AIMS Mathematics, 11(2): 3221-3242.
AIMS Mathematics DOI: 10.3934/math.2026130

Received: 25 September 2025

Revised: 29 December 2025

Accepted: 05 January 2026

Published: 02 February 2026
https://www.aimspress.com/journal/Math

Research article

Data-driven neural network dynamics for customer behavior modeling

and personalized E-commerce marketing

Long Li! and Yuanyuan Jiang?*

1 School of Digital Economy, Nanning Vocational and Technical University, NanNing 530000, China
2 School of Business Administration, Guangxi Vocational Normal University, NanNing 530000,
China

* Correspondence: Email: jiangyuanyuan8105@163.com.

Abstract: Accurate personalization in e-commerce is challenged by high-dimensional, time-varying
customer data and rapidly shifting behavioral patterns. We proposed a dynamics-aware neural
modeling framework that integrated a gated recurrent unit (GRU) encoder with a temporal attention
mechanism (TAM) to capture learning dynamics, stability, and generalization across business stages.
Sparse, multi-source interaction streams were embedded to reduce feature dimensionality before
sequence modeling. The GRU extracted long- and short-term dependencies, while TAM assigned time-
step-specific weights to highlight behaviorally salient periods for prediction. To handle distributional
drift, model parameters were updated dynamically, ensuring alignment with evolving customer
behavior. We evaluated convergence during training, temporal prediction stability, and cross-period
generalization. For customer-demand forecasting, the method achieved an accuracy of 0.924, a
recall 0of 0.910, and an F1-score of 0.914. In recommendation tasks, the overall click-through rate
reached 87.1%, and forecasting accuracy remained stable between 92.4% and 90.9% across
business stages, demonstrating robustness to temporal regime changes. Attention-weight analyses
further provided interpretability by revealing dominant behavioral windows and influential features.
These results indicated that explicitly modeling neural network dynamics—through sequence encoders,
temporal attention, and adaptive updating—enhanced prediction accuracy, recommendation
effectiveness, and stability under non-stationary conditions, offering a practical and scalable pathway
for personalized e-commerce marketing.

Keywords: neural network dynamics; temporal attention mechanism; GRU; customer behavior
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1. Introduction

With the rapid expansion of the digital economy, e-commerce platforms have become a primary
interface between firms and consumers. Customer behavior data in this context are massive, high-
dimensional, multi-source, and non-stationary, exhibiting pronounced temporal dynamics and
heterogeneity [1-3]. Accurately modeling such behavior and translating it into personalized marketing
strategies are critical for improving user experience and platform revenue [4—6]. Data-driven
intelligent modeling has therefore emerged as a central pathway to enhance prediction accuracy and
recommendation effectiveness, and it is of practical significance for advancing personalized e-
commerce systems [7,8].

Despite substantial progress, customer behavior modeling still faces several challenges [9,10].
High-dimensional multi-source signals often contain redundancy and noise, which complicates feature
selection and representation learning [11,12]. Behavioral trajectories are temporally dependent and
dynamically evolving, and static models struggle to capture such dependencies [13,14]. Furthermore,
heterogeneity and abrupt regime shifts—such as promotions, seasonal effects, and external
shocks—complicate modeling and can degrade the stability of traditional approaches under
distribution drift [15,16]. Collectively, these issues constrain both predictive accuracy and out-of-
distribution generalization in real-world e-commerce scenarios.

Prior studies have explored a spectrum of solutions [17,18]. Collaborative filtering leverages
user—item similarity but is vulnerable to sparsity and cold-start issues [19,20]. Matrix factorization and
deep factorization machines introduce latent interactions yet remain limited for long sequential
behaviors and rapidly shifting preferences [21,22]. Recurrent neural networks improve sequence
prediction but may suffer from vanishing gradients on long horizons and can fail to capture sudden
behavioral changes [23,24]. Attention-based methods enhance feature selection; however, many adopt
static attention allocation and insufficiently reflect the time-varying nature of customer behavior [25].
Consequently, existing approaches only partially address the joint problem of key behavior selection
and temporal dependency modeling under non-stationarity. These limitations highlight the need for a
unified approach that adapts to temporal shifts while preserving interpretability. To address this gap,
this article introduces a dynamics-aware neural modeling framework that integrates gated recurrent
unit (GRU) with a temporal attention mechanism for enhanced behavior modeling under non-
stationary conditions.

To bridge these gaps, we propose a dynamics-aware neural modeling framework that couples a
GRU temporal encoder with a temporal attention mechanism (TAM). Multi-source interaction streams
are first embedded to map sparse, high-dimensional inputs into compact dense representations,
improving feature efficiency. The GRU then extracts long- and short-term dependencies, while TAM
assigns time-step-specific weights to emphasize behaviorally salient windows for prediction. To cope
with distributional drift, model parameters are updated dynamically so that the learned representation
remains synchronized with evolving customer behavior. This design explicitly leverages the learning
dynamics of neural networks—covering convergence behavior, stability over time, and generalization
across business stages—thereby aligning with the theme of this special issue on the dynamics and
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applications of artificial neural networks.
In summary, this work makes four contributions:
® [t formulates a dynamics-aware neural architecture that jointly addresses temporal
dependency modeling and dynamic key-behavior selection via the integration of GRU and
TAM under non-stationarity.

® [t incorporates dynamic parameter updating to maintain robustness and stability across

shifting business regimes, thereby improving temporal generalization.

® [t enhances interpretability by analyzing attention weights over time and across features,

clarifying dominant behavioral windows and drivers that inform marketing decisions.

® [t provides empirical evidence covering accuracy, stability, and recommendation

effectiveness across business stages, demonstrating resilience to temporal regime changes
and practicality for real-world personalized e-commerce marketing.

The remainder of this article is organized as follows. Section 2 reviews related work on customer
behavior modeling, sequential recommendation, and dynamic neural architectures. Section 3 presents
the proposed dynamics-aware neural framework, detailing data preprocessing, GRU-based temporal
encoding, temporal attention modeling, and dynamic parameter updating. Section 4 describes the
experimental design, datasets, parameter settings, and training strategy. Section 5 reports and analyzes
the experimental results from forecasting accuracy, recommendation effectiveness, dynamic
adaptability, and attention-based interpretability perspectives. Section 6 concludes the study and
discusses limitations and future research directions.

2. Related work

Research on customer behavior modeling has progressed from classical machine learning
baselines to dynamics-aware deep architectures tailored for high-dimensional, time-varying data.
Comparative evidence indicates that gradient-boosting families such as XGBoost and CatBoost handle
complex feature interactions and large-scale settings more effectively than several conventional
learners [26]. To better reflect temporal structure, segmentation and prediction pipelines have
incorporated time-series features with clustering, while counterfactual analysis has been used to probe
the mechanism of marketing interventions [27].

Deep learning has reshaped recommendation by coupling sequence modeling with preference
estimation. A time-aware deep collaborative filtering framework demonstrates sustained gains by
unifying dynamic user preference modeling with score prediction across multiple datasets [28].
Complementarily, neural matrix factorization fusing explicit and implicit feedback enriches the
representation of user-item interactions and improves downstream accuracy [29].

Beyond single-domain settings, recent surveys highlight that deep models alleviate sparsity and
cold-start issues in cross-domain recommendation, and identify transfer learning and reinforcement
learning as promising directions for scalable personalization [30]. In dynamic e-commerce scenarios,
personalized recommendation based on evolving user portraits—integrating profiles, behaviors, and
domain knowledge with refined clustering—has reported measurable improvements in platform-level
metrics [31]. From the user-behavior perspective, empirical studies grounded in the stimulus-
organism-response model (S = O - R) framework reveal that Al-driven recommendation experiences
shape click intentions, with privacy concerns and technology acceptance acting as critical
moderators [32-35].

AIMS Mathematics Volume x, Issue x, 1-X Page.



3224

A growing body of work further connects learning dynamics with marketing objectives. Data-
driven strategy optimization links behavior modeling to segmentation and targeting under non-
stationarity [36,37]. Convolutional neural network (CNN)/ long short-term memory network (LSTM)
pipelines—which leverage convolutional neural networks for local feature denoising and long short-
term memory networks for capturing long-term dependencies—have been explored for understanding
e-commerce behavior, emphasizing temporal feature extraction in noisy environments [38,39].
Attention-augmented sequence models integrate temporal salience with representation learning to
improve purchase prediction and decision support [40].

At the system level, big-data analytics frameworks seek to translate behavioral signals into
business decisions, stressing pipeline robustness and deployability under evolving traffic patterns [41].
Real-time platforms for customer retention combine behavioral tracking with deep predictive analytics
to support intervention timing and policy design [42]. Collectively, these advances improve accuracy
and recommendation effectiveness, yet persistent gaps remain in unified treatment of non-stationarity,
stability, and interpretable generalization across business stages—gaps our GRU-based temporal
encoder with temporal attention and dynamic parameter updating is designed to address.

Recent advances in neural recommenders explore large language models and temporal graph
networks for dynamic behavior modeling. For example, the hybrid knowledge-augmented news
recommender (HKNR) framework utilizes LLaMA-2 for semantic candidate recall and temporal graph
neural networks (TGNNs) for user encoding. Specificallyy, HKNR integrates the deep semantic
representations from the LLM with the dynamic relational structures of the TGNN to capture both
high-level content meaning and evolving user-item interactions over time. This approach effectively
captures structural semantics and long-range dependencies for ephemeral content [43]. However, such
methods typically lack an explicit mechanism to identify and interpret the most influential short-term
behavioral windows within a sequence. Our work addresses this gap by integrating a dedicated TAM
with GRU encoding, which provides fine-grained, time-step-specific importance weighting. This
design offers a complementary pathway to achieve stability and interpretable generalization under non-
stationarity.

3. Methods
3.1. Data preprocessing and embedding representation

Multi-source customer interaction data exhibits high dimensionality, sparsity, and heterogeneity,
posing direct challenges to subsequent sequence modeling. To ensure the validity and consistency of
the input data, missing values are processed and outliers are removed to eliminate noise. Index
encoding is then used for discrete features, converting non-numeric information into computable
integer indices. Numerical features are normalized to ensure that features of different dimensions are
within a comparable range, thus avoiding the uneven impact of feature scale differences on modeling.
Through these preprocessing steps, customer behavior information on browsing, clicking, purchasing,
and multi-dimensional interactions is fully preserved, forming a unified and structured data
representation at the input layer, as shown in Table 1.

The unit of analysis is user-level sequences, where each sample represents a chronological
sequence of events for a single user. Raw interaction logs were filtered to remove bots and invalid
entries, then sessionized into sequences with a maximum length of 30 time steps. Duplicate events
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within a session were removed, and sequences were aggregated per user. The data were split
chronologically by time stamp to prevent leakage. Table 2 summarizes the record counts after each
processing stage.

Table 1. Statistics of customer behavior characteristics.

Feature category Number of features Data type Sample size Sparsity ratio
Browsing Behavior 1200 Discrete 500,000 83.2%
Clicking Behavior 950 Discrete 500,000 76.5%
;‘;;Cia;lfg 630 Discrete 500,000 69.1%

User Attributes 150 Numerical 500,000 12.3%
Temporal Features 80 Continuous 500,000 5.7%

Table 2. Data flow, filtering steps, and final record counts.

Processing stage Record count Description

Raw Logs 550,000 Original interaction data
After Filtering 525,000 Invalid entries removed
After Sessionization 500,000 Sequences per user
Train/Val/Test Split 48,000/12,000/20,000 Chronological split

The data was reduced from 500,000 session-based user sequences to 80,000 sequences ultimately
used for modeling through filtering and sampling operations. Removing short-term interactions with
sequence lengths less than 5 resulted in approximately 150,000 fewer records. Removing user records
with a large number of missing values for key behavioral features resulted in approximately 220,000
fewer records. Stratified random downsampling was performed to manage computational complexity
and balance the sample size for behavioral categories, resulting in approximately 50,000 fewer records.
This ultimately yielded 80,000 high-quality user sequences for the experiment. After completing data
normalization, in order to avoid the inefficiency and overfitting caused by directly inputting high-
dimensional sparse features into the neural network, an embedding layer is introduced to densely map
the sparse features. To bridge these gaps, we propose a dynamics-aware neural modeling framework
that couples a GRU temporal encoder with a TAM. As illustrated in Eq (1), an embedding layer is
introduced to densely map high-dimensional sparse features x € R* (where d denotes the input
dimension) into a compact representation z € R* through the embedding matrix E € R4*k,

z=xE. (1)

InEq (1), z€RK is the embedded feature after mapping, k and is the embedding dimension. The
parameter matrix E is dynamically updated during training, allowing the embedded vector to retain
the original semantic information while reducing sparsity and dimensionality. This process makes the
input data more compact in vector space, providing efficient and expressive input for the subsequent
GRU temporal encoding layer. The embedded representation demonstrates advantages in
dimensionality compression, sparsity reduction, storage efficiency, and preservation of semantic
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similarity, as shown in Table 3.

Table 3. Comparison of feature embedding representation effects.

Metric Original features Embedded features
Feature dimension 3060 128

Sparsity ratio 72.8% 9.6%

Average similarity 0.12 0.47

Storage cost (MB) 1850 220

Training convergence epochs 35 18

3.2. Time series modeling and GRU encoding

After embedding, customer behavior sequence data is organized into a multidimensional time
series tensor. Let the input sequence be X={X,X,,....xy}, where x,ERY represents embedded
feature vector T at time step, t is the sequence length, and d is the embedding dimension. Time
series modeling uses GRU to encode the sequence to preserve long-term dependency information in
the hidden state while reflecting short-term preference changes.

The state update of GRU is controlled by two gate structures, namely the update gate z; and the
reset gate r,. The update gate determines the fusion ratio between the previous hidden state and the
current candidate state, and its calculation method is as shown in Eq (2):

Zt:G(Wth+Uzht-l +bz)- (2)

In Eq (2), o(-) denotes the Sigmoid function. The weight matrices for the update gate are
represented by W, € R**¢ and U, € R%>4 while b, € R% is the corresponding bias vector, dj, is
the hidden state dimension , and h,;ER% is the hidden state at the previous moment.

The reset gate is used to control the degree of retention of the previous hidden state in the
generation of the current candidate state. Its calculation method is as shown in Eq (3):

;=6 (WrXt +Urht— 1 +br) . (3)

InEq (3), W,eR4 U eR% and b,eR% are the weight matrices and bias vector of the reset
gate, respectively.

The update gate and the reset gate, the candidate hidden state is generated h; , and its expression

is as shown in Eq (4):

fltztanh(WhXt+Uh(rt@ht-1 )+bh)' (4)

In Eq (4), W,eR® 4 U,eR®*% b eR% are the parameter sets of candidate states,
representing element-by-element multiplication operations. The final hidden state is controlled by the
update gate, which is a weighted combination of the candidate state and the historical state. The
calculation method is as shown in Eq (5):
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ht:(l_zt)th—1+Zt®l~lt' (5)

In Eq (5), htERdh is the time step t. The hidden state sequence H={h;,h,,...,ht} obtained
through recursive calculation captures both long-term dependencies and short-term dynamic
information, forming a high-dimensional representation of the evolution of customer behavior.

The design of GRU effectively alleviates the vanishing gradient problem through a gating
mechanism, ensuring that key behavioral features can be propagated and retained in long sequence
data, thereby providing dynamic sequence encoding input for the subsequent temporal attention
mechanism.

3.3. Introduction of temporal attention mechanism

In the model, TAM performs a learnable weighting of the temporal representation output by the
GRU encoder, so as to highlight the behavioral moments that contribute most to the results during the
prediction phase and introduce the distinguishable influence of temporal information. Let the GRU
hidden state sequence obtained in Section 3.2 be H=[h;,h,,...,ht], where hiERdh represents i the
hidden state vector at the moment. Temporal information is embedded through vectorized temporal
encoding riERdT and participates in attention scoring. The calculation of attention energy is
completed by parameterized projection and nonlinear mapping, as shown in Eq (6):

e;=v'tanh(W,h;+W,1;+b). (6)

In Eq (6), e;ER represents i the attention score scalar at the moment, is the projection matrix
WhERdaxdh denotes the projection matrix from the hidden state to the attention space, and WtERdaxdr
is the temporal encoding projection matrix, veR% is the score vector (mapping the projected
representation to a scalar), is beR% the bias vector, tan h(-) and is the element-wise hyperbolic
tangent activation function. The attention weight is obtained by normalizing the energy and is defined
as in Eq (7):

exp (e)
=) 7
NI (e ™

In Eq (7), o; € (0,1) is the normalized position weight, satisfying YL, o;=1. The context vector
is obtained by summing the weighted hidden states as a compressed representation of the overall
information of the sequence, defined as Eq (8):

c= 21T=1 a;h;. (8)

In Eq (8), c€R% is the context vector obtained by attention aggregation. The context vector is
concatenated with the current or final hidden state of the GRU and input into the prediction layer to
fuse the instantaneous state and the full sequence contribution. The prediction mapping form is as
shown in Eq (9):

Y= (W, [Ghy]+b,). )

In Eq (9), [c;hT]ER2dh represents vector concatenation, WOERdyxzclh and bOERdy are the
output mapping matrix and bias, respectively, ¢(-) are the activation functions corresponding to the
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task, and yERdy represents the model output. To maintain a balance between the model's

responsiveness to the evolution of customer behavior and training stability, parameter updates employ
an online/incremental optimization strategy based on attention-weighted loss and temporal smoothing
regularization. The loss function tis defined at the time step as follows:

/\(1’1) P
Ly(0)=Xnep, a®I(y y™)HAI6-0,,15. (10)

In Eq (10), 0 represents all trainable parameters of the model, represents B, the set of samples
participating in the update a™at time, t is the attention weight coefficient corresponding to the
sample n in its sequence, 1(-,-)is the loss function at the sample level, A>0A>0 is the temporal
smoothing regularization coefficient, and 0, is the last parameter snapshot. The parameters based on
this loss are iteratively updated in the gradient direction, and the update rule is:

0=0.1-mVoL.(0). (1)

In Eq(11), n>0n>0 represents the learning rate. The attention weights redistribute the importance
of moments within the sample in the loss, and the temporal smoothing term constrains parameter
changes, thereby balancing responsiveness and stability when tracking behavioral distribution drift.
The interpretability of TAM is reflected in the weight distribution, which not only reflects the relative
contribution of different behavioral moments to the predicted target but also provides weight feedback
to the subsequent strategy layer to support personalized marketing strategy adjustments, as shown in
Figure 1.
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Figure 1. TAM weight distribution.
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3.4. Dynamic update and prediction output

This section describes the implementation details of the model's parameter dynamic update
strategy and prediction output mechanism, focusing on the aggregation method of temporal attention
weights, prediction operator design, loss definition and online/batch parameter update rules, as well as
parameter smoothing constraints introduced to prevent historical knowledge from being forgotten.
Temporal attention h; calculates time step scores on the temporal encoder output sequence. The
scores use a trainable feedforward mapping and are normalized by a nonlinear transformation. Let the
score be e, which is defined as:

e~u'tanh(W,h+b,). (12)

In Eq (12), e, denotes the raw attention score for time step t. W, € R%*% and b, € R%
represent the trainable weight matrix and bias vector of the attention layer, where u € R% is the score
mapping vector. Additionally, d, corresponds to the hidden dimension of the GRU encoder, whereas
d, denotes the dimensionality of the attention space.

_ ep)
at_z-'ll;] exp(e_])' (13)

The denominator in T in Eq (13) is the exponential sum of the sequence length, which is used to
ensure Y., o,=1 that the weight has a probabilistic interpretation. The aggregate representation is

obtained by weighted summation of the time series representation based on the normalized weight h:

In Eq (14), he R% is the final sequence representation after integrating temporal attention,

which serves as the input of the prediction layer.
The prediction layer uses a fully connected mapping to output the behavior probability

distribution y, and the classification case uses a linear mapping with a normalization function:
y=softmax(W h+b,)- (15)

In Eq (15), y€R" represents C the predicted probability distribution of class behavior,

W, € R4 and b, €RC is the output layer parameter. The regression or single target probability
scoring case will softmax be replaced by ¢ or identity mapping, but the output still comes from the

same weighted representation h.

The training loss is defined between the supervision signal y and the prediction y, and the cross

entropy loss is used to evaluate the classification error:
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L=Y¢, ¥, logy, FAR(O). (16)

In Eq (16), L; is the loss scalar y, = at the time instant , tis the true category indicator, y, = is

the predicted probability ® representing the set of all trainable parameters of the model, R(®) is the
regularization term used to constrain the parameter norm, A and is the regularization coefficient. The
model uses this loss as the optimization target to update parameters on batch or streaming data.

An adaptive optimizer based on first-order and second-order moment estimation to balance
convergence speed and stability. The update rule is as follows (taking Adam as an example):

my =B]mt-1+(1_B])gto
Vi =Byviat(1-B,)el,

" _ m¢ n _ Vit
mt I_Btl 7Vt l_ﬁtz > (17)
— my¢
eH_l —et-(X /\_ .

In Eq (17), 0O, represents the value of the parameter vector at the current update step,

g.=VpL represents the current gradient, my,v, is the first-order and second-order moment estimate ,

B,.B, is the momentum decay hyperparameter, a is the learning rate, € is the numerical stability

term, and symbolic operations and vector dimensions are defined according to the parameter vector.
To maintain the model's robustness to behavioral distribution drift and suppress the rapid forgetting of
historical information, a parameter sliding average is used as the long-term steady-state parameter
representation:

0,=p0,_,+(1-p)0;- (18)

In Eq (18), 6t is the sliding average parameter, p and is the smoothing coefficient. The initial

value 60 can be set to random initialization or pre-trained parameters. The sliding average parameter

is used as a model deployment parameter during the online prediction phase to improve stability.
During the training phase, the real-time parameter is used to respond to new information. Both are
compared in parallel during the evaluation phase to measure the trade-off between dynamic
adaptability and stability.

The online update mechanism is executed in a streaming scenario based on preset trigger
conditions. The trigger conditions are determined by the sample size and loss growth rate within the
time window. When triggered, a small batch gradient update is applied to the new sample and the
sliding average parameters are updated at the same time. If batch training is used, the same
optimization and parameter smoothing process is performed after each round of iteration. The output
end sorts the predicted probabilities in descending order and makes them available to downstream
recommendation and marketing decision modules. The probability threshold and ranking strategy are
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automatically selected based on the business indicators on the validation set to ensure accurate
targeting and frequency control of marketing delivery. The entire dynamic update and prediction output
process forms a closed loop in the system-level view. Weight allocation, aggregate representation, loss
feedback, and parameter smoothing constitute the core links of continuous adaptation, as shown in
Figure 2.
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Figure 2. Dynamic update and prediction output flow chart.
4. Experimental design and implementation
4.1. Dataset and experimental environment

During the experimental design phase, the raw customer interaction data needs to be rationally
partitioned to ensure sufficient sample coverage during training, while retaining some data for testing
the model's generalization performance. The dataset was split chronologically by time stamp into
periods T1 to T5, with no random shuffling. A rolling-window evaluation protocol was adopted: for
each period Ti, training used data from Ti-1 and earlier, while validation and testing used data from Ti.
Feature computations (e.g., windowed aggregates) were strictly based on historical data up to the
prediction time to avoid future information leakage. Results in Section 5 are reported under this
protocol. To avoid overfitting and improve the effectiveness of parameter adjustment, the research
divided the dataset into training, validation, and test sets based on different functions. Additionally,
subsets of behavioral logs and transaction records were constructed to support analysis of temporal
characteristics and consumer habits, ensuring the scientific and complete evaluation of the model under
multi -dimensional conditions. Table 4 shows the data partitioning.
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Table 4. Dataset division table.

Dataset type Sample size  Proportion Feature description

Training set 48,000 60% Covers main behavior features
Validation set 12,000 15% Used for hyperparameter tuning

Test set 20,000 25% Evaluates generalization performance
Behavior log subset 15,000 - Contains click, browse, add-to-cart
Transaction subset 10,000 - For purchase and repurchase analysis

In terms of data distribution, the training set consists of 48,000 records, accounting for 60% of
the total data. This is primarily because the model's sequence modeling requires a large number of
samples to support parameter learning. The validation set consists of 12,000 records, representing 15%
of the total data. This proportion is determined to ensure model stability during hyperparameter tuning
and to avoid bias caused by too few samples. The test set consists of 20,000 records, representing 25%
of the total data. This large data size allows for evaluation of generalization capabilities in real-
world application scenarios and ensures more representative results. The behavioral log subset
consists of 15,000 records. This high number stems from the fact that customer browsing and clicking
data are much more frequently generated than transaction records. The transaction record subset
consists of only 10,000 records because actual purchasing behavior in e-commerce scenarios is much
more sparse than browsing behavior. This overall distribution ensures sufficient training, stable
validation, and reliable testing.

4.2. Parameter setting and training strategy

In the experimental design, to ensure the stability and repeatability of the proposed model during
training, a parameter system covering network structure configuration, training strategy, and
regularization measures was constructed. The network structure component focuses on expressing
sequence modeling capabilities, the training strategy component defines the optimization path and
iteration method, and the regularization component is used to mitigate the risk of overfitting. The
overall parameter configuration directly affects the model 's performance under high-dimensional
behavioral data, so it is systematically organized as shown in Table 5.

Table 5. Experimental parameter configuration table.

Category Parameter Value Description

Structure Hidden Size 128 GRU hidden state dimension
Structure Time Steps 30 Max input sequence length
Training Batch Size 64 Samples per batch

Training Learning Rate 0.001 Initial rate for Adam

Training Optimizer Adam Adaptive optimization
Training Epochs 100 Max training iterations
Regularization Dropout 0.3 Drop ratio to reduce overfitting
Regularization L2 Penalty le-5 L2 regularization strength
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This table summarizes the experimental parameters from three perspectives. The network
structure configuration shows the hidden layer dimensions and time step length, demonstrating the
model's ability to model the sequential dependencies between customer behaviors. The training
strategy section displays the batch size, learning rate, optimizer type, and number of iterations; these
factors determine the model's convergence speed and training efficiency. Regularization measures,
including the dropout ratio and L2 regularization coefficient, are used to reduce instability caused by
model complexity. Through the rational coordination of multiple parameter types, the experimental
training process achieved consistency in both structure and strategy.

All baseline models and the proposed method used identical input features, preprocessing,
sequence length (30), and padding rules. Hyperparameter search included learning rate [0.001, 0.01],
hidden size [64, 128], and dropout [0.2, 0.5], with 50 trials per model using Bayesian optimization.
Early stopping was based on validation loss with a patience of 10 epochs. Results report mean and
standard error over 5 runs with fixed random seeds. Training used a single NVIDIA Tesla V100 GPU,
with comparable time (2—4 hours per model) across methods.

5. Results analysis
5.1. Analysis of customer demand forecast accuracy

During the experiment, the research focused on customer demand forecasting. Four models were
compared and analyzed: collaborative filtering, matrix factorization, GRU, and GRU+TAM (a
temporal attention mechanism) to comprehensively evaluate their performance in the forecasting task.
The experiment measured performance across multiple dimensions, examining not only static metrics
such as accuracy, precision, recall, and F1 score, but also plotting receiver operating characteristic
(ROC) curves to assess the classification capabilities of different models. Training convergence curves
were used to examine the convergence speed and stability during the iterative process. The results,
obtained after systematic data modeling and visualization, are shown in Figure 3.

(a)Comparison of prediction metrics (b)ROC curve comparison (c)Training loss convergence
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Figure 3. Multi-dimensional comparative analysis of customer demand forecasts. (a)
Comparison of prediction indicators. (b) ROC curve comparison. (c¢) Training convergence
curve.

The results show that GRU+TAM achieves the highest performance across all four core metrics,
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with accuracy of 0.924, precision of 0.917, recall 0of 0.910, and F1 score of 0.914. This result is closely
related to TAM's weighting mechanism for key behavioral time steps, as this mechanism enhances the
utilization of key features that influence prediction, while GRU, which relies solely on time series
modeling, has limitations in weight allocation. The ROC curve further shows that GRU+TAM
maintains a lead in AUC, achieving a TPR of 0.88 at an FPR of 0.2, compared to 0.82 for GRU. This
difference stems from the attention mechanism, which enables the model to capture more true positive
examples while maintaining a low false positive rate. The training convergence curve reflects the stability
of different models during the iteration process. The loss of GRU+TAM drops to 0.25 at the 30th epoch,
lower than the 0.30 of GRU and the 0.42 of MF. This is primarily due to the attention mechanism
optimizing the efficiency of sequence modeling during gradient propagation. Overall, the introduction
of TAM significantly improves the model's advantages in prediction accuracy and training efficiency.

5.2. Analysis of recommendation click-through rate performance

In the experimental design for recommendation click-through rate, this part of the work verified
the model's applicability in complex interactive scenarios by comparing various modeling methods in
terms of overall performance, user grouping, and recommendation placement. Click-through rate is
defined as the ratio of clicked items to total recommended items in an offline evaluation, computed as
the hit rate on held-out test data. Click-through rate lift measures the relative improvement in click-
through rate over a baseline model. These metrics are derived from the same classification task as
accuracy and F1-score, where the label space includes user click actions on items. The prediction task
is binary classification of click events, and all metrics are computed offline without online exposure.
The experiment first examined the performance of different recommendation algorithms in terms of
overall click-through rate. It also introduced user activity grouping to analyze the model's adaptability
to different usage habits. It further compared the click-through rate distribution of each method at
different recommendation list positions, comprehensively demonstrating the differences in
recommendation effectiveness across multiple dimensions. The experimental results are shown in
Figure 4.

(a) CTR Comparison with Error Bars (b) Stacked CTR by User Activity (c) CTR by Top-N Recommendations (Area)
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Figure 4. Comparison of recommended click-through rate performance. (a) Overall click-
through rate comparison of models. (b) Click-through rates at different user activity levels.
(c) Click-through rates of different recommendation positions.
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The results show that the GRU+TAM approach achieved an overall click-through rate of 87.1%,
significantly outperforming collaborative filtering's 71.5% and matrix factorization's 74.3%. This is
due to the introduction of the temporal attention mechanism, which allows the model to better capture
key behaviors. In user segmentation experiments, highly active users generally achieved higher click-
through rates than less active users. For example, with GRU+TAM, the click-through rate for the
highly active group reached 90.2%, while that for the less active group was only 78.9%. This is because
high-frequency interactions provide the model with richer temporal features, enhancing its ability to
discern preferences. In the recommendation position experiment, the click-through rate for the top-1
recommendation was 54.9% with GRU+TAM, gradually increasing to 87.1% for the top-10
recommendation. However, the collaborative filtering approach achieved a mere 38.6% click-through
rate for the top-1 recommendation. This difference is due to the sequential modeling approach more
accurately capturing the user's immediate needs in the top recommendations, thereby increasing the
relevance of the top recommendations. Overall, the results demonstrate that the combination of
temporal modeling and the attention mechanism improves the performance of recommendation
systems across multiple dimensions.

5.3. Model dynamic adaptability analysis

In a dynamic e-commerce environment, customer behavior distribution exhibits phased variations
over time. If modeling methods fail to respond to temporal evolution, predictive performance will
gradually decline. To validate the proposed method's adaptability across different business phases, this
study compared the performance of a static model with that of a dynamic neural network across five
key time periods. Stability and generalizability were analyzed by combining error distribution with
user group segmentation. These time periods were the initial launch of the system (T1), the user
expansion phase in the third month (T2), the peak promotional activity phase in the sixth month (T3),
the market stabilization phase in the ninth month (T4), and the end of the year in the twelfth month (T5).
The experimental process covered three perspectives: overall accuracy, error fluctuation, and group
differences. The results are shown in Figure 5.
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Figure 5. Comprehensive results of model dynamic adaptability. (a) Accuracy trends
across different business stages. (b) Time evolution of prediction error distribution. (c)

Prediction accuracy of user groups in different time periods.

As shown in Figure 5(a), the static model achieved an accuracy of 91.5% at the beginning of the
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system's launch, but by the end of the year, it had dropped to 80.1%, a decrease of 11.4 percentage
points. This indicates that its performance degraded significantly under changing temporal
distributions. The dynamic model maintained an accuracy range of 92.4% to 90.9% across the five
phases, fluctuating by only 1.5 percentage points. This difference stems from the dynamic update
mechanism continuously capturing new behavioral patterns during parameter iteration, thus preventing
performance degradation over time. Figure 5(b) further shows that the mean MSE distribution of the
static model at the end of the year was 0.184, a significant increase from 0.094 at the beginning of the
system's launch, and the variance increased, indicating that the uncertainty of the prediction results
increased with changes in the data distribution. The dynamic model achieved an MSE mean of 0.097
at the end of the year, only increasing by 0.015 from the beginning, maintaining a relatively stable
error range. This is due to the temporal attention mechanism effectively filtering key behavioral
features and suppressing the noise accumulation effect. Figure 5(c) shows the results for different user
groups. For new users, the accuracy of the static model dropped from 90.2% at the beginning of the
launch to 75.3% at the end of the year, while the accuracy of the dynamic model remained stable
between 91.4% and 90.2% during the same period. A similar trend was observed for the established
user group. This indicates that static modeling methods struggle to adapt to groups with rapidly
changing behavior patterns, while the key reason dynamic methods maintain stable output is their more
flexible weighting mechanism for short-term behavioral features. In summary, the dynamic neural
network combined with the temporal attention mechanism demonstrates strong adaptability and
robustness across different business phases.

5.4. Feature importance and attention weight analysis

In this experiment, we modeled the dynamic characteristics of customer behavior sequences,
focusing on the distribution of attention across different types of interactions over time. By
constructing a temporal attention mechanism model, we first weighted the continuous interaction
sequence to reveal the varying importance of each behavior to the prediction results over different time
periods. We then calculated the global average attention value for each feature to measure its long-
term contribution. Finally, we aggregated the data across the stage dimension to compare feature
importance across different time intervals. This process yielded the visualization shown in Figure 6.

(a)Temporal Attention Weight Distribution N (b)Average Attention Weight by Feature (c)Attention Weights Across Time Segments
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Figure 6. Attention weight analysis of customer behavior characteristics. (a) Time
attention weight distribution. (b) Average attention weight of each feature. (c) Attention
weights across different time periods.
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The results show that the average attention value for purchase is 0.18, substantially higher than
the 0.07 assigned to click ads. This discrepancy reflects the stronger direct relevance of purchase
behavior to the prediction target, whereas ad clicks exhibit greater randomness, resulting in lower
attention weighting. The attention weight for product view reaches 0.20 in the early stages but declines
to 0.08 later, indicating that browsing behavior is highly informative at the initial stages of the
consumer journey but is gradually overshadowed by conversion-oriented actions. The weight for add
to cart peaks at 0.25 in the middle stages, underscoring the role of carting behavior as a key signal of
preference conversion. Meanwhile, search receives a weight of 0.18 early on but decreases to 0.05,
consistent with search behavior serving as an exploratory action that becomes less informative at later
stages. These differentiated patterns demonstrate the sensitivity of the temporal attention mechanism
in capturing evolving customer behavior dynamics.

5.5. Stability and generalization analysis

This section evaluates the model’s stability and generalization ability from multiple perspectives.
By comparing datasets from different e-commerce platforms, we assess the consistency of model
performance across scenarios. Experiments conducted over multiple time periods examine month-to-
month fluctuations in prediction accuracy. Segmenting users into new and active groups further reveals
how different interaction patterns influence prediction performance. Finally, key metrics—accuracy,
click-through rate improvement, recall, and F1-score—are jointly analyzed through a performance
matrix to provide a comprehensive evaluation across dimensions. These results are summarized in
Figure 7, Model Stability and Generalization Performance Comparison.

The results show that the accuracy of different data sets ranged from 91.5 to 92.4, and the click-
through rate improvement ranged from 86.5 to 87.3. The main reason for the differences is the different
user behavior characteristics and interaction frequencies of each platform, but the model structure's
capture of sequential information reduces the instability caused by such differences. In cross-time
period experiments, the accuracy remained between 91.8 and 92.2, and the click-through rate
improvement ranged from 86.9 to 87.2. The slight fluctuations were caused by changes in seasonal
user activity. In user group experiments, the accuracy of new users was concentrated at 91.0, while
that of active users was around 93.0. This difference is due to the longer interaction sequences of active
users, which provide more complete temporal characteristics. The comprehensive heat map shows that
the Fl-score remains stable between 91.3 and 92.0, reflecting the high reliability of the model in
different scenarios and evaluation dimensions.
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Figure 7. Model stability and generalization results. (a) Performance on different datasets.

(b) Time series stability. (c) User group distribution. (d) Comprehensive performance
across multiple indicators.

6. Conclusions

This study tackled dynamic modeling of e-commerce customer behavior by proposing a
dynamics-aware neural architecture that couples a gated recurrent unit (GRU) temporal encoder with
a temporal attention mechanism (TAM) and employs dynamic parameter updating. Multi-source, high-
dimensional interaction streams are first embedded to obtain compact representations; the GRU then
captures long- and short-term dependencies, while TAM assigns time-step-specific weights that
highlight behaviorally salient windows and features. Empirically, the framework achieves an accuracy
0f 0.924, a recall of 0.910, and an F1-score of 0.914 on customer-demand forecasting, outperforming
collaborative filtering and matrix-factorization baselines. In recommendation evaluation, the overall
click-through rate (CTR) reaches 87.1% versus ~70% for the baseline, indicating stronger relevance.
Under dynamic adaptability tests across annual business stages, accuracy remains within 92.4%-90.9%,
whereas a static comparator degrades by more than 11 percentage points, evidencing robustness to
distributional shifts. Attention analyses further reveal that purchase and add-to-cart signals are dominant
drivers of preference conversion. The proposed method improves prediction accuracy, recommendation
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effectiveness, and temporal stability, supporting personalized marketing in evolving user environments.

Study limitations: This study has several limitations. The dataset is from a single e-commerce
platform, which may limit generalizability to other domains. Although we adopted a time-based
evaluation protocol, offline CTR metrics may not fully reflect online performance. The reproducibility
is constrained by the use of proprietary data, though aggregate statistics are provided. External factors
such as promotions were not explicitly controlled.

Future work: Future research will include validation across diverse domains and platforms,
integration of causal modeling to isolate preference shifts, and development of uncertainty estimation
methods for risk-aware decision making. Continual and meta-learning approaches will be explored for
faster adaptation, alongside multimodal data fusion and reinforcement learning for real-time interventions.
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