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1. Introduction

Since stochastic ordering was proposed by Lehmann [1], it has been widely applied across many
fields. For example, in risk comparison within mathematical finance, increasing convex ordering is
commonly used. In dose-response experiments, however, the relationship between dose and patient
survival time can be described by an umbrella ordering, in which patient survival time first increases
and then decreases stochastically with the dose level. Consequently, various types of stochastic
orderings (such as simple stochastic ordering, increasing convex ordering, and umbrella ordering) have
been extensively studied in the literature for different purposes. In this paper, we focus on testing for
umbrella ordering. For convenience, we first recall the definition of umbrella ordering below.
Definition 1. k populations X1, X2, · · · , Xk with cumulative distribution functions (CDFs)
F1(x), F2(x), · · · , Fk(x) are said to be in umbrella ordering, if

F1(x) ≤ F2(x) ≤ · · · ≤ Fh(x) ≥ Fh+1(x) ≥ · · · ≥ Fk(x), ∀x ∈ R,
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where h is called the peak of the umbrella ordering.
The hypotheses are defined as

H0 : F1 = F2 = · · · = Fk;
H1 : F1(x) ≤ F2(x) ≤ · · · ≤ Fh(x) ≥ Fh+1(x) ≥ · · · ≥ Fk(x), with at least one strict inequality.

In this paper, we consider testing homogeneity against an umbrella ordering alternative with at least
one strict inequality; that is, we test H0 versus H1.

Testing against umbrella ordering has a rich history and has been studied extensively by many
authors. For example, in the context of location parameters with a known peak, Puri [2] proposed a
distribution-free k-sample rank test for homogeneity against ordered alternatives, laying the theoretical
foundation for nonparametric inference. Tryon and Hettmansperger [3] constructed nonparametric
tests based on linear combinations of Chernoff–Savage-type two-sample statistics. Building on these
studies, Mack and Wolfe [4] proposed a classical nonparametric test. Further contributions include
the linear rank statistic framework developed by Hettmansperger and Norton [5] and the adaptive tests
introduced by Büning and Kössler [6,7]. Chen and Wolfe [8] further enriched the known-peak literature
by proposing refined homogeneity tests against umbrella alternatives with at least one strict inequality.
For the unknown-peak case, Hettmansperger and Norton [5] extended their framework by incorporating
a peak-search procedure. Shi [9] proposed a likelihood ratio test under normality for both known and
unknown peaks. Chen and Wolfe [10] advanced this line of research with systematic distribution-
free testing procedures. Chen [11] further refined this distribution-free framework for unknown-
peak umbrella alternatives by deriving asymptotic critical values for the standardized rank-based test
statistic. Later developments continued with Magel and Qin [12], Kössler [13], Alvo [14], Chang and
Yen [15], and Gökpinar and Gökpinar [16]. Beyond location parameters, analogous hypotheses for
scale parameters have been examined by Singh and Liu [17], Carpenter and Singh [18], Gaur et al. [19],
and Gaur [20,21], while Shi [22] extended the framework to multinomial parameters. Although Basso
and Salmaso [23], Xiong and Ding [24] considered tests of homogeneity under umbrella alternatives,
they did not address test consistency. In this paper, the proposed test is consistent.

The remaining part of this paper is organized as follows. In Section 2, we present the definition
of isotonic estimates for distribution functions and a discussion of their consistency. In Section 3,
we construct test statistics for both the known and unknown peak cases of the umbrella ordering, and
present the asymptotic properties of these tests. In Section 4, a bootstrap procedure is established for
the implementation of the proposed tests. In Section 5, we present numerical results that demonstrate
the performance of the proposed methods. Section 6 concludes the paper, and the Appendix contains
the proofs of the theorems.

In this paper, we use “
w
→ ”, “

a.e.
→ ”, and “ d

= ” denote convergence in distribution, almost sure
convergence, and equivalence in distribution, respectively.

2. Estimation

Let Xi1, Xi2, · · · , Xini , i = 1, 2, · · · , k be independent random samples from k distributions
F1(x), F2(x), · · · , Fk(x), and these samples are defined on the same probability space (Ω,A,P).
Furthermore, we assume that the CDF’s Fi(x), i = 1, 2, · · · , k are continuous and satisfy the monotone
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inequality

F1(x) ≤ F2(x) ≤ · · · ≤ Fh(x) ≥ Fh+1(x) ≥ · · · ≥ Fk(x), ∀x ∈ R. (2.1)

F̂i(x) is the empirical distribution function of Fi(x), that is

F̂i(x) =
1
ni

ni∑
j=1

I[Xi j,∞)(x),

where IA(·) denotes the indicator function associated with set A. Obviously, the estimates F̂i(x), i =
1, 2, · · · , k are not guaranteed to satisfy inequality (2.1), even if the true CDFs satisfy it. To get such
estimators, we give the following estimation method. The specific steps are as follows.

For the convenience of the following description, we define

Nrs =

s∑
j=r

n j and Avn[F̂(x), r, s] =
s∑

j=r

n jF̂ j(x)/Nrs, for 1 ≤ r ≤ s ≤ k,

Step 1. Define the estimator of Fi(x) by

F̂∗i (x) = max
r≤i

min
i≤s≤h

Avn[F̂(x), r, s], i = 1, 2, · · · , h − 1.

Obviously, F̂∗1(x) ≤ F̂∗2(x) ≤ · · · ≤ F̂∗h−1(x) (see p19 of Barlow et al. [25]) ;
Step 2. Define the estimator of Fi(x) by

F̂∗i (x) = max
s≥i

min
h≤r≤i

Avn[F̂(x), r, s],

i = h + 1, h + 2, · · · , k.

Similar to Step 1, we have F̂∗h+1(x) ≥ F̂∗h+2(x) ≥ · · · ≥ F̂∗k(x);
Step 3. Define the estimator of Fh(x) by

F̂∗h(x) = max
r≤h

max
s≥h

Avn[F̂(x), r, s]. (2.2)

Because

F̂∗h−1(x) = max
r≤h−1

min
h−1≤s≤h

Avn[F̂(x), r, s]

= max{min{Avn[F̂(x), 1, h − 1], Avn[F̂(x), 1, h]}, · · · ,
min{Avn[F̂(x), h − 1, h − 1], Avn[F̂(x), h − 1, h]}},

F̂∗h(x) = max
r≤h

max
s≥h

Avn[F̂(x), r, s]

= max{max{Avn[F̂(x), 1, h], · · · , Avn[F̂(x), 1, k]}, · · · ,
max{Avn[F̂(x), h − 1, h], · · · , Avn[F̂(x), h − 1, k]},
max{Avn[F̂(x), h, h], · · · , Avn[F̂(x), h, k]}}.

Obviously, F̂∗h−1(x) ≤ F̂∗h(x). Similarly, F̂∗h+1(x) ≤ F̂∗h(x). Therefore, for each x, F̂∗i (x) satisfy
inequality (2.1).
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Let || · || denote the sup norm. The following theorem gives the consistency of F̂∗i (x), i = 1, 2, · · · , k
by Theorem 1 of EI Barmi and Mukerjee [26] and the properties of the isotonic regression (see p42 of
Robertson et al. [27]).
Theorem 1. Given that the CDFs satisfy inequality (2.1), then

P[∥ F̂∗i − Fi ∥→ 0, ni → ∞, i = 1, · · · , k] = 1.

3. Test statistics and asymptotic theory

In this section, we will give test statistics of H0 versus H1 by F̂∗i (x), i = 1, 2, · · · , k, and discuss the
asymptotic distributions of the proposed test statistics. Next, we first discuss the case where the peak
h is known.

3.1. A test when h is known

First, we define the test statistic Tn of testing problem H0 versus H1 by

Tn =
√

n
h−1∑
i=1

sup
x∈R

(F̂∗i+1(x) − F̂∗i (x)) +
√

n
k∑

i=h+1

sup
x∈R

(F̂∗i−1(x) − F̂∗i (x)).

Then, we introduce some additional notations to facilitate studying the asymptotic distribution of
Tn. Let

n =
k∑

i=1

ni, and ain =
ni

n
,

and define

S i = { j : F j(x) = Fi(x), j = 1, · · · , k},
Zini(x) =

√
ni[F̂i(x) − Fi(x)],

Z∗ini
(x) =

√
ni[F̂∗i (x) − Fi(x)], i = 1, 2, · · · , k.

As is well known, when min
i=1,··· ,k

ni → ∞, we have

(Z1n1(x),Z2n2(x), · · · ,Zknk(x))T w
−→ (Z1(x),Z2(x), · · · ,Zk(x))T

where the right-hand side denotes a k-variate Gaussian process with independent components (see
Theorem 16.4 in Billingsley [28]).

For the weak convergence process of the isotonic estimators to hold, we specify the following
assumptions:

lim
n→∞

ain = ai > 0, i = 1, 2, · · · , k, (3.1)

and

inf
ci+η≤x≤di−η

[F j(x) − Fi(x)] > 0, (3.2)
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for∀η > 0, j > max{l, l ∈ S i}, i = 1, 2, · · · , h − 1, and j < min{l, l ∈ S i}, i = h + 1, h + 2, · · · , k, where
inf∅(.) = ∞, (ci, di) is a subset of the support of Fi(x), i = 1, · · · , k.

The formula (3.2) is equivalent to dividing k distributions into several bundles; each bundle is
completely coincident, and the various bundles are completely disconnected beyond the two endpoints,
thus ensuring the tightness of the isotonic estimators.

Finally, we give the asymptotic distribution of Tn by the following theorem.
Theorem 2. Assume that the assumptions (3.1) and (3.2) hold, then under H0, it holds that

Tn
w
→ T =

h−1∑
i=1

sup
x∈R

(

√
1

ai+1
Z∗i+1(x) −

√
1
ai

Z∗i (x))

+

k∑
i=h+1

sup
x∈R

(

√
1

ai−1
Z∗i−1(x) −

√
1
ai

Z∗i (x))

where Z∗i (x), i = 1, 2, · · · , k are the same as Lemma 1 in the Appendix.
Theorem 2 establishes the theoretical feasibility of the test. The theorem that follows demonstrates

the consistency of the proposed test.
Theorem 3. If the assumptions (3.1) and (3.2) hold, then under H1, we have P(Tn → ∞) = 1.

3.2. A test when h is unknown

In this subsection, we consider the case that h is unknown. Let H(i)
1 denote an umbrella hypothesis

with its peak at i, i = 1, ..., k, that is,

H(i)
1 : F1(x) ≤ F2(x) ≤ · · · ≤ Fi(x) ≥ Fi+1(x) ≥ · · · ≥ Fk(x),

∀x ∈ R, i = 1, · · · , k,

then H1 can be written as
H1 = H(1)

1 ∪ H(2)
1 ∪ · · · ∪ H(k)

1 .

Therefore, we can get the estimator ĥ of h by the following equation:

sup
x∈R

k∑
j=1

( ˆ̂F ĥ
j (x) − F̂ j(x))2 = min

i=1,2,··· ,k
sup
x∈R

k∑
j=1

( ˆ̂F i
j(x) − F̂ j(x))2 (3.3)

where ˆ̂F i
j(x) is the isotonic estimate of F j(x), j = 1, 2, · · · , k under the assumption H(i)

1 , i = 1, 2, · · · , k.
Sometimes the solution of Eq (3.3) is not unique. In this case, we take the estimator as the maximum

of the solution set.
Theorem 4. If the assumptions (2.1) and (3.2) hold, and h0 is the true peak of the umbrella ordering,
then we have

ĥ
a.e.
→ h0 as n j → ∞, j = 1, 2, · · · , k.

In the present case, the test statistic T1n of testing problem H0 versus H1 is given by

T1n =
√

n
ĥ−1∑
i=1

sup
x∈R

(F̂∗i+1(x) − F̂∗i (x)) +
√

n
k∑

i=ĥ+1

sup
x∈R

(F̂∗i−1(x) − F̂∗i (x)).
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Obviously, by Theorems 2 and 4, we have

P(T̂1n
w
→ T ) = 1

where T is the same as in Theorem 2.

4. Bootstrap critical values

For practical decision-making purposes, we require the p−value associated with the test for the
observed samples, or the critical value c = c(α) that depends on the probability α of wrongly rejecting
the null hypothesis. Although the asymptotic null distribution of Tn is given, it is difficult to use directly
to compute the p−value, or the c(α) since it is very complicated, and depends on the underlying
unknown distributions Fi. Therefore, in this section, we will propose a bootstrap procedure for
calculating the p−value of Tn, and subsequently provide the theoretical validation of the bootstrap
method.

First, we give the bootstrap version of Tn.
Recall that F̂i(x) is the empirical distribution function associated with the sample Xi1, · · · , Xini from

Fi(x), i = 1, · · · , k. Given the initial samples, let ζn,1 · · · , ζn,n be a sample of size n from the (random)
distribution function

Hn(x) =
n1

n
F̂1(x) +

n2

n
F̂2(x) + · · · +

nk

n
F̂k(x).

For convenience, we introduce some concerned notations as follows.

F̂n,ni(x) =
1
ni

n1+···+ni∑
j=n1+···+ni−1+1

I[ζ̂n, j,∞)(x),

F̂∗n,ni
(x) = max

r≤i
min
i≤s≤h

Avn[F̂n,ni(x), r, s], i = 1, 2, · · · , h − 1,

F̂∗n,nh
(x) = max

r≤h
max

h≤s
Avn[F̂n,ni(x), r, s],

F̂∗n,ni
(x) = max

s≥i
min
h≤r≤i

Avn[F̂n,ni , r, s], i = h + 1, h + 2, · · · , k.

And the bootstrap version of Tn is given by

T̂n =
√

n
h−1∑
i=1

sup
x∈R

(F̂∗n,ni+1
(x) − F̂∗n,ni

(x))

+
√

n
k∑

i=h+1

sup
x∈R

(F̂∗n,ni−1
(x) − F̂∗n,ni

(x))

(4.1)

Then, to obtain the proposed bootstrap approximation for the p-value of the test, we give the
following specific steps.

Step 1. Calculate the test statistic Tn using the original samples Xi1, · · · , Xini , i = 1, 2, · · · , k;
Step 2. Draw ζn,i, i = 1, 2, · · · , n from Hn(x) and calculate a bootstrap version of the test statistic,

denoted as T̂n, via Eq (4.1);
Step 3. Repeat step 2 a large number of times, say B times, which results in B bootstrap test statistics

T̂ (b)
n , where b = 1, · · · , B;
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Step 4. The p-value for the proposed test can be expressed as p = Card{b : T̂ (b)
n > Tn, b =

1, · · · , B}/B.
Finally, the theorem presented below demonstrates that, with probability 1, the limit distribution

of the T̂n coincides with that given in Theorem 2, which establishes the validity of the bootstrap test
theoretically. For the proof of the following theorem, we treat Xi1, · · · , Xini , i = 1, 2, · · · , k as the
initial segments of k infinite sequences (Xi j) j∈N of random variables defined on a certain background
probability space (Ω,A, P), and the almost sure statements below refer to P.
Theorem 5. Suppose that the H0 is true and the assumptions (3.1) and (3.2) hold. Then as n j → ∞, j =
1, 2, · · · , k, we have

P(T̂n
w
→ T ) = 1

where T is the same as in Theorem 2.

5. Numerical results

5.1. Simulation study

In this section, we show the performances of the proposed nonparametric test by simulations. Five
distribution families, namely, Uniform, Normal, Exponential, Cauchy, and Logistic distributions, are
used in the simulations. We set k = 4, and consider four settings of the sample sizes: (A) n1 = n2 =

n3 = n4 = 20, (B) n1 = n2 = n3 = n4 = 30, (C) n1 = n2 = n3 = n4 = 50, (D) n1 = 20, n2 = 30, n3 =

50, n4 = 70.
The samples are drawn from several distribution families, including Uniform distributions U(θ)

on finite intervals (θ − 0.5, θ + 0.5), Exponential distributions E(λ), Normal distributions N(µ, σ2)
with expectation µ and variance σ2, Cauchy distributions C(µ, σ) with location parameter µ and scale
parameter σ, Logistic distributions L(µ, σ) with location parameter µ and scale parameter σ. The
simulation results are summarized in Tables 1–4.

The tests proposed in this paper are with a known peak (IRB) and with an unknown peak (IRBU),
Chen–Wolfe’s test(CW) [10], and Mack–Wolfe’s test (MW) [4], where the MW is for a known peak,
the CW is for an unknown peak. The significance level is taken as α = 0.05. In each case, we carry
out 1000 replications to get the empirical size or power of the test. The number B of the bootstrap
resampling is 1000 to get the p−values.

Table 1. Empirical rejection rates under H0 with known peak.

Distributions
F1 F2 F3 F4 (A) (B) (C) (D)
U(0) U(0) U(0) U(0) 0.040 0.043 0.045 0.046
E(1) E(1) E(1) E(1) 0.042 0.045 0.046 0.044
N(0,1) N(0,1) N(0,1) N(0,1) 0.057 0.055 0.054 0.045
C(0,1) C(0,1) C(0,1) C(0,1) 0.059 0.057 0.055 0.056
L(0,1) L(0,1) L(0,1) L(0,1) 0.043 0.045 0.047 0.054
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Table 2. Empirical rejection rates under H1 with known peak.

Distributions (A) (B) (C) (D)
F1 F2 F3 F4 IRB MW IRB MW IRB MW IRB MW
U(1.35) U(1.5) U(1.4) U(1.35) 0.418 0.420 0.528 0.532 0.724 0.729 0.568 0.566
U(0.85) U(0.9) U(1) U(0.95) 0.350 0.353 0.462 0.465 0.709 0.723 0.505 0.513
E(1) E(1.5) E(1.3) E(1) 0.287 0.287 0.453 0.462 0.610 0.610 0.512 0.521
E(0.3) E(0.5) E(1) E(0.5) 0.363 0.365 0.600 0.607 0.714 0.715 0.672 0.678
N(1,1) N(1.5,1) N(1.3,1) N(1,1) 0.487 0.499 0.647 0.653 0.813 0.816 0.810 0.836
N(0.3,1) N(0.5,1) N(1,1) N(0.5,1) 0.695 0.712 0.832 0.830 0.921 0.920 0.915 0.930
C(1,1) C(1.5,1) C(1.3,1) C(1,1) 0.220 0.223 0.302 0.307 0.436 0.457 0.417 0.423
C(0.3,1) C(0.5,1) C(1,1) C(0.5,1) 0.368 0.372 0.386 0.397 0.589 0.597 0.576 0.582
L(1,1) L(1.5,1) L(1.3,1) L(1,1) 0.233 0.235 0.356 0.367 0.476 0.500 0.469 0.473
L(0.3,1) L(0.5,1) L(1,1) L(0.5,1) 0.380 0.383 0.424 0.432 0.673 0.688 0.634 0.641

Table 3. Empirical rejection rates under H0 with estimated peak.

Distributions
F1 F2 F3 F4 (A) (B) (C) (D)
U(0,1) U(0,1) U(0,1) U(0,1) 0.056 0.045 0.053 0.054
E(1) E(1) E(1) E(1) 0.043 0.045 0.055 0.055
N(0,1) N(0,1) N(0,1) N(0,1) 0.056 0.054 0.052 0.047
C(0,1) C(0,1) C(0,1) C(0,1) 0.045 0.056 0.047 0.054
L(0,1) L(0,1) L(0,1) L(0,1) 0.057 0.056 0.055 0.054

Table 4. Empirical rejection rates under H1 with estimated peak.

Distributions (A) (B) (C) (D )
F1 F2 F3 F4 IRBU CW IRBU CW IRBU CW IRBU CW
U(1.35) U(1.5) U(1.4) U(1.35) 0.156 0.297 0.190 0.321 0.387 0.541 0.3170 0.419
U(0.85) U(0.9) U(1) U(0.95) 0.173 0.290 0.209 0.318 0.353 0.547 0.305 0.410
U(1) U(1.5) U(1.3) U(1) 0.786 0.787 0.892 0.893 1.000 1.000 1.000 1.000
U(0.3) U(0.5) U(1) U(0.5) 0.790 0.790 0.895 0.898 1.000 1.000 1.000 1.000
E(1) E(1.5) E(1.3) E(1) 0.245 0.249 0.378 0.385 0.516 0.509 0.412 0.424
E(0.3) E(0.5) E(1) E(0.5) 0.261 0.278 0.383 0.397 0.600 0.603 0.530 0.543
N(1,1) N(1.5,1) N(1.3,1) N(1,1) 0.400 0.404 0.542 0.549 0.836 0.840 0.755 0.756
N(0.3,1) N(0.5,1) N(1,1) N(0.5,1) 0.503 0.511 0.751 0.763 0.869 0.876 0.853 0.864
C(1,1) C(1.5,1) C(1.3,1) C(1,1) 0.171 0.178 0.204 0.211 0.436 0.467 0.354 0.360
C(0.3,1) C(0.5,1) C(1,1) C(0.5,1) 0.206 0.212 0.295 0.309 0.470 0.504 0.412 0.418
L(1,1) L(1.5,1) L(1.3,1) L(1,1) 0.170 0.176 0.199 0.210 0.498 0.511 0.286 0.300
L(0.3,1) L(0.5,1) L(1,1) L(0.5,1) 0.168 0.171 0.180 0.181 0.578 0.601 0.306 0.308
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Tables 1 and 3 show the results of the cases in which H0 is true, and the peak is known and unknown,
respectively. In both cases, the empirical rejection rates are close to the significance level α and get
closer as the increasing of sample sizes.

From the results of Tables 2 and 4, we observe that the empirical rejection rates are consistently
greater than the significance level α and increase monotonically with the sample sizes. In most
scenarios, the power of the IRB/IRBU tests is comparable to that of the classical MW/CW tests,
with differences largely confined to within 0.03. A notable exception is the uniform distribution case
in Table 4, where the IRBU test exhibits a measurable power deficit relative to the CW test. This
observation confirms that when the data distribution provides weak local contrast around the peak (i.e.,
in the presence of a “flat peak”), the accuracy of peak identification is compromised, which in turn
reduces the test’s power.

In summary, although the above simulations are carried out in several parametric distribution
families, we can inspect the performance of the proposed test through the above important cases. All
in all, the simulation results show that the theoretical results in Section 3 and Section 4 are a feasible
solution for the homogeneity test problem under umbrella ordering.

5.2. Example

We consider the example in Alvo [14] on the Wechsler adult intelligence scale scores on males by
age groups. We reproduce the data in Table 5.

Table 5. Example date set.

Age group
16 − 19 20 − 34 35 − 54 55 − 69 > 70
8.62 9.85 9.98 9.12 4.80
9.94 10.43 10.69 9.89 9.18
10.06 11.31 11.40 10.57 9.27

Figure 1 is the empirical distribution function diagram for the five groups of data.
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Figure 1. Empirical distribution functions of five groups.
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From the empirical distribution function diagram, we observe that the empirical distribution
functions satisfy F̂1(x) ≥ F̂2(x) ≥ F̂3(x) ≤ F̂4(x) ≤ F̂5(x), which corresponds to an inverted umbrella
ordering. In contrast, the complementary functions satisfy 1 − F̂1(x) ≤ 1 − F̂2(x) ≤ 1 − F̂3(x) ≥
1 − F̂4(x) ≥ 1 − F̂5(x), a pattern consistent with an umbrella ordering.

We use the testing method proposed in this paper for analysis, so as to confirm whether the test
result is consistent with the intuitively observed order characteristics of the distribution functions, and
compare our results with the results obtained from the permutation test of Basso and Salmaso [23].

Assuming that the location of the peak is unknown, based on the above data and significance level
of α = 0.05, we obtain the peak estimate ĥ = 3, which is consistent with the result in Basso and
Salmaso [23]. To get the p−values, we carry out 100000 bootstrap resamplings and obtain a p−value
of 0.01053, and the resulting p−value of Basso and Salmaso [23] is 0.00299. Both tests reject the null
hypothesis.

6. Concluding remarks

In this paper, we propose tests of homogeneity against the umbrella ordering alternative for k
continuous distribution functions, considering both cases in which the peak of the umbrella ordering is
known and unknown, respectively. We construct the test statistics through the isotonic estimators and
establish asymptotic null distributions of the test statistics. A bootstrap procedure is employed to give
the p-value of the proposed tests. Numerical results indicate that the empirical sizes of the proposed
tests are close to the nominal significance level α under H0, and that the empirical powers of the tests
are satisfactory.

Compared with the classical MW and CW tests, the IRB/IRBU methods proposed in this
paper establish a more comprehensive theoretical framework. Supported by Theorems 1–5, this
framework guarantees well-defined asymptotic properties, effective testing power, and reliable
practical implementation. It should be noted, however, that when the peak is flat (i.e., the data
distribution around the peak shows weak differentiation), the accuracy of peak localization may
deteriorate. Future methodological refinements could explore adaptive mechanisms to enhance
robustness in such low-contrast scenarios.
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To prove Theorem 2, we first give the following lemmas.
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(Z∗1n1
(x),Z∗2n2

(x), · · · ,Z∗knk
(x))T w

→ (Z∗1(x),Z∗2(x), · · · ,Z∗k (x))T ,

as ni → ∞, i = 1, 2, · · · , k, where

Z∗i (x) =
√

ai max
r≤i

min
i≤s≤h

∑
{r≤ j≤s,r,s∈S i}

√a jZ j(x)
s∑

j=r
a j

, i = 1, 2, · · · , h − 1;

Z∗h(x) =
√

ah max
r≤h

max
h≤s

∑
{r≤ j≤s,r,s∈S i}

√a jZ j(x)
s∑

j=r
a j

;

Z∗i (x) =
√

ai min
h≤r≤i

max
i≤s

∑
{r≤ j≤s,r,s∈S i}

√a jZ j(x)
s∑

j=r
a j

, i = h + 1, · · · , k.

The proof of Lemma 1 is straightforward from Theorem 4 in El Barmi and Mukerjee [26] and is
omitted.

Based on the conclusions of Lemma 1 and Lemma 1 in Baringhaus and Grübel [29], we give now
the proof of Theorem 2.
Proof of Theorem 2. It is easy to see that

Tn =
√

n
h−1∑
i=1

sup
x∈R

(F̂∗i+1(x) − F̂∗i (x)) +
√

n
k∑

i=h+1

sup
x∈R

(F̂∗i−1(x) − F̂∗i (x))

=

h−1∑
i=1

sup
x∈R

[
√

n
ni+1

√
ni+1(F̂∗i+1(x) − Fi+1(x)) −

√
n
ni

√
ni(F̂∗i (x) − Fi(x))

+
√

n(Fi+1(x) − Fi(x))] +
k∑

i=h+1

sup
x∈R

[
√

n
ni−1

√
ni−1(F̂∗i−1(x) − Fi−1(x))

−

√
n
ni

√
ni(F̂∗i (x) − Fi(x)) +

√
n(Fi−1(x) − Fi(x))]

=

h−1∑
i=1

sup
x∈R

[
√

n
ni+1

Z∗i+1ni+1
(x) −

√
n
ni

Z∗ini
(x) +

√
n(Fi+1(x) − Fi(x))]

+

k∑
i=h+1

sup
x∈R

[
√

n
ni−1

Z∗i−1ni−1
(x) −

√
n
ni

Z∗ini
(x) +

√
n(Fi−1(x) − Fi(x))] (A.1)

Under H0, the third term in both the brackets on the right-hand side of (A.1) is just zero. Therefore, we
have

Tn =

h−1∑
i=1

sup
x∈R

[
√

n
ni+1

Z∗i+1ni+1
(x) −

√
n
ni

Z∗ini
(x)]

+

k∑
i=h+1

sup
x∈R

[
√

n
ni−1

Z∗i−1ni−1
(x) −

√
n
ni

Z∗ini
(x)].
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By Lemma 1, Lemma 1 in Baringhaus and Grübel [29] and the Slutsky theorem, we have

Tn
w
→ T =

h−1∑
i=1

sup
x∈R

(

√
1

ai+1
Z∗i+1(x) −

√
1
ai

Z∗i (x))

+

k∑
i=h+1

sup
x∈R

(

√
1

ai−1
Z∗i−1(x) −

√
1
ai

Z∗i (x)).

Proof of Theorem 3. The first two terms in the first bracket and the first two terms in the second bracket
on the right-hand side of (A.1) are stochastically bounded uniformly for all i = 1, · · · , k. We now
consider the third term in the two brackets.

If H1 does hold, then there is at least one i ∈ {1, 2, · · · , h−1}(i ∈ {h+1, h+2, · · · , k}) which satisfies
Fi(x) < Fi+1(x)(Fi−1(x) > Fi(x)) for all x in some non-empty interval (a, b) ⊂ R. We have

sup
x∈[a,b]

(Fi+1(x) − Fi(x)) > 0, i ∈ {1, 2, · · · , h − 1}

( sup
x∈[a,b]

(Fi−1(x) − Fi(x)) > 0, i ∈ {h + 1, h + 2, · · · , k}).

Therefore, we have Tn → ∞ with probability one.
Proof of Theorem 4. We first prove P(ĥ > h0) → 0 as n → ∞. If h0 = k, it is obviously true. Now
consider the case of h0 < k. By (3.3), we have

P(ĥ > h0) = P(sup
x∈R

[
k∑

j=1

( ˆ̂Fh0+1
j (x) − F̂ j(x))2 < sup

x∈R

k∑
j=1

( ˆ̂Fh0
j (x) − F̂ j(x))2]

∪ · · · ∪ [sup
x∈R

k∑
j=1

( ˆ̂Fk
j(x) − F̂ j(x))2 < sup

x∈R

k∑
j=1

( ˆ̂Fh0
j (x) − F̂ j(x))2])

≤

k∑
l=h0+1

P(sup
x∈R

k∑
j=1

( ˆ̂F l
j(x) − F̂ j(x))2 < sup

x∈R

k∑
j=1

( ˆ̂Fh0
j (x) − F̂ j(x))2) (A.2)

Under H1, by Theorem 1 and | F̂ j(x) − F j(x) |
a.e.
→ 0, we have

P[∥ ˆ̂Fh0
j (x) − F̂ j(x) ∥→ 0, n j → ∞, j = 1, · · · , k] = 1.

Obviously,

P[sup
x∈R

k∑
j=1

( ˆ̂Fh0
j (x) − F̂ j(x))2 → 0, n j → ∞, j = 1, 2, · · · , k] = 1. (A.3)

By assumption (3.2) and the definition of the peak, there must be at least one i0 > h0, such that
Fi0−1(x) > Fi0(x) on some non-empty subinterval [a, b] ⊂ R. Denote ε0 = inf

x∈[a,b]
[Fi0−1(x)−Fi0(x)]. Then

by the definition of ˆ̂F i0
i0−1(x), we have

[ ˆ̂F i0
i0−1(x) − F̂i0−1(x)]2 a.e.

→ β2[Fi0(x) − Fi0−1(x)]2 ≥ β2ε2
0
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as n j → ∞, j = 1, 2, · · · , k, where β = lim
n→∞

ni0
ni0−1+ni0

> 0. Combining(A.2) and (A.3), this implies that

P(ĥ > h0)→ 0 as n j → ∞, j = 1, 2, · · · , k.
Similarly, we can get P(ĥ < h0)→ 0. Thus, Theorem 4 is proved.
To prove Theorem 5, we first give the following Lemma 2 (see Theorem 3.7.7 of van der Vaart and

Wellner [30]).
Lemma 2. Suppose that X1, X2, · · · , Xm is an i.i.d. sample from the probability measure P, and
Y1,Y2, · · · ,Yn is an i.i.d. sample from the probability measure Q. Let F be a class of measurable
functions that is Donsker under both P and Q and possesses an envelope function F with both
P∗F2 < ∞ and Q∗F2 < ∞ (∗ denotes the outer probability). Denote N = m + n. If m, n → ∞ such
that m/N → λ ∈ (0, 1), then

√
m(P̂m,N −HN)

w
→ GH given almost every sequence X1, X2 · · · ,Y1,Y2, · · · .

Here

P̂m,N =
1
m

m∑
i=1

δẐNi
, Q̂n,N =

1
n

n∑
i=1

δẐN,m+i
,

where ẐN1, · · · , ẐNN is an i.i.d. sample from the pooled empirical measure HN and GH is a tight
Brownian bridge process corresponding to the measure H = λP + (1 − λ)Q.

The conclusion can be easily extended to k(> 2) distributions. The only change in the conditions is
ni/
∑k

j=1 → ai ∈ (0, 1), i = 1, · · · , k, which is satisfied by the assumptions in Theorem 5. In our case,
F = {1(−∞,t](x) : t ∈ R}, and all the conditions on F in Lemma 2 are satisfied.
Proof of Theorem 5. Let

Ẑn,ni(x) =
√

ni(F̂n,ni(x) − Hn(x)),
Ẑ∗n,ni

(x) =
√

ni(F̂∗n,ni
(x) − Hn(x)), i = 1, · · · , k.

T̂n =
√

n
h−1∑
i=1

sup
x∈R

[(F̂∗n,ni+1
(x) − Hn(x)) − (F̂∗n,ni

(x) − Hn(x))]

+
√

n
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sup
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=
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sup
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n
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√
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(x) −
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+
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sup
x∈R

[
√

n
ni−1

√
ni−1Ẑ∗n,ni−1

(x) −
√

n
ni

√
niẐ∗n,ni

(x)]

According to Lemma 2, with probability 1, we have

Ẑn,ni(x)
w
→ ZH

i (x), i = 1, · · · , k,

where ZH
i (x) d

= Bi(H(x)), Bi(t), i = 1, · · · , k are independent standard Brownian bridges, H(x) =
a1F1(x)+ · · ·+akFk(x) is the pooled distribution. By condition (2.1), assumption (3.2), and continuous
mapping theorem, we have

Ẑ∗n,ni
(x)

w
→ Z∗Hi (x),
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for given almost every sample sequences, as ni → ∞, i = 1, 2, · · · , k, where

Z∗Hi (x) =
√

ai max
r≤i

min
i≤s≤h

∑
{r≤ j≤s,r,s∈S i}

√a jZH
j (x)

s∑
j=r

a j

, i = 1, 2, · · · , h − 1;

Z∗Hh (x) =
√

ah max
r≤h

max
h≤s

∑
{r≤ j≤s,r,s∈S i}

√a jZH
j (x)

s∑
j=r

a j

;

Z∗Hi (x) =
√

ai min
h≤r≤i

max
i≤s

∑
{r≤ j≤s,r,s∈S i}

√a jZH
j (x)

s∑
j=r

a j

, i = h + 1, · · · , k.

By Slutsky theorem, we have

T̂n
w
→

h−1∑
i=1

sup
x∈R

(

√
1

ai+1
Z∗Hi+1(x) −

√
1
ai

Z∗Hi (x))

+

k∑
i=h+1

sup
x∈R

(

√
1

ai−1
Z∗Hi−1(x) −

√
1
ai

Z∗Hi (x)) (A.4)

with probability 1.
Under H0, we have ZH

i (x) = Zi(x), Z∗Hi (x) = Z∗i (x), i = 1, · · · , k. By (A.4), we have P(T̂n
w
→ T ) = 1.
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