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Abstract: Let R be a finite commutative ring with unity. The zero-divisor graph I'(R) is defined such
that its vertex set comprises all nonzero zero-divisors of R, with two distinct vertices being adjacent if
and only if their product is zero. This study provides a closed-form expression for the n-eccentricity
of each vertex and computes the Steiner antipodal number of I'(R) under the following conditions:
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some positive integer m.

Keywords: zero-divisor graph; n-eccentricity; n-diameter; Steiner n-antipodal graph; Steiner
antipodal number
Mathematics Subject Classification: 05C12, 05C25, 05C75

1. Introduction

Associating graphs with algebraic structures has long been recognized as a powerful tool for
analyzing and revealing their intrinsic properties. One notable example is the construction of a graph
from a commutative ring with identity, where the set of all nonzero zero-divisors forms the vertices.
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Two vertices are connected by an edge if and only if their product is zero [1]. This construction
yields the zero-divisor graph of the ring, denoted by I'(R), which has been extensively studied in
recent decades. Various structural and distance-based parameters of zero-divisor graphs over finite
commutative rings have been studied. These include investigations on Wiener indices [2,5], Laplacian
eigenvalues [3], and radio numbers [4], all of which contribute to understanding their algebraic and
metric properties. This paper focuses on the Steiner antipodal number, a significant graph invariant
that has received considerable attention in graph theory.

For a subset S of vertices in a graph G, the Steiner distance, denoted dg(S), is defined as the
minimum number of edges in any connected subgraph that contains all vertices of S. Such a subgraph
is referred to as a Steiner tree for S in G. The Steiner n-eccentricity of a vertex u, denoted e,(u),
is the maximum Steiner distance among all subsets S C V(G) of size n that include u, i.e., e,(u) =
max{ds(S) | u € § € V(G), |S| = n}. The Steiner n-radius, rad,(G), is the minimum n-eccentricity
over all vertices in G, and the Steiner n-diameter, diam,(G), is the maximum.

Singleton [6] introduced the concept of an antipodal graph in 1968. Given a graph G, its antipodal
graph shares the same vertex set, with two vertices adjacent if their distance in G equals the diameter
of G. Building on this, Arockiaraj et al. introduced the concepts of the Steiner n-antipodal graph and
the Steiner antipodal number in [7,8]. A subset of n vertices in G is said to be n-antipodal if the Steiner
distance among them equals diam,(G). The Steiner n-antipodal graph, denoted S A,(G), has the same
vertex set as G, where any n vertices form a clique in SA,(G) if and only if they are n-antipodal in G.
The Steiner antipodal number, as(G), is the smallest positive integer n such that SA,(G) = K,,, where
p =IV(G)I.

The Steiner antipodal number of zero-divisor graphs is not only of theoretical interest but also has
practical relevance. In modular arithmetic—based systems such as cryptography and error-detecting
codes, it measures the minimal number of control nodes required to cover all maximal distance
interactions, ensuring resilience against weak links caused by zero-divisors. In parallel computing and
distributed database systems, where reduced rings and finite direct products of rings naturally arise, it
quantifies the minimal redundancy or monitoring nodes needed to preserve connectivity and robustness
across subsystems. These applications highlight its usefulness in optimizing secure communication
networks, fault-tolerant computation, and distributed architectures.

In our investigation, we consider R to be a finite commutative ring with unity. Following
the approach in [9], an equivalence relation is defined on the vertex set V(I'(R)) based on open
neighborhoods. The open neighborhood of a vertex v is given by A4 (v) = {u € V(I'(R)) | uv € E(T'(R))}.
Define a relation ~ on V(I'(R)) such that u ~ v if and only if A4 («) \ {v} = A4 (v) \ {u}. This defines
an equivalence relation, and the resulting equivalence classes are called equi-neighbor classes. Let
Gr,» €xy» - - - Gy, bE such classes, with x, x,, ..., x; representing elements from each class. These
foundational results will be instrumental in proving our main theorems.

Lemma 1.1 ([7]). If G is a graph with as(G) = n, then rad,(G) = diam,(G).

Lemma 1.2 ([7]). For any complete bipartite graph K, ,, with qi < g, and q, # 1, it holds that
aS(qu,qz) =q+ 1.

Lemma 1.3 ([7]). For a graph G, as(G) = 2 if and only if G is either a complete graph or totally
disconnected.

Lemma 1.4 ([1]). Let R be a commutative ring. Then I'(R) is connected and diam(I'(R)) = 3.
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Lemma 1.5 ([10]). Let d be a divisor of n. Then |Ay4| = ¢ (g), where 1 <d < n.

The structure of this paper is organized as follows. In Section 2, we introduce a methodology to
analyze the zero-divisor graph I'(Z,,), focusing on computing the n-eccentricity for each vertex and
evaluating the Steiner antipodal number. Section 3 addresses the Steiner antipodal number for zero-
divisor graphs of reduced finite commutative rings. In Section 4, we extend the results to the case
where the ring is a finite direct product of rings of the form Z,. Lastly, Section 5 explores the inverse
problem—identifying graph structures corresponding to a given Steiner antipodal number.

2. The Steiner antipodal number of the zero-divisor graph of Z,,

In this section, we consider the ring Z,,, the set of integers modulo m. Building on the equivalence
relation ~ introduced in Section 1, we apply it to the vertex set of the zero-divisor graph I'(Z,,).

The following lemmas describe the structural properties and adjacency conditions among equi-
neighbor classes in I'(Z,,).

Lemma 2.1. In the graph I'(Z,,), each equi-neighbor class corresponds uniquely to a divisor d of m.
Furthermore, every element within such a class can be written in the form ad, where gcd(a,m/d) = 1.

ap az

Proof. Letm = q{'q5’ ...q,", where g; are distinct primes.

Existence: Assume, for contradiction, that an equi-neighbor class %, does not contain any divisor of
m. Let n; € %, be of the form n; = cyq?l"' q?k" for some 1 < i; < h. There exists a divisor d; of
m such that m | n\d,, implying that m = d,d, and n; = d,n, for some n, ¥ m. Suppose k is a vertex
adjacent to n;. Then m | kn; = kd,n,, and since n, 1 m, it follows that m | kd,. Thus, k is also adjacent

to d,, implying A (d>) \ {n1} = A (m) \ {d»}, so d, € €,. Hence, €, contains a divisor of m.

Uniqueness: Suppose two distinct divisors, d; < d,, both belong to the same class %,. Let d be such
that m = dbd and m t dd;. Thend € A (d,) but d ¢ .4 (d,), which contradicts A4 (d;) = A (d>).
Therefore, each class contains a unique divisor d of m, and its elements are precisely those of the form
ad with gcd(a,m/d) = 1. O

Lemma 2.2. Let I'(Z,,) be the zero-divisor graph of Z,,. A vertex in class €, is adjacent to a vertex in
the class 6, if and only if did; = 0 (mod m).

Proof. Letu € ¢, andv € 6,,. By Lemma 2.1, u = ad;, v = Bd; with gcd(a, m/d;) = ged(B, m/d;) = 1.
Then u and v are adjacent iff uy = 0 (mod m), which is equivalent to afd;d; = 0 (mod m), and since
« and B are units modulo respective divisors, this is equivalent to d;d; = 0 (mod m). O

Corollary 2.3 ([9]). (i) The induced subgraph G(%,) is either a complete graph or an empty graph.
(ii) For d, # d,, each vertex in 6, is adjacent to either all or none of the vertices in 6.

Remark 2.4. The number of equi-neighbor classes is given by d(m)—2, where d(m) denotes the number
of positive divisors of m. Hence, these classes can be labeled €,,,6,,, ..., ¢, corresponding to the
divisors xi, Xy, . .., X; of m.

The following lemma establishes that the Steiner k-eccentricity is constant within each equi-
neighbor class, which in turn allows the eccentricity of the entire class to be determined by computing
it for a single representative element.
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Lemma 2.5. For any u,v € 6, in I'(Z,,), it holds that e,(u) = ex(v).

Proof. Assume, for contradiction, that ex(«) = [; and e, (v) = [, with [, > [}, and u,v € 6,,. Let ST,
and ST, be Steiner trees of k vertices attaining /; and [, respectively. Removing v from S 7’ yields a
subgraph S T; with k — 1 vertices and at most /; — 1 edges. Since u and v have the same neighborhood
(excluding each other), adding u in place of v results in a Steiner tree of size [, for u, contradicting
e(w) =1 < Iy O

To compute the Steiner k-eccentricity in I'(Z,), we define the following partition of the vertex set:
a-2
Bo=Cpr, B =\
k=1

Thus, VI'(Z,,)) = %y U %, where every vertex in %, is adjacent to every vertex in %, and G is
complete for k > [a/2], while other classes are independent sets.

Lemma 2.6. Let m = g with a > 2 and q prime. Then:
(i) For3<k<l:=|%),
k, lfl/t € :@1,
e(u) = .
k-1, lfI/l € .
(ii) For k > I, we have e (u) = k — 1 for all u € V(I'(Z,,)).
Proof. Case1: 3 <k <L
Subcase 1: u € %,. Then u = aq” for some b < a — 2 and gcd(a, m/q”) = 1. Since u is adjacent to

all vertices in %, choosing k — 1 neighbors from A, yields ¢;(u) = k.
Subcase 2: u € %y. Thenu = ag®!, and A (u) = VI'(Z,,)) \ {u}. Hence, ex(u) = k — 1.

Case 2: k > 1.
Any Steiner tree with k vertices must include a vertex from %, so e;(u) = k — 1 for all u. ]

In Lemma 2.6, we determined the k-eccentricity of all vertices; using this result, we now compute
the Steiner antipodal number of I'(Z ).

Theorem 2.7. For a prime q and a > 2, the Steiner antipodal number of 1(Z,,), where m = ¢°, is
as(I'(Z,)) =1+ 1, where | = |%4,|.

Proof. From Lemma 2.6, we know that rad; = k — 1 and diam; = k for k < [. Then by Lemma 1.1, it
follows that ag(I'(Z,,)) > I. For k = [ + 1, one can choose [ vertices from %, and one vertex u € A,
to achieve Steiner distance /. These vertices form a clique in SA;,;(I'(Z,,)), and since the selection is
arbitrary, SA;. 1 (I(Z,,)) = K1 O

Remark 2.8. For m = ¢* the graph T(Z,) = K, is complete. Therefore, as(I'(Z,)) = 2 by
Lemma 1.2.

Example 2.9. The Steiner n-eccentricity of all vertices in the zero-divisor graph I'(Z,,), where m = 5°,
is illustrated below.

Let By = €55 and By = €5 U E52 U €53 U Gso. As shown in Figure 1, every vertex in A is adjacent
to each vertex in ). The equi-neighbor classes 65 and €5 are independent sets, while €3, €5+, and
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Css form complete subgraphs. The set 9, contains 3120 elements, so |%,| = | = 3120. For each k with
3 < k <[, the Steiner k-eccentricity e;(u) is given by:

o ¢;(u)=kifue A,
o ¢,(u) =k—1ifue A,,.

For k > I, we have e,(u) = k — 1 for allu € V(I'(Z,,)).

Figure 1. Zero-divisor graph of Zss.

To determine the n-eccentricity of all vertices in I'(Z,), where m = ¢{'q5’...q," and the ¢g,’s are

distinct primes, we partition the vertex set V(I'(Z,,)) as follows:
A :{ulu:aqzﬁ,l <B<h 1< b <ag),
% = {ulu:aqz'q;?,l <Bi<h1<bg <ag}...,
L = {ulu = anf‘quz, ) ..quf;z,l <PBi<h 1< bg <agl,
L1 = {ulu = oqu’i]qZ?,...qu’:l,l <Bi<h1<bg<ag}\Z,

L ={ulu = aq?'qu,...qzh,l <b <a}\Z

h
and £ = (J €,,, where x5 = ¢{'q3’. ..q;ﬂ_l ...q,", and by Lemma 1.5, we have || = gz — 1. In
p=1

addition, each vertex in .Z; for 1 < i < his adjacent to at least one equi-neighbor class in .Z.

In Lemmas 2.10-2.12, we determine the k-eccentricity of all vertices in the sets .2}, Z(2 < k < h)
and %, respectively. Using these lemmas, we then establish the Steiner antipodal number of I'(Z,,) in
Theorem 2.13.

ap a

Lemma 2.10. Let u € £, and suppose m = q\'qy ...q,", where q; < q, < ... < qy are distinct
primes. Then the Steiner n-eccentricity of u is given by:

2n—1, if3<n<h,
en(u) =
h+n-1, ifh+1<n<l,
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where ly = |V(I(Z,))| — |-£|. Additionally, for0 < j<h-1land1 <n; < qu_;— 1, ife;(u) = dj, then
ein;(u) = dj +n;— 1, where

h—j

e,

B=1

lj = 1VI'(Zn)| -

ai ax ap= an

. 1
with xz = ¢'q, g gy

Proof. Letu:aqff € Z,withl <bg<agand1 <B<h.

Casel:3<n<h.

By Lemma 2.2, the neighborhood .4 (1) = €, when bg = 1, or €, € .4 (u) otherwise. For y # 3,
we have €, ¢ A4 (u). Thus, each u € % is adjacent to exactly one equi-neighbor class in .. Let
Vv € 6. Since v is connected to all vertices in £\ ¢, , a path u — x3 — x, — g, gives the longest distance
between u and g,. Choosing n—2 vertices from distinct 6, classes along with « and g, yields a Steiner
tree of length 3 + 2(n — 2) = 2n — 1.

Case2: h+1<n<l.
Let ST, be a Steiner tree with & vertices from Case 1, having length 24 — 1. Additional vertices
chosen from outside ., each increases the length by one (as every such vertex is adjacent to some

vertex in ). Thus, e,(u) =2h—1+(m—h)=h+n-1.

Case3: [ <n</.

Extend the Steiner tree ST to S T, using [, vertices, with ¢, (#) = dy. Adding a vertex v; € é,, does
not change the distance. Adding v, € €., (with v, # v;) increases the distance by one. Since |4, is the
largest, the extra vertices are best chosen from %, to maximize distance: e,(u) = dp + (n —l)) — 1 =
do +ng— 1.

Cased: [;<n<ly,1 <j<h-1.
Use the Steiner tree S T3 formed with [; vertices (as in Case 3) and let ¢;,(u) = d;. Adding n —[;
vertices from %thj increases the distance by n —[; — 1. Hence, e,(u) =d;j+n-1j—1=d;+n;—-1. O

a az

Lemma 2.11. Let u € .2 for some 2 < k < h, and letm = q{'qy’ ... q," withq, < q, < ... < qy distinct
primes. Then:

n-2
2n-2, ifue ) L
(i) enlu) = Fuc QA s cnsn
2n—1, otherwise,
(ii) e,(u) =h+n—1,ifh+ 1 <n < ly, where ly = |\VI'(Zy))| — |-Z;

(iii) If e;;(u) = d;, then e, (W) =dj+n;—1,for0< j<h-1,1<n;<q, ;- 1, and

h—j
L%,

B=1

L = VT @) -

b

ai a as

where xp = ¢1'q5 ... q5" ... )"

Proof. Let u € £ be represented as u = aqﬁ” . qi”‘ withB; <a; and 1 < j <k

Casel:3<n<h.
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Let S = {i, i, ..., i} be the index set of the primes forming u, and define ' = {1,2,...,h}\S.

Subcase 1a: If S’ # 0, then the equi-neighbor classes ‘le.l s ngm lie in .4 (u), while vertices in these
classes are not adjacent to any vertex in ¢, for j € §’. By Lemma 1.4, the distance from any v € ¢,
to u is 3. Adding another vertex w € 6, i € S’, yields a Steiner tree of length 5.

Selecting n — 3 < |S”| vertices from distinct classes ‘Kq_,. (not containing v or w), we obtain a Steiner
tree of length 5 + 2(n — 3) = 2n — 1.

If n — 3 > |S”|, first construct a Steiner tree using all |S’| vertices from distinct ‘qu, with eg/41 (1) =
2|8’ + 1. Adding more vertices from ¢, j € S, increases the length incrementally, leading to e, (1) =
2n — 2.

Subcase 1b: If §* = 0, select n — 1 vertices from different 6, to obtain e,(u) = 2(n — 1) = 2n - 2.

Cases 2-3. Cases 2 and 3 follow by direct application of the structure and results from Lemma 2.10. O

ay _a

Lemma 2.12. Let u € £, and suppose m = qi'qy’ ...q," with qi < g» < ... < g distinct primes.
Then:
2n -2, f3<n<h,
(i) ey ={" lf " where ly = |V(U(Z))| - 1.ZL1;
h+n-=2, ifh+1<n<[+1,
(ii) Ifu € €y, then e, () =d; +nj— 1, where e;;(u) =d;, 0< j<h-1,1<n;<q, ;- 1, and

h—

~.

G,

B

lj =1V (Zu)l -

2

1l
—_

B

a az

. ag—1 a
with xg = q{'qy . ..q5  ...q)";
(iii) If u € €, for B # h, then e, ,,,(u) = c;j +r;— 1, where e, (u) = c; and

ti1 + |ngh—i+2|’ lfl Flandh—-i+?2 >ﬁ,

=3t +|C, ., ifi#landh—i+2<p,
lo + |, ifi=1,

for1 <i<h-1,0<j<h-1, and the range of r; is given by:

[1.qs - 1], ifj=0,
rieqllgnj =11, f1<j<h-p,
[Lgj— 11, ifh-B+1<j<h-1.

Proof. Letu € 6., C £, so u = axg for some S.

Case 1. Case la: 3 <n<h.

Since each v € V(I'(Z,,)) is adjacent to some % , and u is adjacent to all €, with y # g, the
distance from u to such v is at most 2. Choosing n — 1 vertices from distinct ¢, in £ (with y # ),
and including u, yields a Steiner tree of length 2(n — 1).

Case Ib: h+1<n<ly+ 1
Adding each vertex from V(I'(Z,,)) \ -Z increases the Steiner distance by 1. Thus, e,(u) = 2h — 2 +
m—-h)y=h+n-2.
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Case 2. If u € €,,, results follow directly from Lemma 2.10 (Cases 3 and 4).
Case 3. If u € €, with 8 # h:

Case 3a: lp+2 <n<l.
Each added vertex w € ‘Kxﬁ increases the tree length by 1, so ;.. (1) = co+ro—1for1 <ry < gg—1.

Case3b: t1 +1<n< th—p+1-

Adding v € €., (i # ) does not increase length. Additional vertices from the same class increase
length by 1. Choosing r; vertices from &, gives e, (1) = c; +r — 1.

Similarly, for €, ,,...,%6,,,, we get e,.,.(u) = ¢; + r; — 1 for respective r;.

> XB+12

Case 3c: th g +1 <n <ty .

Using the same logic for €, ..., %, yields e, (u) = ¢; +ri — 1. O
Theorem 2.13. Let m = q{'q5*...q)", with g1 < q» < ... < qy being distinct primes and h > 3.

Suppose:

(i) If g1+ q2» < q; + 1 foralli > 3, then

VI'(Zn))l, ifq =2,

I'Z,)) =
as(HEnD {lwr(Zm))l—ql +2, ifq #2.

(ii) Otherwise, if g\ + q» > q; + 1 for some i > 3, let j = max{i : q| + q» > q; + 1, i > 3}, and define

asT(Zy) =+ @n—D+(@-1-D+...+(@q;—1D+1,
where Iy = |VC(Z,))| — |-Z|.

Proof. Case (i): Assume q; + ¢ < ¢g; + 1 foralli > 3. Lett = |VI'(Z,))| — (g1 — 1). Suppose
as(L'(Z,,)) = t. Consider u; € 6, and u, € 6,,. Construct a Steiner tree S 7, with ¢ vertices, including
u, up. Itslengthis lp+ (g + gz + ... +qn) —2(h— 1) + (h — 1) — 1. However, from Lemma 2.12, the
diameter diam,(I'(Z,,)) equals Iy + (g2 + g3 + ... + gn) — 2(h — 1) + (h — 1), leading to a contradiction.
Soas(I'(Z,,)) > t+ 1.

Subcase (a): If g = 2, then ¢ = [V(I(Z,))| — 1, implying as(I'(Z,)) = [V(T(Z))!.

Subcase (b): If g; # 2, choose [, vertices from .Z; (1 < k < h),and (g, — 1),(gp-1 — 1),...,(qga — 1)
vertices from respective é,,, plus one from %,,. Let u be any vertex not in é,, and form a Steiner tree
S T, with those vertices. Then:

diam; \(I(Zy)) = lo + (g2 + g3 + ... + qn) =2(h = 1) + (h = 1),

which ensures S A, (I'(Z,,)) is a complete graph.

Case (ii): If g; + g, > g;+ 1 forsome i > 3,sett; = [y +(gy— 1) +(gs—1 — 1) +...+(gj—1). Assume
as(I'(Z,,)) = t; and build S T5 with u; € €,,, uy € 6,,, ly vertices from %%, all from &, with i > j, and
(g; — 1) from €,,, €,,. The Steiner distance is

l+th=D+@n=2)+@n-1-2+...+(qm1 =2 +(q; - 3).

AIMS Mathematics Volume 11, Issue 2, 3512-3533.
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But Lemma 2.12 gives
diam, I'(Z,)) = lo+(h=1D) +(qgn —2) + ... +(q; = 2),

which is greater than the Steiner tree length, so as(I'(Z,,)) > t; + 1.

Now, let uz ¢ {%,,, 6, .., €y, ,}. Selecting [ vertices from Z; and (g, — 1),...,(q; — 1) vertices
from respective 6, plus one vertex v; € 6, (1 <i < j— 1), all such configurations form Steiner trees
of maximum length. Hence SA, ,;(I'(Z,,)) is a complete graph. O

Example 2.14. Consider the zero-divisor graph I'(Z,,) withm =3 -5-7 - 11 = 1155.
Define the following sets:

0?1 = {%9 CgSa %’Cgll}a 0%2 = {%59 %-75 Cg}lla %-7’ %,11,%7,11},

%20, Z;=@,$:{ngl,%z,%g,(€m},

where x;, =5-7-11, x,=3-7-11, x3=3-5-11, x4=3-5-7.
Let Iy = | 4| + |.%| = 488 + 164 = 652.

o Ifuec Z, then es(u) =5, es(u) =17.
o Ifuec %, then es(u) = 5, eq(u) = 6.
o Ifue Z, then es(u) = 4, es(u) = 6.
e Foru¢ L, esi(u)=T7+1, 1 <i<648.
e Forue Y, esi(u)=6+1, 1 <i<648.
Hence,
{654, ifue %,
ey, () = i1 (1) = 655, egsalui) = 656.

655, otherwise,

Case 1: u € 6,,.
t1 =654, e, (u)=656+r -1, 1<r <10,
h =664, e,.,,(u)=665+r-1, 1<r<6,

13 = 670, et3+r3(u):670+r3_1, 1 <r <4

Case 2: u € 6,,.

ep+ry) =655 +rp—1, 1<ry<4,

t, =656, e,.(u)=658+r -1, 1<r <10,
1 =660, e,.,(u)=667+r-1, 1<r<6,
t3 =077, eni(u)=672+r;-1, 1<r;<2.

Case 3: u € 6..

ep+r() =655 +rp—1, 1<ry<6,

tp =658, e, (u)=660+r -1, 1<r <10,
h =668, e,.,,(u)=669+r-1, 1<r<4,
13 =672, e (u)=672+r3-1, 1<r<2

Case 4: u € 6, U L4 U L.
[} =662, ep(w)=655+ny—1, 1<ny<10,
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I, =668, e,inm)=664+n, -1, 1<n <6,
I3 =672, e,in,(u)=609+n,—-1, 1<n,<4,
eln, (W) =672 +n3 -1, 1<n3<2.

The graph corresponding to this example is illustrated in Figure 2.

N

Figure 2. Zero-divisor graph I'(Z;.5.7.11).

Example 2.15. Consider the zero-divisor graph T'(Z,,) where m = 2*-3-5% = 300. Define the following
sets:

31 = {6, €, 65,5, 65},

%237%2&%252 %22%%225,(535,%52}

35}

CrirCryr G} Where x; =2-3-5%, x,=22.5%, x3=2%.3.5.

SS

{
= {
= {
.i” {

Now compute ly = | 4| + -] + || = 140 + 68 + 4 = 212,1; = 216. The Steiner n-eccentricities are
given by:

5, i 4, 5414, 1 Z,
e3<u)={ fue 2 m()z{ thofug 1 <i<119.

4, ifué¢ 4, 4+i, ifue,

In particular, for all u, we have ej .\ (1) = ey 13(u) = 214.

The remaining computations follow analogously to those in Example 2.14. The corresponding
graph is depicted in Figure 3.
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Figure 3. Zero-divisor graph ['(Zy 3.52).

3. The Steiner antipodal number of the zero-divisor graph of a finite commutative reduced ring
with unity

Let R be a finite commutative reduced ring with unity. It is well known that such a ring is isomorphic
to a direct product of finite fields, i.e., R = F,, X F,, X --- xF,,, where each p; = ¢/ for some prime g;
and integer a; > 1, and F,, denotes the finite field with p elements.

Since each F,, has only one zero-divisor (namely 0), the set of zero-divisors in R consists of all
elements having at least one coordinate equal to zero.

We apply the equivalence relation ~ (as introduced in Section 1) to the vertex set V(I'(R)). Define
the set:

E={a=(ai,ay,...,a,) €ZR):a;,=0ora; =1}.
The next lemma describes the structure of equi-neighbor classes in this context.
Lemma 3.1. Each equi-neighbor class contains exactly one element from E.

Proof. Existence: Let %, be an equi-neighbor class. Suppose %, does not contain any element from
E. Take a = (ay,ay,...,a;) € 6, with g; € F,,, and assume that at least one coordinate g; is neither 0
nor 1. Let A = {i € {1,2,...,h} : a; # 0}. Clearly, A # (. Define b = (by,b,,...,b,) where b; = 1 if
i € A and b; = 0 otherwise. Then b € E.

Now, for any ¢ = (cy, ..., c;) adjacent to a, it must be that ¢; = O for all i € A, or @; = 1. Hence, c is
also adjacent to b. Thus, 4 (a) = A (b) and b € C,.

Uniqueness: Suppose a # b € %, and both a,b € E. Then there exists some i such that a; # b;,
implying one is O and the other is 1. Without loss of generality, assume @; = 1 and b; = 0. Let
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¢ =(cy,...,cp) where ¢; = 1 and c; = O for all j # i. Then c is adjacent to b but not to a, contradicting
A (a) = A (b). Hence, such a, b cannot both exist in the same class. O

Lemma 3.2. Tiwo vertices in 6, and 6, are adjacent if and only if uv = 0.

Corollary 3.3. (1) The induced subgraph G(%,) is totally disconnected.
(2) Foru # v, a vertex of 6, is either adjacent to all or none of the vertices in G,.

Remark 3.4. The number of equi-neighbor classes equals the number of nonzero elements in E; hence,
|E| =2"-2.

To compute the Steiner n-eccentricity of each vertex in I'(R), partition the vertex set V(I'(R)) as
follows: Let .Z; denote the set of vertices u = (uy,...,u;) such that exactly i coordinates are zero, for
1 <i<h-1.Define . = .%,_,. Note that .%,_, includes the equi-neighbor class %, where e; has 1
in the i-th coordinate and 0 elsewhere. For any u € £ with ; = 0, we have .4 (u) = €,, for 1 <i < h.

Lemma 3.5. Letu € £y andR = F),, X --- X F), with p; < p <--- < p,. Then
2n—1, if3<n<h,
e,(u) =

h+n—-1, ifh+1<n<l,

where ly = [V(II'(R)| = |.Z|. Furthermore, e n,(u) =dj+n;—1,where0 < j<h-1,1<n; < qzh_’; -1,
e, () = d;, and 1; = [VICR)| - | U] %, |

Proof. Follows directly from Lemma 2.10. O

Lemma 3.6. Letu e L with2 <k <h-2. Then:

n-2
2n-2, ifuel L
(1) For3<n<h euy=1" ffue U2,
2n—1, otherwise.
(2) Forh+1 < n <l we have e,(u) = h+n — 1, where I, = |V(I'(R))| — |.Z|.
(3) If ei,(u) = dj, then e (u) = dj+n;—1for 0 < j <h—1,1<n; <g,—1, withl; =

[VIC(R))| — ‘UZ;] G| -

Proof. The result is a direct consequence of Lemma 2.11. m|

Lemma 3.7. Let u € .. Then:

(1) For3 <n < h, e,(u) =2n-2, andforh+1 < n < ly+1, e,(u) = h+n-2, where Iy = |V(I'(R))|-|.Z|.
(2) Ifue,, thene; ., (u) =d;+n;—1,where e;(u) =d;, 1 < j<h-1,1<n; < qzh_']’ -1, and

h—j

L%,

B=1
(3) Ifu e ‘éﬂ with B # h, then e;.,,,(u) = c; + r; — 1, where e, (u) = ¢, and

l;=VI'R)| =

tiy +16,,.,l, ifi#landh—-i+2>p,
ti=tio1+16,, .., ifilandh—-i+2<p,
lo + |, ifi=1,
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for1<i<h-1,0<j<h-1, and the range of r; is

[l’q;ﬂ - 1]7 #] = 07
rieqllg -1, fl<j<h-p,
(1,g)7 =11, ifh—-B+1<j<h-1.

> Yp—j
Proof. The proof can be derived from Lemma 2.12. O

Theorem 3.8. LetR = F,, X F,, X ... X F,,, where p; = q' for some primes q; and integers a;, such
thatpy < p, <...<ppand h>3. If p1 + p» < p; + 1 forall i > 3, then

[VITR))I; ifp1 =2,
as (C(R)) = ad
VORI = p1 + 2, if p1 # 2.
Additionally, as(T(R)) = lo + $I_(pi = 1) + 1, where Iy = |V(T(R))| - |.Z| and j = max{i : p\ + p, >
pi+1,1>3}

Proof. The result follows directly from Theorem 2.13, which characterizes the Steiner antipodal
number based on the structure of the zero-divisor graph. m|

Example 3.9. In this example, we compute the Steiner n-eccentricities of all vertices in the zero-divisor
graph of the reduced ring R = 7y X Z3 X Z3 X Zs.
Let
2 ={Co.1.1.1, Cronn, Carons Cuiionh

fz = {65(0,0,1,1)’ Cg(O,I,O,])a 65(0,1,1,0)’ (g(l,0,0,l)v (g(l,O,l,O)a (5(1,1,0,0)},

Z = {CK(I,O,O,O)a Cg(O,I,O,O)a CK(O,O,I,O)a 65(0,0,0,1)}~
We have ly = |4 | + 4| =36 +28 =64, [} =68, L =70, I5=72.

Steiner eccentricities:
-lifue f:es(u) =5, eq(u) =7;
Ifue B ex(u) = 5, eaw) = 6
-Ifue Z: es(u) =4, es(u) = 6.

For 1 <i <60,
6+1i, ifuec,
esi(u) = . .
T+i, ifu¢g Z.
Therefore,
66, ifue?,
e, () = ega(u) = ) ees(u) = 67, eq(u) = 68 for all u.
67, otherwise;

The remaining cases are similar to those discussed in Example 2.14, and the associated graph is
illustrated in Figure 4.
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L, C.1.1.1) C(1,0,1,1) Ca1,01) @

Figure 4. Zero-divisor graph ['(Z, X Z3 X Z3 X Zs).

4. The Steiner antipodal number of the zero-divisor graph of a finite product of integer modulo
rings

In this section, we examine the Steiner antipodal number of the zero-divisor graph I'(R) where R is
a finite product of integer modulo rings. Let

R:qufl quzz X"'XZqZh,

where each ¢; is a prime number and a; > 2. We partition the vertex set of I'(R) using the equivalence
relation defined in Section 1.

Define the sets % as follows:
-For 1 <i<h-2,let.Z be the set of all h-tuples with exactly i coordinates equal to zero or exactly i
coordinates being non-zero divisors.

h
-Let £ = | 6.,, where each ¢5 = (0, ..., q;ﬂ_l, ...,0) is a tuple with the non-zero entry in the S-th
B=1

position.
- Define ., as the set of h-tuples with exactly & — 1 zeros or & — 1 non-zero divisors, excluding the
elements in .Z.
- Let .7, consist of tuples with all entries as non-zero divisors, or one zero entry and the remaining
h — 1 as non-zero divisors, again excluding elements in .Z.

We now present results concerning the Steiner n-eccentricity of vertices in I['(R).
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Lemma 4.1. Let u € £ and R be as defined above with g, < g, < --- < q;. Then

2n -1, for3 <n<h,
en(u) =
h+n-1, forh+1<n<l,
where ly = |V(I'(R))| — |-Z|. Furthermore, if e;(u) = d;, then e;;,,(u) =dj+n;—1,for0 < j<h-1,

1 < n] < C[h—j - 1) and
h—

~.

= VIR - || JE

sl

=
ﬂ‘

Proof. Follows from Lemma 2.10. m|

Lemmad4.2. Letu € %, for2 <k <h-2. Then

n-2
2n-2, ifuel L,
(1) For3<n<h euy=1" ffue U2,

2n—1, otherwise.
(2) Forh+1<n<lye,(u)=h+n-1.
(3) If e;;(u) = dj, then e, (W) =dj+nj—1for0< j<h-1,1<n;<q ;-1

Proof. A direct consequence of Lemma 2.11. m|

Lemma 4.3. Let u € L. Then:

o -2,
(1) For3<n<h e,u)=4"" where ly = [V(TR))| - |.Z].
h+n-2, forh+1<n<lIly+1,

(2) Ifue e, thene;.,,(wy=dj+n;—1,for1 <j<h-1,1<n;<q, ;-1
(3) If u € €,, with B # h, define t; recursively by

lo + 1%, ifi=1,
=t + (Gl ifh—i+2>B,
tioy +16,,...,I, otherwise.

Then for0 < j<h-—1, let e;,,,(u) = c;+r;— 1, where:

[1,g5 - 1], ifj=0
ri €, gpjrr =11, f1<j<h-p,
[(L,gj—11, fh-B+1<j<h-1.

Proof. Follows from Lemma 2.12. |
Theorem 4.4. LetR =7 g X Z g2 X X Z e with primes q; and a; > 2, such that g1 < g, < --- < q,
andh>3. If g1 + q» <ql+ lforalll > 3, then
[VIT(R))I, ifq1 =2,
as(T(R)) = o
[VIER)| — g1 +2, ifq # 2.

Moreover, as(I'(R)) = Iy + (qh — 1) + (Qh—l —D+---+ (qj - 1) + 1, where Iy = |V(F(R))| - |gl, and
j=max{i:q+qg>>¢q;+1,1>3}
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Proof. This follows directly from Theorem 2.13, which relates the Steiner antipodal number to the
graph structure. O

Example 4.5. Let R = Zy» XZs» XZz3. Define the sets £, 5, 5, and £ as in the original manuscript.
Let Iy = 750, I} =752, and 1, = 754. Then for u:

5, ifue %, S+i, ifug &,
63(u):{ ffue e3+i(u):{ A for1<i<747.

4, otherwise, 4+i, ifue?,

Also, es51(u) = 752 for all u. The rest of the behavior is similar to Example 2.14 and visualized in
Figure 5.

” U33 e
U34 vs2

vy
V30

V29

V28
Vg U26

Voy

N LI L AN

V10

V22
11
V21
V12

V13 U20

, S
14 V19

Vi v
16 V17 18

Figure 5. Zero-divisor graph ['(Zy X Zs2 X Z33).

5. Inverse problem for the Steiner antipodal number

The inverse problem for the Steiner antipodal number asks whether, for a given non-negative integer
k, there exists a zero-divisor graph I'(Z,) such that its Steiner antipodal number is equal to k. In
this work, we address this question by computational means, using the characterizations developed in
Section 2.

Tables 1 and 2 list all values of m for which I'(Z,,) has Steiner antipodal numbers in the range 2 to
100. These results are obtained using a Python algorithm specifically designed to compute the Steiner
antipodal number for I'(Z,,), for all integers 1 < m < 1000.
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Table 1. Zero-divisor graphs I'(Z,,) and their Steiner antipodal numbers (Part 1).

S.No

Possible zero-divisor graphs of Z,,

Steiner antipodal number

m = ¢* for any prime g > 2
m=26,8

m=10,15
m=12,14,16,21,27,35

m = 18, 20,22,33,55,77

m = 26,39,65,91, 143

m = 24,28,32

m = 17¢q, prime g < 17

m = 19¢q, 45,133, prime g < 19
m = 30,125

m = 23q, 40,44, 46, prime g < 23
m = 63,81

m=352

m = 29q, 42,50, prime g < 29
m = 31q,48,56, 64, prime g < 31
m="175

m = 54,68

m = 37q,99, prime g < 37

m =176

m = 41q, prime g < 41

m =451

m = 434,60, 117,343, prime ¢ < 43

m = 66,70

m = 47¢q,72, 80,88, prime g < 47
m =175

m = 53¢, 78, prime g < 53

m = 98,104,105, 153

m=284

m = 59¢, 100, 116, prime g < 59

m = 61q,135,147,171, prime g < 61

m=96,112,124,128

2

3

5

7

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
42
43
45
47
51
53
55
57
59
61
63
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Table 2. Zero-divisor graphs I'(Z,,) and their Steiner antipodal numbers (Part 2).

S.No Possible zero-divisor graphs of Z,, Steiner antipodal number
32 m =90 65
33 m = 67q, prime g < 67 67
34 m=102,110 69
35 m=T1q,108,136,275, prime g <71 71
36 m = 73¢q,207,245, prime g < 73 73
37 m = 148 75
38 m=114 77
39 m =79¢, 152,189,243, prime g <79 79
40 m = 130,325 81
41 m = 83¢q, 164, 165, prime g < 83 83
42 m =120 85
43 m = 120,172 87
44 m = 89¢, 126, prime g < 89 89
45 m = 132,140,261 91
46 m = 138,154 93
47 m = 144,160, 176, 184, 188 95
48 m = 97¢q, 185,279, prime g < 97 97

5.1. Python code for computing Steiner antipodal number

The following Python function estimates the Steiner antipodal number for a given composite
number m based on its prime structure:

def prime_divisors(n):

v =[]
i=1
while i < n:
k=20
ifn%i-==
j=1
while j <= i:
ifi% j==0:
k += 1
j+=1
if k == 2:
v.append(i)
i+=1
return v

def euler_totient(n):
a = prime_divisors(n)
i=1
for p in a:
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i*= (1 -0/ p)»
return int(i * n)
def antipodal(n):

v = prime_divisors(n)
a = len(v)

c=20

b=20

if a == 0:

print("Given number is prime")
elif a==1 and n == v[0] * v[0]:
print("2 is the antipodal number")
elif a ==1or a ==
b = n - euler_totient(n) + 1 - v[0]
print(b, "is the antipodal number")
else:
j=0
for i in range(l, a - 1):
if v[0] + v[1] - 2 <= v[a - i] - 1:
j+=1
if j == a - 2 and v[0] == 2:
b = n - euler_totient(n) - 1
print(b, "is the antipodal number of Z_n")
elif j == a - 2 and v[0] != 2:
b = n - euler_totient(n) - v[0] + 1
print(b, "is the antipodal number of Z_n")
else:
for i in range(a - j - 1):
c=Db + (v[i] - D)
b =c
r =nh euler_totient(n) - b
print(r, "is the antipodal number of Z_n")
n = int(input("Enter an integer: "))
antipodal(n)

5.2. Python code for solving the inverse problem (values from 2 to 100)

The following Python function searches for values of n such that the Steiner antipodal number of
I'(Z,) matches each integer m in the range [3, 100]:

def antipodal():
for m in range(3, 101):
for n in range(6, 1000):
\Y% prime_divisors(n)
a len(v)
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c=20

b=20

r=20

if a ==
r =20

elif a ==1 and n == v[0] * v[0]:
r =2

elif a ==1or a == 2:
b = n - euler_totient(n) + 1 - v[0]
r=>

else:
j=20

for i in range(l, a - 1):
if v[0] + v[1] - 2 <= v[a - i] - 1:
j+=1
if j == a - 2 and v[0] == 2:
b = n - euler_totient(n) - 1
r=>
elif j ==a - 2 and v[0] != 2:
b=n euler_totient(n) - v[0] + 1
r=>
else:
for i in range(a - j - 1):
C b + (v[i] - 1D
b =c
n

r = - euler_totient(n) - b
ifm==r:
print(m, "is the antipodal number for n =", n)
break

elif n == 999:
print(m, "is not the antipodal number of any n")
antipodal ()

This algorithm enables us to forecast which integers n yield a specified Steiner antipodal number m.
The results are validated and consistent with the theoretical bounds established in previous sections.

6. Conclusions

In this study, we examined the n-eccentricity of vertices and determined the Steiner antipodal
number for zero-divisor graphs of Z,,, reduced rings, and finite direct products of rings over Z,,. We also
presented an algorithmic procedure for computing the Steiner antipodal number of I'(Z,,), illustrated
with examples. Our findings not only enrich the study of structural invariants of zero-divisor graphs
with applications to network design and fault-tolerant architectures, but also motivate the extension of
Steiner invariants to more general algebraic frameworks.

AIMS Mathematics Volume 11, Issue 2, 3512-3533.



3532

In addition, our analysis can be extended to compute the Steiner antipodal number for related
algebraic graphs such as non-commuting graphs, total graphs, and extended zero-divisor graphs,
thereby broadening the applicability of these results to a wider class of algebraic structures.
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