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1. Introduction

Using the high-low spread of a Wiener process over a specified interval provides a more
informative and accurate depiction of price variability than traditional models based solely on closing
prices. This modeling preference is further backed by a body of theoretical and empirical results in
the finance econometrics literature. In contrast to volatility measures based on close-to-close returns,
which are based on a single observation for each time interval, the price range captures the full
intraperiod set of observations, leading to a superior form of efficiency in working with discrete
financial data. Parkinson [1] demonstrated that the range-based estimator significantly outperforms the
classical squared-return estimator under a Brownian motion framework, while Garman and Klass [2]
showed that incorporating opening and closing prices further improves efficiency and reduces
estimation bias. These results also indicate greater robustness of range-based estimators to
microstructure noise. In parallel, the literature has proposed alternative approaches for modeling
volatility and dependence in financial markets, including stochastic volatility and jump diffusion
models to capture time-varying volatility and tail risk [3], copula-based multivariate frameworks for
nonlinear dependence modeling [4,5], and market microstructure models incorporating price limits
and circuit breakers to mitigate extreme price movements [6]. While these approaches address
different aspects of market behavior, we focus on discrete range-based modeling with explicit
truncation in this study, providing a coherent framework that reflects bounded price dynamics in
constrained financial markets

This measure finds widespread use in short term volatility estimation, risk metric calibration,
and the pricing of derivatives sensitive to extreme price changes. The pioneering work in [7],
followed by subsequent contributions in [8], established a theoretical framework for the distribution
of the continuous range. Further developments in [9] introduced bounded and piecewise variants that
incorporate price limit mechanisms observed in real financial markets. These results together support
the price range as a strong and reliable instrument for financial data modeling, particularly when the
dynamics of asset prices occur over bounded intervals.

In addition to its theoretical advantages and empirical support, the price range has proven to be
highly relevant in practical financial applications. Building on the documented empirical efficiency
and robustness of range-based volatility measures in discretely observed financial data, the following
analysis focuses on modeling the price range within a discrete and constrained probabilistic
framework. Actual financial data are often measured at discrete points in time, such as days or
months, which calls for the use of discrete distributions rather than continuous ones. Discrete
versions of several well known distributions, such as the normal distribution as in [10,11] and the
Weibull distribution as in [12,13], have been developed to suit the nature of discrete data. Based on
this, El-Hadidy [14] proposed a discrete distribution of the range of the Wiener process by a number
dependent transformation and demonstrated that it has very good agreement with real financial data.
El-Hadidy and Alfreedi [15] introduced a new model for a Wiener process range distribution by the
application of internal truncation, with a view to remove low stochastic volatility intervals and
redistributing their probability to the active intervals. Their results showed that the modified
distribution captures price moves more effectively in volatile markets and is, hence, appropriate for
use in financial modeling.

On the other hand, most previous studies have been confined to univariate models, whereas
modern financial markets increasingly rely on multivariate frameworks to characterize dependence
and correlation among multiple assets. Accordingly, multivariate distributions play a central role in
risk management and portfolio analysis, including the multivariate normal distribution and
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copula-based models, as discussed in [4,5,16]. These researchers have proposed several alternative
approaches for modeling multivariate dependence in financial markets. Copula-based models
construct dependence by first specifying marginal distributions and then imposing a dependence
structure through a copula function, thereby enabling flexible nonlinear and tail dependence. Other
approaches include multivariate stochastic volatility and jump diffusion models, which introduce
latent volatility dynamics and discontinuities to capture time varying risk and extreme events [3]. In
a related line of research, Alraddadi and El-Hadidy [17] developed a multivariate distribution of the
continuous Wiener process range using probability range vectors, enabling the characterization of
complex temporal relationships among asset price behaviors. In contrast to these approaches, the
model proposed in this study differs conceptually in that dependence arises directly from the joint
distribution of the discrete price ranges, within a unified, discrete, and truncated framework that
provides a structurally coherent representation of joint range behavior under regulatory constraints,
rather than imposing dependence ex post as in copula-based formulations.

However, discretizing the range of a Wiener process poses substantially greater technical
challenges than discretizing its levels or increments. While levels and increments are local quantities
defined at fixed time points or over disjoint intervals and benefiting from the independence and
stationarity of Brownian increments, the range is a global, path-dependent functional defined through
the joint behavior of the supremum and infimum of the process over a time interval. As a result, the
range inherently couples two extreme values and exhibits strong nonlinear dependence that cannot be
captured through standard discretization schemes applied to levels or increments. In particular, naive
discretization may distort tail probabilities or violate probabilistic normalization. In the univariate
case, this difficulty was addressed in [14] by discretizing the survival function of the continuous
Wiener range and defining the discrete probability mass function via successive differences.
Extending this construction to the multivariate setting, as carried out in this present work, is
nontrivial since it requires preserving the global extreme value structure of each marginal range
while ensuring joint consistency, proper normalization over a multidimensional lattice, and analytical
tractability for multivariate reliability measures and truncation under market-imposed bounds

In recent studies, researchers have examined truncated Wiener process models, particularly in
reliability and risk analysis under bounded conditions. In the continuous framework, Pan et al. [18]
developed reliability models based on truncated Wiener processes using truncated normal
distributions, which are conceptually related to this work but differ from thier discrete formulation.
Related contributions include [19] on truncated distributions and information measures, and [20] on
multivariate models for finance and reliability. Moreover, Alraddadi and El-Hadidy [17] proposed a
continuous multivariate Wiener range model under stochastic volatility and truncation. In contrast,
we introduce a fully discrete, multivariate Wiener range distribution with explicit truncation and
closed-form reliability measures, tailored to discretely observed and constrained financial data. The
Wiener process assumption is adopted here as a standard modeling approximation, without formal
empirical validation.

The originality and scientific contribution of this work lie in the distinction it offers from other
studies by introducing a new statistical framework that combines discreteness, multiplicity, and
truncation, making it more suitable for the nature of financial data observed at discrete intervals and
subject to daily price constraints. While in previous literature, researchers have focused on the range
distributions of the Wiener process in continuous or single period versions, the current model fills an
important research gap by directly representing regulatory constraints and deriving risk indicators
(such as survival and hazard functions and rank statistics). Real world data is employed to
demonstrate that the proposed model effectively reflects the dynamics of constrained markets,
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enhancing its potential for use in pricing and risk management, outperforming classical continuous or
single period models. Accordingly, we aim to develop and present a multivariate, independent,
discrete distribution of the Wiener process range, where each variable is used to represent the
difference between the highest and lowest prices of an independent stock over discrete time periods.
This includes deriving the bivariate case of this distribution and its truncated version under stochastic
volatility to analyze the joint interaction between the ranges of two independent stocks and its impact
on the accuracy of financial modeling. Additionally, we study the basic statistical properties of this
distribution, including reliability functions, moments, stress-strength parameter, and ordered
statistics. The proposed framework yields closed-form expressions for the joint probability mass
function, survival and hazard functions (with monotonicity properties), and a complete system of
multivariate order statistics, thereby highlighting the analytical depth of the model.

The paper is organized as follows: In Section 2, we study the discrete multivariate distribution
of the n independent Wiener processes range, which captures the difference between the highest and
lowest stock prices over fixed time intervals. In Section 3, we discuss the bivariate case of this
distribution, its truncated version, and some basic distributional properties. In Section 4, a detailed
numerical application is carried out using randomly generated data that simulates the behavior of real
life restricted markets. This application includes statistical analysis and simulation of the joint
movement of the price range under truncated distribution conditions, with the aim of verifying the
practical suitability of the proposed model. Concluding remarks and future recommendations are
discussed in Section 5.

2. n-multivariate discrete distribution for a Wiener process range

Definition 1. If the range of a Wiener process {W(¢);f 20} is defined as
R(T) = supW (t) — infW(¢t),
(0T) 1)

(a difference between the maximum and minimum values of a Brownian path measured at a finite
number of discrete points in time), and if » points are assumed in the interval (0,7), then a discrete

distribution of R(T) is obtained by applying a number dependent transformation, via discretization of

the survival function, of the corresponding continuous range distribution. Specifically, the probability
mass function (PMF) of the discrete Wiener range is defined as,

o (r)=PIR(T) =r]= PIR(T) 2 r]— P[R(T) 2 r +1]

= i[ (ck +8T(r+1)7? )exp[— 4TC (r + 1)‘2]— (ck +87r 72 )exp[— 4Tc,;1r‘2] } (2.1)
k=1

where

8

r=012..,0<r<ow, T>0,_C =m

and the survival function P[R(T)>r] is derived from the continuous distribution of the Wiener process

range. This construction guarantees a valid discrete PMF while preserving the extreme-value nature of
the continuous range distribution [7,8].

Function (2.1) is derived using a method based on the maximum and minimum distribution of the
process, and then mathematically integrated to obtain an accurate range distribution, as in [14]. In
practical financial applications, asset prices are recorded at discrete time points rather than
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continuously. Accordingly, the continuous range R(T) is discretized by assuming that the Wiener

process is observed at a finite number of discrete intervals within (0, T). The difference between the
high and low values at these discrete observations creates valued variable that captures the high-low
range of the process. Therefore, the continuous range distribution is estimated by discrete increments,
and the probability of every value of the potential range is determined as

P[R(T) =r] = P[R(T) = r] — P[R(T) =7 + 1].

This change preserves the Wiener process's stochastic nature while enabling the model to be sensitive
to the empirical nature of financial data over discrete (say, daily or hourly) intervals. It is evident that:

iP[R(T) = r]= PLR(T) > 0]— P[R(T) > 1]+ P[R(T) > 11— P[R(T) > 2] +...= P[R(T) > 0] = Sy, (0) =1,
r=0

where Sgr)(.) is the survival function of R(T). Accordingly, we formulate a multivariate discrete

distribution representing the differences between the maximum and minimum prices (ranges) of »
independent stocks, each modeled by a discrete range of an independent Wiener process over the time
interval (0,7), as given by:

[R(T), Ry(T),...R,(T)]=| sup W, () — inf W,(2), sup W, () — inf W, (0),...,sup W, ()~ inf W, (t) |
(0,7) (0.7) (0.7) (0.7) (0.7) (0.7)
where [Wl O, W, (2),...,W, (t)] is a vector of » independent Wiener process.

Theorem 1. Let R(T)=[R,(T),R,(T),....,R,(T)] be a vector of discrete ranges of [W1 (), W, (t),...,Wn(t)] over
the interval (0,7), where the marginal PMF of R,(T) is defined as in Definition 1, then the joint PMF
of the multivariate discrete Wiener range vector R(7) is,

le(T),RZ(T),...,Rn(T) (ri, 12,1 T) = 1lizg fRi(T) (). (2.2)
Moreover, the joint distribution is properly normalized, that is,

n n

Z Z le(T),RZ(T) ..... Ro(m) (1 T2 Ty T) = 1_[ Z fRi(T)(Ti) =1
T1=0 Tn=0

i=1 \r;=0

Proof. The result follows from the fact that each univariate marginal PMF f'R’(T)(r) is a properly

defined discrete probability distribution with total mass one, and independence implies that the joint
PMF is the product of the marginal’s. Thus, this completes the proof, where

0 0 n n
z 2 le(T),Rz(T) ..... Rn(T)(ﬁ:Tz:---;rni T) = 1_[ Z fRi(T)(ri) =1
r1=0 rn=0 =0

i=1 \r;

In addition, to avoid ambiguity in the discrete formulation, the joint cumulative distribution function
(CDF) is derived explicitly as follows: By independence of the components R,(7), i=1.2,...,n, we

have,
Fr (1)Ry(T),.., Rn(T)(rllrz'---:Tn; T) = [Ii=1 P[Ri(T) < 73]

Since the range is a discrete nonnegative random variable, each marginal CDF satisfies
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P[Ry(T) =1l =1—-P[Ry(T) 2] + P[Ry(T) = 1{]

which makes the discrete shift r +1 explicit. Therefore, the joint CDF can be written as

n
Fr (0) Ry ()R () (T T2+, T T) = 1_[(1 — P[Ry(T) =21 +1])

= [T, 521 [(Ce + 8T (r; + 1)2) exp[—4TCE (r, + 121, 2.3)

Since the sequence {Cj}r>1 is defined in Definition 1 and satisfies ZCk =1, then
k=1

=1 -1, Xi=1[(Cp + 8T (r; + 1)72) exp[—4TC " (r; + 1) 721 (2.4)
3. Discrete bivariate distribution and its truncated version

When analyzing high frequency financial data, the discrete binomial distribution is an effective tool
for modeling the interdependence of stock price changes at discrete points in time. Koopman et al. [21]
presented an advanced model based on the distribution of Skellam [22] that uses a discrete copula
function to represent price differences. This distribution gives the difference between two
independent random variables that follow a Poisson distribution. This distribution is a natural
extension of continuous distributions such as the Wiener process to the discrete case, as the discrete
distribution enables an accurate representation of minute price changes in financial markets. These
distributions contribute to the fair pricing of digital options, joint risk assessment, and understanding
the temporal structure of price correlation between stocks, which increases the efficiency of trading
and forecasting strategies, as in [23]. Therefore, from (2.2), the joint PMF of a Wiener range random
variables R, (T) and R,(T) is,
2
Fromm D)= [ [N, +876, 172 Jexpl- a1y (412 |- (6, #8772 Jexp|-arc 2] 3.1y
=1

i k=1

0 <7 <ooi=1,2, as shown in Figure 1.

Remark 1. All figures presented in this paper (Figures 1-12) follow a unified visualization scheme
in which the continuous Wiener range distribution is displayed side by side with its discrete
counterpart (and truncated versions where applicable). This parallel presentation provides a clear
conceptual comparison between the theoretical continuous formulation and the discrete model
developed in this study, clarifies the transition from the continuous to the discrete framework, and
highlights the theoretical coherence of the proposed discrete multivariate Wiener range distribution.
For all numerical figures presented in this paper, the time horizon is fixed at 7=1. The
truncation bounds are kept unchanged across all simulations and are directly indicated by the visible
support of the plotted distributions in the figures. Figure 1(a) represents the joint probability density
function of the two random variables R, (T) and R, (T) in the continuous case, where the distribution
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is accurately represented in two-dimensional space. Figure 1(b) represents the joint PMF of the same
variables after discretization (i.e., converting continuous random variables to discrete ones). Thus,
Figure 1(a) is a numerical approximation of Figure 1(b), demonstrating how the theoretical
continuous distribution can be represented in a form that is applicable numerically or
programmatically.

(b)

Figure 1. The joint bivariate probability function in (a) continuous case; and (b) discrete case.
On the other hand, the truncated joint probability density function of &) and &, on the
interval [q;,b,],i=12 is given by,

2 fRL(T)(fL) a
=1 Py () —Fry (@)

fRi(T),Rz(T)(fl'fzi T)= <7 <b,i=12

5 i [(ck +8T( +1)2 Jexp [— ACT(r+1)7? ]— (c, +877 2 )exp [— 4C'T7 ]]
=1

-1~ k=1 - . (32
i z [(ck +8T(b, +1)72 )exp [— 4CIT (b +1)72 ]]— Z [(ck +8T(a; +1)72 )exp [— 4CT(a, + 1)—2]]

k=1 k=1

where R;(T) is a corresponding double truncated (truncation from left and right) of R(T)and
¥y =;.a; +1,..,b,and 7 is a non negative real number. In this case, the probabilistic support is

restricted to a known range that reflects constraints imposed on variables, such as the high and low
price limits of stocks. In this context, using a truncated version of this distribution enables modeling
price differences within a precisely defined range, while preserving the basic properties of the
original distribution. This distribution is essential in high-frequency applications, where data are
effectively restricted to narrow ranges due to market regulations or institutional constraints.
Truncated versions are also used to estimate the probability of exceeding critical limits, which
increases the accuracy of forecasts of price spikes and stop-out probabilities in instruments such as
binary or marginal options. Figure 2 illustrates how the continuous distribution function transforms
into a discrete form through numerical approximation. Figure 2(a) represents the joint truncated
probability density function in the continuous case, while Figure 2(b) shows the corresponding
discrete form.

In cases where stock price differences are treated over small time intervals, the discrete bivariate
distribution of quantiles is used to represent the joint cumulative distribution function at specific
points in time. This discrete version of the cumulative distribution function enhances the reliability of
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time correlation analyses, pricing derivatives across multiple assets, and guiding optimal
diversification policies in investment portfolios. From (2.3), the joint CDF of R{(T) and R,(T) is
given by,

Frryryry (ia72:T) = ﬁi[(ck +8T(r; +1) 72 )exp[— 4TC (r; + 1)‘2]], 0<r<o,i=12, (3.3)

i=l k=l

see Figure 3, where Figure (3¢) shows the joint CDF of a continuous bivariate distribution, where the
cumulative probability values are smoothly projected into 2-dimensional space. After applying a
discretization process to the random variables, this distribution is transformed into a discrete
representation as in Figure (3d), where the function takes values on a grid of discrete points. This
transformation demonstrates how a theoretical continuous distribution can be approximated to a
numerical form suitable for computation, without losing the overall structure of the cumulative
function, enabling it to be used in quantitative modeling of risk and co-dependency in a practical way.

(b)

Figure 2. The joint bivariate truncated probability function in (a) continuous case; and (b)
discrete case.

(b)

Figure 3. The joint bivariate CDF (a) continuous case; and (b) discrete case.
The truncated CDF of the discrete bivariate distribution is used to represent the joint

probabilities of stock price fluctuations within a specified price range, such as in markets that impose
upper and lower limits on daily movement. This representation enables an accurate description of the
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dependence between assets when random variables are confined to a grid of discrete values within a
closed domain. From a market microstructure perspective, the truncation considered in this bivariate
model is directly motivated by regulatory mechanisms such as daily price limits and circuit breakers,
which impose explicit bounds on price movements and may interrupt trading during extreme
volatility episodes. Such institutional features are widely documented in financial markets and have
been shown to affect price dynamics and volatility behavior [6, 24]. Hence, from (3.2) and for a
bounded range a; < 1; < b;, i = 1,2, the joint double truncated CDF is given by,

[(ck +8T(7 +1)72 )exp [— 4C' T +1)7? ]— (ck +8T(a, +1)? )exp [— 4C T (a; +1)72 ]]
.(3.4)

2
Faanman oD =] |
=1

1

DMs 2P s

[(ck +8T(b; +1)2 )exp [— 4C'T(b, +1)7> ]— (ck +8T(a, +1)7> )exp [— 4C;'T(a; + 1)‘2]]

=~
1l

1

(see Figure 4). The joint truncated CDF of bivariate distribution over a specified range is reflected in
Figure (4c). Figure (4d) shows its counterpart after numerical approximation to a discrete
distribution. This demonstrates how the cumulative structure does not change even as it is confined
to fit into a numerical expression to facilitate its effective use in bound constraint models by price
ceilings.

(b)

Figure 4. The joint bivariate truncated CDF (a) continuous case; and (b) discrete case.

The joint survival function of a discrete bivariate distribution is used to estimate the probability
of stock price fluctuations exceeding certain thresholds, making it a powerful tool in extreme risk
analysis. Using (3.3), we can compute it by,

SRy (T),Ro(T) (r,7;T) =1- Fr,(1),Ry(T) (ry, 155 T).

When the domain is restricted by truncated support, the function becomes even more important
because it represents the remaining probabilities within a realistic range that reflects the limits of
price movement. Additionally, one can compute the truncated case of this function from (3.4) by,

§R1(T),R2(T) (F, 7 T) =1 — FRi(T),RZ(T) (71, 725 T).

Figures 5 and 6, which contain Figures 5(c,d) and 6(c,d), reflect the transformation from the joint
survival function of the continuous bivariate distribution to its discrete counterpart, while keeping the
probability structure in the right tail within a specified range. The discrete survival function enables
the characterization of tail dependence and is used in practical applications in marginal option
valuation models and in detecting co-excesses in multi-asset portfolios.
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Figure 6. The joint bivariate truncated survival function (a) continuous case; and (b) discrete case.
3.1. Some reliability properties

Given the need to measure stock price behavior over specific time periods (daily, monthly, or
annually), studying the basic distributional properties of this distribution as a discrete distribution is
crucial. This includes analyzing the reliability properties, which measure the stability of the price range,
as well as the moments used to calculate the mean and variance, which describe the centralization and
dispersion characteristics of price differences. The stress-strength parameter is also used to estimate
the probability of one price change being larger than another. Bonferroni and Lorenz curves are useful
for summarizing the variance of a distribution, and the Gini index provides a quantitative estimate of
the asymmetrical distribution of returns. Together, these indices enable us to estimate the probability
structure and variance of price changes in a realistic discrete probability model.

Reliability theory provides a natural and powerful framework for analyzing range-based financial
risk, as it focuses on time-to-event behavior and conditional risk evolution rather than marginal price
changes. When applied to the high-low price range, reliability measures such as the hazard rate,
reversed hazard rate, and mean residual life offer interpretable indicators of the likelihood, timing, and
persistence of extreme price movements within bounded markets. This perspective is particularly
suitable for range-based modeling, where risk accumulation is inherently linked to the widening of
price spreads under regulatory or structural constraints. In economic risk analysis, the discrete
multivariate hazard ratio is used as a tool to measure the probability of a sudden change in stock prices
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over discrete time periods. This indicator expresses the probability of a price change in a financial asset,
provided the price has remained within specified upper and lower bounds up to that point, making it
suitable for price-constrained market models. When applied to distributions such as the discrete
bivariate distribution of the Wiener process range, the hazard ratio can reflect the interdependence of
different assets and the timing of risk occurrences, making it of practical importance in the fields of
reliability theory, time-risk estimation, and modeling extreme changes in multi-asset portfolios.

In price constrained market models, the discrete multivariate distribution hazard function is a
powerful tool for analyzing the intertemporal risks associated with asset price changes. Using the
discrete Wiener process range distribution, the probability of sharp price changes at a given point in
time can be estimated, given that the price range remains within a specified range up to that point.
Marshall and Olkin [25] have pointed out the importance of hazard functions in characterizing the
behavior of breakdowns or structural transformations in economic systems. Therefore, using the
hazard function within this framework enhances the accuracy of extreme risk estimation and
contributes to the design of derivative instruments based on the conditional probability of price
overshoot in regulated markets.

Proposition 1. If R, (T) and R,(T) are two independent discrete range variables of Wiener processes
over the interval (0,T), then the joint discrete hazard rate function of the bivariate range vector
[R1(T),R,(T)] is defined by,

HRl(T),Rz(T)(rlrrZ;T) = P(R(T) = 1,Ry(T) = 13|R (T) 2 14,R,(T) =2 13), 11,7, = 0,1,2,...

_ HZ Y [(Cr+8T(ri+1)72) exp[-4TCr t (ri+1) 72| - (Cp+8T1i %) exp|-4TCi 'r7?]]
=1 1-2%2 ,[(Cx+8T(ri+1)~2) exp[-4TC; L (ri+1)~2]] )

(3.5)

Proof. By definition, the joint discrete hazard rate of the bivariate range vector [R1(T), R,(T)] is
given by the conditional probability, P(R,(T) = r,R,(T) = 1,|R{(T) = 11, R,(T) = 1,). Using the
definition of conditional probability and since P[R;(T) = ;] > 0, then, as in [26], the joint discrete
hazard rate function can be written as,

2
P[R(T) = 1]
H (rurT) = |5 <oy
R(T).R (T) V110 72 L P[R;(T) =2 1]

Since R(T)and R,(T) are assumed to be independent random variables, the joint probability in the

numerator factorizes into the product of the marginal probability mass functions, and the joint survival
probability in the denominator factorizes into the product of the marginal survival functions. Hence,

le(T) (ri; T). fRz(T) (ry; T)
e r @ C T ) = Big, (1) 2 7] PIR,(T) = 73]

_ - Yie=1[(Ci + 8T (1 + 1)72) exp[—4TC; ' (1 + 1) 2] — (Cy + 8T772) exp[—4TC; 'r7%]]
N 1:1[ I 1-— Zc])cozl[(ck + 8T(TL' + 1)_2) exp[—ll‘TCk_l(Ti + 1)_2]] ’

which is non-decreasing in both 1 and » under the assumption that the marginal range distributions
satisfy an increasing failure rate (IFR) property, i.e., for fixed T,

Hg, (r)ryry(11 + 1,72, T) = Hpg, () p,r) (11, 725 T)

and
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Hg, (r)rym) (", 72 + L, T) = Hp 1y g,y (11, 725 T)

This reflects the intuitive financial insight that, as the observed high-low range increases, the risk (or
hazard) of observing that exact range also increases relative to the remaining tail probability. This
formulation and its monotonicity properties are consistent with standard results in discrete reliability
and multivariate hazard theory [25,27,28].

The hazard rate function is utilized in the censored discrete multivariate distribution for
probability estimation of price movement in a specified range with an upper and lower bound. The
depiction provides a realistic representation of the dynamics of price-constrained markets and the
timing of cross-asset risk. For our distribution, the joint truncated hazard rate function in the bivariate
case is given by,

_ o o B o
Hy oy vy o721 = [ o my oy (723 D= Fr 0y & o) (157237}

i [(ck +8T(r, +1) )exp[— ATC (r+ 1) ]— (ck +877,° )exp[— ATC'r? ]]
k=1

i [(ck +8T (b, +1)7 )exp [— ATC( (b, +1) 7 ]]— i [(ck +87(a; +1) 7 )exp [- ATC{ (a; +1)7 ]]

k=1 k=1

oy

Il
—_

3.6
[(ck +8T(r, +1) )exp[— 4TC (r, +1) 72 ]— (ck +8T(a; +1)* )exp[— 4TC; (a, + 1)*2]] (30

M 1

[(Ck +87(b; +1)7 )exp [— ATC (b +1)7 ]— (ck +87(a; +1)7 )exp [— ATC (a;+1)7° ]]

=~
Il

1

It should be noted that the truncated hazard function in (3.6) is defined with respect to the
truncated joint distribution and follows the standard discrete hazard formulation

f Ry(T)Ro (T (T172:T)

1=Fr, (1) Ry (P 72:T)

This definition represents a different multivariate hazard construction from the product of marginals
formulation in Proposition 1 and is commonly adopted in the reliability literature when truncation or
conditioning is involved [25,27,28].

Figures 7 and 8 illustrate the shift from the continuous to the discrete joint hazard rate functions
for the original and truncated distributions, respectively.

Additionally, at r; = r, = 0, one can notice that,

HRl(T),RZ(T)(OJO; T) = le(T),Rz(T) (0,0;T) = (Xi=1(C + 8T) exp[_4CIC—IT])23 (3.7)

and

Hy ) OO = I ) 7y ) (00T

0

Z [(Ck + 8T)exp[— 4c,;1T]]

= . (3.8)

i [(ck +8T(b; +1) )exp [— 4C (b +1) 72 ]]— i [(ck +8T(a; +1)* )exp [— 4C ' T(a, +1)2 ]]
k=1 k=1
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Figure 8. The joint bivariate truncated hazard rate function (a) continuous case; and (b)
discrete case.

Corollary 1. For the original bivariate case, the joint mean residual life function is given by,

5 5 ijR,-(T)(j)
Ly ).y (115725T) = HE[(Ri(T) - n)|Ri(T) = ”i]= H %— hi (3.9)

i=1 i=1
J21

ZSRi(T)(j) 5 ;

2 | o |
:1;[ m :HZH(I_HR,(T)(I))

i=l j2r, i=r,

0

s Z [(Ck +87i 72 )exp [— 4C'Ti? ]— 2(ck +8T(i+1)72 )exp [— 4C]' T +1)7? ]]

:f[ 1= ,

i=l | 2 = 1- [(ck +8T(i+1)‘2)exp[—4C;1T(i+1)‘2]]

s

E
Il

1

where r = 0,1,2,. ...

Corollary 2. As in Roy and Gupta [29], another formula for this function is given by,
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2 2
ﬂRl(T),Rz(T)(”lo’”zéT) :H(E[(Ri(T)_ri)|Ri(T) 2 ’?]):1+HLR[(T)(’? +1)
i=1 i=1

+ i [(Ck +87i )exp[— 4C'Ti ]— 2(ck +8T(i+1)7 )exp[— 4CI T+ ]]

|1
S Dol (= _ (3.10)
i=l j2r+li=r+l 1_2[(Ck +8T(i+1)_2 )exp[— 4C,:lT(i+l)_2]]
k=1

When r=0, then

2

LR (T),R,(T) (0,0,T)

< _Qk-1)’7T
kz((ﬂc 1)2 2+8Tjexp{ 72 :I

The mean residual life function of a discrete multivariate distribution is an important analysis
measure for calculating the expected value of the remaining price variation after a designated amount
is attained within a limited price range. For the distribution of ranges of the Wiener process, the
function is utilized to estimate the mean length or lag of prices remaining within the lower and higher
limits such that the stability of prices can be assessed, and whether there is a likelihood of an ongoing
trend continuing can be ascertained. Barlow and Proschan [27] pointed out that this function is a
fundamental tool in reliability models, as it reflects the temporal characteristics of the system or asset
under study. This can be translated in financial contexts into an analysis of the risk of the price
remaining in a certain region before a significant change occurs.

e, ()R, (1) (0,0:T) = (3.11)

Remark 2. In this context, the standard hazard rate is forward looking and quantifies the conditional
probability of observing a given range value given the survival beyond it. In contrast, the reversed
hazard rate is backward looking and describes the likelihood that the range has already reached a given
level. The second failure rate captures the cumulative evolution of risk and reflects how risk builds up
as the range increases.

The reversed hazard rate function is an important measure of analysis in the multivariate discrete
distribution of the Wiener process, specifically in the study of stock price motions in a finite price
range. The function is different from the conventional hazard function as it focuses on estimating the
probability that a price movement will be observed up to a point in time and, thus, comes into play in
studies on backward looking risk and pre-exceedance behavior. Thus, the joint reversed hazard rate
function of the this distribution is given by,

RH 'T—ZPRT—/RT< g (ELIEE
R(T)R(T) 1723 )‘1;[ [(R&(D)=r)(R(T) <) 1;[ P[R(T)<r]
) 3 [(Ck +8T(r, +1) 7 )exp[— 4C'T (1, +1)‘2]—(Ck +877; 2 )eXP[— 4C{'T rz]]
T1E . (3.12)

- Sllc, #8706, 412 Jesplaci 0, 412
k=1

Samaniego [30] demonstrated that such a function is used in an effort to determine historical
dependence and determine previous events, which is relevant in the event of markets with price upper
and lower bounds. Thus, in the truncated case, the joint truncated reversed hazard rate function of the
this distribution is,
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_ fr vz G T)
RH- _ (}7,1 ,Fz,T) = R(T),R,(T)
R(T),R,(T) {F* _ (]7 7 .T)}—l
R(T),Ry(T)\'1°72>

i [(ck +8T (7 +1)7? )exp [— 4C T +1)72 ]— (ck +877 2 )exp[— 4C' TR ]]
k=1

- (3.13)
Y [(ck +87(7; +1) )exp[— ACIT(R+1) 7 |- (Ck +8T(a; +1)7” )exp [— 4c,;1Ta;2]]

Figures 9 and 10 demonstrate the transition from the continuous to the discrete joint reversed
hazard rate function for both the original and truncated distributions, respectively.

Figure 10. The joint bivariate truncated reversed hazard rate function (a) continuous case;
and (b) discrete case.

The second rate of failure function of a discrete multivariate distribution is used to model how
risk evolves with time. It is a useful method for examining the dynamic pattern of the behavior of
stock price movement, particularly for markets with upper and lower price limits. In the framework
of the Wiener process range distribution, the function enables the analysis of the buildup of the
probability of large price movements after reaching certain levels, providing advanced information
on the timing and risk buildup. It is utilized as well to calculate cumulative risk and analyze the
dynamics of price volatility in a discrete and truncated distribution framework, providing support for
quantitative models in constrained financial markets. Using the method that devolved in [13], we
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obtain the joint second rate of failure function by,

) 2 SRy ()]
SHpg, (1),r,(T) (r, 25 T) = [li=4 (log {W .
On the other hand, the joint truncated version of this function is used to analyze the change in price
risk within a bounded range, which helps understand the dynamics of asset price volatility as it
approaches upper and lower bounds over a specific time period. Additionally, the joint truncated
second rate of failure function is given from,

_ o Sk, (r) ()]
SHR1(T).R2(T) (7, 7 T) = l-2=1 <l0g {SR-(lT)(f'i"'l) '

Figures 11 and 12 depict the transition from the continuous to the discrete joint second rate of failure
function for both the original and truncated distributions, respectively.

Figure 12. The joint bivariate truncated second rate of failure function (a) continuous case;

and (b) discrete case.

3.2. Moments

Moments about the origin are inherent properties in identifying the statistical behavior of the
multivariate discrete distribution of the Wiener process range, specifically in analyzing stock price
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movements within a finite price boundary. They record parameters such as mean, first and second
order variance, central tendency, and probability dispersion of the price movement. These measures
are utilized to interpret direction in the market, stability of price, and quantify underlying risk. As
Kotz et al. [31] demonstrated, such instances near the beginning are invaluable aides in the study of
non-conventional distributions, especially in price restricted environments that require discrete form
multivariate models. From a computational perspective, the evaluation of multivariate discrete
moments is commonly carried out using series representations closely related to probability
generating functions (PGFs). In such settings, exact closed-form expressions are rarely available, and
numerical evaluation relies on controlled truncation of infinite series with guaranteed convergence
properties. Standard references on discrete multivariate distributions and generating-function
methods provide the theoretical justification for this approach, including convergence control and
truncation accuracy [32-34].

In the multivariate case, the joint moment about the origin is defined using a multi-index
notation. Specifically, let ¢ =[g,.4,.....q, ] Ni be a vector of non-negative integers, where N/ denotes

the set of all 7 -dimensional vectors with non-negative integer components. Then, the joint ¢”

moment about the origin of the random vector [R,(T), R,(T),..., R,(T)] is then defined by,

wy=E | JR(T)* |
i=1
This definition clarifies that each component R;(T)is raised to its corresponding power ¢;. Thus, for

the original distribution, Eq (3.14) below is formulated according to this standard multivariate
moment definition as follows:

ittty <TS]Sl +876, 412 ool a7, + 02 - (e, #8772 Jospl 4,2 L 3.19)
izl =0 k=1

For a truncated case, the joint ¢ ’ moment of [R;(T), R,(T),..., R,,(T)] about the origin is,

1

R )Y - G.15)
i=1 7=0 Z [(ck +8T (b, +1)> )exp [— 4CTT (b, +1)7? ]]— Z [(ck +8T(a; +1)72 )exp[— 4C T (a; +1)72 ]]
k=1 k=1

7l i [(ck +8T(F, +1)* )exp [— 4CIT( +1) 72 ]— (ck +877, 2 )exp[— 4C T ]]

The exact evaluation of the above moments is analytically challenging; however, they can be
computed numerically. Since the analytical evaluation of the joint moments involves infinite series,
all numerical computations are carried out using truncated sums. The series terms decay
exponentially due to the factor exp[-4C,T], ensuring rapid convergence. In practice, truncation at
moderate upper indices is sufficient, as numerical stability is achieved, and further increases in the
truncation level do not affect the computed moments.

3.3. Order statistics

Order statistics are important in discrete multivariate distribution theory, especially in Wiener
process range distribution theory of differences between upper and lower price limits of stock prices.
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They are used for maximum and minimum value identification and internal ranking of samples, which
help in analyzing price behavior at the extremes or when close to price stops. They are particularly
handy in models that attempt to describe the relationship between the upper and lower bounds of a
stock price within a time horizon. David and Nagaraja [35] averred that order statistics play a key role
in relative performance measurement of assets and marginal and conditional probability estimation,
especially in non-standard or discrete multivariate distributions.

Let R;i,Rip,...,Rizi=12,...,n be a random sample of independent and identically
distributed discrete random variables, each representing the discretized range of an independent
Wiener process over the time interval (0,T) . Denote by Rz < Ris) <...< R@q) the
corresponding order statistics obtained by arranging the sample in nondecreasing order. Here, Rp.4)

represents the p” order statistic, that is, the p™ smallest observed range among the » components.

Accordingly, let
[Ryc:ty, Ruczitys - - -» Ragaiy ] < [Raqusny Ragaiiy - -0 Ragieiy| S+ < [Ruqusiy Rnztys - -» Rugiioiy|

denote the order statistics of R;1, Rj3, ..., R;7, then under the assumption of independence, the joint
PMF of the pith order statistic Ri(pi:ﬁ), i=12,...,nis,

le(T),Rz(T),...7Rn(T)(pliﬁapzrﬁ,m,pnrﬁ)(”1’VZ" STy T)= HLP _1),( ) ( R(T)(’” ))p (1 FR(T)(” ))” fR (T)(”)

il
H (Pz—l)'(n p)'(z[(CHST(’ +1)° )exp[—4CkT(ri +1)—2]ﬂ

k=1

| [l_i [(C"‘ +810; +1)” )eXP[_ 4G, T(r+1)7 ]]Jn_pi

k=1

. [i [(Ck +87(r, +1)7? )exp [— 4C,T(r; +1)7 ]— (ck +87r2 )exp [— 4C, 112 ]]]] (3.16)

k=1

The joint distribution of discrete order statistics in (3.16) is obtained using the standard
distribution function approach under the assumption of independent and identically distributed
components. Since these derivations follow classical and well-established results in discrete order
statistics theory, the detailed algebra is omitted for brevity. Interested readers are referred to [32,35,36]
for comprehensive derivations and theoretical background.

In addition, the joint CDF of the random vector [Rl(p i) Raqpyidyr o) Rn(pn:ﬁ)] is,

FR )Ry ooy (T i) (T 2ol T) = HZ( J(FR{(T)(%));(“FRI-(T)(%))F_T (3.17)
i=l i=p
= H Z( ] [i[(ck +8T(r; +1)*2)exp[— 4C, T(r; + 1)2]]J
i=l i=p; k=1

. {1 - i[(ck +8T(r; +1) 7 )exp[— AC,T(r;+1)7 ]]}_ :

k=1

Additionally, the joint PMF of minimum price changes is a fundamental tool for modeling cases
where the minimum price change is the primary determinant of the behavior of a financial asset.
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Within the framework of the discrete multivariate distribution of the Wiener process range, this
function enables one to give an exact description of the probability of minimum price movements on
various components (e.g., various assets or time periods), within a set of prices bounded from above
and below. This type of analysis is important in applications focused on estimating minimum risks or
price inertia. Balakrishnan and Nevzorov [37] pointed out that the analysis of minimum order statistics
in discrete distributions is essential for assessing reliability and probability concentration in
constrained markets, especially when using models belonging to the class of stochastic processes
associated with the Wiener process. At a knowing time 7', this function is given by,

n-1
J}(Rl(T),RZ(T),...,R,,(T))(l:ﬁ) (RsPyseestys T) = H {1 _Z[(Ck +8T(r; +1)_2 )exp[— 4C, T(r; + 1)_2 ]]J (3.18)

i=1 k=1

S fles + 876 402 Jexpl-acrs + 2oy 752 Jep|- acy i ]]ﬂ

k=1

Equation (3.18) follows directly from the general expression in Eq (3.16) by setting p =1,
which corresponds to the minimum order statistic, that is, the smallest observed discrete Wiener
process range among the 7 components.

On the other hand, the joint probability mass function of the largest price difference in the discrete
multivariate distribution of the Wiener process range is used to analyze the probability of extreme
fluctuations within specific price ranges, which helps in assessing marginal risks and estimating the
chances of prices breaking through their extreme ranges. This function is given by,

il
J7(RI(T),R2(T) R(T)(nn)(rb”za ol T) = H (Z[(Ck +8T(r; +1)” )exp[ AC,T(r; +1)” ]]J (3.19)

i=1 k=1

i [(ck +8T(r; +1)72 )exp [— 4C,T(r; +1) 72 |- (ck +8T,72 )exp [— 4C, Tr > ]]H ,
k=1

Determining the probability of reaching maximum or minimum values within a specific data set
over a given period requires finding these statistics for the truncated distribution. These probabilities
help characterize the marginal behavior of prices, the statistics enhance the accuracy of edge risk
assessment and provide a quantitative framework for analyzing the relative performance of assets in
markets subject to regulatory restrictions on price change. Thus, if

lRl(lzm)aRl(zzm)a---aRl(m;m)J < |_R2(l:m)’R2(2:m)""9R2(m:m)J <= an(lzm)’Rn(Z:m)7""Rn(m:m)J

denote to the order statistics of arandom sample R;,R;,...,R,,,i =1.2,...,n, then a truncated joint PMF of

the jth order statistic R;(j.my, { = 1,2,...,n is,

m! _ \ia
DR () RT ) Ry (T i) T T2 T3 T) = HW(F&(D(”))’ (1 R(T)(r))m Tray @) (3.20)
j

i [(ck +8T(7, +1)* )exp [— 4CIT(F +1) 7 ]— (ck +87(a; +1)* )exp [— 4C T (a; + 1)*2]]
k=

m!

! H 001
D)) Z[(Ck +8T(b, +1) 2 Jexpl- 4G T (5, + 12 |- (€, +87(a; +1)2 Jexpl- 47 T(0; + 2]
k=1
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m=j

[(ck +8T(F, +1)72 )exp [- 4C]'T(G +1)? ]— (Ck +8T(a; +1)7* )exp [— 4C T (a; + 1)‘2]]

Msles

[(ck +8T (b, +1)7> )exp [— 4C'T(b; +1)7? ]— (ck +87(a; +1)7* )exp [— 4C T (a, +1)2 ]]

=~
Il

1

i [(Ck +87(7; +1) 7 )exp [— ACIT (R +1) 7 ]— (ck +877,° )exp [— 4c,'Ti? ]]
k=1

i[(ck +8T (b, +1)? )exp[— 4C;'T (b, +1)‘2]]—i[(ck +8T(a; +1)2 )exp[— 4C;'T(q; +1)‘2]] |
k=1 k=1

Additionally, a truncated joint CDF of Ril, Riz, e, Rim, i=12,...,nis,

OR (1) Ry(T )y (i) 172500 3 T) = HZ( J( g(r)(ﬁ)f(l—ﬁg(f)(ﬁ))'”_y (3.21)

i=l i=j
i

[(ck +8T(r +1)2 )exp [— 4CT (i +1) 72 ]— (ck +8T(a; +1)2 )exp [— 4C'T(a, + 1)‘2]]

Ms

/_\

~1 3
DM -

[(Ck +8T(b;+1)7? )exp [— 4C' T (b, +1) 72 ]— (ck +8T(a, +1)72 )exp [— 4C'T(a; +1) 72 ]]

>~
Il

1
m—i

[(ck +8T (7 +1)7 )exp [— 4C]'T (7 +1) 7 ]— (ck +8T(a; +1)7> )exp [— 4C T (a, +1)7? ]]

MSEMs

[(ck +8T (b, +1)7 )exp[— 4C;'T (b, +1)*2]—(ck +8T(a; +1) )exp [— 4C' T (a, +1)*2]]

=
L

The two truncated joint probability functions for the maximum and minimum spreads are
powerful tools for characterizing extreme and local changes in asset prices within a specified price
range. This representation contributes to supporting probabilistic measurement models for maximum
and minimum spreads in a realistic financial environment based on the multivariate, discrete Weiner
distribution. The joint truncated PMF of the minimum and maximum differences between the prices at
knowing time 7 are given by:

4R, () Ry (T R (T (tmy T3 25 T3 T) =

0 m—1
i Z [(ck +8T (7 +1)? )exp [— 4C'T(F +1)2 ]— (ck +8T(a; +1)7° )exp [— 4C{'T(a; +1)7? ]]
mH 1- ]Z: 1
i=l Z [(ck +8T (b, +1)7* )exp [— 4C'T(b, +1)2 ]— (Ck +8T(a; +1)72 )exp [— 4C' T (a; +1)7 ]]
k=1
i [(ck +8T (7, +1)7> )exp [— 4C]T(F +1)72 ]— (Ck +8T7 2 )exp [— 4c,;177,.‘2]]
— 4 ; (3.22)
> [(ck +8T(b; +1) 7 )exp [— AC'T(b; +1) 7 |- (ck +8T(a; +1)7 )exp [— 4C,'T(a; +1)7 ]]
k=1

and
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(7(1?1 (T),Ry (T),.... R, (T))(mim) (RsTypeeeslyys T) =
3 m—1
| Yllecrsra v el acir o0 o, 4870 117 Jewlac T, +12 ]
m k=1
. [(Ck +8T(b; +1)~ )eXp[_ ACIT(b, +1)7? ]_ (Ck +8T(a; +1)7 )exp [— 4C;'T(a; + 1)_2]]
k=1
i[(ck 87 +1) 2 Josp[- 40, 7 +1) 2 |- 0y 4877 e 4 772
e : (3.23)
> llc+s7, +02 Jesobacire, +172 e, 870, +02 e ac 70, +02 ]
k=1
respectively.

3.4. Stress-strength parameter

The stress-strength parameter is an important probability measure in the discrete multivariate
distribution of the Wiener process range. It is used to estimate the probability that one component of
price change (strength) will outperform another (stress) within a confined price range. This is a highly
applicable concept in price-limited financial markets, as it characterizes the asset behavior in the cases of
crossover or extreme price divergence. This parameter, according to the literature, e.g., Kotz et al. [38],
has a variety of applications in reliability theory and in the assessment of relative asset performance;
and hence, it is a highly useful analytical instrument for relative risk assessment in truncated
multivariate discrete distribution-based models. If the random variable vector [R1 (1), Rz(T),...,R,,(T)] for

the variation of stock price is the strength of an element placed on a random stress vector [2,22 R ] ,
then the model for stress-strength is,

P([Rl (T), RZ (T)' R Rn(T)] > [Zl' ZZJ R Zn]) = ?=1 Z;.%=O fRi(T) (ri) FRi(T) (ri)'

We assume that {R,(T)},,; , and {Z;},, , are mutually independent collections of independent
random variables. These assumptions are standard in classical stress-strength reliability models and
ensure the rigorous derivation of the multivariate discrete stress-strength parameter given by,

00

A= ﬁz i [(Ck +87(r; +1) )exp[— AC,T(r; +1)72 ]— (Ck +877; 2 )exp[— 4C, Tr > ]]

i=1 =0\ k=1

. [(ck +8T(r; +1)72 )exp[— 4C, T (r, +1)—2]] _ (3.24)
k=1

Moreover, for the truncated version of this distribution, we consider the values
K=, +i,.,b, i=12,...n (i is a non-negative real number) and describe the changing of

stock price on the random variable vector [13l (T), R, (T ),...,I?,I(T)]. Therefore, when the changing of stock

parameter is given by,

P(R (D). RT)... R, (D> 20,2502, ) = T D S i) T )7

i=l 7=0
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{i[(ck +8T(7; +1) )exp[— 4C,T(i; +1)7 ]— (Ck +817; )exp[— 4Ck77;2]]

k =0\ k=1

et honb i e o ol s o] |

k=1

where,

&y = i[(ck +(b;+1)72 )exp [— 4C,T(b, +1)? ]— (ck +(a; +1)7? )exp [— 4C,T(a, +1)7? ]]
k=1

4. Applications

To demonstrate the practical application of the proposed discrete multivariate Wiener process
range distribution in constrained financial markets, we simulate a scenario involving two independent
real world stocks: Apple Inc. (AAPL) and Microsoft Corp. It should be emphasized that the Wiener
process framework adopted in this empirical illustration is used purely as a modeling approximation.
The Wiener process assumption is adopted here as a standard modeling approximation commonly used
in financial time series analysis [23]. No formal statistical validation of the Brownian motion
assumption is conducted for the AAPL and MSFT high-low range data considered here. Our purpose
of this section is to illustrate the practical implementation and interpretability of the proposed discrete
multivariate Wiener range distribution, rather than to empirically verify the underlying diffusion
assumption. Both AAPL and MSFT are traded on the NASDAQ stock exchange and are two of the
most heavily traded technology companies in the world. These two stocks have high liquidity, huge
market capitalization, and daily price movements that can be modeled within bounded range
assumptions. In this empirical illustration, the independence assumption between AAPL and MSFT is
adopted for methodological clarity to validate the baseline behavior of the proposed discrete bivariate
Wiener range distribution. This assumption enables isolating the intrinsic probabilistic characteristics
of the model. In future extensions, this restriction can be relaxed by introducing dependence structures
through dynamic copula models to capture realistic cross asset correlations.

Specifically, we assume a market condition in which the high and low price ranges of each stock
are bounded, with Microsoft constrained in the interval [2,8] units and Apple in the interval [1,7]
units, reflecting bounded price movement mechanisms imposed for illustrative modeling purposes. A
real dataset of hourly high-low price ranges is obtained from publicly available financial data sources
(e.g., NASDAQ via Alpha Vantage API (source of data: https://www.alphavantage.co/)) and processed
across discrete time intervals, as shown in Table 1. This data is restricted in the ranges 7; € [2,8], and
7, € [1,7], and the time interval 7 =1.

Remark 3. The truncation intervals [2,8] for MSFT and [1,7] for AAPL are adopted for illustrative
purposes only. They are not claimed to represent empirically estimated market specific bounds, nor are
they intended to characterize emerging market mechanisms for the assets considered. Instead, these
intervals are chosen to lie within the empirically observed range of the high-low data and may be
viewed as approximating interior empirical quantiles of the sample. This choice enables a clear
demonstration of the effect of truncation on the proposed distribution while maintaining consistency
with the observed data.
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Table 1. Hourly Trading Data for Microsoft (MSFT) and Apple (AAPL) with High-Low
price range differences.

MSFT

Timestamp High MSFT LOW n AAPL High  AAPL Low I
2025-08-24 07:24:26 340.61 335.22 5.39 177.15 175.02 2.13
2025-08-24 08:24:26 339.17 336.79 2.38 177.98 173.58 4.4
2025-08-24 09:24:26 340.6 335.27 5.33 176.12 174.89 1.23
2025-08-24 10:24:26 340.38 333.49 6.89 177.75 173.21 4.54
2025-08-24 11:24:26 340.5 334.27 6.23 176.16 174.16 2
2025-08-24 12:24:26 342.1 335.28 6.82 177.19 172.12 5.07
2025-08-24 13:24:26 340.29 335.31 4.98 175.04 173.91 1.13
2025-08-24 14:24:26 342.53 335.24 7.29 175.29 172.43 2.86
2025-08-24 15:24:26 339.8 337.15 2.65 176.4 169.77 6.63
2025-08-24 16:24:26 341.8 334.55 7.25 175.17 170.94 423
2025-08-24 17:24:26 340.19 335.96 423 176.52 170.65 5.87
2025-08-24 18:24:26 338.48 335.93 2.55 175.14 170.19 4.95
2025-08-24 19:24:26 340.84 335.12 5.72 175 170.34 4.66
2025-08-24 20:24:26 340.65 335.92 4.73 173.36 171.21 2.15
2025-08-24 21:24:26 340.11 335.54 4.57 173.92 169.47 4.45
2025-08-24 22:24:26 341.22 334.11 7.11 172.83 171.59 1.24
2025-08-24 23:24:26 338.17 335.34 2.83 174.8 168.99 5.81
2025-08-25 00:24:26 339.39 333.69 5.7 176.18 169.42 6.76
2025-08-25 01:24:26 339.35 334.87 4.48 175.39 169.27 6.12
2025-08-25 02:24:26 338.66 333.49 5.17 173.21 171.91 1.3
2025-08-25 03:24:26 338.32 333.32 5 173.94 170.91 3.03
2025-08-25 04:24:26 337.3 334.5 2.8 173.43 170.52 2.91
2025-08-25 05:24:26 339.07 334 5.07 173.16 171.48 1.68
2025-08-25 06:24:26 340.93 333.76 7.17 174.61 169.85 476
2025-08-25 07:24:26 338.58 335.55 3.03 175.48 169.7 5.78
2025-08-25 08:24:26 337.66 335.59 2.07 174 171.12 2.88
2025-08-25 09:24:26 338.1 335.69 241 175 168.82 6.18
2025-08-25 10:24:26 339.06 334.3 4.76 174.74 168.96 5.78
2025-08-25 11:24:26 340.41 332.56 7.85 172.77 171 1.77
2025-08-25 12:24:26 338.27 336 2.27 175.26 169.66 5.6
2025-08-25 13:24:26 342.13 334.18 7.95 175.06 168.76 6.3
2025-08-25 14:24:26 340.92 335.7 5.22 172.98 170.8 2.18
2025-08-25 15:24:26 339.56 336.84 2.72 173.08 168.64 4.44
2025-08-25 16:24:26 340.79 336.28 4.51 173.66 168.83 4.83
2025-08-25 17:24:26 339.03 335.79 3.24 172.93 168.27 4.66
2025-08-25 18:24:26 340.54 334.26 6.28 170.31 168.73 1.58
2025-08-25 19:24:26 339.38 334.13 5.25 171.96 166.99 497
2025-08-25 20:24:26 340.06 336.33 3.73 172.54 167.75 4.79
2025-08-25 21:24:26 340.39 336.86 3.53 172.2 166.26 5.94
2025-08-25 22:24:26 342.31 335.11 7.2 171.49 165.67 5.82
2025-08-25 23:24:26 341.89 335.29 6.6 169.61 166.65 2.96
2025-08-26 00:24:26 339.39 334.77 4.62 170.12 164.79 5.33
2025-08-26 01:24:26 339.73 335.3 4.43 170.78 164.58 6.2
2025-08-26 02:24:26 341.7 335.28 6.42 170.38 164.02 6.36
2025-08-26 03:24:26 341.96 334.14 7.82 167.75 165.78 1.97
2025-08-26 04:24:26 339.7 337.22 2.48 167.69 166.53 1.16
2025-08-26 05:24:26 340.37 337.42 2.95 169.11 164.21 4.9
2025-08-26 06:24:26 340.05 335.88 4.17 168.06 165.77 2.29
2025-08-26 07:24:26 341.05 336 5.05 168.53 164.15 4.38
2025-08-26 08:24:26 340.56 338.13 2.43 168.94 162.27 6.67
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Table 2. The joint truncated PMF, CDF, survival and hazard rate functions of 7 and 7.

r

TR T:723T)

FE,»(T),EZ(T)(E’@;T)

Srnma (2D Hy gy (1723

5.39
2.38
5.33
6.89
6.23
6.82
4.98
7.29
2.65
7.25
4.23
2.55
5.72
4.73
4.57
7.11
2.83
5.7
4.48
5.17
5
2.8
5.07
7.17
3.03
2.07
241
4.76
7.85
2.27
7.95
5.22
2.72
4.51
3.24
6.28
5.25
3.73
3.53
7.2
6.6
4.62
4.43
6.42
7.82
248
2.95
4.17
5.05
2.43

2.13
4.4
1.23
4.54
2
5.07
1.13
2.86
6.63
4.23
5.87
4.95
4.66
2.15
4.45
1.24
5.81
6.76
6.12
1.3
3.03
291
1.68
4.76
5.78
2.88
6.18
5.78
1.77
5.6
6.3
2.18
4.44
4.83
4.66
1.58
4.97
4.79
5.94
5.82
2.96
5.33
6.2
6.36
1.97
1.16
4.9
2.29
4.38
6.67

0.027057
0.024648
0.021813
0.024435
0.020681
0.027967
0.021514
0.014152
0.01987

0.019261
0.033205
0.031612
0.031685
0.028896
0.034001
0.014869
0.031225
0.018513
0.033278
0.023767
0.022008
0.018122
0.02842

0.025079
0.030943
0.013194
0.025065
0.039578
0.012364
0.027499
0.012543
0.02817

0.027774
0.038253
0.029069
0.019263
0.040062
0.029461
0.027638
0.024566
0.015175
0.040955
0.031544
0.021415
0.012906
0.016358
0.03231

0.023724
0.034152
0.017919

0.1496
0.0264
0.0396
0.42
0.148
0.5576
0.0104
0.282
0.1536
0.368
0.2952
0.0896
0.3888
0.1152
0.2112
0.0688
0.1716
0.7
0.344
0.06
0.2052
0.068
0.0812
0.4928
0.1976
0.0064
0.0704
0.38
0.1568
0.0288
0.92
0.1612
0.0828
0.252
0.1512
0.0912
0.4224
0.1856
0.252
0.72
0.288
0.322
0.342
0.7332
0.1728
0.0048
0.1488
0.0952
0.2352
0.098

0.8504
0.9736
0.9604
0.58
0.852
0.4424
0.9896
0.718
0.8464
0.632
0.7048
0.9104
0.6112
0.8848
0.7888
0.9312
0.8284
0.3
0.656
0.94
0.7948
0.932
0.9188
0.5072
0.8024
0.9936
0.9296
0.62
0.8432
0.9712
0.08
0.8388
0.9172
0.748
0.8488
0.9088
0.5776
0.8144
0.748
0.28
0.712
0.678
0.658
0.2668
0.8272
0.9952
0.8512
0.9048
0.7648
0.902

0.031817
0.025317
0.022713
0.042129
0.024273
0.063216
0.02174
0.019711
0.023476
0.030476
0.047113
0.034723
0.05184
0.032658
0.043105
0.015968
0.037693
0.061709
0.050728
0.025284
0.02769
0.019444
0.030931
0.049446
0.038563
0.013279
0.026963
0.063835
0.014663
0.028315
0.156787
0.033584
0.030281
0.05114
0.034247
0.021196
0.06936
0.036175
0.03695
0.087737
0.021313
0.060405
0.047939
0.080266
0.015603
0.016437
0.037958
0.02622
0.044655
0.019866
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Next, we calculate the joint truncated empirical PMF, CDF, survival function, and hazard function
for the observed data. The simulation results show good agreement with the theoretical structure of the
truncated probability mass function, as presented in Eq (3.2), with the highest probabilities
concentrated in the low to middle values of the price range, as shown in Figure 13. This Figure shows
that most of the range values are concentrated in the range between 2 and 7, which is consistent with
the nature of low volatility markets. This result is consistent with the literature; for example, El-Hadidy
and Alfreedi [15] reported on their investigation of the endogenous truncated Wiener process range
distribution, where they established that price volatility is most appropriately explained through the
application of truncated models for restricted markets, and that the probability of price change is most
appropriately explained in comparison to general continuous models.

Figure 13. Histogram of simulated ranges i and 2.

Figure 13 also indicates that stock price difference values tend to cluster around median values,
which is behavior typical of the theoretical distribution of the binary range of the discontinuous Wiener
process. The natural truncation tails of the randomly generated data are also consistent with the
concept of a truncated distribution achieved in Eq (3.2) of the work, with probabilities being
redistributed in a restricted range. The slightly different pattern between the price differentials of the
first stock, 7, and the price differentials of the second stock, 7, is also the difference in their
volatilities, substantiating the use of a multivariate range distribution model over a univariate model.
This model is suitable for a restricted market; however, in cases of high volatility, modification or
expansion of the model may be necessary. Therefore, it is important to know the period during which
stock prices are not subject to high volatility to clarify the extent of the effectiveness of our proposed
model.

As shown in Figure 14, the PMF for the truncated joint is greatest at (7, 7,) = (2,5) and (4,6),
implying that it is most likely to have co-occurring range values are in the interior of the admissible
region, which agrees with moderate price volatility in the presence of market constraints. The
probability mass is packed in these middle ranges and declines toward the boundaries, which suggests
the effect of truncation imposed by price movement constraints and fits the regime of clustering in
Figure 13. Figure 15 also illustrates the way cumulative probabilities increase steadily as n and 7
increase, which strongly establishes that mid-range values hold most of the probability mass.

Figure 16 shows the truncated joint survival function, which illustrates the probability that price
fluctuations will exceed certain limits. We observe that the function declines steeply as the values
increase, so the likelihood of highly large fluctuations is low because market constraints are imposed.
This is an explicit measure of constrained markets' properties, where large fluctuations are prevented.
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Therefore, such a function is very important in analyzing the risk of exposure to volatility in
investment portfolios, especially in extreme cases. The estimated truncated hazard function shows an
increasing pattern with increasing range values, as in Figure 17, indicating a higher risk of severe
fluctuations the closer the price approaches the imposed limits.

Figure 15. Truncated Joint CDF with probability values accumulate incrementally as the
values of 7 and 7 increase.

Figure 16. Truncated Joint survival function that represents the probability that the values
rn and 7 exceed certain limits.

AIMS Mathematics Volume 11, Issue 2, 3563-3593.



3589

008
H(r), 72906
004

002

Figure 17. Truncated Joint hazard rate function that represents the probability of a sudden
change in prices at values 7 and 7, provided they remain constant until that moment.

On the other hand, this type of graph is used practically to predict the chances of reaching certain
price levels within short periods, especially in evaluating options or hedging instruments. This
numerical experiment confirms that the proposed model can represent the constrained volatility
environment and the probabilistic structure of price movements in multi-asset markets, supporting its
use in financial market modeling, option pricing, and risk management. Furthermore, in practical
implementation, the bounds [4;,5;,] and the time horizon 7 =1 are assumed to be known to reflect

realistic regulatory and empirical constraints of financial markets. These bounds correspond to the
upper and lower daily price limits or to the empirically observed high-low ranges, as illustrated in
Table 1. T =1 assumption provides a normalized day of trading, and uniform time scale over assets.
Calibration of the model within these known parameters with actual high-low observations greatly
increases its practicability by aligning theoretical truncated probability framework to empirical market
behavior. This calibration enhances the realism of the joint PMF, CDF, and hazard functions, improves
the reliability of the model in forecasting volatility, and makes it more meaningful for real world
applications to risk management, option pricing, and financial market analysis.

Based on the real financial data in this paper, the truncated and truncated Wiener multiple range
model convincingly outperforms the unconstrained or closure only models. At the structure level, the
model mimics the effect of price limit regimes by reconcentrating the mass of probability within the
admissible region and condensing the tails near the limits, an empirical regularity documented in
markets traded under price limit belts, as in [39]. Empirically, on the truncated ranges 7 [2.8],

7 €[1,7] with T=1, the truncated joint PMF exhibits inner peaks rather than edges, while the joint
CDF increases smoothly as (7,7) grows (see Figure 15). The truncated survival function and hazard

rate are also consistent with the logic of restricted markets: For example, at (2.48,1.16), we obtain
approximately

‘S_‘Ri(T),Rz(T)(fll 7:2; T) =~ 0.9952 and HR,:(T),RZ(T)(fll fz; T) =~ 0.016,
Versus
Sty (Fr 23 T) = 0.267 and Hp(ryz,ry (71, 723 T) =~ 0.080 at (6.42, 6.36),

reflecting the risk buildup as the range widens near the boundary. These patterns are consistent with
recent evidence showing that range dependent volatility models improve forecasting compared to
close only specifications, and that range dependent GARCH formulas produce more robust estimates
of volatility and tail risk in practice, as in [40]. They are also consistent with new findings on optimal
nonparametric estimation of range volatility that establish the advantage of range information as in [41].
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At the multivariate level, more recent research confirms the role of copulas (with dynamics) as a gold
standard for reliability modeling and probabilistic forecasting of financial series, justifying the discrete
binary treatment of the range employed here [42]. Finally, closed form equations of lumped
survival/hazard equations provide directly interpretable joint exceedance probabilities on a discrete
network, as in the expanding use of survival/hazard methods in financial econometrics [43].
Overall, through reasonably addressing regulatory constraints, discrete binary dependence,
prediction power gains, and closed form lumped survival/hazard formulae, the model reflects a
robust explanatory and predictive advantage over unconstrained or independence focused
baselines, as shown in Figures 14-17.

5. Concluding remarks and future work

We present a multivariate, discrete type Wiener range distribution, aiming to build a rigorous
mathematical framework for modeling the joint behavior of spreads (highs-lows) for several financial
assets within range bound markets. The basic statistical properties of the distribution, such as the
survival function, hazard function, truncated models, and stress-strength coefficient, are derived,
demonstrating its suitability for realistic applications in volatility modeling and the valuation of risk
sensitive financial instruments. A numerical application further supports the model’s ability to capture
realistic patterns in range constrained financial markets. This correspondence between the theoretical
derivations and the numerical simulation results confirms the strong coherence of the proposed model
with the actual behavior of constrained financial data, showing its empirical validity and robustness.

Although this framework assumes independence among marginal ranges for analytical tractability,
in future research, we will extend the model to incorporate dependence structures between assets
through copula based or correlated Wiener process formulations, enabling a more comprehensive
representation of inter-asset dependence. In addition, we will address formal empirical validation of
the Wiener process assumption and data driven estimation of truncation bounds through appropriate
diagnostic tests and goodness of fit analyses based on real high-low range data. Further applications
may include the pricing of range dependent derivatives and the design of algorithms for high
frequency trading under stochastic constraints.

In addition to dependence modeling and empirical validation, an important direction for future
research is to generalize the proposed framework beyond the Gaussian Wiener setting. Extending the
discrete multivariate range distribution to non-Gaussian driving processes, such as Lévy-driven
models or stochastic volatility formulations, would enable the model to capture heavy tailed behavior,
jumps, and volatility clustering frequently observed in financial markets, while preserving the discrete
and truncated structure of the proposed approach.

Author contributions

Sana Abdulkream Alharbi: Methodology, Visualization, Software, Writing-original draft;
Mohamed Abd Allah El-Hadidy: Conceptualization, Methodology, Validation, Supervision,
Writing-review and editing. All authors have read and approved the final version of the manuscript
for publication.

Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this
article.

AIMS Mathematics Volume 11, Issue 2, 3563-3593.



3591

Acknowledgements

This scientific paper is derived from a research grant funded by Taibah University, Madinah,

Kingdom of Saudi Arabia - with grant number (447-15-1100).

Conflict of interest

The authors declare there is no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

M. Parkinson, The extreme value method for estimating the variance of the rate of return, J. Bus.,
53 (1980), 61-65.

M. Garman, M. Klass, On the estimation of security price volatilities from historical data, J. Bus.,
53 (1980), 67-78.

R. Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quant. Finance,
1 (2001), 223-236. https://doi.org/10.1080/713665670

A. J. Patton, Modelling asymmetric exchange rate dependence, Int. Econ. Rev., 47 (20006),
527-556. https://doi.org/10.1111/j.1468-2354.2006.00387.x

A. J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts, Techniques and
Tools, Princeton: Princeton University Press, 2015.

K. A. Kim, S. G. Rhee, Price limit performance: Evidence from the Tokyo stock exchange, J.
Finance, 52 (1997), 885-901. https://doi.org/10.2307/2329504

W. Feller, The asymptotic distribution of the range of sums of independent random variables, Ann.
Math. Stat., 22 (1951), 427-432.

C. Withers, S. Nadarajah, The distribution and quantiles of the range of a Wiener process, App!.
Math. Comput., 232 (2014), 766—770. https://doi.org/10.1016/j.amc.2014.01.147

A. Teamah, M. El-Hadidy, M. El-Ghoul, On bounded range distribution of a Wiener process,
Commun. Stat. Theory Methods, 51 (2022), 919-942.
https://doi.org/10.1080/03610926.2016.1267766

W. Kemp, Characterization of a discrete normal distribution, J. Stat. Plan. Inference, 63 (1997),
223-229. https://doi.org/10.1016/S0378-3758(97)00020-7

D. Roy, The discrete normal distribution, Commun. Stat. Theory Methods, 32 (2003), 1871-1883.
https://doi.org/10.1081/STA-120023256

T. Nakagawa, S. Osaki, The discrete Weibull distribution, /EEE Trans. Reliab., 24 (1975),
300-301.

K. Jayakumar, M. Girish Babu, Discrete Weibull geometric distribution and its properties,
Commun. Stat. Theory Methods, 47 (2018), 1767-1783.
https://doi.org/10.1080/03610926.2017.1327074

M. El-Hadidy, Discrete distribution for the stochastic range of a Wiener process and its properties,
Fluct. Noise Lett., 18 (2019), 1950024. https://doi.org/10.1142/S021947751950024X

M. El-Hadidy, A. Alfreedi, Internal truncated distributions: Applications to Wiener process range
distribution when deleting a minimum stochastic volatility interval from its domain, J. Taibah
Univ. Sci., 13 (2019), 201-215. https://doi.org/10.1080/16583655.2018.1555020

C. Alexander, Market Models: A Guide to Financial Data Analysis, Hoboken: John Wiley &
Sons, 2001.

AIMS Mathematics Volume 11, Issue 2, 3563-3593.


https://doi.org/10.1080/713665670
https://doi.org/10.1111/j.1468-2354.2006.00387.x
https://doi.org/10.2307/2329504
https://doi.org/10.1016/j.amc.2014.01.147
https://doi.org/10.1080/03610926.2016.1267766
https://doi.org/10.1016/S0378-3758(97)00020-7
https://doi.org/10.1081/STA-120023256
https://doi.org/10.1080/03610926.2017.1327074
https://doi.org/10.1142/S021947751950024X
https://doi.org/10.1080/16583655.2018.1555020

3592

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.
28.

29.

30.

31.

32.

33.

34.

35.
36.

37.
38.

R. Alraddadi, M. El-Hadidy, A multivariate model for the Wiener process range, with statistical
properties under stochastic volatility, AIMS Math., 10 (2025), 22023-22052.
https://doi.org/10.3934/math.2025980

D. Pan, J. B. Liu, F. Huang, J. Cao, A. Alsaedi, A Wiener process model with truncated normal
distribution for reliability analysis, Appl. Math. Model., 50 (2017), 333-346.
https://doi.org/10.1016/j.apm.2017.05.049

V. Sharma, Variance of some information measures for truncated random variables with
applications, PhD thesis, RGIPT, India, 2024.

A. Aljadani, M. M. Mansour, H. M. Yousof, A novel model for finance and reliability
applications, Pak. J. Stat. Oper. Res., 20 (2024), 489-515.
https://doi.org/10.18187/pjsor.v20i3.4439

S. J. Koopman, A. Lucas, M. Scharth, A. Opschoor, Dynamic discrete copula models for
high-frequency stock price changes, J. Appl. Econom., 33 (2018), 966-985.
https://doi.org/10.1002/jae.2645

J. G. Skellam, The frequency distribution of the difference between two Poisson variates
belonging to different populations, J. R. Stat. Soc. Ser. A, 109 (1946), 296.
https://doi.org/10.1111/5.2397-2335.1946.tb04670.x

R. S. Tsay, Analysis of Financial Time Series, 3 Eds., Hoboken: John Wiley & Sons, 2010.
https://doi.org/10.1002/9780470644560

A. Subrahmanyam, Circuit breakers and market volatility: A theoretical perspective, J. Finance,
49 (1994), 237-254. https://doi.org/10.2307/2329142

A. W. Marshall, 1. Olkin, Life Distributions, Berlin: Springer, 2007.

M. Shaked, J. G. Shanthikumar, J. B. Valdez-Torres, Discrete hazard rate functions, Comput.
Oper. Res., 22 (1995), 391-402. https://doi.org/10.1016/0305-0548(94)00048-D

R. E. Barlow, F. Proschan, Mathematical Theory of Reliability, Philadelphia: STAM, 1996.

M. Shaked, J. G. Shanthikumar, Stochastic Orders, Berlin: Springer, 2007.
https://doi.org/10.1007/978-0-387-34675-5

D. Roy, R. P. Gupta, Characterizations and model selections through reliability measures in the
discrete case, Stat. Probab. Lett., 43 (1999), 197-206.
https://doi.org/10.1016/S0167-7152(98)00260-0

F. J. Samaniego, System Signatures and Their Applications in Engineering Reliability, Berlin:
Springer, 2007. https://doi.org/10.1007/978-0-387-71797-5

S. Kotz, N. Balakrishnan, N. L. Johnson, Continuous Multivariate Distributions, Hoboken: Wiley,
2000.

N. L. Johnson, S. Kotz, N. Balakrishnan, Discrete Multivariate Distributions, Hoboken: Wiley,
1994,

H. S. Wilf, Generatingfunctionology,  Singapore: = Academic  Press,  2006.
https://doi.org/10.1016/C2009-0-02369-1

F. W. J. Olver, NIST Handbook of Mathematical Functions, Cambridge: Cambridge University
Press, 2010.

H. A. David, H. N. Nagaraja, Order Statistics, 3 Eds., Hoboken: Wiley, 2003.

B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, 4 First Course in Order Statistics, Philadelphia:
SIAM, 2008.

N. Balakrishnan, V. B. Nevzorov, A Primer on Statistical Distributions, Hoboken: Wiley, 2003.
S. Kotz, Y. Lumelskii, M. Pensky, The Stress-Strength Model and and Its Generalizations,
Singapore: World Scientific, 2003. https://doi.org/10.1142/5015

AIMS Mathematics Volume 11, Issue 2, 3563-3593.


https://doi.org/10.3934/math.2025980
https://doi.org/10.1016/j.apm.2017.05.049
https://doi.org/10.18187/pjsor.v20i3.4439
https://onlinelibrary.wiley.com/authored-by/Opschoor/Anne
https://doi.org/10.1002/jae.2645
https://doi.org/10.1111/j.2397-2335.1946.tb04670.x
https://doi.org/10.1002/9780470644560
https://doi.org/10.2307/2329142
https://doi.org/10.1016/0305-0548(94)00048-D
https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1016/S0167-7152(98)00260-0
https://doi.org/10.1007/978-0-387-71797-5
https://doi.org/10.1016/C2009-0-02369-1
https://doi.org/10.1142/5015

3593

39.

40.

41.

42.

43.

O. Mnari, B. Faouel, Price limit bands, risk-return trade-off and asymmetric volatility, Econ. Bus.
Rev., 10 (2024), 142—-162. https://doi.org/10.18559/ebr.2024.3.1604

M. Faldzinski, P. Fiszeder, P. Molnar, Improving volatility forecasts: Evidence from range-based
models, N. Am. J. Econ. Finance, 69 (2024), 102019. https://doi.org/10.1016/j.najef.2023.102019
T. Bollerslev, J. Li, Q. Li, Optimal nonparametric range-based volatility estimation, J. Econ., 238
(2024), 105548. https://doi.org/10.1016/j.jeconom.2023.105548

J. Zito, D. R. Kowal, A dynamic copula model for probabilistic forecasting of non-Gaussian
multivariate time series, preprint paper, 2025. https://doi.org/10.48550/arXiv.2502.16874

MDPI Mathematics, Application of survival analysis in economics, finance and insurance,
Special issue, 2024.

© 2026 the Author(s), licensee AIMS Press. This is an open access

Ainvis AIMS Press article distributed under the terms of the Creative Commons

Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 2, 3563-3593.


https://doi.org/10.18559/ebr.2024.3.1604
https://doi.org/10.1016/j.najef.2023.102019
https://doi.org/10.1016/j.jeconom.2023.105548
https://doi.org/10.48550/arXiv.2502.16874

