AIMS Mathematics, 11(2): 3243-3268.
DOI:10.3934/math.2026131
AIMS Mathematics Received: 17 April 2024

Revised: 14 May 2025

Accepted: 23 January 2026
https://www.aimspress.com/journal/Math Published: 03 February 2026

Research article

Error-control B-spline Gaussian collocation PDE software with event
detection

Jack Pew, Connor Tannahill and Paul Muir*
Saint Mary’s University, Halifax, NS, Canada, B3H 3C3
* Correspondence: Email: muir@smu.ca.

Abstract: This paper introduces BACOLIKR, a new software package for the error-controlled
numerical solution of systems of one-dimensional time-dependent partial differential equations
(PDEs). A novel feature of this package is that it allows the user to specify a solution dependent
condition, called an event, and then the software will determine the point in time at which the specified
event occurs. This event detection capability can be used to provide an efficient and accurate means
for dealing with time-dependent discontinuities in the PDEs or the boundary conditions.

BACOLIKR employs adaptive B-spline Gaussian collocation for the spatial discretization of the
PDE system within a spatial error control algorithm. The event detection capability in BACOLIKR
is based on its use of a modified version of the time integrator, DASKR, which implements event
detection for time-dependent differential-algebraic equations. BACOLIKR was developed through
modifications of an earlier error control PDE solver, BACOLI.

In this paper, we provide an overview of the BACOLI and DASKR packages and then describe the
modifications that were made in order to develop BACOLIKR. We then show how BACOLIKR can be
used for the effective solution of a number of PDE-based event detection problems including solution
layer-boundary intersection detection and solution layer merge detection in a fluid mechanics model,
critical tumor mass detection in a brain tumor model, steady state detection in the Gierer-Meinhardt
model, and boundary condition event detection in a discontinuous heat flow model.

Keywords: B-splines; collocation; interpolation; error estimation; error control; event detection;
partial differential equations (PDEs)
Mathematics Subject Classification: 65106, 65L10, 65L80, 65M20, 65M70

1. Introduction

The numerical solution of partial differential equations (PDEs) arises as an important step in a
wide variety of applications including investigations in microbial biogeochemistry [28], electrons in a

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2026131

3244

non-thermal plasma [27], pulsed microwave discharge in nitrogen [5], and one-dimensional, dynamic,
catalytic reactor models [4]. This paper introduces a new software package, called BACOLIKR, for
the computation of an error-controlled continuous numerical solution to a system of time-dependent
PDE:s in one space dimension.

Error control in this context means that for every time step taken by the solver, a high quality
estimate of the error of the continuous numerical solution is computed, and the solution computed on
the time step is not accepted unless this error estimate satisfies a user tolerance. If the error estimate
does not satisfy the user tolerance, the computed solution on the step is rejected and the step is repeated
using a smaller time step and/or a finer and more well adapted, spatial mesh. Advantages of computing
an error-controlled numerical solution include the facts that the user can have reasonable confidence
that the numerical solution has an error that is within a small multiple of the requested tolerance and
that the cost of the computation will be proportional to the requested tolerance.

The key new feature of BACOLIKR is that it allows the user to specify a solution-dependent
condition, called an event, and then the software will determine the point in time at which this
event occurs. This feature is a generalization of the well-known event detection capability commonly
available in state-of-the-art software for the numerical solution of initial value ordinary differential
equations (ODEs). To our knowledge, BACOLIKR is the only available error-control PDE solver that
offers event detection.

A simple example of an event detection task would be to ask when the solution to a PDE, at a given
point in the spatial domain, takes on a specified value. However, as we will see in this paper, much more
complex events that depend on, for example, a derivative of the solution, or on the spatial integral of the
solution, can be treated. Examples discussed in this paper include solution layer-boundary intersection
detection and solution layer merge detection in a fluid mechanics model, critical tumor mass detection
in a brain tumor model, steady state detection in the Gierer-Meinhardt model, and boundary condition
event detection in a discontinuous heat flow model.

An essential point regarding event detection is that it can be used to provide an efficient and
accurate means for dealing with time-dependent discontinuities. 1t is well-known that the presence
of such discontinuities can lead to substantial difficulties, with respect to both efficiency and accuracy,
for a time integration method. See, e.g., [14] and [12], where multi-step and Runge-Kutta methods,
respectively, are embedded in algorithms for the treatment of systems of time-dependent ODEs with
discontinuities. See also, e.g., [20] and references within, for work on the detection and handling of
discontinuities for systems of time-dependent differential-algebraic equations (DAEs). We demonstrate
in this paper how the event detection capability of BACOLKR can be used to provide efficient
discontinuity detection for a heat flow problem with discontinuous boundary conditions.

It should be mentioned that all time integration algorithms that provide event detection can face
issues when, e.g., there are an even number of events within a time-step or if two events are very close
together. See, e.g., [25] and references within for further discussion of this point.

The advantage of software with an event detection capability is that the software itself, to within
the accuracy with which the numerical solution is computed, can determine when a specified condition
arises. This is in contrast to a standard PDE solver where the user must explicitly specify when the
solver should finish, and in this case there is no straightforward way for the user to determine the point
in time when a solution-dependent event of interest occurs.

Accurate event detection requires that the numerical solution of the PDE be computed using error

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3245

control. Since the event itself will depend on the value of the solution and/or its derivatives and/or
its spatial integral, if the numerical solution is not computed accurately, then it will be impossible to
determine the event time accurately. On the other hand, when an error-control solver has an event
detection capability, the point in time when the event happens will also be determined to within the
requested tolerance. The capability for event detection depends heavily on the fact that the approximate
solution computed by BACOLIKR is represented as a continuous function of time and space. We will
discuss this aspect of the approximate solution later in this paper.
The problem class we consider in this paper is a PDE system of size NPDE of the form,

u(x,t) = f(txuxn,u (x0.u,(x0), a<x<b txn, (1.1)
with separated boundary conditions,
by (tut@), ula.n)=0, by(t.u.0.ub.0)=0, t21n, (1.2)

and initial conditions,
u(x, o) = uy(x), a<x<b. (1.3)

In addition, there is a vector function of size NRT, called the gstop function, which has the form,

g (b, u(e, 1), 1, (x, 0, (3,), 1,(x, 1)) (1.4)

Each component of the gstop function defines an event and must be set to an expression whose value
changes sign at the point in time where the event occurs. That is, each event is defined to occur at a
root of one of the components of the gstop function, and the task of locating the time at which an event
occurs is implemented by finding roots of the components of the gstop function.

The definition above for the gstop function is sufficiently general to allow a wide variety of events
to be defined. It is the responsibility of the user to define an event in a way that make sense for the
given application. If the user defines an event that cannot be satisfied by the solution of the PDE then
this event will never be detected during the computation of the solution. See [25] for further discussion
of well-posed events for time-dependent ODEs.

The BACOLIKR package has been developed through a modification of the BACOLI package [22],
which is based on the earlier BACOL package [29]. Either BACOLI or BACOL was used to perform
the numerical computations in the applications literature cited in the first paragraph of this section.
The BACOLIKR package employs B-spline Gaussian collocation for the spatial discretization of the
PDEs; this discretization process yields a system of time-dependent ODEs. These ODEs, together
with the boundary conditions, represent a system of DAEs that are solved using a modification of the
DAE solver, DASKR [6,7], which is based on a family of Backward Differentiation Formulas (BDFs).
An important feature of DASKR is that it provides event detection for systems of DAEs, and it is this
capability that BACOLIKR builds upon to provide event detection for PDEs. (See Section 2.2 for
further details.) For each time step, DASKR uses adaptive time stepping and/or BDF order selection to
compute an approximate solution to the DAEs such that a corresponding error estimate is less than the
user tolerance. For each time step accepted by DASKR, BACOLIKR then computes an estimate of the
spatial error of the numerical solution. If this spatial error estimate satisfies the user tolerance, then the
solution computed on the current time step is accepted. Otherwise, BACOLIKR will adapt the spatial
mesh and then restart the computation at the beginning of the current time step.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3246

The source code for BACOLIKR and the examples considered in this paper are available at http:
//cs.smu.ca/~muir/BACOLI-3_Webpage.htm.

This paper is organized as follows. In Section 2, we provide an overview of BACOLI and
DASKR, the packages that were modified in order to obtain BACOLIKR. In Section 3, we describe the
modifications that were made to the BACOLI and DASKR packages in order to develop BACOLIKR.
Section 4 discusses the application of BACOLIKR to a collection of problems involving event detection
where the event depends on the solution, a derivative of the solution, or the spatial integral of one of
these. We close in Section 5 with our summary, conclusions, and an identification of future work.

2. Overview of BACOLI and DASKR

As mentioned above, the new software, BACOLIKR, has been developed through modifications
of the BACOLI and DASKR software packages. We begin this section with a description of these
packages.

2.1. BACOLI

For the problem, (1.1)-(1.3), as mentioned earlier, BACOLI employs B-spline Gaussian collocation
for the spatial discretization. The numerical solution, U(x,?), is represented in terms of a B-spline
basis of C!-continuous piecewise polynomials in x, of degree p on each subinterval of a spatial mesh,
{x}¥INT | that partitions [a, b]. Here NINT is the number of subintervals of the spatial mesh. U(x, 1)
has the form

U1 = ngawp,i(x), @.1)

where Y, (t) is the unknown time-dependent vector coefficient of the i-th B-spline basis function,

B, i(x), and NC, = NINT(p — 1) + 2. The B-spline basis is implemented in BACOLI using the de
Boor B-spline package [9]. The use of Gaussian collocation for the spatial discretization of the PDE
means that U(x,) is required to satisfy (1.1) at p—1 collocation points on each spatial mesh subinterval,
where the collocation points are chosen to be the images of the Gauss points, {o j};’:—]l, mapped on to
each subinterval. Letting n; be the jth collocation point, the corresponding collocation condition has
the form,

U= f (60 UGy 0, U, 0, U, (0, D) = 0, (2.2)

J=2,...,NC, = 1. U(x,1) is also required to satisfy the boundary conditions at n; = a and nyc, = b;
these have the form,

by (1. U@, U @) =0, by(t,Ub,1,U,b,1)=0. (2.3)

The Equations (2.2) and (2.3), represent an index-1 system of DAEs and the solution of this system
gives the B-spline coeflicients, y (#). Once these coefficients are available, the numerical solution to
the PDE can be obtained from (2p1)

This collocation discretization yields a numerical solution that, for an arbitrary point in the spatial
domain, has a spatial error that is O(h”*'), where h is the maximum subinterval size [8, 11]. The
numerical solution is said to be of spatial order p + 1.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm
http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm

3247

In BACOLLI, this DAE system is solved using a modified version of the DASSL package [21],
which computes error-controlled approximations to the B-spline coefficients using a variable time
step/variable order algorithm based on a family of BDFs of orders 1 to 5. One of the most
significant modifications made to DASSL was the introduction of a new option for the solution of
the linear systems that arise during the computation of the B-spline coefficients. Due to the use
of a B-spline basis, these linear systems have what is known as an almost block diagonal (ABD)
structure [10], and the modified version of DASSL employed in BACOLI makes use of the COLROW
package [10], which is designed to efficiently solve such systems. The tolerance employed in the
modified version of DASSL is slightly sharper than the user tolerance which is employed in the spatial
error control algorithm implemented in BACOLI. This means that, generally, the time error associated
with the computation of the B-spline coefficients will be slightly smaller than the spatial error of the
approximate solution.

The spatial error control algorithm implemented in BACOLI requires that a high quality estimate
of the spatial error of the numerical solution be computed. BACOLI has two options for computing
a spatial error estimate for U(x, 7). The first option, described in [1], is based on the observation
that, at certain points within the spatial domain, the spatial accuracy of U(x,1) is at least one order
higher, i.e., O(h”*?), than it is at an arbitrary point in the spatial domain; these solution values are
said to be superconvergent. The points at which U(x,) is superconvergent include the mesh points
as well as certain other points (see [1]) internal to each subinterval. The U (x,) values at the mesh
points are also superconvergent. For each spatial mesh subinterval, a Hermite-Birkhoft polynomial
interpolant is constructed that interpolates the superconvergent U(x,?) and U (x,t) mesh point values
at each end of the subinterval as well as the superconvergent U(x,t) values that are internal to the
subinterval. Furthermore, in order to obtain an interpolant whose interpolation error is dominated by
the error of the interpolated values, this Hermite-Birkhoff interpolant also interpolates the two closest
superconvergent U(x, t) values internal to the left and right adjacent subintervals.

This Hermite-Birkhoff interpolant, known as the SuperConvergent Interpolant (SCI), has the
following form on the ith subinterval, [x;, xis1]. Let s1 = x;, so = x;31, and let wj, j = 1,...,k, where
k = p — 3, be the non-mesh points where the superconvergent solution values are to be interpolated. At
time ¢, the Hermite-Birkhoff interpolant has the form [13],

2 2 k
DTH UG 1) +h Y Hi@U (5.0 + Y GOUw,.0. (2.4)
j=1 Jj=1 Jj=1
where x € [xi, xi011, h = Xiv1 — Xi,
0 = (1 — (e) E(N)P(x) 5= (s E(0)d(x)
A Miepetsy T T ety
$,(DE ()
Gix) = ——=
)= G &ow)
where,
k k
o) = | |x=wn, g0 = [xr—wn,
r=1 r=1
r#j

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3248

2 2
£ = |-s0, & =] Jx-sn,
r=1 r=1

r#j

and,
k

1
ijzsj_wi+2z

=

Since the interpolation error of the above interpolant is dominated by the spatial error of the
superconvergent interpolated values, the spatial error of the Hermite-Birkhoff interpolant is the same as
the error of these superconvergent interpolated values, i.e., O(h”*?). Over [a, b], these Hermite-Birkhoft
interpolants, taken together, represent a C'-continuous piecewise polynomial solution approximation,
which we refer to as Q(x, 1). Scaled differences (see (2.5) and (2.6)) of U(x, t) and E(x, t) are computed
in order to obtain spatial error estimates for U(x,t). These spatial error estimates are employed in
BACOLI to provide what is known as standard (ST) spatial error control.

The second option available in BACOLI for computing a spatial error estimate for U(x,?) costs
slightly less to implement than the SCI, does not make use of approximate solution values from outside
the subinterval when constructing the interpolant for the subinterval, and provides a slight overestimate
of the spatial error. This interpolant makes use of the solution and derivatives values from each end
of the subinterval as well as solution values at k = p — 4 points that are internal to the subinterval.
On the ith subinterval, this interpolant, which we will refer to as Q(x, 1), is also a Hermite-Birkhoff
interpolant of the form (2.4), but in this case the w; values are chosen so that the interpolation error
of this Hermite-Birkhoff interpolant is asymptotically equivalent to the spatial error for a collocation
solution of one order lower than U(x,t). We therefore refer to U(x, 1) as the Lower Order Interpolant
(LOI); the number of interpolation points is chosen so that the interpolation error dominates the error
of the values being interpolated, and thus the LOI has a spatial error that is O(h”). See [2] for further
details.

Scaled differences (again see (2.5) and (2.6)) of U(x, t) and E(x, t) provide an estimate of the spatial
error for U(x,t). Since U(x,) is returned to the user but the spatial error control is based on a spatial
error estimate for a solution approximation that is of one order lower than U(x,t), we have what is
known as Local Extrapolation (LE) error control - see, e.g., [17].

When BACOLI is called with a given value for p, it computes and returns a numerical solution based
on B-splines of degree p. If the ST spatial error control mode is chosen, then the solver constructs the
SCI to generate a spatial error estimate which is then used as the basis for ST spatial error control. If
the LE spatial error control mode is chosen, then BACOLI constructs the LOI and uses it to generate a
spatial error estimate which is then used to provide LE spatial error control. Thus the availability of the
two types of interpolants corresponds to providing two options for spatial error control, ST mode or LE
mode, similar to what is available when a Runge-Kutta formula pair is used to provide error control for
an initial value ODE - see, e.g., [17]. See [23] for a detailed performance analysis of BACOLI using
these two error control modes.

For either error control mode, two types of spatial error estimates for U(x,?) are computed by
BACOLI. The first is the set of error estimates are given in (2.5). Each of these represents a scaled
spatial error estimate, over the entire spatial domain, for one component of the solution. They have the

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3249

— 2
b Uix,t)—Ui(x,t
Ep)= f D - U dx, (2.5)
a ATOLJ + RTOLJ'UJ'(X, t)|
where ¢ is the current time, ATOL; and RTOL; are the absolute and relative toleragces for the j-th
approximate solution component, U(x, 1), and U j(x, 1) is the jth component of either U(x, t) or U(x, t).

The second set of spatial error estimates are given in (2.6). Each of these provides a scaled spatial error
estimate, over all components of U(x, t), for the ith subinterval. These have the form,

form,

NPDE . fepel 2
- i Ujlx,1) = Uj(x,t
E(t) = E f o0 = Ut dx. (2.6)
£ J, ,\ATOL; + RTOL,|U (x, 1)

These spatial error estimates are computed after each accepted time step taken by DASSL. A step is
accepted when E;(r) < 1 for j = 1,...,NPDE. Otherwise the step is rejected and the E(t) values
are used in a spatial mesh refinement algorithm that attempts to construct a new mesh such that
(i) the numerical solution computed on that mesh will have a spatial error estimate that satisfies the
tolerance and (ii) the spatial error estimates over the subintervals of that mesh will be approximately
equidistributed. Both the location and number of mesh points can be changed during a remeshing
in order to adapt to the size (with respect to the user tolerance) and distribution of the spatial error
estimates over the spatial domain. Once a new spatial mesh is constructed, solution information from
the current time step and several previous time steps is interpolated to the new mesh. See [31] for
further details.

Important related work has seen the development of the software package, EBACOLI (Extended
BACOLI) [16], which is a modification of BACOLI that can compute error-controlled solutions to
systems of PDEs coupled with ODE:s in time and/or space.

2.2. DASKR

The DASKR solver was obtained through an extension of the solver DASPK [6], which itself was
developed from the original member of this software family, DASSL. As mentioned earlier in this
paper, DASKR is based on a family of BDFs and uses both adaptive time stepping and BDF order
selection to control an estimate of the temporal error. DASKR represents the approximate solution it
computes in terms of a continuous piecewise polynomial interpolant. The order of the interpolant is
chosen to be consistent with the order of the BDF used to obtain the discrete solution approximation
at the end of the step. In addition to a choice of direct methods (dense or banded) for the treatment of
the linear systems that arise during the computation of a numerical solution, DASKR also provides the
user with the option of using a Krylov method, the Generalized Minimum Residual (GMRES) method,
in either complete or incomplete form, with scaling and preconditioning [6], for use when the linear
systems are large. As well, DASKR improves upon DASSL by providing an option for the calculation
of consistent initial conditions for the DAE system to be solved, when the user is not able to provide
these.

Furthermore, as mentioned earlier, DASKR has a time-dependent event detection capability that can
be employed while the solver is computing a numerical solution to a DAE system. At the end of each
accepted time step, DASKR calls the user’s gstop function in order to monitor for sign changes in any

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3250

of the components of the gstop function. When a sign change is detected, DASKR uses the interpolant
to the approximate solution, together with the search algorithm described in [18], to locate the point in
time where the root of the corresponding component of the gstop function is located, and then returns
to the calling program.

While, as mentioned above, DASKR has the capability for treating large DAE systems using the
preconditioned GMRES algorithm, we have not yet incorporated this feature of DASKR into the
BACOLIKR package; this would require a further major modification to BACOLIKR and therefore,
later in the paper, we identify this as a potential project for future work. Of course, further investigation
of the effectiveness of the event location strategy of DASKR for (large) real-world problems would be
required. See, e.g., [26], for further discussion on this point.

Also, the algorithm provided within DASKR for computing consistent initial conditions, mentioned
earlier, is not employed because BACOLIKR computes its own consistent initial conditions for the
DAE system before calling DASKR.

3. Development of BACOLIKR

As mentioned earlier, event detection is implemented through a user defined gstop function, each
component of which is used to characterize an event; this is done by writing each component of the
gstop function so that it has a root at the point in time where the event occurs. It is therefore common
for event detection software to be described in terms of a root finding capability where the goal of
determining the time at which an event occurs is described in terms of finding a root of the gstop
function. Thus, in this section, we make reference to root finding rather than event detection when
describing the software modifications. Below we describe the major modifications that were made to
BACOLI and DASKR in order to develop BACOLIKR. Modifications were also made to the interface
of BACOLIKR. We do not include these details here but instead refer the reader to [24] for detailed
descriptions of these modifications.

3.1. Major modifications

The overall structure and user interface for BACOLIKR are similar to that of BACOLI and we
therefore refer the reader to [22] for additional details.

e As mentioned earlier in this paper, BACOLI makes use of a modified version of DASSL. See
Section 3 of [29] for a detailed description of the changes that were made to DASSL. In order to
use DASKR within BACOLIKR, it was necessary to make similar changes. One major change
involved modifying DASKR to provide an option for it to use the ABD linear system solver,
LAMPAK [19], to solve the ABD linear systems that arise. (BACOLIKR uses LAMPAK, rather
than the COLROW package used by BACOLI, in order to remove any proprietary dependencies.
COLROW package was published in the Collected Algorithms of the ACM and is therefore
subject to the ACM Software Copyright and License Agreement The use of LAMPAK rather
than COLROW does not lead to any significant impact on performance.)

e A subroutine called BACRT was added. This subroutine calls the user’s gstop subroutine, which
we will refer to as RT. For a given time, #, RT evaluates the components of the user’s gstop
function (1.4). These components can depend on the current solution approximation, U(x,?)

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3251

and/or its derivatives, U (x, 1), U (x,1), U_ (x, 1), and spatial integrals of any of these. The BACRT
routine provides an interface between the rest of BACOLIKR and the user’s RT routine in order
to simplify the argument list for the RT routine and hide a number of implementation details.

e A number of small changes were made to allow communication between the DASKR,
BACOLIKR, and BACRT routines, in order to implement the root finding capability.

e When an event is located, BACOLIKR will return to the calling program. There are three common
scenarios that arise regarding what should happen next. In the simplest case, the user is interested
only in locating the event and the computation can simply terminate. In the second case, the user
wishes to continue the computation but does not wish to make any changes to the problem; in
this case BACOLIKR should simply continue the computation; this is what is known as a warm
start and this is the default mode when BACOLIKR is called again after it has returned having
located an event. The third case is when the user wishes to change the problem (either the PDEs
or the boundary conditions) after the event has been located. This introduces a discontinuity into
the problem, and in this case, BACOLIKR should be called using a cold start. This means that
BACOLIKR will restart DASKR with a low order BDF and a small step size. Use of a cold
start leads to a much more efficient computation than if a warm start were attempted. In order
to accommodate this last case, a capability was added to allow the user to force BACOLIKR to
restart DASKR for the next time step using a cold start.

4. Application of BACOLIKR to event detection problems

In this section, we demonstrate the capabilities of the BACOLIKR package by showing how to
apply it to a number of event detection problems that are based on the solution of a PDE or a system
of PDEs. Each subsection will consider one problem and will outline how to write an appropriate
root finding routine and corresponding main program in order to implement the specific type of event
detection required for each problem. These examples can be easily modified to be adapted to whatever
application the user is interested in.

In order to apply BACOLIKR to an event detection problem, the user needs to modify a module
called ROOTFINDING. The primary component of this module is the subroutine called RT, within
which the characterization of a single event or multiple events can be specified. As mentioned earlier,
the specification of a event may require, within RT, an auxiliary computation involving, for example,
the evaluation of the numerical solution, its derivatives in time or space, or the integral of one of these
over the spatial domain. The evaluation of the numerical solution or its time or spatial derivatives is
performed through a call to the VALUES routine. Within the RT routine, assignments are made to
the gstop vector, RVAL, in order to define the conditions that characterize each event as a root of one
component of the gstop function. In addition to the RT routine, the ROOTFINDING module includes
the SETSOL routine. The latter dynamically allocates a work array that is used within the RT routine,
and, for those applications in which a spatial integral must be computed, it also computes the Gaussian
quadrature points that will later be used to obtain a numerical approximation to the integral.

The other primary software component associated with the use of BACOLIKR for event detection
is the main program that will make calls to the solver routine, BACOLI9S, as appropriate for
whatever event or events are to be detected. The other software components of BACOLIKR
that are used in the main program are the BACOLI95_INIT routine, which initializes the

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3252

computation, the BACOLI95_VALS routine, which is used to evaluate the numerical solution
and its first and second spatial derivatives, the BACOLI95_SOL data structure which contains a
number of fields where information associated with the approximate solution is stored, and the
BACOLI95_SOL_TEARDOWN routine which must be called at the end of the computation to release
the dynamic memory that is allocated during the computation.

In addition to modifying the ROOTFINDING module and the main program, the user must also
provide problem definition routines that define the PDE(s), the boundary conditions, and the initial
condition(s). We refer the reader to, http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm. to see
complete source code for the main program, the ROOTFINDING module, and the problem definition
routines for each problem we consider.

4.1. Solution layer crossing detection for the One Layer Burgers Equation

Burgers equation is a standard model in fluid mechanics. Here we consider an instance of this
problem which we call the One Layer Burgers Equation (OLBE); it has the form,

Uy = €Uy — Ully, 4.1)

with boundary conditions at x = 0 and x = 1 (# > 0) and an initial condition at 7, = 0 (0 < x < 1) taken
from the exact solution,
RN el

u(x,t) = E - E tanh(T) s “4.2)
where € is a problem-dependent parameter. We will choose € = 1073 for this example. We solve this
problem from 5 = 0 to 7, = 2 and choose a tolerance of 107°. For 1y = 0, the solution has a sharp layer
located at x ~ 0.25; the solution to the left of the layer is approximately equal to 1; the solution to the
right of the layer is approximately equal to 0. As ¢ goes from O to 1, the layer moves to the right and is
located at x = 0.75 for t = 1. See Figure 4 of [30] for a plot of the solution to this problem.

In order to demonstrate the event detection capability of BACOLIKR in a simple form, we will
define a very basic event for this problem. The task will be to determine the time at which the
approximate solution, U(x,t), satisfies the condition that U(0.4,¢) = 0.5. (If we define the layer to
be the point at which the solution is halfway between the transition from a value of 1 to a value of 0,
then setting the event condition to U(0.4,1) = 0.5 is equivalent to asking when the layer crosses the
point x = 0.4.) Thus there will be one root and the gstop function will be U(0.4,¢) — 0.5.

Within the RT routine, we make one call to the VALUES routine which computes the value of the
approximate solution at the current time, for x = 0.4. We pass the vector of B-spline coefficients to the
VALUES routine so that the solution itself is computed. The difference between the returned solution
approximation and the target value, 0.5, is then assigned to the RVAL output argument of RT in order
to define the event for this example.

The corresponding main program first initializes the computation with a call to the BACOLI9S_INIT
routine. This is followed by a call to the SETSOL routine and then a call to the BACOLI9S solver
routine. The value of the gstop function at the end of each step is monitored to look for a change in its
sign. When such a step is identified, a search is performed to determine the specific point in time when
the root of the gstop occurs, and then BACOLI9S returns to the main program with an indication that
the root has been found.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm

3253

For this example, we find that the event occurs when ¢ ~ 0.3. The main program writes out the
solution at this time and then calls the solver again in order to complete the computation through to
t; = 2. Since the problem has not changed, a warm start can be employed. The solver returns with an
indication that 7, has been reached and the solution at 74 is printed out. See Figure 1 for a plot of the
solution at the time of the event. We do not provide a plot of the solution at #; = 2 since by then the
layer has moved beyond the spatial domain, [0, 1], and thus the solution is approximately equal to 1
across the entire spatial domain.

0.8

0.6

0.4

-0.2

Figure 1. Numerical solution to OLBE when U(0.4,¢) ~ 0.5; we determine, using the event
detection capability of BACOLIKR, that this occurs when ¢ = 0.3. It can be seen from the
above plot that the solution at x = 0.4 has a value of = 0.5.

4.2. Solution value detection involving multiple events for a Catalytic Surface Reaction Model

The Catalytic Surface Reaction Model (CSRM) [32] considered here involves a PDE system of the
form,

(u1): = —(u1)y + n(Dyuz — Ajury) + (ur) o/ Pey,

(U2); = —(u2)y + (Dyuy — Aqury) + (Uz)r/ Pey,

(u3); = Aury — Dyus — Ruzusy® + (u3)../ Pes,

(us); = Agutzy = Doty = Ruzuyy® + (4) o/ Pes, (4.3)

where y = 1 —u3 — uy, and n, r, Pe,, Pe,, D1, D, R, A1, and A, are problem dependent parameters. The
initial conditions at 7o = 0 (0 < x < 1) are,

um(x,0)=2-r, w(x,0)=r, uz(x,0)=us(x,0) =0,
and the boundary conditions at x = 0 and x = 1 (¢ > 0) are,
(u1)x(0,8) = —=Pey(2 = r —u1(0,1)), (u2)x(0,1) = —Pey(r — uz(0, 1)),

(3):(0,7) = (u4)x(0,1) = 0,

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3254

(u1)(1,0) = (u2)x(1,1) = (u3)x(1, 1) = (ua)x(1,7) = 0.

See Figures 12-15 of [30] for plots of the solution components for Pe; = Pe, = 100,D, = 1.5,D, =
1.2,R = 1000,r = 0.96,n = 1, and A; = A, = 30. Here we choose the problem dependent parameters
as above except, in order to make the problem more challenging, we choose Pe; = Pe, = 10000. We
choose a tolerance of 107>,

We define two simple events. We wish to find the time at which U;(0.2,7) = 0.24 and the time at
which U4(0.2,1) = 0.24. Thus there are two roots and the gstop vector function is,

Us(0.2,1) — 0.24
U4(0.2,1) - 0.24)°

Inside RT, we make one call to the VALUES routine with x = 0.2. The VALUES routine returns
a vector of the four solution component values at x = (0.2 and at the current time. The differences
between the third and fourth components of the returned solution approximation and the target value,
0.24, are then assigned to the first and second components of RVAL. DASKR checks, on every accepted
step, to see if either component of RVAL changes sign, thereby monitoring both of the events over the
duration of the computation.

The main program first initializes the computation with calls to the BACOLI9S5_INIT and SETSOL
and then calls BACOLIO9S. The solver returns with an indication of which root has been found. For this
example, the first root that is found corresponds to the RVAL component equal to U3(0.2, t) —0.24, and
this root is found at # ~ 1.2. The main program writes out the solution for this event time. See Figure 2
for a plot of the solution at the time of this first event. The main program then calls BACOLI9S again in
order to continue the computation. Since the problem has not changed, a warm start can be employed.
BACOLI9S returns a second time with an indication of which root has been found. In this case the root
of the gstop function component, U4(0.2,7) — 0.24, is found at ¢ ~ 1.9. The solution is printed out and
the computation is terminated. See Figure 3 for a plot of the solution at the time of the second event.

0.7

0.6

0.5

0.4 A

0.3

0.2

0.1

Figure 2. Third component of the numerical solution to CSRM when U3(0.2, f) = 0.24; this
occurs when ¢ ~ 1.2. It can be seen from the above plot that this solution component, at
x = 0.2, has a value of ~ 0.24.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3255

0.45

0.4

0.35

0.3 o

Figure 3. Fourth component of the numerical solution to CSRM when U4(0.2,1) ~ 0.24;
this occurs when # = 1.9. It can be seen from the above plot that this solution component, at
x = 0.2, has a value of ~ 0.24.

4.3. Layer merge detection for the Two Layer Burgers Equation

The Two Layer Burgers Equation (TLBE) is based on the PDE, (4.1), but with boundary conditions
at x=0and x =1 (r > 0) and an initial condition at {, = 0 (O < x < 1) taken from the exact solution,

0.1e 4 +0.5¢ B +¢ €

u(x,) = eA+eB+eC

b

where,

0.05 0.25 0.5
A=——(x-05+495), B=——(x-05+0.751), C=—(x-0.375),
€ € €

where € is a problem-dependent parameter. For this example, we choose € = 107>, When #, =
0, the solution has two sharp layers, one at x = 0.25, where the solution transitions rapidly from
approximately 1 to approximately 0.5, and one at x = 0.5, where the solution transitions rapidly from
approximately 0.5 to approximately 0.1. As ¢ increases, these layers move to the right and eventually
merge, forming a single layer. See Figure 1 of [30] for a plot of the solution to this problem.

Our goal in this example is to determine the time at which the two layers merge. Since the left
layer corresponds to a sharp transition in the solution value from approximately 1 to approximately
0.5, we will define the location of this layer to be at the point, x;, where the solution has the value 0.75,
halfway through the transition in the solution values that characterizes this layer. Similarly, since the
right layer corresponds to a transition in the solution value from approximately 0.5 to approximately
0.1, we will define the location of this layer to be at the point, xz, where the solution has the value 0.3,
halfway through the transition in the solution values that characterizes this layer. Even after the layers
merge, x; will always be slightly to the left of xz. An examination of these values after the layers have
merged shows that, for the above choice of €, x; and xz remain a distance of about 0.0049 ~ Se apart
for the rest of the computation. We will therefore define the layers to have merged when x; and xy are

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3256

within a distance of Se. Thus there will be one root and the gstop function will be |x; — xg| — Se. We
will solve this problem using a tolerance of 1076,

Within the RT routine, we begin by evaluating the approximate solution at the endpoints of the
spatial domain. These values are then used as input to a bisection search that is used to determine the
point, x;, in the spatial domain where U(x.,t) = 0.75, the location of the left layer for the current
time, ¢. Similarly, we use a second bisection search to determine the point, xg, in the spatial domain
where U(xg,t) = 0.3, the location of the right layer for the current time, ¢. And then, as indicated
above, |x; — xg| — Se is assigned to the RVAL output argument of RT in order to define the event for
this example.

The corresponding main program first initializes the computation with a call to the BACOLI9S5 _INIT
routine and then makes a call to the SETSOL routine. This is followed by a call to the BACOLI95
solver. The solver returns when the root has been found. For this example it turns out that the two
layers are determined to have merged for # ~ 0.62. The main program writes out the solution at this
time and then terminates. See Figure 4 for a plot of the solution at the time of the event.

0.9 A

0.8

0.7

0.6

0.5

04

0.3 A

0.2

Figure 4. Numerical solution, U(x, t), to TLBE when the two layers merge; this occurs when
t ~ 0.62.

4.4. Critical tumor mass detection in a Brain Tumor Model

The Brain Tumor Model (BTM) models the growth of a brain tumor within a region of the brain
that includes three consecutive regions involving gray-white-gray matter [3] with a corresponding
discontinuous diffusion coefficient. = We consider a modification of this model in which the
discontinuous diffusion coefficient is replaced with a continuous diffusion coefficient that has sharp
layer regions corresponding to the transitions between the brain matter regions.

The PDE for this problem is,

ul(x, 1) = (D(X)ux(x, 1))x = De(0)ux(x, 1) + DX (x, 1), (4.4)

where,

1 1
D(x) = ((e_}(x_w]) " 1) + (ew—w " 1) - 1)(1 Y+, 4.5)

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3257

approximates a step function whose value to the left and right of the region [w, w;] (a subregion of the
spatial domain, [a, b]) is v, and whose value within the region [wy, w,] is 1. The parameter, 1, controls
the sharpness of the transition layers between [w, w,] and the rest of the spatial domain. We choose
wy = =0.5,w, =0.5,y = 0.2, and t = 30. In Figure 5, we provide a plot of D(x) for the above choice
of parameters on [-35, 51.

0.9 A

0.8 o

0.7

0.6

0.5

0.3

0.2

0.1

Figure 5. Diffusion coefficient, D(x) (4.5), with w; = —=0.5, w, = 0.5, ¥ = 0.2, and 1 = 30.

The boundary conditions are,
ula,r) =0, ud(b,1)=0,

where a = =5, b = 5, and the initial condition (at #, = 0) is,
~(-¢)?
e

NV’

where £ = =2 and n = 0.2. This gives an initial solution that has a spike of height approximately 2.8
centered at x = —2. We choose a tolerance of 107°.

The tumor concentration, c(x,), is obtained from the solution, u(x, t), of the above PDE from the
equation,

u(x,0) =

c(x,t) = e'u(x, 1).

The tumor grows both in size and width across the spatial domain as time progresses, with different
growth rates in the grey and white matter regions, as determined by the different values of the diffusion
coeflicient across the spatial domain.

For this problem we wish to find the time at which the total mass of the tumor reaches the critical
value of 10. The mass of the tumor at a given point in time is obtained by integrating the tumor
concentration, c(x, t), over the spatial domain [a, b]. Thus, each time the RT routine is called, we need
to compute an approximation to the integral of the approximate solution, U(x, t), over [a, b]. To do
this, we will use a Gaussian quadrature rule on each subinterval. (It may be possible to obtain a more
efficient computation by using an adaptive quadrature routine to approximate the integral of U(x, f)
over [a, b] to an accuracy that is consistent with the tolerance employed in the computation of U(x,)

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3258

but we do not consider this here since the specific way in which the integral is computed is not central
to our discussion.)

Inside the RT subroutine, we first compute the Gauss points and weights for use on each subinterval
of the current spatial mesh. We then call the VALUES routine with the Gauss points as input to
(simultaneously) evaluate the approximate solution at all Gauss points on all subintervals. We then
multiply these values by the appropriate Gauss weights and sum over all subintervals to get an
approximation to the integral of U(x,) over [a,b]. Finally, we multiply this integral approximation
by ¢’ to obtain an approximation to c(x, t), the mass of the tumor over [a, b] at the current time . The
gstop function in this case is the difference between the approximate mass of the tumor and the target
value of 10.

The corresponding main program, after calling BACOLI9S_INIT and SETSOL, calls BACOLI95
to determine the point in time where the approximate tumor mass reaches the critical value of 10. We
find that this happens when ¢ ~ 2.3. The main program prints out the solution and then terminates. See
Figure 6 for a plot of the approximate concentration, c(x, t), at the time of the event.

Figure 6. Approximate concentration, c(x, f), for BTM when the mass of the tumor reaches
the critical value of 10; this occurs when ¢ ~ 2.3.

4.5. Steady state detection via layer-boundary tracking for the One Layer Burgers Equation

This problem also considers the OLBE and, for this example, the event detection task is to discover
when the solution reaches steady state. For a typical problem, the detection of steady state requires
a more elaborate computation (see the next example) but for the OLBE, the behavior of the solution
makes obtaining the answer to this question straightforward. Recall that the OLBE has a solution that,
initially, has a sharp layer region at x = 0.25, and, as t goes from O to 1, the layer moves to the right
and is located at x ~ 0.75 for t = 1. At any point in time, to the left of the layer, the solution value is
approximately 1, while to the right of the layer, the solution is approximately 0.

At some point in time after = 1, the layer moves past the right boundary, and from that point in
time onward, the solution is approximately equal to 1 across the entire spatial domain [0, 1], i.e., the
solution has reached a steady state. Thus the determination of the time at which the solution reaches

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3259

steady state is, for this problem, equal to the time at which the moving layer passes beyond the right
boundary. This will be the time at which the solution at the right boundary is approximately equal
to 1, since, prior to this time, the solution at the right boundary will always be less than 1. Thus,
for this problem, the determination of the time when the solution reaches steady state simplifies to
determining when the approximate solution, U(x, 1), satisfies the condition U(1,) = 1, and we can use
event detection to determine when this happens. For this example, we choose a tolerance of 107,

The RT subroutine and the main program are quite similar to those for the first example involving
the OLBE. The computation terminates after the event has been found. For this example, BACOLIKR
determines that steady state has been reached, i.e., U(1,¢) ~ 1, for t ~ 1.6. (We do not provide a figure
showing the solution at this point in time since it is approximately equal to 1 across the entire spatial
domain.)

4.6. Steady state detection for the Gierer-Meinhardt Model

The Gierer-Meinhardt Model (GMM) [15] is an activator-inhibitor system associated with the
modeling pattern formation in biological systems. A key phenomenon in such systems is that for
certain parameter choices it is possible to observe spontaneous pattern formation from an initially
(almost) homogeneous initial state. The form of the GMM we will consider here involves a PDE
system of the form,

a(x,t) = €ay(x, 1) — alx,) + a(x,) /h(x, 1),

Thy(x,) = Dhy(x, 1) — ph(x, 1) + a(x,)%,

where €, 7, D, and u are problem dependent parameters. For this investigation, we choose € = 0.1,
7=1,D =0.1,and u = 1. The boundary conditions are,

ax(a,t) = hy(a,t) =0, a.(b,t) =h(b,t) =0,

where the spatial domain is [a, b]. For this example, we choose a = —2,b = 2. The initial solutions
are,
a(x,0) = h(x,0) = 0.1564 + 0.01 sin(107x), h(x,0) = 0.1564 + 0.01 sin(107x),

which correspond to setting each solution component to a constant plus a small amount of
high frequency noise. Over time, the first component develops spikes, reaching a maximum of
approximately 1.8, with troughs in between of magnitude approximately 0.1. The second solution
component spikes of magnitude approximately 1.4 and troughs of magnitude approximately 0.7. See
Figure 7.

Our goal in this example is to determine the time at which the first solution component reaches a
steady state. We choose a tolerance of 107, We will define the time derivative of the first solution
component to be sufficiently small when the integral of the absolute value of the time derivative of this
solution component over [a, b] is approximately equal to the user tolerance. The gstop function will
therefore be the difference between this integral approximation and the tolerance.

Within the RT routine, we first compute the Gauss points and weights on each subinterval of the
spatial mesh. We then call the VALUES routine with the Gauss points as input to evaluate the time
derivative of the approximate solution at the Gauss points on all subintervals. In order to obtain values
of the time derivative of the approximate solution, we pass the vector of time derivatives of the B-spline

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3260

Figure 7. Numerical solution components, a(x, t) (solid curve) and h(¢) (dashed curve), to
GMM when the first solution component reaches steady state; this occurs when ¢t ~ 746.8.

coefficients to the VALUES routine. We then multiply the absolute values of these time derivatives by
the appropriate Gauss weights and sum over all subintervals to get an approximation to the integral of
|U,(x, 1)| over [0, 1], for the current time. The gstop function in this case is the difference between this
integral approximation and the tolerance to which the numerical solution is computed.

The main program, after calls BACOLI9S_INIT and SETSOL, calls BACOLI9S to determine the
point in time where the first component of the approximate solution reaches steady state. We find that
the solution reaches steady state when ¢ ~ 746.8. The main program then prints out the solution and
terminates. See Figure 7 for a plot of the two solution components at steady state.

4.7. Event detection in the heat equation with changes in the boundary conditions at unknown times

(This problem was communicated privately to us by Sandeep Chatterjee and was the primary
motivation for the development of BACOLIKR.) For this problem, the PDE is the heat equation,

ut(-xa t) = Kl/lxx(x, t)a

where « is a problem dependent parameter. For this example, we set « = 0.1. Initially, the boundary
conditions are

ula,t)=a, uJb,t)=a.

They stay in this form until some unknown point in time at which either u(a, t) or u(b,t) reaches a
critical value, u.;. This is the first event time. If u(a,t) = u., the left boundary condition suddenly
changes to u,(a,t) = —yu(a,t). If u(b,t) = u.,;, the right boundary condition suddenly changes to
uy(b,t) = —yu(b,t). As time proceeds, the solution at the other boundary also reaches the critical
value, u.;,. This is the second event time. If the second event happens at a then the left boundary
condition suddenly changes to u,(a, t) = —yu(a,t). Otherwise, the right boundary condition suddenly
changes to u.(b,t) = —yu(b,t). Both boundary conditions remain in this form until #;, the final time.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3261

The change in each boundary condition will be discontinuous unless the boundary continuity condition,
a = _yuCrit’ (4'6)

is satisfied.
For this example, we choose the initial solution at #, = O to be,

u(x,0) = 1010060757 4 oy

This initial solution has a peak equal to 10+0.75a at x = 0.75 and the solution on either side of the peak
rapidly decays to ax. This makes the spatial derivative of the initial solution (essentially) consistent
with the boundary conditions. We choose the tolerance to be 107°. The terminal time is #; = 5.

4.7.1. Continuous boundary conditions

In this subsection, we consider a version of this problem in which the parameters, «, vy, and u,,; are
chosen to satisfy the above boundary continuity condition (4.6). We will refer to this instance of this
problem as the Heat equation with Boundary Conditions: Continuous case (HBCC). We will choose
Ui to be 1.1. Then the boundary continuity condition (4.6) will force @« = —y X 1.1. For this example,
we choose @ = 1.0 and then y becomes —1.0/1.1 = —0.90909.

Since the boundary conditions correspond to the algebraic conditions in the DAE system that is
solved by DASKR, the above choice of parameters also means that the algebraic equations change in
a continuous way at the time of each event, which in turn means that the B-spline coefficients that
appear in the algebraic equations change in a continuous way. However, an examination of the time
derivatives of the algebraic equations shows that they do not change continuously at the time of an
event. (To see this, note that the time derivative of the algebraic constraint corresponding to the left
boundary condition prior to the event is simply u,/(a,t) but after the event, it is uy(a,t) + yu,(a,t). A
similar situation holds for the right boundary condition.) Consequently, the time derivative of at least
one of B-spline coefficients that appears in each of the boundary conditionsjalgebraic constraints must
change discontinuously at the time of the event, in order to satisfy the new boundary condition that is
imposed immediately after the event. Due to this discontinuity in the time derivative of the B-spline
coefficient(s), a cold start of DASKR should be performed after each event. See below for further
discussion on this point.

The organization of the RT routine in this case is straightforward. We call the VALUES routine
to get solution values at the endpoints of the spatial domain and then the gstop vector function is
[U(0, 1) = teris, U(1,) = urir]T. In the main program, we first call BACOLI95_INIT with NRT = 2 since
there are two events to be tracked. We also call SETSOL as usual. Then BACOLI9S is called at = 0
with the boundary routines BNDXA1 and BNDXBI1, corresponding to the u,(a,t) = @ and u,(b,t) = «
boundary conditions. The main program is setup to handle whichever boundary event happens first.

At the end of this first return from BACOLI95, the solver indicates which of the two event conditions
has been satisfied and the main program writes out the time and corresponding solution values across
the spatial domain. Since one of the boundary conditions will be changed, BACOLIO9S is then called
with a cold start. This call uses the BNDXA?2 routine instead of the BNDXAT1 routine, if the left
boundary event is detected, or the BNDXB2 routine instead of the BNDXB1 routine, if the right
boundary event is detected. The BNDXAZ2 routine imposes the u,(a, t) = —yu(a, t) boundary condition
while the BNDXB2 routine imposes the u,(b, t) = —yu(b, t) boundary condition.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3262

Figure 8. Numerical solution, U(x,?), to HBCC, when the solution at the right boundary
reaches the critical value, u,,; = 1.1; this occurs when ¢ ~ 5.5 x 1073.

BACOLI9S returns when the second event is found, again indicating which event has been found,
and the main program writes out the time and corresponding solution values across the spatial domain.
Since the other boundary condition will now be changed, BACOLIOS is called again with a cold start
and with input of either BNDXA2 or BNDXB2, depending on which event has been found. For this last
call to BACOLIKR, both of the new boundary conditions, u,(a,t) = —yu(a, t) and u,(b,t) = —yu(b,),
are imposed. BACOLI9S returns at 7, and the main program outputs the final solution.

For this example, with the parameter values chosen as indicated above, we find that the first event
occurs at the right boundary when ¢ ~ 5.5x 1073, The solution at this point in time is shown in Figure 8.
We find that the second event occurs at the left boundary when ¢ ~ 1.3. The solution at this point is
time is shown in Figure 9. The integration terminates at 7, = 5. The solution at this point is time is
shown in Figure 10.

3.6

3.4

3.2

2.8

26

24 4

2.2

1.8

1.6

1.4 A

12 4

Figure 9. Numerical solution, U(x,), to HBCC, when the solution at the left boundary
reaches the critical value, u.,; = 1.1; this occurs when ¢ =~ 1.3.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3263

Figure 10. Numerical solution, U(x,), to HBCC, when t = 5.

For the computation described above, where we determine the locations of the events and then
employ cold starts to restart DASKR after each event, we find that the time integration requires a total
316 accepted time steps. When we repeat the above computation, except that we perform a warm
start after each event, we find that the time integration requires 498 accepted time steps. As expected,
due to the discontinuity in the time derivative of several of the B-spline coefficients immediately after
each event, DASKR has substantial difficulty in stepping past the discontinuity, unless a cold start is
employed after the discontinuity has been located.

4.7.2. Discontinuous boundary conditions

In this subsection we choose the parameters so that there are discontinuous changes in the boundary
conditions after each event. We will refer to this instance of this problem as the Heat equation with
Boundary Conditions: Discontinuous case (HBCD). We choose @ = 0, u.,; = 1, and y = 0.5. This
means that there will be discontinuities, of magnitude 0.5, imposed on the first spatial derivative of the
solution at the boundaries. The boundary continuity condition (4.6) is not satisfied.

As discussed earlier, the boundary conditions correspond to the algebraic equations in the DAE
system that is given to DASKR. In this instance of the problem, since there is a discontinuity in one
of the boundary conditions after each event, there is a discontinuity in the corresponding algebraic
equation, which in turn forces a discontinuity in several of the B-spline coefficients and their time
derivatives at the time of each event. We expect that these discontinuities will lead to substantial
inefficiencies in the time integration as DASKR attempts to step past them, unless a cold start is
performed after each event.

For this case we find that the first event occurs at the right boundary for ¢ ~ 3.6 x 1072. The solution
at this point in time is shown in Figure 11. BACOLI9S is then restarted with a cold start and the new
right boundary condition is imposed. We find that the second event occurs at the left boundary for
t = 1.2. The solution at this point in time is shown in Figure 12. We then restart BACOLI9S with
a cold start and impose the new left boundary condition. The solver then integrates to 7, = 5. The
solution at this point is time is shown in Figure 13.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3264

Figure 11. Numerical solution, U(x, t), to HBCD, when the solution at the right boundary
reaches the critical value, u,,; = 1; this occurs when ¢ ~ 3.6 x 1072

Figure 12. Numerical solution, U(x,), to HBCD, when the solution at the left boundary
reaches the critical value, u.,; = 1; this occurs when ¢ ~ 1.2.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3265

1.795

1.79 o

1.785

1.78 o

1.775

1.77 A

1.765

1.76 o

1.755

Figure 13. Numerical solution, U(x, t), to HBCD, when t = 5.

For the computation described above, DASKR requires 291 accepted time steps to perform the time
integration. When we repeat the above computation, except that we perform a warm start after each
event, DASKR requires 568 accepted time steps to perform the time integration. As expected, due to
the discontinuity after each event, DASKR has substantial difficulty in stepping past the two event times
when warm starts are employed.

5. Summary, conclusions, and future work

This paper introduced, BACOLIKR, a new error-control PDE solver that features time-dependent
event detection. To our knowledge, this is the only error-control PDE solver with this capability.
We described the modifications to the previously developed error control PDE solver, BACOLI, and
the time integrator, DASKR, that were required in order to obtain BACOLIKR. We also provided a
number of examples to demonstrate how a variety of event detection problems can be handled by the
new solver. We found that, with relatively straightforward modifications of the main program and the
rootfinding routine that characterizes a given event or events, it was possible to use BACOLIKR to
solve a collection of PDE-based event detection problems. We observed that when a problem is altered
after an event and there is an expectation that the computation should continue past the event, it is
important that BACOLIKR be restarted with a cold start due to the well-known difficulties that arise
for error control time integration solvers in the presence of discontinuities in the DAE system obtained
from the discretization of the PDE system.

Regarding future work, as mentioned earlier, since DASKR also has a feature that allows it
to efficiently treat large DAE systems using a Krylov method, it may be worthwhile to modify
BACOLIKR to take advantage of this capability in order to improve the efficiency of the solver for
problems which lead to large DAE systems. Another direction for future work could involve the
development of an updated version of the EBACOLI solver, mentioned earlier in this paper, so that an
event detection capability could be available within that solver.

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

3266

Author contributions

Paul Muir: Conceptualization, funding acquisition, investigation, methodology, project
administration, supervision, validation, writing - original draft, writing - review and editing; Connor
Tannahill: Investigation, software; Jack Pew: Investigation, software.

Use of Generative-Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

The authors wish to thank the referees for their helpful suggestions. This work was supported by
the Natural Sciences and Engineering Research Council of Canada and Saint Mary’s University.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. T. Arsenault, T. Smith, P. H. Muir, Superconvergent interpolants for efficient spatial error
estimation in 1D PDE collocation solvers, Can. Appl. Math. Q., 17 (2009), 409-431.

2. T. Arsenault, T. Smith, P. H. Muir, J. Pew, Asymptotically correct interpolation-based spatial error
estimation for 1D PDE solvers, Can. Appl. Math. Q., 20:307-328, 2012.

3. L. E. Athanasakis, M. G. Papadomanolaki, E. P. Papadopoulou, Y. G. Saridakis, Discontinuous
Hermite collocation and diagonally implicit RK3 for a brain tumour invasion model, Proceedings
of the World Congress on Engineering, 1 (2013).

4. T. R. Boehme, C. H. Onder, L. Guzzella, Code-generator-based software package for defining
and solving one-dimensional, dynamic, catalytic reactor models, Comput. Chem. Eng., 32 (2008),
2445-2454. https://doi.org/10.1016/j.compchemeng.2008.01.003

5. Z.Bonaventura, D. Trunec, M. Mesko, P. VaSina, V. Kudrle, Theoretical study of pulsed microwave
discharge in nitrogen, Plasma Sci. Technol., 14 (2005), 751. https://doi.org/10.1088/0963-
0252/14/4/014

6. P. N. Brown, A. C. Hindmarsh, L. R. Petzold, Using Krylov methods in the solution
of large-scale differential-algebraic systems, SIAM J. Sci. Comp., 15 (1994), 1467-1488.
https://doi.org/10.1137/0915088

7. P. N. Brown, A. C. Hindmarsh, L. R. Petzold, Consistent initial condition calculation
for differential-algebraic systems, SIAM J. Sci. Comp., 19 (1998), 1495-1512.
https://doi.org/10.1137/S1064827595289996

8. J. H. Cerutti, S. V. Parter, Collocation methods for parabolic partial differential equations in one
space dimension, Numer. Math., 26 (1976), 227-254. https://doi.org/10.1007/BF01395944

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

https://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2008.01.003
https://dx.doi.org/https://doi.org/10.1088/0963-0252/14/4/014
https://dx.doi.org/https://doi.org/10.1088/0963-0252/14/4/014
https://dx.doi.org/https://doi.org/10.1137/0915088
https://dx.doi.org/https://doi.org/10.1137/S1064827595289996
https://dx.doi.org/https://doi.org/10.1007/BF01395944

3267

0.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. de Boor, A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences, Springer-
Verlag, New York, revised edition, 2001.

J. C. Diaz, G. Fairweather, P. Keast, Algorithm 603. COLROW and ARCECO:
FORTRAN packages for solving certain almost block diagonal linear systems by modified
alternate row and column elimination, ACM Trans. Math. Software, 9 (1983), 376-380.
https://doi.org/10.1145/356044.356054

J. Douglas Jr., T. Dupont, Collocation Methods for Parabolic Equations in a Single
Space Variable, Lecture Notes in Mathematics, Vol. 385, Springer-Verlag, Berlin, 1974.
https://doi.org/10.1007/BFb0057337

W. H. Enright, K. R. Jackson, S. P. Ngrsett, P. G. Thomsen, Effective solution of discontinuous
IVPs using a Runge-Kutta formula pair with interpolants, Appl. Math. Comp., 27 (1988), 313-355.
https://doi.org/10.1016/0096-3003(88)90030-6

W. E. Finden, An error term and uniqueness for Hermite-Birkhoft interpolation involving only
function values and/or first derivative values, J. Comput. Appl. Math., 212 (2008), 1-15.
https://doi.org/10.1016/j.cam.2006.11.022

C. W. Gear, O. Osterby, Solving ordinary differential equations with discontinuities, ACM Trans.
Math. Softw., 10 (1984), 23—44. https://doi.org/10.1145/356068.356071

A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
https://doi.org/10.1007/BF00289234

K. R. Green, R. J. Spiteri, Extended BACOLI: solving one-dimensional multiscale
parabolic PDE systems with error control, ACM Trans. Math. Softw., 45 (2019), 1-19.
https://doi.org/10.1145/3301320

E. Hairer, S. P. Ngrsett, G. Wanner, Solving Ordinary Differential Equations. I, volume 8 of
Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second edition, 1993.

K. L. Hiebert, L. F. Shampine, Implicitly defined output points for solutions of ODEs, Sandia
Report SANDS0-0180, 1980.

P. Keast, LAMPAK: a Fortran package for solving certain almost block diagonal matrices,
Unpublished software, 1982.

G. Mao, L. R. Petzold, Efficient integration over discontinuities for differential-algebraic systems,
Comput. Math. Applic., 43 (2002), 65-79. https://doi.org/10.1016/S0898-1221(01)00272-3

L. R. Petzold, A Description of DASSL: A Differential/Algebraic System Solver, Sandia Labs,
Livermore, CA, 1982.

J. Pew, Z. Li, P. H. Muir, Algorithm 962: BACOLI: B-spline adaptive collocation software for
PDEs with interpolation-based spatial error control, ACM Trans. Math. Softw., 42 (2016), 1-17.
https://doi.org/10.1145/2818312

J. Pew, Z. Li, C. Tannahill, P. H. Muir, G. Fairweather, Performance analysis of error-control
B-spline Gaussian collocation software for PDEs, Comput. Math. Appl., 77 (2019), 1888—1901.
https://doi.org/10.1016/j.camwa.2018.11.025

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

https://dx.doi.org/https://doi.org/10.1145/356044.356054
https://dx.doi.org/ https://doi.org/10.1007/BFb0057337
https://dx.doi.org/ https://doi.org/10.1007/BFb0057337
https://dx.doi.org/https://doi.org/10.1016/0096-3003(88)90030-6
https://dx.doi.org/https://doi.org/10.1016/j.cam.2006.11.022
https://dx.doi.org/https://doi.org/10.1145/356068.356071
https://dx.doi.org/https://doi.org/10.1007/BF00289234
https://dx.doi.org/https://doi.org/10.1145/3301320
https://dx.doi.org/https://doi.org/10.1016/S0898-1221(01)00272-3
https://dx.doi.org/https://doi.org/10.1145/2818312
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2018.11.025

3268

24.J. Pew, C. Tannahill, P. H. Muir, A numerical study of an error control B-spline Gaussian
collocation PDE solver with event detection, Saint Mary’s University, Mathematics and Computing
Science Technical Report Series, Technical Report 2024_001, http:/lcs.smu.caftech_reports, 2024.

25. L. F. Shampine, S. Thompson, Event location for ordinary differential equations, Comput. Math.
Appl., 39 (2000), 43-54. https://doi.org/10.1016/S0898-1221(00)00045-6

26. A. Sommer, H. G. Bock, E. Kostina, IFDIFF - a matlab toolkit for ODEs with state-dependent
switches, 2024. Available from: https://andreassommer.github.io/ifdift/.

27.D. Trunec, Z. Bonaventura, D. Necas, Solution of time-dependent Boltzmann equation
for electrons in non-thermal plasma, J. Phys. D Appl. Phys., 39 (2006), 2544.
https://doi.org/10.1088/0022-3727/39/12/012

28.J. J. Vallino, J. A. Huber, Using maximum entropy production to describe microbial
biogeochemistry over time and space in a meromictic pond, Front. Environ. Sci., 6 (2018), 100.
https://doi.org/10.3389/fenvs.2018.00100

29. R. Wang, P. Keast, P. H. Muir, BACOL: B-spline Adaptive COLlocation software
for 1D parabolic PDEs, ACM Trans. Math. Software, 30 (2004), 454-470.
https://doi.org/10.1145/1039813.1039817

30. R. Wang, P. Keast, P. H. Muir, A comparison of adaptive software for 1D parabolic PDEs, J.
Comput. Appl. Math., 169 (2004), 127-150. https://doi.org/10.1016/j.cam.2003.12.016

31.R. Wang, P. Keast, P. H. Muir, A high-order global spatially adaptive collocation
method for 1D parabolic PDEs, Appl. Numer. Math., 50 (2004), 239-260.
https://doi.org/10.1016/j.apnum.2003.12.023

32. W. Zhang, Diffusive effects on a catalytic surface reaction: an initial boundary value
problem in reaction-diffusion-convection equations, J. Bifur. Chaos, 3 (1993), 79-95.
https://doi.org/10.1142/S0218127493000052

©2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 11, Issue 2, 3243-3268.

https://dx.doi.org/https://doi.org/10.1016/S0898-1221(00)00045-6
h
https://dx.doi.org/https://doi.org/10.1088/0022-3727/39/12/012
https://dx.doi.org/https://doi.org/10.3389/fenvs.2018.00100
https://dx.doi.org/https://doi.org/10.1145/1039813.1039817
https://dx.doi.org/https://doi.org/10.1016/j.cam.2003.12.016
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2003.12.023
https://dx.doi.org/https://doi.org/10.1142/S0218127493000052
https://creativecommons.org/licenses/by/4.0

	Introduction
	Overview of BACOLI and DASKR
	BACOLI
	DASKR

	Development of BACOLIKR
	Major modifications

	Application of BACOLIKR to event detection problems
	Solution layer crossing detection for the One Layer Burgers Equation
	Solution value detection involving multiple events for a Catalytic Surface Reaction Model
	Layer merge detection for the Two Layer Burgers Equation
	Critical tumor mass detection in a Brain Tumor Model
	Steady state detection via layer-boundary tracking for the One Layer Burgers Equation
	Steady state detection for the Gierer-Meinhardt Model
	Event detection in the heat equation with changes in the boundary conditions at unknown times
	Continuous boundary conditions
	Discontinuous boundary conditions

	Summary, conclusions, and future work

