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Abstract: To address excessive randomness, low late-stage convergence efficiency, and premature
convergence in the aphid optimization algorithm (AOA), this study proposes a soft-threshold aphid
optimization algorithm (STAOA) from a search-dynamics regulation perspective. The soft-threshold
function nonlinearly controls update amplitudes to adaptively suppress or release step sizes, enhancing
local exploitation while preserving global exploration and achieving a dynamic balance between
them. A soft-threshold-based perturbation strategy further improves the ability to escape local optima,
forming a hierarchical search regulation framework. Experiments on 23 benchmark functions, the
CEC2019 test suite, and agricultural unmanned aerial vehicle (UAV) path planning tasks show that
the STAOA outperforms several representative metaheuristic algorithms in accuracy, stability, and
convergence speed, verifying the effectiveness of the soft-threshold mechanism in search-dynamics
regulation and UAV path planning optimization.
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1. Introduction

Swarm intelligence optimization algorithms [1] have demonstrated strong adaptability and stability
in solving complex optimization problems, and they are generally effective in balancing global
exploration and local exploitation. Representative algorithms include particle the swarm optimization
algorithm (PSO) [2], the asexual reproduction optimization algorithm (ARO) [3], and the genetic
algorithm (GA) [4]. The AOA [5], inspired by aphid foraging behavior, is a recently proposed
metaheuristic method that utilizes information exchange among individuals to enhance search
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efficiency and has shown promising performance across various optimization tasks [6].
Single-objective optimization problems [7] are widely encountered in resource scheduling,

engineering design, and hyperparameter tuning in machine learning. Their core task is to identify the
optimal solution of a single objective function within a complex search space. In high-dimensional,
nonlinear, and highly constrained scenarios, traditional optimization methods often exhibit limited
performance. In contrast, metaheuristic algorithms, owing to their low dependence on problem
structure, strong global search capability, and high robustness, have become mainstream tools for
solving such problems [8]. In recent years, extensive efforts have been devoted to improving
algorithmic performance, leading to numerous enhanced strategies and novel algorithms. Nevertheless,
the fundamental challenge remains on how to strengthen global exploration while ensuring satisfactory
convergence.

To enhance convergence performance, various improvement strategies have been proposed. Chu
et al. [9] designed an evolutionary search strategy centered on a slope-based search mechanism,
while retaining the global exploration ability of particle swarms, thereby achieving simultaneous
improvements in search efficiency and convergence behavior. Chen et al. [10] proposed a dimension-
enhanced cuckoo search algorithm, which improves solution quality and convergence in high-
dimensional spaces through dimension-independent updating and integration mechanisms. Meng et
al. [11] developed a hybrid paradigm-sorting particle swarm variant, in which adaptive parameter
control enhances convergence performance and optimization speed. Kang et al. [12] introduced a
Brownian motion mutation strategy into the Harris hawks optimization algorithm, using stochastic
perturbations to escape local optima and strengthen global search capability. These studies provide
important references for iterative improvements of metaheuristic algorithms.

Researchers have also proposed various strategies to enhance population diversity and further
improve the exploration–exploitation balance. Mokabberi et al. [13] presented a trend-improved
Grey wolf optimizer by adjusting control coefficients to accelerate convergence while enhancing
both exploration and exploitation, thus avoiding entrapment in local optima. Adegboye et al. [14]
improved the exponential distribution optimizer by combining the sand worm swarm algorithm (SSA)
with quadratic interpolation (QI), where QI enhances local search efficiency and accuracy, and SSA
provides a global migration mechanism to maintain population diversity. Wang et al. [15] proposed
a reinforcement learning-based the PSO, which adopts a hierarchical population structure and uses
reinforcement learning strategies to control different levels, thereby improving search efficiency and
diversity. Zhu et al. [16] developed a hybrid Black widow optimization that combines the PSO with
differential mutation, integrating global exploration and local refinement while maintaining population
diversity and preventing premature convergence. Wang et al. [17] proposed a multi-strategy enhanced
Chernobyl disaster optimizer, which further strengthens global search ability and population diversity
through radial propagation factors, improved position update formulas, chaos-based elite opposition
learning, and dimensional search mechanisms. Although these methods improve performance to
varying degrees, achieving an optimal balance between convergence speed and population diversity
in complex multimodal problems remains challenging.

Despite the remarkable progress of single-objective metaheuristic algorithms, several bottlenecks
still exist. Their adaptability to high-dimensional problems is insufficient; affected by the “curse
of dimensionality”, computational complexity increases rapidly, and algorithms are prone to being
trapped in local optima [18]. It is difficult to maintain a balance between exploration and convergence,
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as dynamic adjustment strategies are limited and imbalance often occurs when optimizing complex
objective functions. Algorithms are sensitive to parameters and lack robustness; empirically
set parameters lead to large performance fluctuations and limited adaptability [19]. Moreover,
compatibility with real-world application scenarios is weak: Most algorithms algorithms are designed
based on idealized models and require extensive manual tuning, and there is a lack of unified evaluation
and safety analysis frameworks [20].

In response to these issues, the development of single-objective optimization algorithms shows
several clear trends. Adaptive intelligent parameter control can dynamically adjust parameters
according to objective function characteristics and search states, thus balancing exploration and
convergence [21]. Hybrid algorithms and cross-mechanism fusion improve search efficiency by
integrating multiple advantageous mechanisms or stochastic strategies [22]. Integration with emerging
technologies, such as machine learning–guided search, parallel computing, or quantum computing,
can potentially break through efficiency bottlenecks [23]. Algorithm design oriented toward practical
scenarios can promote engineering applications through dedicated strategies and evaluation systems.
Combinatorial optimization strategies enhance solution stability and accuracy through multiple trials
and multi-perspective solving approaches [24].

Although single-objective metaheuristic algorithms have achieved notable progress, issues such
as convergence speed, population diversity, and parameter sensitivity still constrain performance
improvement in complex multimodal and high-dimensional scenarios [25]. These bottlenecks indicate
that relying solely on improvements at the algorithmic framework level can hardly yield sustained
significant gains. Research on optimization algorithms is gradually shifting from macroscopic
structural design to the fine-grained construction of key operators and local mechanisms.

Against this background, introducing self-regulating mechanisms that can dynamically adapt to
search states has become an important direction for improving algorithm stability and robustness [26].
Adaptive parameter control, by dynamically adjusting control parameters according to iteration stages,
population distribution, or fitness changes, helps alleviate the contradiction between exploration and
convergence and reduces dependence on empirically chosen parameters [27].

Meanwhile, guiding the search process using function forms with nonlinear regulation capability
has also attracted increasing attention. Soft-thresholding functions [28], originally widely used
in signal processing and sparse optimization, possess adaptive nonlinear characteristics for noise
suppression and sparsity regulation [29]. Introducing them into optimization algorithms enables
dynamic adjustment of perturbation amplitude and search scale during the search process: Individuals
maintain large exploration steps when far from promising regions, and automatically shrink the
search range when approaching potential optima, thereby improving local exploitation accuracy and
enhancing convergence stability. Therefore, combining soft-thresholding functions with adaptive
parameter mechanisms to dynamically regulate the search process at the level of key operators provides
a new approach to alleviating the trade-off among convergence speed, population diversity, and
parameter sensitivity, and constitutes the core motivation for the method proposed in this study.

Guided by this idea, this paper introduces soft-thresholding functions into AOA and constructs
a soft-threshold aphid optimization algorithm (STAOA). Through the soft-threshold mechanism, the
search radius is adaptively shrunk when approaching potential optimal solutions, enabling more
refined local exploitation; meanwhile, a large search scale is maintained when far from promising
regions to preserve global exploration capability. This adaptive regulation process effectively improves
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convergence accuracy and stability, accelerates convergence while ensuring global search ability, and
enhances the overall optimization performance of the algorithm.

The remainder of this paper is organized as follows: Section 2 describes the basic AOA; Section
3 introduces the proposed STAOA; Section 4 presents experimental results; Section 5 concludes the
study and discusses future work.

2. AOA

The AOA is a swarm-intelligence metaheuristic algorithm consisting of three phases: Winged-aphid
generation, migration, and attack. The transition from migration to attack is determined by the food
source stimulus intensity. During migration, aphids perform active or passive flight depending on
individual energy levels. The overall framework of the AOA is shown in Figure 1.

Figure 1. Structure of the AOA.

2.1. Winged aphid generation phase

In this stage, aphids form the initial population and begin foraging and migration, corresponding to
the algorithm’s initialization process. To simulate the division of aphids into small groups and their
natural selection, the algorithm employs k-means clustering to partition the population.

2.2. Migration phase

Influenced by stored energy, aphids can perform either active or wind-driven passive flight. In the
optimization algorithm, this behavior corresponds to particle updating. As migration continues, aphid
energy decreases, which is modeled by Eq (2.1).

S = 1 −
t

max t
, (2.1)

where S is the current stored energy, t is the iteration number, and max t is the maximum number of
iterations.

When an aphid has sufficient energy S/µ ≥ 1, where µ is a wind influence factor randomly generated
in (−1, 1), it performs spiral flight to expand its foraging range. To avoid crowding, particles tend to
explore sparser regions. If a particle’s crowding distance Ddis(Xn) is smaller than the population average
Davg dis(X), a randomly selected particle Xi is used to guide its search; otherwise, the particle with the
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largest crowding distance, denoted as Xd, is selected as the guide. The corresponding update rule is
given in Eq (2.2).

Xn(t+1) =

Xn(t) + µer cos(2πr)(Xi(t) − Xn(t)) + µer sin(2πr)(Xi(t) − Xn(t)), if Ddis(Xn) < Davg dis(X),

Xn(t) + µer cos(2πr)(Xd(t) − Xn(t)) + µer sin(2πr)(Xd(t) − Xn(t)), otherwise,
(2.2)

where Xn represents the n-th particle, Xi is a randomly selected particle, Xd is the particle with the
largest crowding distance , and r is the spiral radius (random in (0, 0.1)). The crowding distance of
particle Xn is defined by Eq (2.3).

Ddis(Xn) =
N∑

j=1

dn, j( j , n), (2.3)

where N is the total number of individuals in the population and dn, j denotes the Euclidean distance
between the n-th individual and the j-th individual. A smaller crowding distance indicates that the
current individual is located in a more crowded state; conversely, a larger crowding distance implies
that the individual lies in a sparser region.

When the energy becomes insufficient S/µ < 1, aphids switch to wind-driven linear flight, modeled
by Eq (2.4).

Xn(t + 1) = µ ∗ (Xi(t) − Xn(t)), (2.4)

where Xi is a randomly selected particle.

2.3. Attack phase

In this phase, aphids approach the food source using olfactory and gustatory cues. By integrating
these cues, the algorithm guides particles toward the optimal solution, as defined in Eq (2.5).

Xn(t + 1) = XA(t) + r ∗ (XA(t) − Xn(t) + (XB(t) − Xn(t))), (2.5)

where XA denotes the global best solution and XB represents the particle’s historical best. The aphid
movement trajectory is shown in Figure 2.
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Figure 2. Aphid movement trajectory.

The transition of aphids from the migration stage to the attack stage is induced by their preference
for long-wave light in plants. In the proposed algorithm, Eq (2.6) quantifies the light stimulation
intensity a, whereas Eq (2.7) models the corresponding preference A of the aphids.

a =
1

1 + e−
1

v+1

, (2.6)

where v is the Euclidean distance between the population’s average position and the food source. A
smaller distance indicates stronger long-wave light stimulation, resulting in a larger value of a.

A = a ∗ (1 −
t

max t
), (2.7)

where A denotes the aphid’s preference for long-wave light in plants, t is the current iteration number,
and max t is the maximum number of iterations. Let rand be a uniformly distributed random number
in (0, 1). When A ≥ rand, the algorithm enters the attack stage; otherwise, it continues the migration
stage.

The AOA achieves efficient global optimization through a multi-energy particle mechanism and
multi-level information fusion, and its flowchart is shown in Figure 3. The algorithm is an intelligent
optimization method that integrates K-means clustering for initialization with a multi-strategy flight
mechanism. Its core procedure is as follows: First, the solution space is pre-partitioned using K-means
clustering, which improves the population distribution during the initialization phase. In the main
iterative loop, the iteration count serves as the termination criterion, and the algorithm dynamically
switches between global exploration and local exploitation modes based on a comparison between
parameter A and a random value. When the exploration condition is satisfied, The strategy further
selects between linear flight and two spiral flight modes, randomly guided spiral and best particle
guided spiral, based on the ratio S/µ and a distance threshold, enabling either broad spatial expansion
or fine-grained local search. If the exploration condition is not met, the algorithm directly enters
the exploitation phase to intensively search high-quality regions. After each flight, the fitness of the
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solutions is evaluated, and the optimal solution is output upon termination of the iterations. However,
the algorithm still has certain limitations: In high-dimensional problems, random initialization
may reduce population diversity and increase the risk of premature convergence; stochastic stage
transitions can weaken early-stage search capability and slow late-stage convergence; and relying
solely on a single global best particle during the attack phase may be insufficient for complex search
spaces. Therefore, improvements in initialization strategies and the balance between exploration and
exploitation are required to enhance the algorithm’s robustness and performance.

Figure 3. AOA flowchart.

3. The proposed method

3.1. Mean-based Latin hypercube sampling

Latin hypercube sampling (LHS) [31] generates uniformly distributed points in a given space. In
this method, each dimension j ∈ 1, 2, . . . , d of the d-dimensional input space is divided into n non-
overlapping subintervals within [a, b]. A random permutation Θ j is then generated for each dimension
to ensure that all n samples cover every subinterval, as expressed in Eq (3.1).

xi j = a j + (b j − a j) (
Θ j(i) − 1 + ui j

n
), ui j ∼ U(0, 1), (3.1)

where, xi j denotes the coordinate of the i-th sample in the j-th dimension, and ui j is a uniformly
distributed random perturbation.

Mean-based Latin hypercube sampling (MBLHS) extends the conventional LHS by maximizing
the minimum pairwise distance between samples while preserving the stratification and non-repetition
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constraints in each dimension, as shown in Eq (3.2).

max
X

min
i, j
∥xi − x j∥2, (3.2)

where xi and x j denote two sampling points in the hypercube sampling process. Compared to
conventional LHS, MBLHS generates more uniformly distributed initial positions in high-dimensional
spaces. Figure 4 presents a comparison of algorithm initialization methods. It depicts the decision
space initialization in three-dimensional space under three approaches: random initialization, LHS
initialization, and MBLHS initialization. As shown, the MBLHS method produces a notably more
uniform distribution across the space compared to the other methods.

Figure 4. Random initialization, LHS initialization, MBLHS initialization.

3.2. Adaptive soft-thresholding function

The threshold function is a type of nonlinear mapping used for coefficient shrinkage. Its basic
principle is to set coefficients with magnitudes smaller than a given threshold to zero, while
compressing larger coefficients toward zero according to a specific rule. It can be regarded as a smooth
gating mechanism. This function has been widely applied in wavelet denoising, Lasso regression,
sparse coding, and compressive sensing. The commonly used soft-thresholding function is defined in
Eq (3.3).

Tτ(x) = sign(x) ·max(|x| − τ, 0), (3.3)

where x denotes the original coefficient, τ is the threshold, Tτ(x) is the processed coefficient, and
sign(x) is the sign function. Specifically, when |x| ≤ τ, the output is zero, which suppresses small-
amplitude noise; when x < −τ, the output is x + τ, shrinking large negative values; when x > τ, the
output is x − τ, shrinking large positive values.

On this basis, the traditional soft-thresholding function is improved by introducing a dynamically
adaptive threshold instead of a fixed constant. Compared with the rigid nonzero-or-zero behavior
of conventional soft thresholding, a dynamic threshold allows the shrinkage intensity to be adjusted
during the iterative process. The magnitude of τ reflects the conservativeness of the algorithm: A
larger τ leads to stronger shrinkage and more cautious local exploitation around the current optimum,
while a smaller τ results in weaker shrinkage and stronger global exploration capability.
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After generating a new population, to improve convergence efficiency and reduce the risk of
being trapped in local optima, elite particles near the global best solution are subjected to both the
soft-thresholding constraint and soft-thresholding perturbation. These two mechanisms cooperate
to balance convergence accuracy and search diversity. The update rule under the soft-thresholding
constraint is given in Eq (3.4), while the update rule under the soft-thresholding perturbation is given
in Eq (3.6). Both mechanisms share the same dynamic threshold parameter τ, forming a unified
collaborative control framework.

xt
n,new = XA + Tτ(Dev), (3.4)

where xt
n,new denotes the particle position after the soft-thresholding constraint, XA is the global best

particle, and Tτ(Dev) represents applying the soft-thresholding operator in Eq (3.3) to each dimension
of the deviation vector. The deviation vector is defined as

Dev = xt
n − XA, (3.5)

where xt
n is the position of the n-th particle at iteration t. In the following, x denotes a scalar component

of the position vector, while x denotes the d-dimensional position vector; they represent the same
physical quantity in scalar and vector forms, respectively.

From the perspective of function, Eq (3.4) serves as a soft-thresholding constraint whose core role
is shrinkage calibration: By applying soft-thresholding to the deviation between particles and the
global optimum, redundant deviations are weakened, and elite particles are guided rapidly toward the
optimum, reducing ineffective oscillations and improving convergence accuracy and stability. Eq (3.6)
acts as a soft-thresholding perturbation whose core role is dynamic exploration: A variable-radius
hyperspherical neighborhood is constructed around the global optimum, and a random perturbation
term ϵ is introduced so that particles can deviate moderately within a controlled range, thereby escaping
local optima and maintaining global search capability.

x′ = x +
τ(t)√
−2 ln(p)

· ϵ, ϵ ∼ N(0, Id), (3.6)

where x′ is the updated particle, x is the original particle, p denotes the probability that a particle
falls outside the perturbation neighborhood (set to 0.2 as the mutation probability in this algorithm),
and Id is the d-dimensional identity matrix. The parameter τ(t) is the perturbation radius, defining a
d-dimensional hypersphere centered at the global best particle with radius τ(t). It varies dynamically
with the iteration number as Eq (3.7).

τ(t) = τmax

(
tmax − t

tmax

)k

, (3.7)

where τmax is the maximum threshold, t is the current iteration, tmax is the maximum number of
iterations, and k is the decay exponent. The decay exponent k is set to 1.3 and kept constant in all
experiments.

The relationship between the two mechanisms is mainly reflected in three aspects. First, at
the parameter level, both operations rely on dynamically varying threshold parameters (Eq (3.4)
uses τ, while Eq (3.6) uses τ(t)), through which the constraint strength and perturbation range are
synchronously regulated. Second, at the objective level, both mechanisms act on elite particles near

AIMS Mathematics Volume 11, Issue 2, 3534–3559.



3543

the global optimum: One is responsible for tightening convergence, while the other is responsible
for spreading exploration, jointly enhancing the overall optimization performance. Finally, at the
process level, the constraint operation lays the foundation for convergence toward the optimum, and
the perturbation operation supplements exploration on this basis, preventing the algorithm from being
trapped in local optima due to excessive shrinkage. Together, they form a closed-loop optimization
process of constraint-perturbation.

3.3. AOA based on a soft-thresholding function (STAOA)

The AOA often struggles to maintain a stable balance between convergence speed and population
diversity, particularly in high-dimensional search spaces. Random stage transitions can reduce global
exploration in the early iterations or cause unnecessary oscillations in the later stages. To address
these issues, the STAOA incorporates soft-threshold constraints and perturbation mechanisms into its
evolutionary process, improving both exploration and convergence performance.

The main idea of the STAOA is to regulate particle movement adaptively around the global best
solution by combining deterministic shrinkage and stochastic perturbation. When particles approach
promising regions, their movement is gradually compressed to enhance exploitation; meanwhile,
controlled perturbations are introduced to prevent premature convergence and preserve diversity. The
overall framework is shown in Figure 5.

Figure 5. Structure of STAOA.

The proposed STAOA improves upon the standard AOA by addressing the unstable trade-off
between convergence speed and population diversity, particularly in high-dimensional search spaces.
The algorithm employs MLLHS for population initialization and introduces soft-threshold constraints
and perturbation mechanisms into the evolutionary process, thus forming an adaptive shrink-explore
search strategy. The pseudocode of the STAOA is presented in Algorithm 1.
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Algorithm 1: Aphid optimization algorithm based on a soft-thresholding function
Number of aphid individuals N; number of clusters nc; search space dimension M;
maximum number of iterations tmax; current iteration t = 1;
initialize population X = {X1, . . . , XN} randomly;
evaluate fitness of all individuals and obtain initial global best XA;
while t ≤ tmax do

for i = 1 : N do
Calculate the fitness of aphid Xi;
if A < rand then

Update Xi according to Eqs. (2.2) and (2.4);

else
Update Xi according to Eq. (2.5);

Evaluate fitness of all updated aphids and update XA;
Select elite set E from population according to fitness to XA;
for each Xn ∈ E do

Compute deviation vector Dev = Xn − XA;
Apply soft-threshold operator to Dev and update Xn using Eq. (3.4);

Compute dynamic threshold τ(t) according to Eq. (3.7);
for each Xn ∈ E do

Generate ϵ ∼ N(0, IM);
Update Xn using soft-threshold perturbation in Eq. (3.6);

Recalculate fitness of particles in E and update XA;
t = t + 1;

return XA;

Algorithm framework: In each iteration, the STAOA consists of three main stages:

1) Standard aphid position update;
2) Soft-threshold constraint applied to elite individuals;
3) Soft-threshold perturbation applied to elite individuals.

Population initialization: The initial population

X = {X1, X2, . . . , XN} (3.8)

is generated using the MBLHS strategy (Eqs (3.1)-(3.2)), which ensures a more uniform distribution
of individuals across the decision space and enhances initial diversity, especially in high-dimensional
problems. The fitness of all individuals is evaluated to determine the initial global best solution XA.

Standard position update: At iteration t, all aphids update their positions according to the original
AOA movement rules:

• If A < rand, positions are updated using Eqs (2.2) and (2.4);
• Otherwise, positions are updated using Eq (2.5).

After the standard update, the fitness of all individuals is re-evaluated, and XA is updated if a better
solution is found.

AIMS Mathematics Volume 11, Issue 2, 3534–3559.



3545

Elite selection: To focus refinement on promising individuals, an elite set E is selected from the
population based on proximity to XA. Only individuals in E participate in the subsequent soft-threshold
operations, reducing computational cost and preventing excessive disturbance of the entire population.

Soft-threshold constraint: For each elite particle Xn ∈ E, the deviation vector from the global best
is computed as Eq (3.5).

A soft-threshold operator is applied to each dimension of Dev as Eq (3.3), where deviations smaller
than the threshold τ are set to zero, and larger deviations are shrunk toward zero. The particle is then
updated as Eq (3.4).

This operation eliminates minor and ineffective deviations, aligns particles with the global best
in insignificant dimensions, suppresses redundant oscillations near the optimum, and accelerates
deterministic local convergence.

Dynamic threshold: The threshold τ is dynamically adjusted according to the iteration number as
Eq (3.7), where τmax is the maximum threshold and k is the decay exponent. This design allows a
large search radius in early iterations for global exploration and a gradually shrinking radius in later
iterations for fine exploitation.

Soft-threshold perturbation: To prevent premature convergence caused by excessive shrinkage, a
soft-threshold perturbation is applied to elite particles. For each elite particle Xn ∈ E, with probability
p, a Gaussian random vector is generated with probability p, and the particle is updated according to
the soft-threshold perturbation rule (see Eq (3.6)).

This perturbation generates candidate solutions within a dynamic hyperspherical neighborhood
centered at the global best solution, with a radius controlled by τ(t). It enables elite particles to escape
local optima while remaining in promising regions, thereby maintaining population diversity without
compromising convergence stability. After applying the perturbation, the fitness of updated particles
is re-evaluated, and the global best solution XA is updated accordingly.

After perturbation, the fitness of elite particles is recalculated, and the global best solution XA is
updated again.

Cooperative mechanism: The soft-threshold constraint and perturbation operate cooperatively to
form a shrink-explore mechanism:

1) The constraint step enforces deterministic shrinkage toward the global best, ensuring fast and
stable convergence.

2) The perturbation step introduces controlled randomness, enabling exploration around the current
optimum and preventing premature convergence.

3) Both mechanisms share the dynamic threshold τ(t), allowing adaptive balance between
exploitation and exploration throughout the evolutionary process.

These characteristics constitute the core innovations of the STAOA and significantly enhance
the performance and robustness of the original AOA, particularly in complex and high-dimensional
optimization problems.

AIMS Mathematics Volume 11, Issue 2, 3534–3559.



3546

4. Results

4.1. Benchmark functions and experimental design

To evaluate the performance of the STAOA, this study conducts experiments on 23 benchmark
functions and the CEC 2019 test functions [30, 31]. The inclusion of the CEC 2019 test set aims
to assess the algorithm’s capability in solving non-convex optimization problems. The dimensional
settings of the test functions are listed in Table 1.

Table 1. Dimensional settings of the test functions.

Test functions Dimensional

23 benchmark functions

f1- f12 30
f13, f14, f16- f18 2
f15, f19, f21- f23 4
f20 6

CEC 2019 test functions

CEC01 9
CEC02 16
CEC03 18
CEC04-CEC10 10

Table 2. Parameter setting of various optimization algorithms.

Algorithm Parameter Value
STAOA Adaptive Gaussian mutation probability 0.2

AOA
NC 500
n c 30

NRBO Trap-avoidance operator 0.6
MShOA Polarization angle range parameter 10

CPO
Control of odor concentration intensity 100
Diffusion coefficient 0.6
beta 1.5

DBO Ppercent 0.2

SHO

omega 1.5
u 0.05
v 0.05
l 0.05

RRTO C 10

The experiments consist of two parts. First, the performance of the STAOA is compared with
several recent algorithms, including the Newton-Raphson-based optimizer algorithm (NRBO) [32],
the modified spotted hyena optimization algorithm (MShOA) [33], the crested porcupine optimizer
algorithm (CPO) [34], the dung beetle optimizer algorithm (DBO) [35], the sea-horse optimizer
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algorithm (SHO) [36], and the RRT-based optimizer algorithm (RRTO) [37]. The parameter settings
of the comparison algorithms are consistent with those reported in the original paper; some of the
parameter configurations are shown in the table 2. Second, the STAOA is applied to the path planning
problem of plant-protection unmanned aerial vehicles (UAVs) and is compared experimentally with
the GA [38] and PSO [39]. To ensure the statistical reliability of the results, all algorithms were
independently executed 30 times under identical parameter settings, and the mean value of the results
was used as the performance evaluation metric. The population size of each algorithm was uniformly
set to 30, and the maximum number of iterations was 500. All simulation experiments were conducted
on the MATLAB R2024b platform, and the hardware environment consisted of a Windows 11 64-bit
Professional operating system with 16 GB of memory.

4.2. Performance comparison with algorithms

4.2.1. Experimental results

The experimental results are summarized in Tables 3–5, are analyzed using standard statistical
indicators, including the mean (Mean), best value (Min), and variance (Var). In addition, the average
rank value (ARV) obtained from Friedman ranking and the +/–/= win–loss–tie statistics, based on
Wilcoxon signed-rank tests, are reported. Here, + indicates that the compared algorithm outperforms
the STAOA, – indicates that it underperforms, and = denotes no significant difference.

On the set of 23 benchmark functions, the STAOA achieves the best or tied-best mean results on the
majority of test functions. In particular, for unimodal functions and some low- or medium-difficulty
multimodal functions (e.g., f1– f4 and f8– f11), the STAOA consistently converges to the theoretical
optimum or values extremely close to it. The mean values are often zero or of a very small magnitude,
and the variances are near zero, indicating exceptional convergence accuracy and stability. In contrast,
other algorithms exhibit larger performance fluctuations across functions, highlighting their stronger
problem dependency.

For more complex multimodal and combinatorial functions (e.g., f5– f7 and f12– f14), the STAOA
maintains strong competitiveness. Its mean values are generally better than or comparable to most
competing algorithms, and its variances are consistently smaller. This demonstrates that the STAOA
effectively balances global exploration in complex search spaces with stable local exploitation in later
iterations, thereby mitigating the risk of being trapped in local optima.

Across all 23 benchmark functions, the STAOA achieves an ARV of 2.65, the lowest among all
algorithms, indicating first-place overall ranking. Furthermore, the Wilcoxon-based +/–/= statistics
confirm that the STAOA achieves significantly more wins than losses against most comparative
algorithms, with a proportion of ties, demonstrating stable and generalizable superiority.

On the CEC2019 test suite, characterized by high dimensionality, strong multimodality, variable
interaction, and complex landscapes, the STAOA achieves the best or near-best mean results on several
functions, including CEC01, CEC02, CEC04, CEC05, and CEC07, with relatively small variances.
Even on functions where it does not attain the absolute best, the STAOA generally remains within the
top performance tier, outperforming or at least performing on par with most competing algorithms.
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Table 3. Results of 23 benchmark functions.
Function Algorithm

STAOA AOA NRBO MShOA CPO DBO SHO RRTO

f1

Mean 0.00E+00 0.00E+00= 1.35E-280- 0.00E+00= 3.74E-107- 3.51E-116- 4.58E-140- 3.89E-60-
Min 0.00E+00 0.00E+00 5.30E-299 0.00E+00 6.08E-231 1.81E-165 4.83E-147 1.66E-87
Var 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.19E-212 3.70E-230 5.38E-278 4.41E-118

f2

Mean 0.00E+00 0.00E+00= 8.00E-142- 4.93E-210- 1.69E-61- 1.44E-53- 3.08E-78- 2.10E-13-
Min 0.00E+00 0.00E+00 1.45E-148 0.00E+00 1.07E-97 2.44E-80 5.26E-81 1.96E-39
var 0.00E+00 0.00E+00 1.72E-281 0.00E+00 2.80E-121 6.22E-105 3.02E-155 1.33E-24

f3

Mean 0.00E+00 0.00E+00= 3.58E-264- 0.00E+00= 5.93E-92- 1.56E-70- 3.85E-97- 1.94E-08-
Min 0.00E+00 0.00E+00 5.32E-284 0.00E+00 3.98E-208 3.81E-139 1.50E-104 6.52E-41
var 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.05E-181 7.28E-139 4.09E-192 1.10E-14

f4

Mean 0.00E+00 3.77E-320- 8.16E-140- 1.21E-235- 5.37E-58- 2.44E-55- 1.03E-56- 2.13E-40-
Min 0.00E+00 0.00E+00 3.76E-145 0.00E+00 3.66E-107 7.72E-79 3.90E-60 6.92E-48
var 0.00E+00 0.00E+00 1.20E-277 0.00E+00 8.64E-114 9.72E-109 6.82E-112 1.33E-78

f5

Mean 1.90E-10 3.82E-12+ 2.79E+01- 2.90E+01- 2.69E+01- 2.57E+01- 2.82E+01- 1.82E+01-
Min 0.00E+00 0.00E+00 2.63E+01 2.89E+01 1.02E-02 2.53E+01 2.73E+01 0.00E+00
var 7.22E-19 4.36E-22 6.51E-01 3.68E-04 2.59E+01 5.02E-02 2.35E-01 1.98E+02

f6

Mean 2.73E-07 2.43E-13- 2.81E+00- 7.04E+00- 2.24E-01- 2.59E-03- 3.14E+00- 3.09E-23+
Min 0.00E+00 0.00E+00 2.03E+00 6.02E+00 6.37E-05 1.56E-05 2.25E+00 0.00E+00
var 1.49E-12 1.78E-24 2.31E-01 1.76E-01 1.46E-01 6.33E-05 3.41E-01 2.86E-44

f7

Mean 2.13E-02 2.65E-02+ 3.73E-04+ 1.24E-04+ 1.36E-04+ 1.50E-03+ 1.14E-04+ 6.04E-04+
Min 2.66E-04 1.09E-03 2.57E-05 7.97E-06 2.26E-06 1.24E-04 5.59E-07 6.48E-05
var 3.80E-04 5.14E-04 1.39E-07 1.48E-08 1.42E-08 1.61E-06 1.28E-08 2.66E-07

f8

Mean -1.26E+04 -1.26E+04= -4.79E+03- -4.52E+03- -4.25E+03- -7.98E+03- -6.05E+03- -1.26E+04=
Min -1.26E+04 -1.26E+04 -6.17E+03 -5.83E+03 -8.18E+03 -1.24E+04 -7.21E+03 -1.26E+04
var 6.57E-23 6.73E-21 3.73E+05 3.51E+05 3.42E+06 1.90E+06 3.35E+05 7.40E-22

f9

Mean 0.00E+00= 0.00E+00= 0.00E+00= 0.00E+00= 0.00E+00= 1.39E+00- 0.00E+00= 9.95E+00-
Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
var 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.79E+01 0.00E+00 2.05E+02

f10

Mean 4.44E-16 4.44E-16= 4.44E-16= 4.44E-16= 4.44E-16= 4.44E-16= 3.88E-15- 4.44E-16=
Min 4.44E-16 4.44E-16 4.44E-16 4.44E-16 4.44E-16 4.44E-16 4.44E-16 0.00E+00
var 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.21E-31 4.44E-16

f11

Mean 0.00E+00 0.00E+00= 0.00E+00= 0.00E+00= 0.00E+00= 3.10E-03- 0.00E+00= 1.44E-16-
Min 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
var 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.87E-04 0.00E+00 6.25E-31

f12

Mean 7.19E-20 9.90E-19- 2.27E-01- 1.27E+00- 8.29E-04- 3.57E-04- 2.62E-01- 6.11E-19-
Min 9.42E-34 1.57E-32 1.05E-01 5.14E-01 1.40E-10 2.55E-07 1.32E-01 1.57E-32
var 1.02E-37 1.72E-35 4.11E-03 7.36E-02 5.70E-06 1.56E-06 3.74E-03 1.12E-35

f13

Mean 1.47E-29 7.00E-18- 2.19E+00- 3.00E+00- 4.73E-03- 6.32E-01- 1.98E+00- 8.45E-06-
Min 1.35E-32 1.35E-32 1.51E+00 2.95E+00 5.14E-08 1.26E-02 1.33E+00 1.35E-32
var 2.10E-57 1.47E-33 1.64E-01 7.58E-05 3.71E-04 1.80E-01 1.07E-01 2.14E-09

f14

Mean 9.98E-01 9.98E-01= 2.44E+00- 4.97E+00- 1.06E+01- 1.56E+00- 5.17E+00- 9.98E-01=
Min 9.98E-01 9.98E-01 9.98E-01 9.98E-01 1.99E+00 9.98E-01 9.98E-01 9.98E-01
var 3.37E-32 1.02E-32 8.67E+00 2.30E+01 1.44E+01 3.34E+00 2.06E+01 6.38E-32

f15

Mean 4.61E-04 1.64E-03- 1.77E-03- 2.10E-03- 5.52E-04- 7.71E-04- 1.77E-03- 3.66E-04+
Min 3.08E-04 8.34E-04 3.07E-04 3.41E-04 3.09E-04 3.07E-04 3.08E-04 3.13E-04
var 1.11E-07 2.44E-08 2.56E-05 8.93E-06 5.91E-07 1.04E-07 2.60E-05 5.94E-09

f16

Mean -1.03E+00 -1.03E+00= -1.03E+00= -1.03E+00= -1.03E+00= -1.03E+00= -1.03E+00= -1.03E+00=
Min -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
var 5.23E-12 2.43E-07 2.84E-31 1.75E-10 2.13E-05 3.66E-31 3.66E-17 6.89E-13

f17

Mean 3.98E-01 3.99E-01- 3.98E-01= 3.99E-01- 4.03E-01- 3.98E-01= 7.10E-01- 3.98E-01=
Min 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
var 1.66E-06 8.30E-06 0.00E+00 2.00E-06 8.81E-04 0.00E+00 1.39E+00 5.24E-13

f18

Mean 3.00E+00 2.38E+01- 5.70E+00- 3.82E+00- 3.00E+00= 3.00E+00= 3.00E+00= 3.00E+00=
Min 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
var 1.12E-06 1.91E+02 2.19E+02 2.01E+01 4.08E-06 3.51E-30 7.47E-16 1.45E-09
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The overall ARV based on Friedman ranking is 2.90, still the lowest among all algorithms,
confirming that the STAOA maintains the leading rank even on high-difficulty problems. The
Wilcoxon-based +/–/= results further indicate that the STAOA consistently occupies a superior or
non-inferior position in pairwise comparisons with other algorithms.

To validate these observations statistically, Friedman nonparametric tests and Nemenyi post-hoc
comparisons were applied. On the 23 benchmark functions, the Friedman test yields p = 4.49E − 05 <
0.05, confirming significant performance differences among algorithms. The corresponding Nemenyi
critical difference is CD = 2.1893. Comparing average ranks, the STAOA exceeds this threshold
relative to several competitors, demonstrating statistically significant superiority. On the CEC2019
suite, the Friedman test produces p = 1.20E − 5 ≪ 0.01, with a Nemenyi critical difference of CD =
3.3203. Despite the larger critical difference, the STAOA maintains the best or near-best average rank,
showing statistically significant or near-significant advantages over several algorithms.

In summary, combining basic numerical results, ARV and Wilcoxon-based +/–/= statistics, and
statistical analyses via Friedman tests and Nemenyi post-hoc comparisons, the STAOA demonstrates
superior or at least competitive performance compared to many state-of-the-art algorithms in terms
of convergence accuracy, stability, robustness, and overall effectiveness. These advantages are
consistent across different benchmark types and high-difficulty CEC2019 problems, supported by
statistically significant evidence, verifying the effectiveness and reliability of the proposed algorithmic
improvements.

Table 4. Results of 23 benchmark functions.
Function Algorithm

STAOA AOA NRBO MShOA CPO DBO SHO RRTO

f19

Mean -3.86E+00 -3.85E+00- -3.86E+00= -3.86E+00= -3.86E+00= -3.86E+00= -3.86E+00= -3.86E+00=
Min -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
var 2.38E-10 1.90E-02 5.33E-30 4.34E-05 2.11E-06 7.43E-06 1.34E-05 1.00E-12

f20

Mean -3.27E+00 -2.87E+00- -3.25E+00- -3.16E+00- -3.25E+00- -3.24E+00- -3.05E+00- -3.32E+00+
Min -3.32E+00 -3.23E+00 -3.32E+00 -3.27E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00
var 3.68E-03 3.98E-02 4.94E-03 6.06E-03 4.27E-02 7.72E-03 4.78E-02 8.01E-09

f21

Mean -1.02E+01 -1.02E+01= -8.18E+00- 4.58E+00- -1.02E+01= -7.02E+00- -6.13E+00- -8.73E+00-
Min -1.02E+01 -1.02E+01 -1.02E+01 -5.52E+00 -1.02E+01 -1.02E+01 -1.01E+01 -1.02E+01
var 3.90E-17 7.38E-28 7.61E+00 1.46E-01 1.11E-08 6.95E+00 5.25E+00 7.22E+00

f22

Mean -1.04E+01 -1.04E+01= -7.72E+00- -4.89E+00- -1.04E+01= -7.47E+00- -6.14E+00- -1.00E+01-
Min -1.04E+01 -1.04E+01 -1.04E+01 -9.56E+00 -1.04E+01 -1.04E+01 -1.03E+01 -1.04E+01
var 2.80E-17 5.49E-27 9.08E+00 8.87E-01 2.46E-08 8.13E+00 4.41E+00 1.80E+00

f23

Mean -1.05E+01 -1.05E+01= -8.05E+00- -4.86E+00- -1.05E+01= -8.92E+00- -5.76E+00- -9.46E+00-
Min -1.05E+01 -1.05E+01 -1.05E+01 -1.04E+01 -1.05E+01 -1.05E+01 -1.03E+01 -1.05E+01
var 2.39E-17 1.61E-28 7.51E+00 1.56E+00 2.55E-09 6.29E+00 2.79E+00 4.80E+00

+/-/= (2/9/12) (1/16/6) (1/15/7) (1/13/9) (1/17/5) (1/17/5) (4/12/7)

ARV 2.65 3.63 4.80 5.46 4.50 5.07 5.70 4.22
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Table 5. Results of CEC2019 test functions.

Function Algorithm

STAOA AOA NRBO MShOA CPO DBO SHO RRTO

CEC01
Mean 4.44E+04 6.47E+05- 4.69E+03- 2.16E+05- 5.75E+04- 1.44E+09- 4.70E+04- 6.86E+04-
Min 4.08E+04 6.22E+05 3.76E+04 7.32E+04 4.23E+04 3.96E+04 4.05E+04 4.33E+03
var 6.95+E06 2.17E+07 1.54E+08 2.15E+10 8.29E+07 1.57E+19 9.44E+06 1.41E+09

CEC02
Mean 1.73E+01 1.84E+01- 1.74E+01- 1.91E+01- 1.74E+01- 1.74E+01- 1.74E+01- 1.80E+01-
Min 1.73E+01 1.79E+01 1.73E+01 1.78E+01 1.73E+01 1.73E+01 1.73E+01 1.76E+01
var 8.35E-07 1.01E-02 1.22E-02 5.15E-01 9.76E-05 4.18E-29 6.00E-03 5.48E-02

CEC03
Mean 1.27E+01= 1.27E+01= 1.27E+01= 1.27E+01= 1.27E+01= 1.27E+01= 1.27E+01= 1.27E+01=
Min 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01
var 1.76E-15 5.66E-07 8.31E-10 3.57E-07 1.96E-13 7.61E-11 1.00E-11 3.78E-11

CEC04
Mean 1.00E+02 7.97E+03- 1.39E+03- 8.24E+03- 2.13E+02- 2.30E+02- 1.06E+03- 9.31E+01+
Min 5.32E+01 3.83E+03 3.67E+02 6.89E+02 2.07E+01 1.59E+01 8.08E+01 6.83E+01
var 7.20E+02 5.70E+06 1.07E+06 2.79E+07 5.19E+04 5.58E+04 1.52E+06 2.78E+02

CEC05
Mean 1.26E+00 3.79E+00- 2.06E+00- 3.60E+00- 1.94E+00- 1.44E+00- 1.84E+00- 1.51E+00-
Min 1.08E+00 2.57E+00 1.63E+00 2.02E+00 1.10E+00 1.09E+00 1.37E+00 1.35E+00
var 5.17E-02 4.25E-01 4.51E-02 1.10E+00 5.91E-01 1.10E-01 1.29E-01 9.19E-03

CEC06
Mean 1.12E+01 1.30E+01- 9.71E+00+ 1.09E+01+ 1.03E+01+ 1.03E+01+ 7.53E+00+ 1.03E+01+
Min 5.67E+00 1.02E+01 7.66E+00 8.75E+00 2.91E+00 6.81E+00 5.02E+00 8.09E+00
var 7.67E+00 4.54E+00 1.01E+00 8.11E-01 5.17E+00 1.56E+00 1.34E+00 1.02E+00

CEC07
Mean 1.15E+02 1.07E+03- 4.20E+02- 8.62E+02- 7.45E+02- 5.33E+02- 2.60E+02- 4.59E+02-
Min 3.79E-01 5.88E+02 1.22E+01 3.69E+02 -7.42E+01 8.91E+01 -1.09E+01 1.51E+02
var 1.38E+04 8.41E+04 3.75E+04 8.21E+04 4.17E+05 5.80E+04 1.87E+04 1.63E+04

CEC08
Mean 5.15E+00 6.91E+00- 5.19E+00- 6.18E+00- 6.63E+00- 5.87E+00- 5.01E+00+ 5.69E+00-
Min 3.33E+00 6.15E+00 4.07E+00 5.11E+00 4.82E+00 4.55E+00 3.12E+00 3.65E+00
var 6.924E-01 1.21E-01 3.14E-01 2.24E-01 3.22E-01 4.51E-01 4.69E-01 3.39E-01

CEC09
Mean 2.84E+00 1.63E+03- 3.43E+01- 1.23E+03- 3.10E+00- 2.72E+00+ 7.13E+01- 3.39E+00-
Min 2.50E+00 2.74E+02 4.50E+00 1.63E+02 2.62E+00 2.39E+00 4.66E+00 2.76E+00
var 1.03E-01 2.09E+05 4.93E+02 7.20E+05 1.64E-01 8.21E-02 1.81E+04 1.39E-01

CEC10
Mean 2.05E+01 2.08E+01- 1.97E+01+ 2.05E+01= 2.04E+01+ 2.04E+01+ 2.00E+01+ 2.00E+01+
Min 2.01E+01 2.04E+01 9.27E+00 2.02E+01 2.00E+01 2.02E+01 1.68E+01 7.78E+00
var 8.35E-02 7.19E-02 5.27E+00 1.33E-02 5.08E-02 1.23E-02 3.77E-01 5.34E+00

+/-/= (0/9/1) (2/7/1) (1/7/2) (2/7/1) (3/6/1) (3/6/1) (3/6/1)

ARV 2.90 7.35 3.5 6.60 4.60 4.15 3.40 3.40

4.2.2. Algorithm stability analysis

Stability reflects an algorithm’s consistency and reliability across multiple independent runs under
identical experimental conditions. A stable algorithm produces similar results repeatedly and is
not highly sensitive to random initialization. In this study, the stability of the STAOA is assessed
using three statistical indicators: the mean (Mean), minimum (Min), and variance (Var) of the best
fitness values from multiple independent runs. Smaller variances and smaller gaps between mean and
minimum values indicate higher stability and stronger robustness.

All algorithms were executed independently multiple times for each benchmark function under the
same parameter settings. For each function, the Mean, Min, and Var of the results are reported in
Tables 3–5.

On the 23 benchmark functions, the STAOA demonstrates excellent stability. For functions
f1– f4, f9– f11, and f16, the variance is zero or near-zero, indicating almost identical solutions across
independent runs. Even on complex functions such as f5, f6, f7, and f15, the variance remains extremely
low (e.g., on f5 and f6, the variance is on the order of 10−12–10−19), significantly lower than most
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comparative algorithms. This confirms the STAOA’s robustness under varying random seeds.
Moreover, the STAOA’s mean values are highly consistent with the corresponding minimum values

across most benchmark functions. In many cases, they are identical or differ only slightly, indicating
that the algorithm does not rely on occasional successful runs but consistently achieves near-optimal or
optimal solutions. In contrast, several comparative algorithms show large variances and notable gaps
between mean and minimum values, reflecting unstable search behavior and sensitivity to initialization.

Similar trends are observed in the CEC2019 suite. The STAOA maintains low variances on
most functions, whereas some competitors exhibit fluctuations spanning several orders of magnitude.
The consistency between mean and minimum values further confirms the algorithm’s reliability in
challenging optimization environments.

Overall, the results clearly demonstrate that the STAOA exhibits outstanding stability. Its extremely
low variance and high mean-minimum consistency indicate robustness to random initialization,
delivering reliable and repeatable solutions. Therefore, the STAOA is not only competitive in solution
quality but also highly stable, making it suitable for practical optimization scenarios where reliability
and robustness are critical.

4.2.3. Parameter stability analysis

To evaluate the impact of parameter P on algorithmic performance, a sensitivity analysis was
performed for P ∈ {0.1, 0.2, . . . , 0.9}, as shown in Table 6. Parameter sensitivity was assessed using the
Friedman test (23 benchmark functions: p = 0.611; CEC2019 functions: p = 0.266) followed by the
Nemenyi post-hoc test (with critical difference values of 2.505 and 3.799, respectively). The statistical
results indicate that variations in P do not lead to significant differences in algorithmic performance
(p > 0.05), although minor numerical fluctuations are observed. For the 23 benchmark functions, the
best average rank (4.478) is obtained at P = 0.2, and similarly, P = 0.2 also yields the optimal average
rank (3.3) on the CEC2019 functions. Overall, the algorithm demonstrates strong robustness with
respect to parameter P, and thus setting P = 0.2 is recommended for practical engineering applications.

Table 6. Sensitivity analysis of parameter P.
Parameter P ARV on 23 Benchmark functions Average rank (23 Benchmarks) ARV on CEC2019 functions Average rank (CEC2019)
0.1 4.6 3 4.3 3
0.2 4.5 1 3.3 1
0.3 5.5 9 5.5 6
0.4 5.0 5 4.2 2
0.5 4.5 2 5.1 5
0.6 5.0 4 4.9 4
0.7 5.3 8 5.8 7
0.8 5.3 7 5.9 8
0.9 5.2 6 6.0 9

4.3. Application of STAOA to plant-protection UAV path planning

4.3.1. Problem introduction

This section addresses the following problem: In a working area consisting of multiple non-
contiguous rectangular plots, a plant-protection UAV [40] must depart from the base, perform pesticide
spraying over all plots, and return to the base. During operation, the UAV is required to minimize its
flight distance to enhance operational efficiency and conserve resources. Each plot is treated with a
back-and-forth spraying pattern [41], with designated entry and exit points as shown in Figure 6.
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Figure 6. Distribution of entry/exit points and path coverage.

Under these conditions, the problem can be formulated as a UAV path optimization task that
incorporates plot-specific coverage patterns. The primary objective is to plan a flight trajectory that
minimizes total distance and energy consumption while ensuring full coverage and complying with
operational constraints.

The objective function of the model is defined by Eq (4.1).

min
y∑

i=1

y∑
j=1

8∑
v=1

8∑
w=1

ai jbi
vc

i
wd(xi

qv, x
i
pw) +

y∑
i=1

8∑
v=1

bi
vd(xi

pv, x
i
qv). (4.1)

Here, y is the total number of target points, including w departure points and y − 1 plots. ai j represents
the UAV moving from plot i to plot j. bi

v indicates that the UAV covers plot i along the v-th path, and
ci

w indicates that the UAV covers plot j along the w-th path. d(xi
qv, x

i
pw) denotes the Euclidean distance

between the endpoint of plot i along the v-th path and the start point of plot j along the w-th path.
d(xi

pv, x
i
qv) represents the flight distance when the UAV covers plot i along the v-th path.

The constraints are given by Eqs (4.2)–(4.4).

y∑
i=1

ai j = 1,
y∑

j=1

ai j = 1, i, j = 1, 2, · · · , y, (4.2)

8∑
v=1

bi
v = 1,

8∑
w=1

ci
w = 1, i = 1, 2, · · · , 8, (4.3)

ui − u j + yai j ≤ y − 1 (2 ≤ i , j ≤ y), (4.4)

where ui is an auxiliary variable representing the visitation order of plot i in the UAV tour (taking
values 2, 3, . . . , y). This constraint ensures that if the UAV moves from plot i to plot j, the visitation
order increases accordingly, thereby eliminating potential subtours. In Eqs (4.2) and (4.3), a variable
value of 1 indicates “yes”, while 0 indicates “no”. Specifically, Eq (4.2) constrains each plot to be
visited only once; Eq (4.3) ensures that each plot is covered using only one path; and the constraint in
Eq (4.4) is used to eliminate subtours while preserving the overall main tour structure.

The simulated plots were generated as shown in Figure 7. The plot generation area is a 150 × 150
rectangular region, and each plot is rectangular. The vertex coordinates of each plot are listed in Table
7.
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Figure 7. Plot distribution map.

Table 7. Vertex coordinates of the plot.
Plot ID Vertex coordinates of the plot Centroid coordinates of the plot

A (114, 50), (114, 83), (142, 50), (142, 83) (128, 66.5)
B (70, 107), (70, 133), (100, 107), (100, 133) (85, 120)
C (65, 25), (65, 62), (90, 25), (90, 62) (77.5, 43.5)
D (112, 7), (112, 30), (140, 7), (140, 30) (126, 18.5)
E (3, 58), (3, 94), (27, 58), (27, 94) (15, 76)
F (118, 109), (118, 131), (147, 109), (147, 131) (132.5, 120)

4.3.2. Path optimization results

STAOA was applied to the target problem to validate its effectiveness. Since the algorithm is
designed for continuous problems, discrete variables were encoded into a continuous search space
and decoded after optimization, enabling a transition from continuous to discrete solutions.

Its performance was compared with the PSO and GA, with parameters listed in Table 8. Results
in Table 9 show that the STAOA outperforms both the PSO and GA in solution quality, convergence
speed, and stability.

Table 8. Algorithm parameter settings.

Algorithm Parameter settings
STAOA τmax=0.2,N=30,maxt=200,l=5
PSO c1=2,c2=2,w=0.8,N=30,maxt=200,l=5
GA c=0.8,m=0.3,N=30,maxt=200,l=5

Table 9. Comparison of algorithm performance.

Algorithm Plot traversal sequence Shortest path distance
STAOA C(P5)→ D(P1)→ A(P1)→ F(P6)→ B(P6)→ E(P6) 1130.62 m
PSO E(P5)→ C(P5)→ B(P6)→ F(P5)→ A(P2)→ D(P2) 1566.39 m
GA D(P1)→ A(P1)→ F(P1)→ B(P6)→ C(P2)→ E(P6) 1200.27 m
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In the parameter settings, N denotes the number of particles in the population, max t represents
the maximum number of iterations, and l is the spraying radius of the UAV. The experimental results
in Table 8 indicate that the STAOA can effectively find more optimal flight paths. The UAV flight
route maps generated by the three algorithms are shown in Figure 8, and the convergence curves are
presented in Figure 9.

Figure 8. STAOA, PSO, GA trajectory plots.

Figure 9. STAOA, PSO, GA convergence plots.

As shown in Figure 9, the STAOA converged to the global optimum by the 88th generation,
demonstrating rapid convergence and strong global search capability. Although the PSO algorithm
reached its best solution as early as the 7th generation, the quality of the solution was relatively low.
The GA did not converge until the 190th generation, exhibiting the slowest convergence, and its final
solution was inferior to that of the STAOA. These results indicate that the STAOA outperforms both
the PSO and GA in terms of convergence speed, solution quality, and stability, providing a reliable
approach for UAV spraying path optimization.

The experimental results presented in Table 9 show that the STAOA converged to the global
optimum by the 90th generation, and its optimal solution quality was significantly better than that of the
other two algorithms, demonstrating high convergence efficiency and strong global search capability.
Although the PSO converged by the 14th generation, its optimal solution quality was relatively poor,
failing to identify the best spraying path.The GA converged by the 90th generation, but its final optimal
solution was slightly inferior to that of the STAOA. Overall, the STAOA exhibits clear advantages in
terms of convergence speed, solution quality, and algorithm stability, making it particularly suitable for
large-scale plot path optimization problems.

In this section, the proposed STAOA is applied to UAV path planning for crop protection.
Comparisons with benchmark algorithms indicate that the STAOA achieves faster convergence and
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shorter spraying paths, supports multi-solution design, and satisfies operational constraints.

5. Discussion

The experimental results demonstrate that the STAOA achieves superior average performance and
lower variability on most benchmark and CEC2019 test functions, indicating that it attains a better
balance between global exploration and local exploitation. The improved search mechanism enhances
exploration in the early stages and gradually strengthens local refinement in the later stages, thereby
accelerating convergence and improving solution accuracy.

The STAOA performs stably on both unimodal and multimodal functions, and in particular,
it effectively avoids premature convergence on multimodal problems, reflecting its capability of
maintaining population diversity. However, its advantage is less pronounced on some highly complex
functions, suggesting that its performance in extremely complicated problems is still influenced by
parameter settings and search strategies.

In the UAV crop-protection path planning problem, the STAOA is able to generate shorter and
smoother spraying paths while satisfying operational constraints, and it supports multi-solution design,
which improves operational efficiency and flexibility. Its main limitations lie in the relatively large
number of parameters, sensitivity to problem scale and dimensionality, and insufficient adaptability to
dynamic environments.

6. Conclusions

This study proposed an improved algorithm, STAOA, and validated its performance using standard
benchmark functions, the CEC2019 test suite, and a UAV crop-protection path planning application.

The results show that the STAOA achieves higher optimization accuracy, faster convergence speed,
and better stability on most test problems, outperforming the compared algorithms overall. In the UAV
path planning application, the STAOA can generate shorter and more efficient paths under operational
constraints and supports multiple alternative solutions, demonstrating strong practical applicability.

In summary, the STAOA is an efficient and stable intelligent optimization algorithm with
significant practical potential. Future work will focus on developing parameter self-adaptation
mechanisms, improving performance in dynamic environments, and extending the algorithm to multi-
UAV cooperative scenarios.
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