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Abstract: Let R be a finite commutative ring with unity. The zero-divisor graph Γ(R) is defined such
that its vertex set comprises all nonzero zero-divisors of R, with two distinct vertices being adjacent if
and only if their product is zero. This study provides a closed-form expression for the n-eccentricity
of each vertex and computes the Steiner antipodal number of Γ(R) under the following conditions:
(i) R = Zm, (ii) R is a reduced ring, and (iii) R is a finite direct product of rings of the form Zm.
Moreover, we establish the existence of a zero-divisor graph with a Steiner antipodal number equal to
some positive integer m.
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1. Introduction

Associating graphs with algebraic structures has long been recognized as a powerful tool for
analyzing and revealing their intrinsic properties. One notable example is the construction of a graph
from a commutative ring with identity, where the set of all nonzero zero-divisors forms the vertices.
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Two vertices are connected by an edge if and only if their product is zero [1]. This construction
yields the zero-divisor graph of the ring, denoted by Γ(R), which has been extensively studied in
recent decades. Various structural and distance-based parameters of zero-divisor graphs over finite
commutative rings have been studied. These include investigations on Wiener indices [2,5], Laplacian
eigenvalues [3], and radio numbers [4], all of which contribute to understanding their algebraic and
metric properties. This paper focuses on the Steiner antipodal number, a significant graph invariant
that has received considerable attention in graph theory.

For a subset S of vertices in a graph G, the Steiner distance, denoted dG(S ), is defined as the
minimum number of edges in any connected subgraph that contains all vertices of S . Such a subgraph
is referred to as a Steiner tree for S in G. The Steiner n-eccentricity of a vertex u, denoted en(u),
is the maximum Steiner distance among all subsets S ⊂ V(G) of size n that include u, i.e., en(u) =

max{dG(S ) | u ∈ S ⊆ V(G), |S | = n}. The Steiner n-radius, radn(G), is the minimum n-eccentricity
over all vertices in G, and the Steiner n-diameter, diamn(G), is the maximum.

Singleton [6] introduced the concept of an antipodal graph in 1968. Given a graph G, its antipodal
graph shares the same vertex set, with two vertices adjacent if their distance in G equals the diameter
of G. Building on this, Arockiaraj et al. introduced the concepts of the Steiner n-antipodal graph and
the Steiner antipodal number in [7,8]. A subset of n vertices in G is said to be n-antipodal if the Steiner
distance among them equals diamn(G). The Steiner n-antipodal graph, denoted S An(G), has the same
vertex set as G, where any n vertices form a clique in S An(G) if and only if they are n-antipodal in G.
The Steiner antipodal number, aS (G), is the smallest positive integer n such that S An(G) � Kp, where
p = |V(G)|.

The Steiner antipodal number of zero-divisor graphs is not only of theoretical interest but also has
practical relevance. In modular arithmetic–based systems such as cryptography and error-detecting
codes, it measures the minimal number of control nodes required to cover all maximal distance
interactions, ensuring resilience against weak links caused by zero-divisors. In parallel computing and
distributed database systems, where reduced rings and finite direct products of rings naturally arise, it
quantifies the minimal redundancy or monitoring nodes needed to preserve connectivity and robustness
across subsystems. These applications highlight its usefulness in optimizing secure communication
networks, fault-tolerant computation, and distributed architectures.

In our investigation, we consider R to be a finite commutative ring with unity. Following
the approach in [9], an equivalence relation is defined on the vertex set V(Γ(R)) based on open
neighborhoods. The open neighborhood of a vertex v is given by N (v) = {u ∈ V(Γ(R)) | uv ∈ E(Γ(R))}.
Define a relation ∼ on V(Γ(R)) such that u ∼ v if and only if N (u) \ {v} = N (v) \ {u}. This defines
an equivalence relation, and the resulting equivalence classes are called equi-neighbor classes. Let
Cx1 ,Cx2 , . . . ,Cxk be such classes, with x1, x2, . . . , xk representing elements from each class. These
foundational results will be instrumental in proving our main theorems.

Lemma 1.1 ([7]). If G is a graph with aS (G) = n, then radn(G) = diamn(G).

Lemma 1.2 ([7]). For any complete bipartite graph Kq1,q2 with q1 ≤ q2 and q1 , 1, it holds that
aS (Kq1,q2) = q2 + 1.

Lemma 1.3 ( [7]). For a graph G, aS (G) = 2 if and only if G is either a complete graph or totally
disconnected.

Lemma 1.4 ([1]). Let R be a commutative ring. Then Γ(R) is connected and diam(Γ(R)) = 3.
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Lemma 1.5 ([10]). Let d be a divisor of n. Then |Ad| = φ
(

n
d

)
, where 1 ≤ d ≤ n.

The structure of this paper is organized as follows. In Section 2, we introduce a methodology to
analyze the zero-divisor graph Γ(Zm), focusing on computing the n-eccentricity for each vertex and
evaluating the Steiner antipodal number. Section 3 addresses the Steiner antipodal number for zero-
divisor graphs of reduced finite commutative rings. In Section 4, we extend the results to the case
where the ring is a finite direct product of rings of the form Zn. Lastly, Section 5 explores the inverse
problem—identifying graph structures corresponding to a given Steiner antipodal number.

2. The Steiner antipodal number of the zero-divisor graph of Zm

In this section, we consider the ring Zm, the set of integers modulo m. Building on the equivalence
relation ∼ introduced in Section 1, we apply it to the vertex set of the zero-divisor graph Γ(Zm).

The following lemmas describe the structural properties and adjacency conditions among equi-
neighbor classes in Γ(Zm).

Lemma 2.1. In the graph Γ(Zm), each equi-neighbor class corresponds uniquely to a divisor d of m.
Furthermore, every element within such a class can be written in the form αd, where gcd(α,m/d) = 1.

Proof. Let m = qa1
1 qa2

2 . . . qah
h , where qi are distinct primes.

Existence: Assume, for contradiction, that an equi-neighbor class Cx does not contain any divisor of
m. Let n1 ∈ Cx be of the form n1 = αq

ai1
i1
. . . q

aik
ik

, for some 1 ≤ i j ≤ h. There exists a divisor d1 of
m such that m | n1d1, implying that m = d1d2 and n1 = d2n2 for some n2 - m. Suppose k is a vertex
adjacent to n1. Then m | kn1 = kd2n2, and since n2 - m, it follows that m | kd2. Thus, k is also adjacent
to d2, implying N (d2) \ {n1} = N (n1) \ {d2}, so d2 ∈ Cx. Hence, Cx contains a divisor of m.

Uniqueness: Suppose two distinct divisors, d1 < d2, both belong to the same class Cx. Let d be such
that m = d2d and m - dd1. Then d ∈ N (d2) but d < N (d1), which contradicts N (d1) = N (d2).
Therefore, each class contains a unique divisor d of m, and its elements are precisely those of the form
αd with gcd(α,m/d) = 1. �

Lemma 2.2. Let Γ(Zm) be the zero-divisor graph of Zm. A vertex in class Cdi is adjacent to a vertex in
the class Cd j if and only if did j ≡ 0 (mod m).

Proof. Let u ∈ Cdi and v ∈ Cd j . By Lemma 2.1, u = αdi, v = βd j with gcd(α,m/di) = gcd(β,m/d j) = 1.
Then u and v are adjacent iff uv ≡ 0 (mod m), which is equivalent to αβdid j ≡ 0 (mod m), and since
α and β are units modulo respective divisors, this is equivalent to did j ≡ 0 (mod m). �

Corollary 2.3 ([9]). (i) The induced subgraph G(Cd) is either a complete graph or an empty graph.
(ii) For d1 , d2, each vertex in Cd1 is adjacent to either all or none of the vertices in Cd2 .

Remark 2.4. The number of equi-neighbor classes is given by d(m)−2, where d(m) denotes the number
of positive divisors of m. Hence, these classes can be labeled Cx1 ,Cx2 , . . . ,Cxk corresponding to the
divisors x1, x2, . . . , xk of m.

The following lemma establishes that the Steiner k-eccentricity is constant within each equi-
neighbor class, which in turn allows the eccentricity of the entire class to be determined by computing
it for a single representative element.
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Lemma 2.5. For any u, v ∈ Cxi in Γ(Zm), it holds that ek(u) = ek(v).

Proof. Assume, for contradiction, that ek(u) = l1 and ek(v) = l2 with l2 > l1, and u, v ∈ Cxi . Let S T1

and S T2 be Steiner trees of k vertices attaining l1 and l2, respectively. Removing v from S T2 yields a
subgraph S T ′2 with k − 1 vertices and at most l2 − 1 edges. Since u and v have the same neighborhood
(excluding each other), adding u in place of v results in a Steiner tree of size l2 for u, contradicting
ek(u) = l1 < l2. �

To compute the Steiner k-eccentricity in Γ(Zqa), we define the following partition of the vertex set:

B0 = Cqa−1 , B1 =

a−2⋃
k=1

Cqk .

Thus, V(Γ(Zm)) = B0 ∪B1, where every vertex in B0 is adjacent to every vertex in B1, and Cqk is
complete for k ≥ da/2e, while other classes are independent sets.

Lemma 2.6. Let m = qa with a > 2 and q prime. Then:

(i) For 3 ≤ k ≤ l := |B1|,

ek(u) =

k, if u ∈ B1,

k − 1, if u ∈ B0.

(ii) For k > l, we have ek(u) = k − 1 for all u ∈ V(Γ(Zm)).

Proof. Case 1: 3 ≤ k ≤ l.
Subcase 1: u ∈ B1. Then u = αqb for some b ≤ a − 2 and gcd(α,m/qb) = 1. Since u is adjacent to

all vertices in B0, choosing k − 1 neighbors from B1 yields ek(u) = k.
Subcase 2: u ∈ B0. Then u = αqa−1, and N (u) = V(Γ(Zm)) \ {u}. Hence, ek(u) = k − 1.

Case 2: k > l.
Any Steiner tree with k vertices must include a vertex from B0, so ek(u) = k − 1 for all u. �

In Lemma 2.6, we determined the k-eccentricity of all vertices; using this result, we now compute
the Steiner antipodal number of Γ(Zqa).

Theorem 2.7. For a prime q and a > 2, the Steiner antipodal number of Γ(Zm), where m = qa, is
aS (Γ(Zm)) = l + 1, where l = |B1|.

Proof. From Lemma 2.6, we know that radk = k − 1 and diamk = k for k ≤ l. Then by Lemma 1.1, it
follows that aS (Γ(Zm)) > l. For k = l + 1, one can choose l vertices from B1 and one vertex u ∈ B0

to achieve Steiner distance l. These vertices form a clique in S Al+1(Γ(Zm)), and since the selection is
arbitrary, S Al+1(Γ(Zm)) � Kqa−1−1. �

Remark 2.8. For m = q2, the graph Γ(Zm) � Kq−1 is complete. Therefore, aS (Γ(Zm)) = 2 by
Lemma 1.2.

Example 2.9. The Steiner n-eccentricity of all vertices in the zero-divisor graph Γ(Zm), where m = 56,
is illustrated below.

Let B0 = C55 and B1 = C5 ∪ C52 ∪ C53 ∪ C54 . As shown in Figure 1, every vertex in B0 is adjacent
to each vertex in B1. The equi-neighbor classes C5 and C52 are independent sets, while C53 , C54 , and
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C55 form complete subgraphs. The set B1 contains 3120 elements, so |B1| = l = 3120. For each k with
3 ≤ k ≤ l, the Steiner k-eccentricity ek(u) is given by:

• ek(u) = k if u ∈ B1;
• ek(u) = k − 1 if u ∈ B0.

For k > l, we have ek(u) = k − 1 for all u ∈ V(Γ(Zm)).

Figure 1. Zero-divisor graph of Z56 .

To determine the n-eccentricity of all vertices in Γ(Zm), where m = qa1
1 qa2

2 . . . qah
h and the qi’s are

distinct primes, we partition the vertex set V(Γ(Zm)) as follows:

L1 = {u|u = αqbβ
β , 1 ≤ β ≤ h, 1 ≤ bβ ≤ aβ},

L2 = {u|u = αq
bβ1
β1

q
bβ2
β2
, 1 ≤ βi ≤ h, 1 ≤ bβi ≤ aβi} . . . ,

Lh−2 = {u|u = αq
bβ1
β1

q
bβ2
β2
, . . . q

bβh−2
βh−2

, 1 ≤ βi ≤ h, 1 ≤ bβi ≤ aβi},

Lh−1 = {u|u = αq
bβ1
β1

q
bβ2
β2
, . . . q

bβh−1
βh−1

, 1 ≤ βi ≤ h, 1 ≤ bβi ≤ aβi} \L ,

Lh = {u|u = αqb1
1 qb2

2 , . . . q
bh
h , 1 ≤ bi ≤ ai} \L

and L =
h⋃
β=1

Cxβ , where xβ = qa1
1 qa2

2 . . . qaβ−1
β . . . qah

h , and by Lemma 1.5, we have |Cxβ | = qβ − 1 . In

addition, each vertex in Li for 1 ≤ i ≤ h is adjacent to at least one equi-neighbor class in L .
In Lemmas 2.10–2.12, we determine the k-eccentricity of all vertices in the sets L1, Lk(2 ≤ k ≤ h)

and L , respectively. Using these lemmas, we then establish the Steiner antipodal number of Γ(Zm) in
Theorem 2.13.

Lemma 2.10. Let u ∈ L1, and suppose m = qa1
1 qa2

2 . . . qah
h , where q1 < q2 < . . . < qh are distinct

primes. Then the Steiner n-eccentricity of u is given by:

en(u) =

2n − 1, if 3 ≤ n ≤ h,

h + n − 1, if h + 1 ≤ n ≤ l0,
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where l0 = |V(Γ(Zm))| − |L |. Additionally, for 0 ≤ j ≤ h − 1 and 1 ≤ n j ≤ qh− j − 1, if el j(u) = d j, then
el j+n j(u) = d j + n j − 1, where

l j = |V(Γ(Zm))| −

∣∣∣∣∣∣∣
h− j⋃
β=1

Cxβ

∣∣∣∣∣∣∣
with xβ = qa1

1 qa2
2 . . . qaβ−1

β . . . qah
h .

Proof. Let u = αqbβ
β ∈ L1, with 1 ≤ bβ ≤ aβ and 1 ≤ β ≤ h.

Case 1: 3 ≤ n ≤ h.
By Lemma 2.2, the neighborhood N (u) = Cxβ when bβ = 1, or Cxβ ⊆ N (u) otherwise. For γ , β,

we have Cxγ * N (u). Thus, each u ∈ L1 is adjacent to exactly one equi-neighbor class in L . Let
v ∈ Cxγ . Since v is connected to all vertices in L \Cxγ , a path u− xβ− xγ−qγ gives the longest distance
between u and qγ. Choosing n−2 vertices from distinct Cqδ classes along with u and qγ yields a Steiner
tree of length 3 + 2(n − 2) = 2n − 1.

Case 2: h + 1 ≤ n ≤ l0.
Let S T1 be a Steiner tree with h vertices from Case 1, having length 2h − 1. Additional vertices

chosen from outside L , each increases the length by one (as every such vertex is adjacent to some
vertex in L ). Thus, en(u) = 2h − 1 + (n − h) = h + n − 1.

Case 3: l0 < n ≤ l1.
Extend the Steiner tree S T1 to S T2 using l0 vertices, with el0(u) = d0. Adding a vertex v1 ∈ Cxi does

not change the distance. Adding v2 ∈ Cxi (with v2 , v1) increases the distance by one. Since |Cxh | is the
largest, the extra vertices are best chosen from Cxh to maximize distance: en(u) = d0 + (n − l0) − 1 =

d0 + n0 − 1.

Case 4: l j < n ≤ l j+1, 1 ≤ j ≤ h − 1.
Use the Steiner tree S T3 formed with l j vertices (as in Case 3) and let el j(u) = d j. Adding n − l j

vertices from Cxh− j increases the distance by n− l j − 1. Hence, en(u) = d j + n− l j − 1 = d j + n j − 1. �

Lemma 2.11. Let u ∈ Lk for some 2 ≤ k ≤ h, and let m = qa1
1 qa2

2 . . . qah
h with q1 < q2 < . . . < qh distinct

primes. Then:

(i) en(u) =

2n − 2, if u ∈
n−2⋃
i=0

Lh−i,

2n − 1, otherwise,
for 3 ≤ n ≤ h;

(ii) en(u) = h + n − 1, if h + 1 ≤ n ≤ l0, where l0 = |V(Γ(Zm))| − |L |;
(iii) If el j(u) = d j, then el j+n j(u) = d j + n j − 1, for 0 ≤ j ≤ h − 1, 1 ≤ n j ≤ qh− j − 1, and

l j = |V(Γ(Zm))| −

∣∣∣∣∣∣∣
h− j⋃
β=1

Cxβ

∣∣∣∣∣∣∣ ,
where xβ = qa1

1 qa2
2 . . . qaβ−1

β . . . qah
h .

Proof. Let u ∈ Lk be represented as u = αq
βi1
i1
. . . q

βik
ik

with βi j ≤ ai j and 1 ≤ j ≤ k.

Case 1: 3 ≤ n ≤ h.
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Let S = {i1, i2, . . . , ik} be the index set of the primes forming u, and define S ′ = {1, 2, . . . , h} \ S .

Subcase 1a: If S ′ , ∅, then the equi-neighbor classes Cxi1
, . . . ,Cxik

lie in N (u), while vertices in these
classes are not adjacent to any vertex in Cq j for j ∈ S ′. By Lemma 1.4, the distance from any v ∈ Cq j

to u is 3. Adding another vertex w ∈ Cqi , i ∈ S ′, yields a Steiner tree of length 5.
Selecting n − 3 ≤ |S ′| vertices from distinct classes Cq j (not containing v or w), we obtain a Steiner

tree of length 5 + 2(n − 3) = 2n − 1.
If n − 3 > |S ′|, first construct a Steiner tree using all |S ′| vertices from distinct Cq j , with e|S ′ |+1(u) =

2|S ′| + 1. Adding more vertices from Cq j , j ∈ S , increases the length incrementally, leading to en(u) =

2n − 2.

Subcase 1b: If S ′ = ∅, select n − 1 vertices from different Cqi to obtain en(u) = 2(n − 1) = 2n − 2.

Cases 2-3. Cases 2 and 3 follow by direct application of the structure and results from Lemma 2.10. �

Lemma 2.12. Let u ∈ L , and suppose m = qa1
1 qa2

2 . . . qah
h with q1 < q2 < . . . < qh distinct primes.

Then:

(i) en(u) =

2n − 2, if 3 ≤ n ≤ h,

h + n − 2, if h + 1 ≤ n ≤ l0 + 1,
where l0 = |V(Γ(Zm))| − |L |;

(ii) If u ∈ Cxh , then el j+n j(u) = d j + n j − 1, where el j(u) = d j, 0 ≤ j ≤ h − 1, 1 ≤ n j ≤ qh− j − 1, and

l j = |V(Γ(Zm))| −

∣∣∣∣∣∣∣
h− j⋃
β=1

Cxβ

∣∣∣∣∣∣∣ ,
with xβ = qa1

1 qa2
2 . . . qaβ−1

β . . . qah
h ;

(iii) If u ∈ Cxβ for β , h, then et j+r j(u) = c j + r j − 1, where et j(u) = c j and

ti =


ti−1 + |Cxh−i+2 |, if i , 1 and h − i + 2 > β,
ti−1 + |Cxh−i+1 |, if i , 1 and h − i + 2 ≤ β,
l0 + |Cxβ |, if i = 1,

for 1 ≤ i ≤ h − 1, 0 ≤ j ≤ h − 1, and the range of r j is given by:

r j ∈


[1, qβ − 1], if j = 0,
[1, qh− j+1 − 1], if 1 ≤ j ≤ h − β,

[1, qh− j − 1], if h − β + 1 ≤ j ≤ h − 1.

Proof. Let u ∈ Cxβ ⊆ L , so u = αxβ for some β.

Case 1. Case 1a: 3 ≤ n ≤ h.
Since each v ∈ V(Γ(Zm)) is adjacent to some Cxγ , and u is adjacent to all Cxγ with γ , β, the

distance from u to such v is at most 2. Choosing n − 1 vertices from distinct Cqγ in L1 (with γ , β),
and including u, yields a Steiner tree of length 2(n − 1).

Case 1b: h + 1 ≤ n ≤ l0 + 1.
Adding each vertex from V(Γ(Zm)) \L increases the Steiner distance by 1. Thus, en(u) = 2h − 2 +

(n − h) = h + n − 2.
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Case 2. If u ∈ Cxh , results follow directly from Lemma 2.10 (Cases 3 and 4).

Case 3. If u ∈ Cxβ with β , h:

Case 3a: l0 + 2 ≤ n ≤ l1.
Each added vertex w ∈ Cxβ increases the tree length by 1, so el0+r0(u) = c0 +r0−1 for 1 ≤ r0 ≤ qβ−1.

Case 3b: t1 + 1 ≤ n ≤ th−β+1.
Adding v ∈ Cxi (i , β) does not increase length. Additional vertices from the same class increase

length by 1. Choosing r1 vertices from Cxh gives et1+r1(u) = c1 + r1 − 1.
Similarly, for Cxh−1 , . . . ,Cxβ+1 , we get eti+ri(u) = ci + ri − 1 for respective ri.

Case 3c: th−β+1 + 1 ≤ n ≤ th−1.
Using the same logic for Cxβ−1 , . . . ,Cx1 yields eti+ri(u) = ci + ri − 1. �

Theorem 2.13. Let m = qa1
1 qa2

2 . . . qah
h , with q1 < q2 < . . . < qh being distinct primes and h ≥ 3.

Suppose:

(i) If q1 + q2 ≤ qi + 1 for all i ≥ 3, then

aS (Γ(Zm)) =

|V(Γ(Zm))|, if q1 = 2,
|V(Γ(Zm))| − q1 + 2, if q1 , 2.

(ii) Otherwise, if q1 + q2 > qi + 1 for some i ≥ 3, let j = max{i : q1 + q2 > qi + 1, i ≥ 3}, and define

aS (Γ(Zm)) = l0 + (qh − 1) + (qh−1 − 1) + . . . + (q j − 1) + 1,

where l0 = |V(Γ(Zm))| − |L |.

Proof. Case (i): Assume q1 + q2 ≤ qi + 1 for all i ≥ 3. Let t = |V(Γ(Zm))| − (q1 − 1). Suppose
aS (Γ(Zm)) = t. Consider u1 ∈ Cx1 and u2 ∈ Cx2 . Construct a Steiner tree S T1 with t vertices, including
u1, u2. Its length is l0 + (q2 + q3 + . . . + qh) − 2(h − 1) + (h − 1) − 1. However, from Lemma 2.12, the
diameter diamt(Γ(Zm)) equals l0 + (q2 + q3 + . . . + qh) − 2(h − 1) + (h − 1), leading to a contradiction.
So aS (Γ(Zm)) ≥ t + 1.

Subcase (a): If q1 = 2, then t = |V(Γ(Zm))| − 1, implying aS (Γ(Zm)) = |V(Γ(Zm))|.

Subcase (b): If q1 , 2, choose l0 vertices from Lk (1 ≤ k ≤ h), and (qh − 1), (qh−1 − 1), . . . , (q2 − 1)
vertices from respective Cxi , plus one from Cx1 . Let u be any vertex not in Cx1 and form a Steiner tree
S T2 with those vertices. Then:

diamt+1(Γ(Zm)) = l0 + (q2 + q3 + . . . + qh) − 2(h − 1) + (h − 1),

which ensures S At+1(Γ(Zm)) is a complete graph.
Case (ii): If q1 + q2 > qi + 1 for some i ≥ 3, set t1 = l0 + (qh − 1) + (qh−1 − 1) + . . .+ (q j − 1). Assume

aS (Γ(Zm)) = t1 and build S T3 with u1 ∈ Cx1 , u2 ∈ Cx2 , l0 vertices from Lk, all from Cxi with i ≥ j, and
(q j − 1) from Cx1 ,Cx2 . The Steiner distance is

l0 + (h − 1) + (qh − 2) + (qh−1 − 2) + . . . + (q j+1 − 2) + (q j − 3).
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But Lemma 2.12 gives

diamt1(Γ(Zm)) = l0 + (h − 1) + (qh − 2) + . . . + (q j − 2),

which is greater than the Steiner tree length, so aS (Γ(Zm)) ≥ t1 + 1.
Now, let u3 < {Cx1 ,Cx2 , . . . ,Cx j−1}. Selecting l0 vertices from Lk and (qh − 1), . . . , (q j − 1) vertices

from respective Cxi plus one vertex v3 ∈ Cxi (1 ≤ i ≤ j − 1), all such configurations form Steiner trees
of maximum length. Hence S At1+1(Γ(Zm)) is a complete graph. �

Example 2.14. Consider the zero-divisor graph Γ(Zm) with m = 3 · 5 · 7 · 11 = 1155.
Define the following sets:

L1 = {C3,C5,C7,C11}, L2 = {C3·5,C3·7,C3·11,C5·7,C5·11,C7·11},

L3 = ∅, L4 = ∅,L = {Cx1 ,Cx2 ,Cx3 ,Cx4},

where x1 = 5 · 7 · 11, x2 = 3 · 7 · 11, x3 = 3 · 5 · 11, x4 = 3 · 5 · 7.
Let l0 = |L1| + |L2| = 488 + 164 = 652.

• If u ∈ L1, then e3(u) = 5, e4(u) = 7.
• If u ∈ L2, then e3(u) = 5, e4(u) = 6.
• If u ∈ L , then e3(u) = 4, e4(u) = 6.
• For u < L , e4+i(u) = 7 + i, 1 ≤ i ≤ 648.
• For u ∈ L , e4+i(u) = 6 + i, 1 ≤ i ≤ 648.

Hence,

el0(u) =

654, if u ∈ L ,

655, otherwise,
el0+1(u) = 655, e654(u) = 656.

Case 1: u ∈ Cx1 .
t1 = 654, et1+r1(u) = 656 + r1 − 1, 1 ≤ r1 ≤ 10,
t2 = 664, et2+r2(u) = 665 + r2 − 1, 1 ≤ r2 ≤ 6,
t3 = 670, et3+r3(u) = 670 + r3 − 1, 1 ≤ r3 ≤ 4.

Case 2: u ∈ Cx2 .
el0+r0(u) = 655 + r0 − 1, 1 ≤ r0 ≤ 4,
t1 = 656, et1+r1(u) = 658 + r1 − 1, 1 ≤ r1 ≤ 10,
t2 = 666, et2+r2(u) = 667 + r2 − 1, 1 ≤ r2 ≤ 6,
t3 = 677, et3+r3(u) = 672 + r3 − 1, 1 ≤ r3 ≤ 2.

Case 3: u ∈ Cx3 .
el0+r0(u) = 655 + r0 − 1, 1 ≤ r0 ≤ 6,
t1 = 658, et1+r1(u) = 660 + r1 − 1, 1 ≤ r1 ≤ 10,
t2 = 668, et2+r2(u) = 669 + r2 − 1, 1 ≤ r2 ≤ 4,
t3 = 672, et3+r3(u) = 672 + r3 − 1, 1 ≤ r3 ≤ 2.

Case 4: u ∈ Cx4 ∪L1 ∪L2.
l1 = 662, el0+n0(u) = 655 + n0 − 1, 1 ≤ n0 ≤ 10,
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l2 = 668, el1+n1(u) = 664 + n1 − 1, 1 ≤ n1 ≤ 6,
l3 = 672, el2+n2(u) = 669 + n2 − 1, 1 ≤ n2 ≤ 4,
el3+n3(u) = 672 + n3 − 1, 1 ≤ n3 ≤ 2.

The graph corresponding to this example is illustrated in Figure 2.

Figure 2. Zero-divisor graph Γ(Z3·5·7·11).

Example 2.15. Consider the zero-divisor graph Γ(Zm) where m = 22 ·3 ·52 = 300. Define the following
sets:

L1 = {C2,C22 ,C3,C5,C52},

L2 = {C2·3,C2·5,C2·52 ,C22·3,C22·5,C3·5,C3·52},

L3 = {C2·3·5},

L = {Cx1 ,Cx2 ,Cx3},where x1 = 2 · 3 · 52, x2 = 22 · 52, x3 = 22 · 3 · 5.

Now compute l0 = |L1| + |L2| + |L3| = 140 + 68 + 4 = 212, l1 = 216. The Steiner n-eccentricities are
given by:

e3(u) =

5, if u ∈ L1,

4, if u < L1,
e3+i(u) =

5 + i, if u < L ,

4 + i, if u ∈ L ,
1 ≤ i ≤ 119.

In particular, for all u, we have el0+1(u) = e213(u) = 214.

The remaining computations follow analogously to those in Example 2.14. The corresponding
graph is depicted in Figure 3.
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Figure 3. Zero-divisor graph Γ(Z22·3·52).

3. The Steiner antipodal number of the zero-divisor graph of a finite commutative reduced ring
with unity

Let R be a finite commutative reduced ring with unity. It is well known that such a ring is isomorphic
to a direct product of finite fields, i.e., R � Fp1 × Fp2 × · · · × Fph , where each pi = qai

i for some prime qi

and integer ai ≥ 1, and Fp denotes the finite field with p elements.
Since each Fpi has only one zero-divisor (namely 0), the set of zero-divisors in R consists of all

elements having at least one coordinate equal to zero.
We apply the equivalence relation ∼ (as introduced in Section 1) to the vertex set V(Γ(R)). Define

the set:
E = {a = (a1, a2, . . . , ah) ∈ Z(R) : ai = 0 or ai = 1} .

The next lemma describes the structure of equi-neighbor classes in this context.

Lemma 3.1. Each equi-neighbor class contains exactly one element from E.

Proof. Existence: Let Cu be an equi-neighbor class. Suppose Cu does not contain any element from
E. Take a = (a1, a2, . . . , ah) ∈ Cu with ai ∈ Fpi , and assume that at least one coordinate ai is neither 0
nor 1. Let A = {i ∈ {1, 2, . . . , h} : ai , 0}. Clearly, A , ∅. Define b = (b1, b2, . . . , bh) where bi = 1 if
i ∈ A and bi = 0 otherwise. Then b ∈ E.

Now, for any c = (c1, . . . , ch) adjacent to a, it must be that ci = 0 for all i ∈ A, or ai = 1. Hence, c is
also adjacent to b. Thus, N (a) = N (b) and b ∈ Cu.

Uniqueness: Suppose a , b ∈ Cu and both a, b ∈ E. Then there exists some i such that ai , bi,
implying one is 0 and the other is 1. Without loss of generality, assume ai = 1 and bi = 0. Let
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c = (c1, . . . , ch) where ci = 1 and c j = 0 for all j , i. Then c is adjacent to b but not to a, contradicting
N (a) = N (b). Hence, such a, b cannot both exist in the same class. �

Lemma 3.2. Two vertices in Cu and Cv are adjacent if and only if uv = 0.

Corollary 3.3. (1) The induced subgraph G(Cu) is totally disconnected.
(2) For u , v, a vertex of Cu is either adjacent to all or none of the vertices in Cv.

Remark 3.4. The number of equi-neighbor classes equals the number of nonzero elements in E; hence,
|E| = 2h − 2.

To compute the Steiner n-eccentricity of each vertex in Γ(R), partition the vertex set V(Γ(R)) as
follows: Let Li denote the set of vertices u = (u1, . . . , uh) such that exactly i coordinates are zero, for
1 ≤ i ≤ h − 1. Define L = Lh−1. Note that Lh−1 includes the equi-neighbor class Cei , where ei has 1
in the i-th coordinate and 0 elsewhere. For any u ∈ L1 with ui = 0, we have N (u) = Cei for 1 ≤ i ≤ h.

Lemma 3.5. Let u ∈ L1 and R = Fp1 × · · · × Fph with p1 ≤ p2 ≤ · · · ≤ ph. Then

en(u) =

2n − 1, if 3 ≤ n ≤ h,

h + n − 1, if h + 1 ≤ n ≤ l0,

where l0 = |V(Γ(R))| − |L |. Furthermore, el j+n j(u) = d j + n j−1, where 0 ≤ j ≤ h−1, 1 ≤ n j ≤ qah− j

h− j −1,

el j(u) = d j, and l j = |V(Γ(R))| −
∣∣∣∣⋃h− j

β=1 Ceβ

∣∣∣∣ .
Proof. Follows directly from Lemma 2.10. �

Lemma 3.6. Let u ∈ Lk with 2 ≤ k ≤ h − 2. Then:

(1) For 3 ≤ n ≤ h, en(u) =

2n − 2, if u ∈
n−2⋃
i=2

Lh−i,

2n − 1, otherwise.
(2) For h + 1 ≤ n ≤ l0, we have en(u) = h + n − 1, where l0 = |V(Γ(R))| − |L |.
(3) If el j(u) = d j, then el j+n j(u) = d j + n j − 1 for 0 ≤ j ≤ h − 1, 1 ≤ n j ≤ qah− j

h− j − 1, with l j =

|V(Γ(R))| −
∣∣∣∣⋃h− j

β=1 Ceβ

∣∣∣∣ .
Proof. The result is a direct consequence of Lemma 2.11. �

Lemma 3.7. Let u ∈ L . Then:

(1) For 3 ≤ n ≤ h, en(u) = 2n−2, and for h+1 ≤ n ≤ l0+1, en(u) = h+n−2, where l0 = |V(Γ(R))|−|L |.
(2) If u ∈ Ceh , then el j+n j(u) = d j + n j − 1, where el j(u) = d j, 1 ≤ j ≤ h − 1, 1 ≤ n j ≤ qah− j

h− j − 1, and

l j = |V(Γ(R))| −

∣∣∣∣∣∣∣
h− j⋃
β=1

Ceβ

∣∣∣∣∣∣∣ .
(3) If u ∈ Ceβ with β , h, then et j+r j(u) = c j + r j − 1, where et j(u) = c j, and

ti =


ti−1 + |Ceh−i+2 |, if i , 1 and h − i + 2 > β,
ti−1 + |Ceh−i+1 |, if i , 1 and h − i + 2 ≤ β,
l0 + |Ceβ |, if i = 1,
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for 1 ≤ i ≤ h − 1, 0 ≤ j ≤ h − 1, and the range of r j is

r j ∈


[1, qaβ

β − 1], if j = 0,
[1, qah− j+1

h− j+1 − 1], if 1 ≤ j ≤ h − β,

[1, qah− j

h− j − 1], if h − β + 1 ≤ j ≤ h − 1.

Proof. The proof can be derived from Lemma 2.12. �

Theorem 3.8. Let R = Fp1 × Fp2 × . . . × Fph , where pi = qai
i for some primes qi and integers ai, such

that p1 ≤ p2 ≤ . . . ≤ ph and h ≥ 3. If p1 + p2 ≤ pi + 1 for all i ≥ 3, then

aS (Γ(R)) =

|V(Γ(R))|, if p1 = 2,
|V(Γ(R))| − p1 + 2, if p1 , 2.

Additionally, aS (Γ(R)) = l0 +
∑h

i= j(pi − 1) + 1, where l0 = |V(Γ(R))| − |L | and j = max{i : p1 + p2 >

pi + 1, i ≥ 3}.

Proof. The result follows directly from Theorem 2.13, which characterizes the Steiner antipodal
number based on the structure of the zero-divisor graph. �

Example 3.9. In this example, we compute the Steiner n-eccentricities of all vertices in the zero-divisor
graph of the reduced ring R = Z2 × Z3 × Z3 × Z5.

Let
L1 = {C(0,1,1,1),C(1,0,1,1), C(1,1,0,1), C(1,1,1,0)},

L2 = {C(0,0,1,1), C(0,1,0,1), C(0,1,1,0),C(1,0,0,1), C(1,0,1,0), C(1,1,0,0)},

L = {C(1,0,0,0), C(0,1,0,0), C(0,0,1,0), C(0,0,0,1)}.

We have l0 = |L1| + |L2| = 36 + 28 = 64, l1 = 68, l2 = 70, l3 = 72.
Steiner eccentricities:

- If u ∈ L1: e3(u) = 5, e4(u) = 7;
- If u ∈ L2: e3(u) = 5, e4(u) = 6;
- If u ∈ L : e3(u) = 4, e4(u) = 6.

For 1 ≤ i ≤ 60,

e4+i(u) =

6 + i, if u ∈ L ,

7 + i, if u < L .

Therefore,

el0(u) = e64(u) =

66, if u ∈ L ,

67, otherwise;
e65(u) = 67, e66(u) = 68 for all u.

The remaining cases are similar to those discussed in Example 2.14, and the associated graph is
illustrated in Figure 4.
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Figure 4. Zero-divisor graph Γ(Z2 × Z3 × Z3 × Z5).

4. The Steiner antipodal number of the zero-divisor graph of a finite product of integer modulo
rings

In this section, we examine the Steiner antipodal number of the zero-divisor graph Γ(R) where R is
a finite product of integer modulo rings. Let

R = Zqa1
1
× Zqa2

2
× · · · × Zq

ah
h
,

where each qi is a prime number and ai ≥ 2. We partition the vertex set of Γ(R) using the equivalence
relation defined in Section 1.

Define the sets Li as follows:
- For 1 ≤ i ≤ h − 2, let Li be the set of all h-tuples with exactly i coordinates equal to zero or exactly i
coordinates being non-zero divisors.

- Let L =
h⋃
β=1

Ceβ , where each eβ = (0, . . . , qaβ−1
β , . . . , 0) is a tuple with the non-zero entry in the β-th

position.
- Define Lh−1 as the set of h-tuples with exactly h − 1 zeros or h − 1 non-zero divisors, excluding the
elements in L .
- Let Lh consist of tuples with all entries as non-zero divisors, or one zero entry and the remaining
h − 1 as non-zero divisors, again excluding elements in L .

We now present results concerning the Steiner n-eccentricity of vertices in Γ(R).
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Lemma 4.1. Let u ∈ L1 and R be as defined above with q1 ≤ q2 ≤ · · · ≤ qh. Then

en(u) =

2n − 1, for 3 ≤ n ≤ h,

h + n − 1, for h + 1 ≤ n ≤ l0,

where l0 = |V(Γ(R))| − |L |. Furthermore, if el j(u) = d j, then el j+n j(u) = d j + n j − 1, for 0 ≤ j ≤ h − 1,
1 ≤ n j ≤ qh− j − 1, and

l j = |V(Γ(R))| −

∣∣∣∣∣∣∣
h− j⋃
β=1

Ceβ

∣∣∣∣∣∣∣ .
Proof. Follows from Lemma 2.10. �

Lemma 4.2. Let u ∈ Lk for 2 ≤ k ≤ h − 2. Then

(1) For 3 ≤ n ≤ h, en(u) =

2n − 2, if u ∈
n−2⋃
i=0

Lh−i,

2n − 1, otherwise.
(2) For h + 1 ≤ n ≤ l0, en(u) = h + n − 1.
(3) If el j(u) = d j, then el j+n j(u) = d j + n j − 1 for 0 ≤ j ≤ h − 1, 1 ≤ n j ≤ qh− j − 1.

Proof. A direct consequence of Lemma 2.11. �

Lemma 4.3. Let u ∈ L . Then:

(1) For 3 ≤ n ≤ h, en(u) =

2n − 2,
h + n − 2, for h + 1 ≤ n ≤ l0 + 1,

where l0 = |V(Γ(R))| − |L |.

(2) If u ∈ Ceh , then el j+n j(u) = d j + n j − 1, for 1 ≤ j ≤ h − 1, 1 ≤ n j ≤ qh− j − 1.
(3) If u ∈ Ceβ with β , h, define ti recursively by

ti =


l0 + |Ceβ |, if i = 1,
ti−1 + |Ceh−i+2 |, if h − i + 2 > β,
ti−1 + |Ceh−i+1 |, otherwise.

Then for 0 ≤ j ≤ h − 1, let et j+r j(u) = c j + r j − 1, where:

r j ∈


[1, qβ − 1], if j = 0,
[1, qh− j+1 − 1], if 1 ≤ j ≤ h − β,

[1, qh− j − 1], if h − β + 1 ≤ j ≤ h − 1.

Proof. Follows from Lemma 2.12. �

Theorem 4.4. Let R = Zqa1
1
× Zqa2

2
× · · · × Zq

ah
h

, with primes qi and ai ≥ 2, such that q1 ≤ q2 ≤ · · · ≤ qh

and h ≥ 3. If q1 + q2 ≤ qi + 1 for all i ≥ 3, then

aS (Γ(R)) =

|V(Γ(R))|, if q1 = 2,
|V(Γ(R))| − q1 + 2, if q1 , 2.

Moreover, aS (Γ(R)) = l0 + (qh − 1) + (qh−1 − 1) + · · · + (q j − 1) + 1, where l0 = |V(Γ(R))| − |L |, and
j = max{i : q1 + q2 > qi + 1, i ≥ 3}.
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Proof. This follows directly from Theorem 2.13, which relates the Steiner antipodal number to the
graph structure. �

Example 4.5. Let R = Z22×Z32×Z33 . Define the sets L1, L2, L3, and L as in the original manuscript.
Let l0 = 750, l1 = 752, and l2 = 754. Then for u:

e3(u) =

5, if u ∈ L1,

4, otherwise,
e3+i(u) =

5 + i, if u < L ,

4 + i, if u ∈ L ,
for 1 ≤ i ≤ 747.

Also, e751(u) = 752 for all u. The rest of the behavior is similar to Example 2.14 and visualized in
Figure 5.

Figure 5. Zero-divisor graph Γ(Z22 × Z32 × Z33).

5. Inverse problem for the Steiner antipodal number

The inverse problem for the Steiner antipodal number asks whether, for a given non-negative integer
k, there exists a zero-divisor graph Γ(Zm) such that its Steiner antipodal number is equal to k. In
this work, we address this question by computational means, using the characterizations developed in
Section 2.

Tables 1 and 2 list all values of m for which Γ(Zm) has Steiner antipodal numbers in the range 2 to
100. These results are obtained using a Python algorithm specifically designed to compute the Steiner
antipodal number for Γ(Zm), for all integers 1 ≤ m ≤ 1000.
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Table 1. Zero-divisor graphs Γ(Zm) and their Steiner antipodal numbers (Part 1).

S.No Possible zero-divisor graphs of Zm Steiner antipodal number
1 m = q2 for any prime q > 2 2
2 m = 6, 8 3
3 m = 10, 15 5
4 m = 12, 14, 16, 21, 27, 35 7
5 m = 18, 20, 22, 33, 55, 77 11
6 m = 26, 39, 65, 91, 143 13
7 m = 24, 28, 32 15
8 m = 17q, prime q < 17 17
9 m = 19q, 45, 133, prime q < 19 19
10 m = 30, 125 21
11 m = 23q, 40, 44, 46, prime q < 23 23
12 m = 63, 81 25
13 m = 52 27
14 m = 29q, 42, 50, prime q < 29 29
15 m = 31q, 48, 56, 64, prime q < 31 31
16 m = 75 33
17 m = 54, 68 35
18 m = 37q, 99, prime q < 37 37
19 m = 76 39
20 m = 41q, prime q < 41 41
21 m = 451 42
22 m = 43q, 60, 117, 343, prime q < 43 43
23 m = 66, 70 45
24 m = 47q, 72, 80, 88, prime q < 47 47
25 m = 175 51
26 m = 53q, 78, prime q < 53 53
27 m = 98, 104, 105, 153 55
28 m = 84 57
29 m = 59q, 100, 116, prime q < 59 59
30 m = 61q, 135, 147, 171, prime q < 61 61
31 m = 96, 112, 124, 128 63
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Table 2. Zero-divisor graphs Γ(Zm) and their Steiner antipodal numbers (Part 2).

S.No Possible zero-divisor graphs of Zm Steiner antipodal number
32 m = 90 65
33 m = 67q, prime q < 67 67
34 m = 102, 110 69
35 m = 71q, 108, 136, 275, prime q < 71 71
36 m = 73q, 207, 245, prime q < 73 73
37 m = 148 75
38 m = 114 77
39 m = 79q, 152, 189, 243, prime q < 79 79
40 m = 130, 325 81
41 m = 83q, 164, 165, prime q < 83 83
42 m = 120 85
43 m = 120, 172 87
44 m = 89q, 126, prime q < 89 89
45 m = 132, 140, 261 91
46 m = 138, 154 93
47 m = 144, 160, 176, 184, 188 95
48 m = 97q, 185, 279, prime q < 97 97

5.1. Python code for computing Steiner antipodal number

The following Python function estimates the Steiner antipodal number for a given composite
number m based on its prime structure:

def prime_divisors(n):

v = []

i = 1

while i < n:

k = 0

if n % i == 0:

j = 1

while j <= i:

if i % j == 0:

k += 1

j += 1

if k == 2:

v.append(i)

i += 1

return v

def euler_totient(n):

a = prime_divisors(n)

i = 1

for p in a:
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i *= (1 - (1 / p))

return int(i * n)

def antipodal(n):

v = prime_divisors(n)

a = len(v)

c = 0

b = 0

if a == 0:

print("Given number is prime")

elif a == 1 and n == v[0] * v[0]:

print("2 is the antipodal number")

elif a == 1 or a == 2:

b = n - euler_totient(n) + 1 - v[0]

print(b, "is the antipodal number")

else:

j = 0

for i in range(1, a - 1):

if v[0] + v[1] - 2 <= v[a - i] - 1:

j += 1

if j == a - 2 and v[0] == 2:

b = n - euler_totient(n) - 1

print(b, "is the antipodal number of Z_n")

elif j == a - 2 and v[0] != 2:

b = n - euler_totient(n) - v[0] + 1

print(b, "is the antipodal number of Z_n")

else:

for i in range(a - j - 1):

c = b + (v[i] - 1)

b = c

r = n - euler_totient(n) - b

print(r, "is the antipodal number of Z_n")

n = int(input("Enter an integer: "))

antipodal(n)

5.2. Python code for solving the inverse problem (values from 2 to 100)

The following Python function searches for values of n such that the Steiner antipodal number of
Γ(Zn) matches each integer m in the range [3, 100]:

def antipodal():

for m in range(3, 101):

for n in range(6, 1000):

v = prime_divisors(n)

a = len(v)
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c = 0

b = 0

r = 0

if a == 0:

r = 0

elif a == 1 and n == v[0] * v[0]:

r = 2

elif a == 1 or a == 2:

b = n - euler_totient(n) + 1 - v[0]

r = b

else:

j = 0

for i in range(1, a - 1):

if v[0] + v[1] - 2 <= v[a - i] - 1:

j += 1

if j == a - 2 and v[0] == 2:

b = n - euler_totient(n) - 1

r = b

elif j == a - 2 and v[0] != 2:

b = n - euler_totient(n) - v[0] + 1

r = b

else:

for i in range(a - j - 1):

c = b + (v[i] - 1)

b = c

r = n - euler_totient(n) - b

if m == r:

print(m, "is the antipodal number for n =", n)

break

elif n == 999:

print(m, "is not the antipodal number of any n")

antipodal()

This algorithm enables us to forecast which integers n yield a specified Steiner antipodal number m.
The results are validated and consistent with the theoretical bounds established in previous sections.

6. Conclusions

In this study, we examined the n-eccentricity of vertices and determined the Steiner antipodal
number for zero-divisor graphs of Zm, reduced rings, and finite direct products of rings over Zm. We also
presented an algorithmic procedure for computing the Steiner antipodal number of Γ(Zm), illustrated
with examples. Our findings not only enrich the study of structural invariants of zero-divisor graphs
with applications to network design and fault-tolerant architectures, but also motivate the extension of
Steiner invariants to more general algebraic frameworks.
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In addition, our analysis can be extended to compute the Steiner antipodal number for related
algebraic graphs such as non-commuting graphs, total graphs, and extended zero-divisor graphs,
thereby broadening the applicability of these results to a wider class of algebraic structures.
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