 

 7,12 r  with 1=T , the truncated joint PMF exhibits inner peaks rather than edges, while the joint 

CDF increases smoothly as ),( 21 rr  grows (see Figure 15). The truncated survival function and hazard 

rate are also consistent with the logic of restricted markets: For example, at (2.48,1.16), we obtain 

approximately 

𝑆̄𝑅̄𝑖(𝑇),𝑅̄2(𝑇)(𝑟̄1, 𝑟̄2; 𝑇) ≈ 0.9952 and 𝐻̄𝑅̄𝑖(𝑇),𝑅̄2(𝑇)(𝑟̄1, 𝑟̄2; 𝑇) ≈ 0.016, 

versus 

𝑆̄𝑅̄𝑖(𝑇),𝑅̄2(𝑇)(𝑟̄1, 𝑟̄2; 𝑇) ≈ 0.267 and 𝐻̄𝑅̄𝑖(𝑇),𝑅̄2(𝑇)(𝑟̄1, 𝑟̄2; 𝑇) ≈ 0.080 at (6.42, 6.36), 

reflecting the risk buildup as the range widens near the boundary. These patterns are consistent with 

recent evidence showing that range dependent volatility models improve forecasting compared to 

close only specifications, and that range dependent GARCH formulas produce more robust estimates 

of volatility and tail risk in practice, as in [40]. They are also consistent with new findings on optimal 

nonparametric estimation of range volatility that establish the advantage of range information as in [41]. 
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At the multivariate level, more recent research confirms the role of copulas (with dynamics) as a gold 

standard for reliability modeling and probabilistic forecasting of financial series, justifying the discrete 

binary treatment of the range employed here [42]. Finally, closed form equations of lumped 

survival/hazard equations provide directly interpretable joint exceedance probabilities on a discrete 

network, as in the expanding use of survival/hazard methods in financial econometrics [43]. 

Overall, through reasonably addressing regulatory constraints, discrete binary dependence, 

prediction power gains, and closed form lumped survival/hazard formulae, the model reflects a 

robust explanatory and predictive advantage over unconstrained or independence focused 

baselines, as shown in Figures 14–17. 

5. Concluding remarks and future work 

We present a multivariate, discrete type Wiener range distribution, aiming to build a rigorous 

mathematical framework for modeling the joint behavior of spreads (highs-lows) for several financial 

assets within range bound markets. The basic statistical properties of the distribution, such as the 

survival function, hazard function, truncated models, and stress-strength coefficient, are derived, 

demonstrating its suitability for realistic applications in volatility modeling and the valuation of risk 

sensitive financial instruments. A numerical application further supports the model’s ability to capture 

realistic patterns in range constrained financial markets. This correspondence between the theoretical 

derivations and the numerical simulation results confirms the strong coherence of the proposed model 

with the actual behavior of constrained financial data, showing its empirical validity and robustness. 

Although this framework assumes independence among marginal ranges for analytical tractability, 

in future research, we will extend the model to incorporate dependence structures between assets 

through copula based or correlated Wiener process formulations, enabling a more comprehensive 

representation of inter-asset dependence. In addition, we will address formal empirical validation of 

the Wiener process assumption and data driven estimation of truncation bounds through appropriate 

diagnostic tests and goodness of fit analyses based on real high-low range data. Further applications 

may include the pricing of range  dependent derivatives and the design of algorithms for high 

frequency trading under stochastic constraints. 

In addition to dependence modeling and empirical validation, an important direction for future 

research is to generalize the proposed framework beyond the Gaussian Wiener setting. Extending the 

discrete multivariate range distribution to non-Gaussian driving processes, such as Lévy-driven 

models or stochastic volatility formulations, would enable the model to capture heavy  tailed behavior, 

jumps, and volatility clustering frequently observed in financial markets, while preserving the discrete 

and truncated structure of the proposed approach. 
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