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Abstract: Let R be a ring. An element a ∈ R is called a quasi-idempotent if there exists a central unit k
in R such that a2 = ka. The quasi-idempotent graph of R, denoted by GQid(R), is the simple undirected
graph with vertex set R itself, where two distinct vertices a and b are adjacent if and only if a + b is a
quasi-idempotent. This paper presents a systematic study of the graph GQid(R). We examine its basic
structural properties, including connectivity and girth. We introduce a new invariant of the ring, termed
the quasi-idempotent sum number, and establish the precise relationship between this invariant and the
graph diameter. Furthermore, a complete classification is obtained for all finite commutative rings R
according to the genus of GQid(R), thereby characterizing the rings for which this graph has genus 0, 1,
or 2.
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1. Introduction

Over the past three decades, the association of graph structures with algebraic systems has emerged
as a vibrant and enduring research frontier. Many researchers have employed graph-theoretic concepts
to investigate the properties of related algebraic systems. This line of inquiry was initiated by Beck
in 1988 [1], who introduced the zero-divisor graph of a commutative ring. This graph, which is simple
and undirected, has the entire ring as its vertex set, with two distinct vertices adjacent precisely when
their product is zero. Beck used the chromatic number of this graph to characterize the structure of
finite commutative rings whose zero-divisor graphs have a chromatic number not exceeding three.
Since then, graph structures defined on various algebraic systems have gained widespread attention
and have been extensively studied. Examples include the power graph of a group [2], the total graph of
a ring [3], the unit graph of a ring [4], the enhanced power graph of a group [5], the commuting graph
of a group [6], and the line graph of the comaximal graph of a ring [7].

Zero divisors, units, and idempotents are fundamental components for characterizing the structural
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properties of rings. In the interdisciplinary field of ring theory and graph theory, graph structures
defined based on ring zero divisors include the zero-divisor graph [8] and the total graph of a ring. The
study of graphs derived from ring units, including the unit graph and the unit Cayley graph, has grown
into a fruitful interdisciplinary subfield.

The study of unit graphs was pioneered by Grimaldi in 1990, who defined the unit graph of a
ring, taking all ring elements as vertices, where two vertices are adjacent if and only if their sum is a
unit. Grimaldi investigated several graph-theoretic invariants for the unit graphs of rings of integers
modulo n, including vertex degrees, Hamiltonian cycles, covering number, independence number, and
chromatic polynomials. In 2010, Ashrafi et al. [9] analyzed the connectivity, diameter, girth, and
planarity of unit graphs over finite commutative rings and derived relevant conclusions. Subsequently,
Su et al. [10–13] further investigated properties of unit graphs concerning their girth, genus, domination
number, and other characteristics. Research related to idempotent elements was initiated by Akbari
et al. in 2013 [14]. They introduced the idempotent graph, whose vertices are the idempotent elements
of the ring, with two vertices adjacent if and only if their product is zero. They explored graph
properties, such as connectivity, diameter, girth, and genus, of such idempotent graphs. In 2021,
Razzaghi et al. [15] defined a new type of idempotent graph, where the vertex set consists of all ring
elements and two vertices are adjacent if and only if their sum is an idempotent element. They studied
vertex degrees, connectivity, diameter, and girth for this class of graphs. Subsequently, a number of
studies, including [16–18], have further investigated this idempotent graph. These research efforts on
idempotent graphs have advanced interdisciplinary studies between algebraic systems and graph theory
while providing new methodologies and tools for investigating the structure and properties of algebraic
systems.

With the rapid advancement of information technology, interdisciplinary research in algebra and
graph theory has garnered increasing importance in fields, such as cryptography, coding theory, and
network security. Particularly in cryptography, the integration of algebraic and graph-theoretic methods
provides not only a theoretical foundation for designing new cryptosystems but also powerful tools
for cryptanalysis. The study of rings and their associated graphs establishes a crucial foundation for
practical cryptographic applications. Against this backdrop, the study of ring-based graphs takes
on added significance. Notably, due to their complex structure, idempotent-type graphs of rings
exhibit graph-theoretic properties, such as connectivity, diameter, and clique number, that are deeply
determined by the algebraic features of the underlying ring, including its direct product decomposition
and ideal structure. This intricate algebra-graph interplay makes such graphs natural sources of hard
computational problems, rendering them highly suitable for cryptographic applications.

Graph-theoretic invariants, including diameter, girth, clique number, chromatic number, domination
number, energy, integrality, planarity, crossing number, thickness, and genus, along with properties,
such as bipartiteness and completeness, serve as effective tools for characterizing graph structures
derived from algebraic systems. Consequently, investigating these graph-theoretic properties of ring-
based graphs offers a novel and insightful approach to studying the algebraic structure of rings.

Let R be a ring. Denote by Z(R), U(R), C(R), and CU(R) the sets of zero divisors, units, central
elements, and central units of R, respectively. If R has a unique maximal ideal, denoted by m, then
R is called a local ring. In this case, for any a ∈ R, at least one of a and 1 + a is a unit. For further
reading on algebra and graph theory, refer to [19–22]. In [23, 24], Tang and Su defined an element
a ∈ R to be quasi-idempotent if a2 = ka for some k ∈ CU(R), or equivalently, if a = ke where k is a
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central unit and e is an idempotent in R. The ring R is called a quasi-Boolean ring if every element
of R is a quasi-idempotent. As shown in [24], R is a quasi-Boolean ring if and only if it is a subdirect
product of fields and all its prime ideals are maximal. Motivated by these concepts, we introduce the
quasi-idempotent graph of a ring, thereby extending the research paradigm from idempotent to quasi-
idempotent structures. We define the quasi-idempotent graph of an associative ring R with nonzero
identity, denoted by GQid(R), as a simple undirected graph with vertex set R. Two distinct vertices
a, b ∈ R are adjacent if and only if a + b is a quasi-idempotent.

The paper is organized as follows. In Section 2, we formally investigate GQid(R) and establish
several of its elementary properties, such as connectivity and girth. Section 3 introduces the quasi-
idempotent sum number of a ring and explores its relationship with the diameter of the quasi-
idempotent graph. Finally, Section 4 focuses on determining the genus of the quasi-idempotent graphs
of finite commutative rings.

2. Definitions, examples and basic properties

In this section, we explore some fundamental properties of the quasi-idempotent graph of a ring,
starting with its formal definition and followed by several illustrative examples.

Definition 2.1. Let R be a ring and Qid(R) be the set of its quasi-idempotent elements. The quasi-
idempotent graph of R, denoted by GQid(R), is the simple undirected graph with vertex set R, where two
distinct vertices a, b ∈ R are adjacent if and only if a + b ∈ Qid(R).

Example 2.2. It is clear that Qid(Z2 × Z2[x]/(x2)) = {(0, 0), (0, 1), (0, 1 + x), (1, 0), (1, 1), (1, 1 + x)},
Qid(Z2 × Z4) = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (1, 3)}, and Qid(Z3 × Z3) = Z3 × Z3. The quasi-
idempotent graphs of Z2 × Z2[x]/(x2), Z2 × Z4, Z3 × Z3 and Z3[x]/(x2 + 1) are shown as Figures 1–4.

Figure 1. GQid(Z2 × Z2[x]/(x2)). Figure 2. GQid(Z2 × Z4).

Figure 3. GQid(Z3 × Z3). Figure 4. GQid(Z3[x]/(x2 + 1)).

Remark 2.3. Two graphs G1 and G2 are said to be isomorphic if there is a bijection f between the
vertex set of G1 and the vertex set of G2 that preserves the adjacency relation. For any two rings R1
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and R2, if R1 � R2, then GQid(R1) � GQid(R2). However, GQid(R1) � GQid(R2) does not imply R1 � R2 in
general. For instance, from the above examples we can see that GQid(Z3 × Z3) � GQid(Z3[x]/(x2 + 1)),
but Z3 × Z3 � Z3[x]/(x2 + 1).

Let G be a graph. We denote the vertex set of G by V(G) and the edge set as E(G). For a vertex
a ∈ V(G), the degree of a, denoted by deg(a), is the number of edges of G incident with a. For a given
vertex a ∈ V(G), the neighbor set of a is the set NG(a) = {b ∈ V(G) | b is adjacent to a}.

Lemma 2.4. Let R be a ring and |Qid(R)| be finite. For a ∈ R, then the following hold:

(1) If 2a ∈ Qid(R), then deg(a) = |Qid(R)| − 1.
(2) If 2a < Qid(R), then deg(a) = |Qid(R)|.

Proof. Let a ∈ R. Consider the map f : Qid(R) → R defined by f (e) = e − a for all e ∈ Qid(R).
The map f is injective: f (e1) = f (e2) implies e1 − a = e2 − a, and hence e1 = e2. For any b ∈ R, we
have b ∈ Im( f ) if and only if a + b ∈ Qid(R), because b = e − a for some e ∈ Qid(R) is equivalent to
e = a + b.

If 2a ∈ Qid(R), then f (2a) = a, so a ∈ Im( f ). In this case, Im( f ) coincides with the closed
neighborhood NGQid(R)[a] of a, and therefore deg(a) = |Im( f )| − 1 = |Qid(R)| − 1.

If 2a < Qid(R), then a < Im( f ), otherwise a = f (e) would give e = 2a ∈ Qid(R), a contradiction.
Hence, Im( f ) equals the open neighborhood NGQid(R)(a), and we obtain deg(a) = |Im( f )| = |Qid(R)|. □

A graph G is called a regular graph if every vertex has the same degree. That is, there exists a
nonnegative integer k such that deg(a) = k for all vertices a ∈ V . In this case, the graph is also referred
to as a k-regular graph. Lemma 2.4 implies that GQid(R) is regular if and only if every element a ∈ R
satisfies 2a ∈ Qid(R)

A graph G is a connected graph if there exists a path between any two distinct vertices of G.
Otherwise, G is said to be disconnected.

Theorem 2.5. Let R be a ring. Then, GQid(R) is a connected graph if and only if (R,+) = ⟨Qid(R)⟩.
That is, R is additively generated by Qid(R).

Proof. Assume that GQid(R) is connected. Fix an arbitrary element a ∈ R and choose a quasi-
idempotent e ∈ Qid(R). By connectivity, there exists a path from e to a in GQid(R), say

e = v0 → v1 → v2 → · · · → vn → vn+1 = a,

where vi + vi+1 ∈ Qid(R) for each 0 ≤ i ≤ n. Using a telescoping sum, we can express a as

a = e +
n∑

i=0

(−1)i+1(vi + vi+1).

More explicitly,

a =

e − (e + v1) + (v1 + v2) − · · · + (vn + a), if n is odd,

−e + (e + v1) − (v1 + v2) + · · · + (vn + a), if n is even.
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Since each term vi + vi+1 belongs to Qid(R), the expression above shows that a is an integer linear
combination of quasi-idempotents. Hence, a ∈ ⟨Qid(R)⟩, and consequently (R,+) = ⟨Qid(R)⟩.

Conversely, assuming that (R,+) = ⟨Qid(R)⟩. To prove that GQid(R) is connected, it suffices to show
that every nonzero element b ∈ R is connected to 0. Since b lies in the additive subgroup generated by
Qid(R), it can be written as a finite sum of the form

b = ε1e1 + ε2e2 + · · · + εkek,

where ei,−ei ∈ Qid(R) and εi ∈ {1,−1} for each i. By inserting zero terms if necessary, we may assume
that the signs alternate; that is, we can express b as an alternating sum

b = e1 − e2 + e3 − · · · + (−1)m+1em

for some m ≥ 1 and e1, . . . , em ∈ Qid(R). Now consider the following sequence of vertices:

0, e1, −e1 + e2, e1 − e2 + e3, . . . , e1 − e2 + e3 − · · · + (−1)m+1em = b.

We claim that consecutive vertices in this sequence are adjacent in GQid(R). Indeed,

0 + e1 = e1 ∈ Qid(R),
e1 + (−e1 + e2) = e2 ∈ Qid(R),

(−e1 + e2) + (e1 − e2 + e3) = e3 ∈ Qid(R),
...(

e1 − · · · + (−1)mem−1
)
+
(
e1 − · · · + (−1)m+1em

)
= em ∈ Qid(R).

Thus, the sequence forms a path from 0 to b in GQid(R). Since b was arbitrary, the graph is connected.
□

The girth of a graph G, denoted by gr(G), is the length of the shortest cycle in G. If G has no cycles,
its girth is defined to be infinite. A graph without cycles is called a forest; a tree is a connected forest.
In any tree or forest, there exists at least one vertex u with deg(u) ≤ 1.

Lemma 2.6. Let R be a local ring with characteristic 2 and residue field F � R/m. There exist three
distinct central units a, b, c ∈ CU(R) such that a + b = c if and only if F � F2.

Proof. Let f : R → F be the natural quotient map. Since the image of the center under a
homomorphism is central in the image ring and F is commutative, we have f (C(R)) = F.

Since a, b, c are central units, their images f (a), f (b), f (c) lie in F∗ = F \ {0}. From a + b = c we
obtain f (a) + f (b) = f (c). If f (a) = f (b), then f (a) + f (b) = 0 because char(F) = 2, which would
imply f (c) = 0, contradicting f (c) ∈ F∗. Hence, f (a) , f (b). Similarly, f (a) , f (c) and f (b) , f (c).
Thus, F∗ contains at least three distinct elements, so |F| ≥ 4 and consequently F � F2.

Conversely, suppose F � F2; then |F| ≥ 4 and |F∗| ≥ 3. We construct three distinct elements
u, v,w ∈ F∗ with u + v = w. Take u = 1, choose v ∈ F∗ \ {0, 1}, and set w = 1 + v. Since v < {0, 1}, we
have w < {0, 1, v}. Hence, u, v, and w are distinct.

Since f (C(R)) = F, there exist a, b ∈ C(R) such that f (a) = u and f (b) = v. Because u, v , 0, we
have a, b < m; in a local ring this means a and b are units, so a, b ∈ CU(R). Let c = a + b. Then,
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c ∈ C(R) because C(R) is a subring. Moreover, f (c) = u + v = w , 0, so c < m, and thus c is a unit,
that is, c ∈ CU(R). If a = b, then u = v, a contradiction. If a = c, then a = a + b implies b = 0,
contradicting f (b) = v , 0. Similarly, b , c. Therefore, a, b, and c are three distinct central units
satisfying a + b = c. □

Theorem 2.7. Let R be a local ring. Then, the following statements hold:

(1) gr(GQid(R)) = ∞ if and only if char(R) = 2, |Qid(R)| = 2.
(2) gr(GQid(R)) = 4 if and only if char(R) = 2, |Qid(R)| ≥ 3, R/m � F2.
(3) gr(GQid(R)) = 3 if and only if either char(R) ≥ 3, or char(R) = 2 and R/m � F2.

Proof. Suppose gr(GQid(R)) = ∞. Then, GQid(R) contains no cycles; in particular, it is a forest. Hence,
there exists a vertex v with deg(v) ≤ 1. If char(R) ≥ 3, then −1 ∈ U(R) ⊆ Qid(R) and −1 , 1. Thus,
the vertices 0, 1, −1 form a 3-cycle, contradicting gr(GQid(R)) = ∞. Therefore, char(R) = 2.

When char(R) = 2, for any v ∈ R we have 2v = 0 ∈ Qid(R). By Lemma 2.4, deg(v) = |Qid(R)| − 1
≤ 1. Since {0, 1} ⊆ Qid(R), we have |Qid(R)| ≥ 2. Hence, |Qid(R)| = 2 and deg(v) = 1. In this case,
because Qid(R) maps onto R/m and |Qid(R)| = 2, we obtain R/m � F2.

Conversely, if char(R) = 2 and |Qid(R)| = 2, then every vertex has degree 1, so GQid(R) is a disjoint
union of edges and contains no cycles. Hence, gr(GQid(R)) = ∞.

Suppose gr(GQid(R)) = 4. Clearly char(R) = 2 and |Qid(R)| ≥ 3. Assume, to the contrary, that
R/m � F2. Then, |R/m| ≥ 4. By Lemma 2.6, there exist distinct non-zero elements a, b, c ∈ Qid(R)
such that a+b = c, b+c = a, and c+a = b. These yield a 3-cycle a−b−c−a in GQid(R), contradicting
gr(GQid(R)) = 4. Therefore, R/m � F2.

Conversely, assume char(R) = 2, |Qid(R)| ≥ 3, and R/m � F2. We first show that GQid(R) contains
no 3-cycle. Suppose for a contradiction that there exists a 3-cycle a1 → a2 → a3 → a1, where
ai + ai+1 = ei ∈ Qid(R) and indices are taken modulo 3. Using that char(R) = 2, we obtain the relations
e1 = e2 + e3, e2 = e1 + e3, and e3 = e1 + e2. Observe that 0 cannot belong to e1, e2, e3; if 0 = ei = e j + ek

for some permutation, then e j = ek, which contradicts the fact that the edges of a cycle are distinct.
Hence, e1, e2, e3 ∈ Qid(R) \ {0}. Now 1 is also an element of Qid(R). Under the given relations and
because R/m � F2, one checks that 1 is different from 0, e1, e2, e3. Thus, |Qid(R)| ≥ 4. But Qid(R)
maps onto R/m, and |R/m| = 2, a contradiction. Therefore, no 3-cycle exists.

Now, since |Qid(R)| ≥ 3, we can choose an element e ∈ Qid(R)\{0, 1}. Consider the cycle 0→ 1→
(1+ e)→ e→ 0. The sums along its edges are 0+ 1 = 1, 1+ (1+ e) = e, (1+ e)+ e = 1, and e+ 0 = e,
all of which lie in Qid(R). Hence, this is a 4-cycle in GQid(R), and consequently gr(GQid(R)) = 4.

The statement follows from the negation of the previous two cases. If gr(GQid(R)) = 3, then by
the above we must have either char(R) ≥ 3, or char(R) = 2 and R/m � F2. Conversely, under
either condition, GQid(R) contains a 3-cycle: if char(R) ≥ 3, the cycle 0 − 1 − (−1) − 0 exists; if
char(R) = 2 and R/m � F2, then there exist three non-zero quasi-idempotents forming a 3-cycle.
Hence, gr(GQid(R)) = 3. □

Proposition 2.8. Let R � R1 × R2 × · · · × Rs be a finite ring with s ≥ 2. Then, gr(GQid(R)) = 3.

Proof. Since the quasi-idempotent property is checked componentwise, we have Qid(R) = Qid(R1) ×
Qid(R2) × · · · × Qid(Rs), that is, Qid(R) = {(a1, a2, . . . , as)|ai ∈ Qid(Ri), i = 1, 2, . . . , s}. Consider the
following three distinct vertices in GQid(R): a = (0, 0, . . . , 0), b = (1, 0, . . . , 0), c = (0, 0, . . . , 0, 1).
Their pairwise sums are: a + b = (1, 0, . . . , 0), a + c = (0, 0, . . . , 0, 1), b + c = (1, 0, . . . , 0, 1). Each
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of these sums belongs to Qid(R) because every component is either 0 or 1, both of which are quasi-
idempotents in the respective component rings. Therefore, a, b, and c are pairwise adjacent, forming a
cycle of length 3. This shows that gr(GQid(R)) ≤ 3.

On the other hand, since GQid(R) is a simple undirected graph, any cycle must have length at least 3.
Hence, gr(GQid(R)) ≥ 3.

Combining both inequalities, we conclude that gr(GQid(R)) = 3. □

A graph G with n vertices is called a complete graph if every pair of distinct vertices in G is adjacent.
Such a graph is denoted by Kn. Equivalently, G is complete if and only if each vertex of G has degree
n − 1.

Theorem 2.9. Let R be a ring. Then, GQid(R) is a complete graph if and only if R is a quasi-Boolean
ring.

Proof. Suppose GQid(R) is complete. Then, for any two distinct vertices a, b ∈ V(GQid(R)), we have
a + b ∈ Qid(R). This shows that every element of R is a quasi-idempotent, hence R is a quasi-Boolean
ring. Consequently, every element of R is a quasi-idempotent, and thus R is a quasi-Boolean ring by
definition.

Conversely, suppose R is a quasi-Boolean ring, that is, r ∈ Qid(R) for every r ∈ R. Then, for any
two distinct vertices a, b ∈ V(GQid(R)), their sum a + b is an element of R; hence, a + b ∈ Qid(R). This
implies that a and b are adjacent in GQid(R). Since a and b were arbitrary, every pair of distinct vertices
is adjacent. Therefore, each vertex a satisfies deg(a) = |V(GQid(R))| − 1, and so GQid(R) is a complete
graph. □

A graph G is called a bipartite graph if its vertex set V(G) can be partitioned into two nonempty,
disjoint subsets V1 and V2 such that every edge of G joins a vertex in V1 with a vertex in V2. Such
a partition (V1,V2) is called a bipartition of G. If, in addition, every vertex in V1 is adjacent to every
vertex in V2, then G is said to be a complete bipartite graph. When |V1| = s and |V2| = t, where s, t ≥ 1,
this graph is denoted by Ks,t. A fundamental characterization of bipartite graphs is that a graph is
bipartite if and only if it contains no odd cycles.

Theorem 2.10. Let R � R1 × R2 × · · · × Rs be a finite ring. Then, GQid(R) is a bipartite graph if and
only if R is a finite local ring with char(R) = 2 and R/m � F2. Moreover, when GQid(R) is bipartite, it
is a complete bipartite graph if and only if R is commutative.

Proof. Assume that GQid(R) is bipartite. Then, it contains no odd cycles. By Theorem 2.7 and
Proposition 2.8, we conclude that R must be an indecomposable ring, char(R) = 2, and R/m � F2.
Thus, R is a local ring.

Conversely, suppose R is a finite local ring with char(R) = 2 and R/m � F2, wherem is the maximal
ideal of R. Then R = U(R) ∪ m and U(R) ∩ m = ∅. We will show that GQid(R) is bipartite with the
bipartition V1 = U(R) and V2 = m.

Let a, b ∈ R, a , b, and suppose a + b is a quasi-idempotent. Since char(R) = 2, we have a + b , 0,
otherwise a = b. Because in a local ring with residue field F2, the only quasi-idempotents are 0 and
the central units. Hence, a + b is a central unit. If both a and b belong to U(R), since a + b ≡ 0
(mod m), then a + b ∈ m, which contradicts that a + b is a unit. Similarly, if both a and b belong to
m, then a + b ∈ m, again a contradiction. Therefore, one of a and b must lie in U(R) and the other
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in m. Consequently, every edge of GQid(R) connects a vertex in U(R) to a vertex in m, so the graph is
bipartite.

Now, assume further that GQid(R) is a complete bipartite graph. Then, for every u ∈ U(R) and every
z ∈ m, the sum u + z is a quasi-idempotent. Since u + z ≡ 1 (mod m), it is a unit, and hence a central
unit. In particular, taking z = 0, we see that every u ∈ U(R) is a central unit. Taking u = 1, we
have 1 + z ∈ CU(R) for all z ∈ m, which implies z = (1 + z) − 1 ∈ C(R). Thus, every element of R is
central, and R is commutative.

Conversely, if R is commutative, then every unit is central, so U(R) ⊆ Qid(R). For any u ∈ U(R) and
z ∈ m, since u + z ≡ 1 (mod m), we have u + z ∈ U(R), and hence u + z ∈ CU(R) ⊆ Qid(R). Therefore,
every vertex in U(R) is adjacent to every vertex in m, making GQid(R) a complete bipartite graph. □

Let G be a graph. A mapping f : E(G) → {1, 2, . . . , k} is called a k-edge-coloring if for any two
adjacent edges e1, e2 ∈ E(G), we have f (e1) , f (e2). If such a coloring exists, G is said to be k-edge-
colorable. The smallest integer k for which G is k-edge-colorable is called the chromatic index of G,
denoted by χ′(G).

Let ∆(G) denote the maximum vertex degree in G. Vizing’s theorem [19, Proposition 5.11, 5.13]
states that

∆ ≤ χ′(G) ≤ ∆ + 1.

This leads to a classification of graphs: a graph G is of class 1 if χ′(G) = ∆, and of class 2 if χ′(G) =
∆ + 1.

For complete graphs Kn on n vertices, the chromatic index is known explicitly [19]:

χ′(Kn) =

n if n is odd,
n − 1 if n is even.

Thus, Kn is of class 1 when n is even, and of class 2 when n is odd.
A related classical result is Petersen’s 2-factorization theorem [25, Corollary 8.4.5], which states

that every regular graph of even degree is 2-factorable. This implies, in particular, that such graphs are
of class 1.

Theorem 2.11. Let R be a finite ring. The quasi-idempotent graph GQid(R) is of class 2 if |R| is odd
and 2a ∈ Qid(R) for every a ∈ R. Otherwise, it is of class 1.

Proof. Let a, b, c ∈ V(GQid(R)) with ab, ac ∈ E(GQid(R)). We color each edge ab with color a+b. Then,
edges ab and ac receive the same color if and only if a + b = a + c, which implies b = c and hence
ab = ac. Therefore, adjacent edges receive distinct colors. Let C = {a + b | ab is an edge of GQid(R)}.
Then, C is the set of colors used, so GQid(R) has a |C|-edge coloring, and hence χ′(GQid(R)) ≤ |C|.
Clearly |C| ≤ |Qid(R)|, so χ′(GQid(R)) ≤ |Qid(R)|.

Let ∆ denote the maximum degree of GQid(R). By Vizing’s theorem, we have ∆ ≤ χ′(GQid(R)) ≤
∆ + 1.

If there exists an element v ∈ R such that 2v < Qid(R), then by Lemma 2.4, deg(v) = |Qid(R)| = ∆.
Thus, |Qid(R)| ≤ χ′(GQid(R)) ≤ |Qid(R)|, so χ′(GQid(R)) = ∆. Hence, GQid(R) is of class 1.

Now suppose 2u ∈ Qid(R) for every u ∈ R. If R is a quasi-Boolean ring, then GQid(R) is a complete
graph. It is well known that a complete graph Kn is of class 1 if n is even, and of class 2 if n is odd.
Since |V(GQid(R))| = |R|, the statement follows in this case.
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Assume now that R is not a quasi-Boolean ring. By Lemma 2.4, GQid(R) is a (|Qid(R)| − 1)-regular
graph, so ∆ = |Qid(R)| − 1. We consider two cases.

Case 1. |R| is odd. Assume, for contradiction, that χ′(GQid(R)) = ∆ = |Qid(R)| − 1. In a proper
edge-coloring with ∆ colors, each vertex is incident to exactly one edge of each color. Fix a color c.
Then, the edges of color c form a perfect matching in GQid(R). However, a perfect matching exists only
if the number of vertices is even, contradicting the oddness of |R|. Therefore, χ′(GQid(R)) , ∆, and so
χ′(GQid(R)) = ∆ + 1 = |Qid(R)|. Thus GQid(R) is of class 2.

Case 2. |R| is even. Then, GQid(R) is a regular graph of even degree ∆ = |Qid(R)|−1. We distinguish
two subcases.

Subcase 2.1. Assume that every element a ∈ R satisfies 2a = 0. We define an edge coloring of the
graph GQid(R) as follows: for an edge ab, if a + b = ei where ei is a nonzero element in Qid(R), we
assign color i to this edge. The index i (where 1 ≤ i ≤ ∆) thus corresponds bijectively to the ∆ distinct
nonzero elements of Qid(R).

Observe that for each fixed color i, the set of edges {ab : a + b = ei} forms a perfect matching.
Indeed, for any vertex a, the unique element b satisfying a + b = ei is given by b = ei − a = ei + a
(since 2a = 0). By definition, every vertex is incident to exactly one edge in this set. Therefore, the
graph GQid(R) decomposes into ∆ disjoint perfect matchings, each corresponding to one color class.

By Lemma 2.4, the degree of each vertex a is ∆. Because each color class is a perfect matching,
every vertex is incident with precisely one edge of each color. Consequently, all edges incident to a
given vertex receive distinct colors among the ∆ available.

Thus, the graph admits a proper edge coloring using exactly ∆ colors, which equals its maximum
degree. Hence, GQid(R) is of class 1.

Subcase 2.2. Assume that there exists b ∈ R such that 0 , 2b = e ∈ Qid(R). Then, e , −e, and
consequently |Qid(R)| is odd and ∆ = |Qid(R)| − 1 is even. By Petersen’s 2-factorization theorem,
GQid(R) is 2-factorable. Then, E(GQid(R)) can be decomposed into several edge-disjoint 2-factors and
each 2-factor itself can be properly colored with 2 colors. Since there are ∆/2 such 2-factors, we can
color the whole graph with ∆ colors. Thus, χ′(GQid(R)) = ∆, and GQid(R) is of class 1.

In all cases, the theorem is proved. □

3. The diameter of a quasi-idempotent graph

In this section, we focus on studying the diameter of the quasi-idempotent graph of a ring. To
better understand the graph’s structural properties, we introduce the concept of the quasi-idempotent
sum number. After providing its definition and some illustrative examples, we then investigate the
relationship between this number and the graph’s diameter.

Definition 3.1. Let R be a ring. An element a ∈ R is called a k-fine element if k is the smallest positive
integer such that a = e1 + · · · + ek for some e1, . . . , ek ∈ Qid(R). We denote this minimal k by ℓ(a)
and call it the quasi-idempotent length of a. If no such decomposition exists, we set ℓ(a) = ∞. If
sup{ ℓ(a) | a ∈ R } = k < ∞, then R is called a k-fine ring. In this case, every element of R can be
expressed as a sum of at most k quasi-idempotents, and k is the smallest integer with this property.

Definition 3.2. Let R be a ring. The quasi-idempotent sum number of R, denoted by qisn(R), is defined
as follows.
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(1) If there exists a smallest positive integer k such that R is a k-fine ring, then qisn(R) = k.
(2) If every element of R can be written as a sum of finitely many elements from Qid(R), but there is

no upper bound on the number of summands required, then qisn(R) = ω.
(3) If there exists an element a ∈ R that cannot be written as any finite sum of elements from Qid(R),

then qisn(R) = ∞.

Example 3.3. Consider the following examples:

• For Z4, we have Qid(Z4) = {0, 1, 3} and 2 < Qid(Z4). The elements can be decomposed as:
0 = 0 + 0, 1 = 1 + 0, 3 = 3 + 0, and 2 = 1 + 1 = 3 + 3. Hence, qisn(Z4) = 2.
• For Z, we have Qid(Z) = {0, 1,−1}. In this case, qisn(Z) = ω.
• For Z3[x], we have Qid(Z3[x]) = {0, 1,−1}. Consequently, qisn(Z3[x]) = ∞.

Theorem 3.4. Let R be a finite commutative local ring. Then, the following statements hold:

(1) qisn(R) = 1 if and only if R is a field.
(2) qisn(R) = 2 if and only if R is not a field.

Proof. If qisn(R) = 1, then every a ∈ R is a 1-fine element, and hence a quasi-idempotent. Thus, R is a
quasi-Boolean ring. Furthermore, a finite commutative local quasi-Boolean ring is necessarily a field.
Conversely, if R is a field, then every element of R is a quasi-idempotent, whence qisn(R) = 1.

If qisn(R) = 2, suppose for contradiction that R is a field. Then, by the above, we would have
qisn(R) = 1, a contradiction. Therefore, R is not a field.

Conversely, assume R is not a field. Then, there exists a zero divisor b ∈ R such that b < Qid(R); in
particular, b is not a 1-fine element. Since R is local, b lies in the maximal ideal. Consequently, b− 1 is
a unit and hence a quasi-idempotent. Thus, b = (b − 1) + 1 is a sum of two quasi-idempotents, in other
words, b is a 2-fine element. For any e ∈ Qid(R), we also have e = e + 0. To see that every element of
R is a sum of two quasi-idempotents, observe that any x ∈ R can be written as x = (x − 1) + 1; if x − 1
is not a quasi-idempotent, it is either a unit or a zero divisor. If it is a unit, then it is a quasi-idempotent
and we are done. If it is a zero divisor, we may apply a similar decomposition argument as for b.
Therefore, R is a 2-fine ring. Since R contains elements that are not a 1-fine element, the smallest such
integer is 2, and so qisn(R) = 2. □

If R is a finite commutative ring, we know that R � R1 ×R2 × · · · ×Rs, where each Ri is a finite local
ring, 1 ≤ i ≤ s. It is clear that U(R) = U(R1) × U(R2) × · · · × U(Rs) and Id(R) = {(e1, e2, . . . , es)|ei =

0, 1, i = 1, 2, . . . , s}. So, Qid(R) = {(a1, a2, . . . , as)|ai ∈ U(Ri) or ai = 0, i = 1, 2, . . . , s}.

Theorem 3.5. Let R be a finite commutative ring. Then, the following statements hold:

(1) qisn(R) = 1 if and only if each Ri is a field.
(2) qisn(R) = 2 if and only if not all Ri are fields.

Proof. If qisn(R) = 1, then R is a 1-fine ring and every v = (v1, v2, . . . , vs) ∈ R, v is a quasi-idempotent,
meaning each vi ∈ Ri is a quasi-idempotent of Ri. By Theorem 3.4, all finite commutative local rings Ri

are fields. Conversely, if each Ri is a field, then clearly any u = (u1, u2, . . . , us) ∈ R has each component
ui ∈ Qid(Ri). Hence, u ∈ Qid(R), and thus qisn(R) = 1.

If qisn(R) = 2, then clearly not all Ri are fields; otherwise qisn(R) = 1 by the above. Conversely, if
not all Ri are fields, then there exists at least one index i such that Ri is not a field. Hence, there exists
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an element ei ∈ Ri that is not a quasi-idempotent. Consider the element e = (e1, e2, . . . , es) ∈ R where
we set e j = 0 for j , i. Then, e is not a quasi-idempotent of R, meaning it is not a 1-fine element.
Now, for any a = (a1, a2, . . . , as) ∈ R, we define b = (b1, b2, . . . , bs) ∈ R and c = (c1, c2, . . . , cs) ∈ R as
follows:

bi =

ai, ai ∈ Qid(Ri),

ai − 1, ai < Qid(Ri),
ci =

0, ai ∈ Qid(Ri),

1, ai < Qid(Ri).

We claim that bi and ci are quasi-idempotents in Ri. Indeed, if ai ∈ Qid(Ri), then bi = ai and ci = 0,
both quasi-idempotents. If ai < Qid(Ri), since in a finite local ring, every unit is a quasi-idempotent,
then ai is a non-unit. Therefore ai lies in the maximal ideal of Ri, and so ai − 1 is a unit, hence
a quasi-idempotent. Also, 1 is a quasi-idempotent. Thus, bi and ci are quasi-idempotents in both
cases. Consequently, b, c ∈ Qid(R). Clearly a = b + c, so every element of R is a sum of two quasi-
idempotents. Since there exists an element that is not a 1-fine element, the smallest integer with this
property is 2, and hence qisn(R) = 2. □

Let G be a graph. The distance between two vertices a, b ∈ V(G) is the length of a shortest path from
a to b in G, denoted by d(a, b). If there is no path from a to b in G, then d(a, b) = ∞. The diameter of
G is the maximum distance between any two vertices in G, denoted by diam(G) = max{d(a, b) | a, b ∈
V(G)}.

Theorem 3.6. Let R be a finite commutative local ring. Then, the following statements hold:

(1) diam(GQid(R)) = 1 if and only if R is a field.
(2) diam(GQid(R)) = 2 if and only if R is not a field.

Proof. If diam(GQid(R)) = 1, then every pair of distinct vertices in GQid(R) is joined by an edge;
hence GQid(R) is a complete graph. By Theorem 2.9, R is a quasi-Boolean ring. Since R is a finite
commutative local ring, it must be a field. Conversely, if R is a field, then R is a quasi-Boolean ring,
and GQid(R) is a complete graph, so diam(GQid(R)) = 1.

Assume diam(GQid(R)) = 2. If R were a field, then by the above we would have diam(GQid(R)) = 1,
a contradiction. Hence, R is not a field.

Conversely, suppose R is not a field. Then, R contains nonzero zero divisors, and these are not in
Qid(R). For any a, b ∈ R, we consider three cases.
Case 1. a ∈ U(R) and b ∈ m. Then, a + b ∈ U(R) ⊆ Qid(R), so d(a, b) = 1.
Case 2. a, b ∈ m. Then, a + b ∈ m. If a + b = 0 ∈ Qid(R), then d(a, b) = 1. If a + b , 0,
then a + b < Qid(R); thus, a and b are not adjacent. Since a, b ∈ m, 1 + a and 1 + b are units and
hence belong to Qid(R). Therefore a is adjacent to 1 and 1 is adjacent to b. Hence, there exists a path
a→ 1→ b, giving d(a, b) = 2.
Case 3. a, b ∈ U(R) ⊆ Qid(R). If a + b ∈ Qid(R), then d(a, b) = 1. If a + b < Qid(R), then a and b
are not adjacent. Since a, b ∈ Qid(R), both are adjacent to 0; thus, there exists a path a → 0 → b, and
d(a, b) = 2.

In all cases, the distance between any two vertices is at most 2, and since R is not a field, the graph
is not complete, so diam(GQid(R)) = 2. □

Theorem 3.7. Let R be a finite commutative ring. Then the following statements hold:

(1) diam(GQid(R)) = 1 if and only if each Ri is a field.
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(2) diam(GQid(R)) = 2 if and only if not all Ri are fields.

Proof. Suppose diam(GQid(R)) = 1. Then, GQid(R) is a complete graph. By Theorem 2.9, R is a
quasi-Boolean ring, so every element a = (a1, a2, . . . , as) ∈ R is a quasi-idempotent. This implies that
for each i, every element of Ri is a quasi-idempotent, namely, GQid(Ri) is a complete graph. Hence,
diam(GQid(Ri)) = 1 for each i. By Theorem 3.6, each Ri is a field. Conversely, if each Ri is a field,
then R is a direct product of fields, hence a quasi-Boolean ring. By Theorem 2.9, GQid(R) is a complete
graph, so diam(GQid(R)) = 1.

Suppose diam(GQid(R)) = 2. If all Ri were fields, then by the above we would have
diam(GQid(R)) = 1, a contradiction. Therefore, not all Ri are fields. Conversely, assume that not
all Ri are fields. Then, there exists at least one index j such that R j is not a field. By Theorem 3.6,
diam(GQid(R j)) = 2, so there exist non-adjacent vertices in GQid(R j). This implies that GQid(R) is not
complete, hence diam(GQid(R)) ≥ 2.

It remains to show that diam(GQid(R)) ≤ 2. Let a = (a1, . . . , as) and b = (b1, . . . , bs) be any two
vertices in GQid(R). If a + b ∈ Qid(R), then d(a, b) = 1. Now suppose a + b < Qid(R). For each i,
consider the local ring Ri. By Theorem 3.6, diam(GQid(Ri)) ≤ 2. Therefore, for each i, there exists an
element ci ∈ Ri such that ai + ci ∈ Qid(Ri) and bi + ci ∈ Qid(Ri). Now let c = (c1, . . . , cs) as follows:

ci =


0, ai ∈ U(Ri), Bi ∈ U(Ri)

−ai, ai ∈ U(Ri), Bi ∈ Z(Ri)

1, ai ∈ Z(Ri), Bi ∈ Z(Ri).

Then, a + c = (a1 + c1, . . . , as + cs) and b + c = (b1 + c1, . . . , bs + cs) are both in Qid(R) because each
component is in Qid(Ri). Hence, a and c are adjacent, and c and b are adjacent, so there is a path
a→ c→ b of length 2. Thus, d(a, b) ≤ 2.

Since we have shown that the distance between any two vertices is at most 2, and that there exist
vertices at distance exactly 2, we conclude that diam(GQid(R)) = 2. □

Comparing the diameter of the quasi-idempotent graph of R with its quasi-idempotent sum number
yields the following result.

Corollary 3.8. Let R be a finite commutative ring. Then, qisn(R) = diam(GQid(R)).

Proof. We consider two cases.
Case 1. R is a quasi-Boolean ring. Then, by Theorems 3.4 and 3.5, qisn(R) = 1. Moreover,
since R is a quasi-Boolean ring, GQid(R) is a complete graph, and by Theorem 3.6 and 3.7, we have
diam(GQid(R)) = 1. Hence, qisn(R) = diam(GQid(R)) = 1.
Case 2. R is not a quasi-Boolean ring. Then, there exists an element a < Qid(R). By Theorems 3.4
and 3.5, every element of R can be written as a sum of two quasi-idempotents, so in particular a = b+c
for some b, c ∈ Qid(R). This shows that qisn(R) ≤ 2. Since a < Qid(R), we have qisn(R) > 1; hence,
qisn(R) = 2.

On the other hand, since R is not a quasi-Boolean ring, GQid(R) is not a complete graph. Therefore,
diam(GQid(R)) ≥ 2. By Theorems 3.6 and 3.7, we have diam(GQid(R)) = 2. Hence, qisn(R) =
diam(GQid(R)) = 2.

In both cases, we obtain qisn(R) = diam(GQid(R)). □
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4. The genus of a quasi-idempotent graph

The symbol Sg denotes an orientable surface with genus g, which is a sphere with g handles,up to
a topologically homeomorphism. A graph G that can be embedded on Sg but cannot be embedded on
Sg−1 without crossings is called a graph with genus g, and we write γ(G) = g. A planar graph is a
graph with genus zero. Clearly, if H is a subgraph of a graph G, then γ(H) ≤ γ(G). Determining the
genus of a graph is one of the fundamental problems in topological graph theory. In [26], Thomassen
proved that the graph genus problem is indeed NP-complete. This implies that, even for most practical
graphs, determining their genus is computationally infeasible. In [27], Duke identifies exactly three
genus 2 irreducible subgraphs in the complete graph K8 and uses this to determine the genus of every
graph with fewer than nine vertices. It is evident that when R is a finite commutative ring, the unit
graph of R is a subgraph of its quasi-idempotent graph. For related properties of the genus of the unit
graph over finite commutative rings, one may refer to [28]. By contrast, the quasi-idempotent graph
possesses more edges and exhibits a more complex structure, making it considerably more challenging
to determine its genus. In this section, we study the genus of quasi-idempotent graphs of rings. We
give a classification of finite commutative rings R whose γ(GQid(R)) is 0,1,2, respectively. The first two
lemmas from graph theory will be frequently used.

Lemma 4.1. [20, Theorems 6.37, 6.38] Let m ≥ 2, n ≥ 3, p ≥ 2 be integers. Then, γ(Kn) =⌈
1
12 (n − 3) (n − 4)

⌉
, γ
(
Km,p

)
=
⌈

1
4 (m − 2) (p − 2)

⌉
, where ⌈x⌉ is the least integer that is greater than or

equal to x.

Lemma 4.2. [20, Corollary 6.14] Suppose a simple graph G is connected with p ≥ 3 vertices and q
edges. Then, γ (G) ≥ q

6 −
p
2 + 1.

The following lemma is a key result, which states the number of quasi-idempotents of a ring R is
no more than 8 if γ(GQid(R)) ≤ 2.

Lemma 4.3. Let R be a finite ring with n elements, k quasi-idempotents. If k ≥ 9, then γ(GQid(R)) ≥ 3.

Proof. For any element a ∈ GQid(R), we know deg(a) ⩾ k − 1 by Lemma 2.4, and thus GQid(R) at least
has n(k−1)

2 edges. Therefore, γ(GQid(R)) ≥ ⌈ n(k−1)
12 −

n
2 + 1⌉ ≥ ⌈n(k−7)

12 + 1⌉ by Lemma 4.2. When k ⩾ 9,
then γ(GQid(R)) ≥ ⌈9×2

12 + 1⌉ = ⌈30
12⌉ = 3. □

Theorem 4.4. Let R be a finite commutative ring. Then, the following statements hold:

(1) γ(GQid(R)) = 0 if and only if R is isomorphic to one of the following rings: Z2, Z3, F4, Z4,
Z2[x]/(x2), Z2 × Z2.

(2) γ(GQid(R)) = 1 if and only if R is isomorphic to one of the following rings: Z5, Z7, Z8, Z2[x]/(x3),
Z4[x]/(2x, x2), Z4[x]/(2x, x2 − 2), Z2[x, y]/(x, y)2, Z2 × Z3, Z2 × Z2[x]/(x2), Z2 × Z4.

(3) γ(GQid(R)) = 2 if and only if R is isomorphic to one of the following rings: F8, Z9, Z3[x]/(x2),
Z2 × F4, Z2 × Z2 × Z2.

Proof. As R is a finite commutative ring, we know that R � R1 ×R2 × · · · ×Rs, where each Ri is a finite
local ring, 1 ≤ i ≤ s. It is clear that U(R) = U(R1)×U(R2)×· · ·×U(Rs) and Id(R) = {(e1, e2, . . . , es)|ei =

0, 1, i = 1, 2, . . . , s}. So, Qid(R) = {(a1, a2, . . . , as)|ai ∈ U(Ri) or ai = 0, i = 1, 2, . . . , s}. Thus,

|Qid(R)| =
s∏

i=1

(
|U(Ri)| + 1

)
≥ 2s.
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If s ≥ 4, then |Qid(R)| ≥ 16. By Lemma 4.3, we have γ(GQid(R)) ≥ 3, thus we need only consider
the case of s ≤ 3 when we explore γ(GQid(R)) ≤ 2. We proceed with three cases.

Case 1. s = 1. In this case, R is a finite commutative local ring. If m = {0}, then R is a field.
Thus, GQid(R) is a complete graph. Therefore, when R � Z2,Z3,F4, γ(GQid(R)) = 0; R � Z5,Z7,
γ(GQid(R)) = 1; R � F8, γ(GQid(R)) = 2. When |R| ≥ 9, γ(GQid(R)) ≥ 3. If m , {0}, then we
know R/m � F is a field and |U(R)| = |F∗| · |m|, where F∗ = F \ {0}. By Lemma 4.3, we have
|U(R)| + 1 = |F∗| · |m| + 1 ≤ 8 if γ(GQid(R)) ≤ 2. So, |F∗| · |m| ≤ 7, which deduces that |F∗| ≤ 3.

If |F∗| = 1, then F � Z2 and then |m| = 2 or 4. If |m| = 2, then R is isomorphic to
Z4 or Z2[x]/(x2). It is clear that GQid(R) is a planar graph. If |m| = 4, then R is a local ring
of order 8 but not a field. So R is isomorphic to one of the following rings: Z8, Z2[x]/(x3),
Z4[x]/(2x, x2), Z4[x]/(2x, x2−2), Z2[x, y]/(x, y)2. It is easy to see that K4,4 is a subgraph of GQid(R). So,
γ(GQid(R)) ≥ 1 by Lemma 4.1. On the other hand, we can be embedded these graphs into S1 as shown
in Figures 5–9. Hence, γ(GQid(Z2[x]/(x3))) = γ(GQid(Z2[x, y]/(x, y)2)) = γ(GQid(Z4[x]/(2x, x2))) =
γ(GQid(Z4[x]/(2x, x2 − 2))) = γ(GQid(Z8)) = 1.

Figure 5. GQid(Z2[x]/(x3)). Figure 6. GQid(Z2[x, y]/(x, y)2).

Figure 7. GQid(Z4[x]/(2x, x2)). Figure 8. GQid(Z4[x]/(2x, x2 − 2)).
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Figure 9. GQid(Z8).

If |F∗| = 2, then F � Z3 and then |m| = 3. R is isomorphic to Z9 or Z3[x]/(x2). In this
case, it is easy to verify that |V(GQid(R))| = 9 and |E(GQid(R))| = 28. Then, by Lemma 4.2, we
know γ(GQid(R)) ≥ 2. Figures 10 and 11 show that GQid(R) can be embedded into S2. Therefore,
γ(GQid(Z9)) = γ(GQid(Z3[x]/(x2))) = 2.

Figure 10. GQid(Z9). Figure 11. GQid(Z3[x]/(x2)).

If |F∗| = 3, then F � F4 and then |m| = 2 by |F∗| · |m| ≤ 7. There is no local rings R with |m| = 2 and
R/m � F4.
Case 2. s = 2. In this case, R = R1 × R2. By |Qid(R)| = (|U(R1)| + 1)(|U(R2)| + 1) ≤ 8, we know that
|U(Ri)| = 1 for some i = 1, 2. Without loss of generality. We let |U(R1)| = 1. So, |U(R2)| = 1, 2, 3.

When |U(R2)| = 1, we know R � Z2 × Z2. In this case, GQid(R) is clearly a planar graph.
When |U(R2)| = 2, we know R � Z2 × Z3, or Z2 × Z4 or Z2 × Z2[x]/(x2). If R � Z2 × Z3,

GQid(R) = K6, and thus its genus is one by Lemma 4.1. If R � Z2 × Z4 or Z2 × Z2[x]/(x2), then it
is not difficult to verify that GQid(R) has a subgraph K3,3 (take the vertices: (0, 0), (0, 2), (1, 2), (1, 1),
(0, 3), (1, 3) in GQid(Z2 ×Z4) or (0, 0), (0, x), (1, x), (1, 1), (0, 1+ x), (1, 1+ x) in GQid(Z2 ×Z2[x]/(x2))).
So, γ(GQid(R)) ≥ 1. Note that GQid(Z2 × Z2[x]/(x2)) and GQid(Z2 × Z4) can be embedded into S1 as
shown in Figures 12 and 13, and thus γ(GQid(Z2 × Z2[x]/(x2))) = γ(GQid(Z2 × Z4)) = 1.

When |U(R2)| = 3, we know R � Z2 × F3. In this case, GQid(R) = K8, and thus its genus is two.
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Case 3. s = 3. In this case, by |Qid(R)| = (|U(R1)| + 1)(|U(R2)| + 1)(|U(R3)| + 1) ≤ 8, we know that
|U(Ri)| = 1, i = 1, 2, 3. So, R = Z2 × Z2 × Z2. Thus, GQid(R) = K8 and γ(GQid(R)) = 2.

Figure 12. GQid(Z2 × Z2[x]/(x2)). Figure 13. GQid(Z2 × Z4).

□

5. Conclusions

This paper systematically investigates the quasi-idempotent graph GQid(R) of a ring R, where two
distinct vertices a, b ∈ R are adjacent if and only if a + b is a quasi-idempotent element. We establish
fundamental structural properties of the graph, including connectivity, regularity, completeness,
bipartiteness, and a complete characterization of its girth, revealing deep connections with the algebraic
structure of the ring.

We introduce the quasi-idempotent sum number qisn(R), a new ring-theoretic invariant, and for
finite commutative rings, prove the equality qisn(R) = diam(GQid(R)), directly linking this algebraic
invariant to the diameter of the graph.

Furthermore, we provide a complete classification of all finite commutative rings R according to
the genus γ(GQid(R)) of their quasi-idempotent graphs, distinguishing those with genus 0, 1, or 2. This
classification highlights the intricate relationship between the combinatorial complexity of the graph
and the arithmetic structure of the ring.

In summary, the quasi-idempotent graph serves as a powerful tool for studying ring structures
through graph-theoretic methods. The connections established between algebraic and graph invariants
enrich the theory of ring-based graphs and suggest potential applications in areas such as algebraic
cryptography. Future work may extend these results to non-commutative rings, investigate other graph
invariants, or explore computational aspects of these graphs in cryptographic protocols.
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