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Abstract: Accurate personalization in e-commerce is challenged by high-dimensional, time-varying 

customer data and rapidly shifting behavioral patterns. We proposed a dynamics-aware neural 

modeling framework that integrated a gated recurrent unit (GRU) encoder with a temporal attention 

mechanism (TAM) to capture learning dynamics, stability, and generalization across business stages. 

Sparse, multi-source interaction streams were embedded to reduce feature dimensionality before 

sequence modeling. The GRU extracted long- and short-term dependencies, while TAM assigned time-

step-specific weights to highlight behaviorally salient periods for prediction. To handle distributional 

drift, model parameters were updated dynamically, ensuring alignment with evolving customer 

behavior. We evaluated convergence during training, temporal prediction stability, and cross-period 

generalization. For customer-demand forecasting, the method achieved an accuracy of 0.924, a 

recall of 0.910, and an F1-score of 0.914. In recommendation tasks, the overall click-through rate 

reached 87.1%, and forecasting accuracy remained stable between 92.4% and 90.9% across 

business stages, demonstrating robustness to temporal regime changes. Attention-weight analyses 

further provided interpretability by revealing dominant behavioral windows and influential features. 

These results indicated that explicitly modeling neural network dynamics—through sequence encoders, 

temporal attention, and adaptive updating—enhanced prediction accuracy, recommendation 

effectiveness, and stability under non-stationary conditions, offering a practical and scalable pathway 

for personalized e-commerce marketing. 

Keywords: neural network dynamics; temporal attention mechanism; GRU; customer behavior 

modeling; non-stationary sequences; stability and generalization; personalized E-commerce marketing; 
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1. Introduction 

With the rapid expansion of the digital economy, e-commerce platforms have become a primary 

interface between firms and consumers. Customer behavior data in this context are massive, high-

dimensional, multi-source, and non-stationary, exhibiting pronounced temporal dynamics and 

heterogeneity [1–3]. Accurately modeling such behavior and translating it into personalized marketing 

strategies are critical for improving user experience and platform revenue [4–6]. Data-driven 

intelligent modeling has therefore emerged as a central pathway to enhance prediction accuracy and 

recommendation effectiveness, and it is of practical significance for advancing personalized e-

commerce systems [7,8]. 

Despite substantial progress, customer behavior modeling still faces several challenges [9,10]. 

High-dimensional multi-source signals often contain redundancy and noise, which complicates feature 

selection and representation learning [11,12]. Behavioral trajectories are temporally dependent and 

dynamically evolving, and static models struggle to capture such dependencies [13,14]. Furthermore, 

heterogeneity and abrupt regime shifts—such as promotions, seasonal effects, and external 

shocks—complicate modeling and can degrade the stability of traditional approaches under 

distribution drift [15,16]. Collectively, these issues constrain both predictive accuracy and out-of-

distribution generalization in real-world e-commerce scenarios. 

Prior studies have explored a spectrum of solutions [17,18]. Collaborative filtering leverages 

user–item similarity but is vulnerable to sparsity and cold-start issues [19,20]. Matrix factorization and 

deep factorization machines introduce latent interactions yet remain limited for long sequential 

behaviors and rapidly shifting preferences [21,22]. Recurrent neural networks improve sequence 

prediction but may suffer from vanishing gradients on long horizons and can fail to capture sudden 

behavioral changes [23,24]. Attention-based methods enhance feature selection; however, many adopt 

static attention allocation and insufficiently reflect the time-varying nature of customer behavior [25]. 

Consequently, existing approaches only partially address the joint problem of key behavior selection 

and temporal dependency modeling under non-stationarity. These limitations highlight the need for a 

unified approach that adapts to temporal shifts while preserving interpretability. To address this gap, 

this article introduces a dynamics-aware neural modeling framework that integrates gated recurrent 

unit (GRU) with a temporal attention mechanism for enhanced behavior modeling under non-

stationary conditions. 

To bridge these gaps, we propose a dynamics-aware neural modeling framework that couples a 

GRU temporal encoder with a temporal attention mechanism (TAM). Multi-source interaction streams 

are first embedded to map sparse, high-dimensional inputs into compact dense representations, 

improving feature efficiency. The GRU then extracts long- and short-term dependencies, while TAM 

assigns time-step-specific weights to emphasize behaviorally salient windows for prediction. To cope 

with distributional drift, model parameters are updated dynamically so that the learned representation 

remains synchronized with evolving customer behavior. This design explicitly leverages the learning 

dynamics of neural networks—covering convergence behavior, stability over time, and generalization 

across business stages—thereby aligning with the theme of this special issue on the dynamics and 
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applications of artificial neural networks. 

In summary, this work makes four contributions: 

⚫ It formulates a dynamics-aware neural architecture that jointly addresses temporal 

dependency modeling and dynamic key-behavior selection via the integration of GRU and 

TAM under non-stationarity. 

⚫ It incorporates dynamic parameter updating to maintain robustness and stability across 

shifting business regimes, thereby improving temporal generalization. 

⚫ It enhances interpretability by analyzing attention weights over time and across features, 

clarifying dominant behavioral windows and drivers that inform marketing decisions. 

⚫ It provides empirical evidence covering accuracy, stability, and recommendation 

effectiveness across business stages, demonstrating resilience to temporal regime changes 

and practicality for real-world personalized e-commerce marketing. 

The remainder of this article is organized as follows. Section 2 reviews related work on customer 

behavior modeling, sequential recommendation, and dynamic neural architectures. Section 3 presents 

the proposed dynamics-aware neural framework, detailing data preprocessing, GRU-based temporal 

encoding, temporal attention modeling, and dynamic parameter updating. Section 4 describes the 

experimental design, datasets, parameter settings, and training strategy. Section 5 reports and analyzes 

the experimental results from forecasting accuracy, recommendation effectiveness, dynamic 

adaptability, and attention-based interpretability perspectives. Section 6 concludes the study and 

discusses limitations and future research directions. 

2. Related work 

Research on customer behavior modeling has progressed from classical machine learning 

baselines to dynamics-aware deep architectures tailored for high-dimensional, time-varying data. 

Comparative evidence indicates that gradient-boosting families such as XGBoost and CatBoost handle 

complex feature interactions and large-scale settings more effectively than several conventional 

learners [26]. To better reflect temporal structure, segmentation and prediction pipelines have 

incorporated time-series features with clustering, while counterfactual analysis has been used to probe 

the mechanism of marketing interventions [27]. 

Deep learning has reshaped recommendation by coupling sequence modeling with preference 

estimation. A time-aware deep collaborative filtering framework demonstrates sustained gains by 

unifying dynamic user preference modeling with score prediction across multiple datasets [28]. 

Complementarily, neural matrix factorization fusing explicit and implicit feedback enriches the 

representation of user-item interactions and improves downstream accuracy [29]. 

Beyond single-domain settings, recent surveys highlight that deep models alleviate sparsity and 

cold-start issues in cross-domain recommendation, and identify transfer learning and reinforcement 

learning as promising directions for scalable personalization [30]. In dynamic e-commerce scenarios, 

personalized recommendation based on evolving user portraits—integrating profiles, behaviors, and 

domain knowledge with refined clustering—has reported measurable improvements in platform-level 

metrics [31]. From the user-behavior perspective, empirical studies grounded in the stimulus-

organism-response model (S–O–R) framework reveal that AI-driven recommendation experiences 

shape click intentions, with privacy concerns and technology acceptance acting as critical 

moderators [32–35]. 
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A growing body of work further connects learning dynamics with marketing objectives. Data-

driven strategy optimization links behavior modeling to segmentation and targeting under non-

stationarity [36,37]. Convolutional neural network (CNN)/ long short-term memory network (LSTM) 

pipelines—which leverage convolutional neural networks for local feature denoising and long short-

term memory networks for capturing long-term dependencies—have been explored for understanding 

e-commerce behavior, emphasizing temporal feature extraction in noisy environments [38,39]. 

Attention-augmented sequence models integrate temporal salience with representation learning to 

improve purchase prediction and decision support [40]. 

At the system level, big-data analytics frameworks seek to translate behavioral signals into 

business decisions, stressing pipeline robustness and deployability under evolving traffic patterns [41]. 

Real-time platforms for customer retention combine behavioral tracking with deep predictive analytics 

to support intervention timing and policy design [42]. Collectively, these advances improve accuracy 

and recommendation effectiveness, yet persistent gaps remain in unified treatment of non-stationarity, 

stability, and interpretable generalization across business stages—gaps our GRU-based temporal 

encoder with temporal attention and dynamic parameter updating is designed to address. 

Recent advances in neural recommenders explore large language models and temporal graph 

networks for dynamic behavior modeling. For example, the hybrid knowledge-augmented news 

recommender (HKNR) framework utilizes LLaMA-2 for semantic candidate recall and temporal graph 

neural networks (TGNNs) for user encoding. Specifically, HKNR integrates the deep semantic 

representations from the LLM with the dynamic relational structures of the TGNN to capture both 

high-level content meaning and evolving user-item interactions over time. This approach effectively 

captures structural semantics and long-range dependencies for ephemeral content [43]. However, such 

methods typically lack an explicit mechanism to identify and interpret the most influential short-term 

behavioral windows within a sequence. Our work addresses this gap by integrating a dedicated TAM 

with GRU encoding, which provides fine-grained, time-step-specific importance weighting. This 

design offers a complementary pathway to achieve stability and interpretable generalization under non-

stationarity. 

3. Methods 

3.1. Data preprocessing and embedding representation 

Multi-source customer interaction data exhibits high dimensionality, sparsity, and heterogeneity, 

posing direct challenges to subsequent sequence modeling. To ensure the validity and consistency of 

the input data, missing values are processed and outliers are removed to eliminate noise. Index 

encoding is then used for discrete features, converting non-numeric information into computable 

integer indices. Numerical features are normalized to ensure that features of different dimensions are 

within a comparable range, thus avoiding the uneven impact of feature scale differences on modeling. 

Through these preprocessing steps, customer behavior information on browsing, clicking, purchasing, 

and multi-dimensional interactions is fully preserved, forming a unified and structured data 

representation at the input layer, as shown in Table 1. 

The unit of analysis is user-level sequences, where each sample represents a chronological 

sequence of events for a single user. Raw interaction logs were filtered to remove bots and invalid 

entries, then sessionized into sequences with a maximum length of 30 time steps. Duplicate events 
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within a session were removed, and sequences were aggregated per user. The data were split 

chronologically by time stamp to prevent leakage. Table 2 summarizes the record counts after each 

processing stage. 

Table 1. Statistics of customer behavior characteristics. 

Feature category Number of features Data type Sample size Sparsity ratio 

Browsing Behavior 1200 Discrete 500,000 83.2% 

Clicking Behavior 950 Discrete 500,000 76.5% 

Purchasing 

Behavior 
680 Discrete 500,000 69.1% 

User Attributes 150 Numerical 500,000 12.3% 

Temporal Features 80 Continuous 500,000 5.7% 

Table 2. Data flow, filtering steps, and final record counts. 

Processing stage Record count Description 

Raw Logs 550,000 Original interaction data 

After Filtering 525,000 Invalid entries removed 

After Sessionization 500,000 Sequences per user 

Train/Val/Test Split 48,000/12,000/20,000 Chronological split 

The data was reduced from 500,000 session-based user sequences to 80,000 sequences ultimately 

used for modeling through filtering and sampling operations. Removing short-term interactions with 

sequence lengths less than 5 resulted in approximately 150,000 fewer records. Removing user records 

with a large number of missing values for key behavioral features resulted in approximately 220,000 

fewer records. Stratified random downsampling was performed to manage computational complexity 

and balance the sample size for behavioral categories, resulting in approximately 50,000 fewer records. 

This ultimately yielded 80,000 high-quality user sequences for the experiment. After completing data 

normalization, in order to avoid the inefficiency and overfitting caused by directly inputting high-

dimensional sparse features into the neural network, an embedding layer is introduced to densely map 

the sparse features. To bridge these gaps, we propose a dynamics-aware neural modeling framework 

that couples a GRU temporal encoder with a TAM. As illustrated in Eq (1), an embedding layer is 

introduced to densely map high-dimensional sparse features 𝑥 ∈ ℝ𝑑  (where 𝑑  denotes the input 

dimension) into a compact representation 𝑧 ∈ ℝ𝑘 through the embedding matrix 𝐸 ∈ ℝ𝑑×𝑘. 

z=xE.           (1) 

In Eq (1), z∈Rk is the embedded feature after mapping, k and is the embedding dimension. The 

parameter matrix E is dynamically updated during training, allowing the embedded vector to retain 

the original semantic information while reducing sparsity and dimensionality. This process makes the 

input data more compact in vector space, providing efficient and expressive input for the subsequent 

GRU temporal encoding layer. The embedded representation demonstrates advantages in 

dimensionality compression, sparsity reduction, storage efficiency, and preservation of semantic 
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similarity, as shown in Table 3. 

Table 3. Comparison of feature embedding representation effects. 

Metric Original features Embedded features 

Feature dimension 3060 128 

Sparsity ratio 72.8% 9.6% 

Average similarity 0.12 0.47 

Storage cost (MB) 1850 220 

Training convergence epochs 35 18 

3.2. Time series modeling and GRU encoding 

After embedding, customer behavior sequence data is organized into a multidimensional time 

series tensor. Let the input sequence be X={x1,x2,…,xT} , where  xt∈Rd  represents embedded 

feature vector T at time step, t is the sequence length, and d is the embedding dimension. Time 

series modeling uses GRU to encode the sequence to preserve long-term dependency information in 

the hidden state while reflecting short-term preference changes. 

The state update of GRU is controlled by two gate structures, namely the update gate zt and the 

reset gate rt. The update gate determines the fusion ratio between the previous hidden state and the 

current candidate state, and its calculation method is as shown in Eq (2): 

zt=σ(Wzxt+Uzht-1+bz).         (2) 

In Eq (2), σ(⋅)  denotes the Sigmoid function. The weight matrices for the update gate are 

represented by 𝑊𝑧 ∈ ℝ𝑑ℎ×𝑑 and 𝑈𝑧 ∈ ℝ𝑑ℎ×𝑑ℎ, while 𝑏𝑧 ∈ ℝ𝑑ℎ is the corresponding bias vector, dh is 

the hidden state dimension , and ht-1∈Rdh is the hidden state at the previous moment. 

The reset gate is used to control the degree of retention of the previous hidden state in the 

generation of the current candidate state. Its calculation method is as shown in Eq (3): 

rt=σ(Wrxt+Urht-1+br).         (3) 

In Eq (3), Wr∈Rdh×d, Ur∈Rdh×dh, and br∈Rdh are the weight matrices and bias vector of the reset 

gate, respectively. 

The update gate and the reset gate, the candidate hidden state is generated h
~

t , and its expression 

is as shown in Eq (4): 

h
~

t=tanh(Whxt+Uh(rt⊙ht-1)+bh).       (4) 

In Eq (4), Wh∈Rdh×d , Uh∈Rdh×dh , bh∈Rdh  are the parameter sets of candidate states, ⊙ 

representing element-by-element multiplication operations. The final hidden state is controlled by the 

update gate, which is a weighted combination of the candidate state and the historical state. The 

calculation method is as shown in Eq (5): 
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ht=(1-zt)⊙ht-1+zt⊙h
~

t
.        (5) 

In Eq (5), ht∈Rdh  is the time step t . The hidden state sequence H={h1,h2,…,hT}  obtained 

through recursive calculation captures both long-term dependencies and short-term dynamic 

information, forming a high-dimensional representation of the evolution of customer behavior. 

The design of GRU effectively alleviates the vanishing gradient problem through a gating 

mechanism, ensuring that key behavioral features can be propagated and retained in long sequence 

data, thereby providing dynamic sequence encoding input for the subsequent temporal attention 

mechanism. 

3.3. Introduction of temporal attention mechanism 

In the model, TAM performs a learnable weighting of the temporal representation output by the 

GRU encoder, so as to highlight the behavioral moments that contribute most to the results during the 

prediction phase and introduce the distinguishable influence of temporal information. Let the GRU 

hidden state sequence obtained in Section 3.2 be H=[h1,h2,…,hT] , where hi∈Rdh  represents 𝑖  the 

hidden state vector at the moment. Temporal information is embedded through vectorized temporal 

encoding τi∈Rdτ  and participates in attention scoring. The calculation of attention energy is 

completed by parameterized projection and nonlinear mapping, as shown in Eq (6): 

ei=v⊤tanh(Whhi+Wtτi+b).         (6) 

In Eq (6), ei∈R represents 𝑖 the attention score scalar at the moment, is the projection matrix 

Wh∈Rda×dh denotes the projection matrix from the hidden state to the attention space, and Wt∈Rda×dτ 

is the temporal encoding projection matrix, v∈Rda  is the score vector (mapping the projected 

representation to a scalar), is b∈Rda  the bias vector, tan h(⋅)  and is the element-wise hyperbolic 

tangent activation function. The attention weight is obtained by normalizing the energy and is defined 

as in Eq (7): 

αi=
exp (ei)

∑  T
j=1 exp(ej)

.          (7) 

In Eq (7), αi ∈ (0,1) is the normalized position weight, satisfying ∑  T
i=1 αi=1. The context vector 

is obtained by summing the weighted hidden states as a compressed representation of the overall 

information of the sequence, defined as Eq (8): 

c= ∑  T
i=1 αihi.          (8) 

In Eq (8), c∈Rdh is the context vector obtained by attention aggregation. The context vector is 

concatenated with the current or final hidden state of the GRU and input into the prediction layer to 

fuse the instantaneous state and the full sequence contribution. The prediction mapping form is as 

shown in Eq (9): 

y
^

=ϕ(Wo[c;hT]+bo).         (9) 

In Eq (9), [c;hT]∈R2dh  represents vector concatenation, Wo∈Rdy×2dh  and bo∈Rdy  are the 

output mapping matrix and bias, respectively, ϕ(⋅) are the activation functions corresponding to the 
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task, and y
^
∈Rdy  represents the model output. To maintain a balance between the model's 

responsiveness to the evolution of customer behavior and training stability, parameter updates employ 

an online/incremental optimization strategy based on attention-weighted loss and temporal smoothing 

regularization. The loss function tis defined at the time step as follows: 

Lt(θ)= ∑  n∈Bt
α(n)l(y

^(n)

,y(n))+λ‖θ-θt-1‖2
2
.       (10) 

In Eq (10), θ represents all trainable parameters of the model, represents Bt the set of samples 

participating in the update α(n) at time, t  is the attention weight coefficient corresponding to the 

sample n  in its sequence, l(⋅,⋅) is the loss function at the sample level, λ≥0λ≥0  is the temporal 

smoothing regularization coefficient, and θt-1 is the last parameter snapshot. The parameters based on 

this loss are iteratively updated in the gradient direction, and the update rule is: 

θt=θt-1-η∇θLt(θ).         (11) 

In Eq (11), η>0η>0 represents the learning rate. The attention weights redistribute the importance 

of moments within the sample in the loss, and the temporal smoothing term constrains parameter 

changes, thereby balancing responsiveness and stability when tracking behavioral distribution drift. 

The interpretability of TAM is reflected in the weight distribution, which not only reflects the relative 

contribution of different behavioral moments to the predicted target but also provides weight feedback 

to the subsequent strategy layer to support personalized marketing strategy adjustments, as shown in 

Figure 1. 

 

Figure 1. TAM weight distribution. 
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3.4. Dynamic update and prediction output 

This section describes the implementation details of the model's parameter dynamic update 

strategy and prediction output mechanism, focusing on the aggregation method of temporal attention 

weights, prediction operator design, loss definition and online/batch parameter update rules, as well as 

parameter smoothing constraints introduced to prevent historical knowledge from being forgotten. 

Temporal attention   ht  calculates time step scores on the temporal encoder output sequence. The 

scores use a trainable feedforward mapping and are normalized by a nonlinear transformation. Let the 

score be et, which is defined as: 

et=u⊤tanh(Waht+ba).         (12) 

In Eq (12), 𝑒𝑡  denotes the raw attention score for time step 𝑡 . 𝑊𝑎 ∈ ℝ𝑑𝑎×𝑑ℎ  and 𝑏𝑎 ∈ ℝ𝑑𝑎 

represent the trainable weight matrix and bias vector of the attention layer, where 𝑢 ∈ ℝ𝑑𝑎 is the score 

mapping vector. Additionally, 𝑑ℎ corresponds to the hidden dimension of the GRU encoder, whereas 

𝑑𝑎 denotes the dimensionality of the attention space. 

αt=
exp (et)

∑  T
j=1 exp(ej)

.         (13) 

The denominator in T in Eq (13) is the exponential sum of the sequence length, which is used to 

ensure ∑  T
t=1 αt=1 that the weight has a probabilistic interpretation. The aggregate representation is 

obtained by weighted summation of the time series representation based on the normalized weight h
~

: 

h
~

= ∑  T
t=1 αtht

.          (14) 

In Eq (14), h
~

 ∈ Rdh  is the final sequence representation after integrating temporal attention, 

which serves as the input of the prediction layer. 

The prediction layer uses a fully connected mapping to output the behavior probability 

distribution y
^
, and the classification case uses a linear mapping with a normalization function: 

y
^
=softmax(Woh

~

+bo).         (15) 

In Eq (15), y
^
 ∈ RC  represents C  the predicted probability distribution of class behavior, 

Wo ∈ RC×dh and bo ∈ RC is the output layer parameter. The regression or single target probability 

scoring case will softmax be replaced by σ or identity mapping, but the output still comes from the 

same weighted representation h
~ 

. 

The training loss is defined between the supervision signal y and the prediction y
^
, and the cross 

entropy loss is used to evaluate the classification error: 
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Lt=- ∑  C
c=1 y

t,c
logy

^

t,c
+λR(Θ).        (16) 

In Eq (16), Lt is the loss scalar y
t,c

 at the time instant , tis the true category indicator, y
^

t,c
 is 

the predicted probability Θ representing the set of all trainable parameters of the model, R(Θ) is the 

regularization term used to constrain the parameter norm, λ and is the regularization coefficient. The 

model uses this loss as the optimization target to update parameters on batch or streaming data. 

An adaptive optimizer based on first-order and second-order moment estimation to balance 

convergence speed and stability. The update rule is as follows (taking Adam as an example): 

mt =β
1
mt-1+(1-β

1
)g

t
,

vt =β
2
vt-1+(1-β

2
)g

t
2,

m
^

t =
mt

1-β1
t ,v

^

t=
vt

1-β2
t ,

θt+1 =θt-α
m
^

t

√v
^

t+ϵ

.

        (17) 

In Eq (17), θt represents the value of the parameter vector at the current update step, 

g
t
=∇θLt represents the current gradient, mt,vt is the first-order and second-order moment estimate , 

β
1
,β

2
  is the momentum decay hyperparameter, α  is the learning rate, ϵ  is the numerical stability 

term, and symbolic operations and vector dimensions are defined according to the parameter vector. 

To maintain the model's robustness to behavioral distribution drift and suppress the rapid forgetting of 

historical information, a parameter sliding average is used as the long-term steady-state parameter 

representation: 

θt=ρθt-1+(1-ρ)θt.         (18) 

In Eq (18), θt is the sliding average parameter, ρ and is the smoothing coefficient. The initial 

value θ0 can be set to random initialization or pre-trained parameters. The sliding average parameter 

is used as a model deployment parameter during the online prediction phase to improve stability. 

During the training phase, the real-time parameter is used to respond to new information. Both are 

compared in parallel during the evaluation phase to measure the trade-off between dynamic 

adaptability and stability. 

The online update mechanism is executed in a streaming scenario based on preset trigger 

conditions. The trigger conditions are determined by the sample size and loss growth rate within the 

time window. When triggered, a small batch gradient update is applied to the new sample and the 

sliding average parameters are updated at the same time. If batch training is used, the same 

optimization and parameter smoothing process is performed after each round of iteration. The output 

end sorts the predicted probabilities in descending order and makes them available to downstream 

recommendation and marketing decision modules. The probability threshold and ranking strategy are 



3231 

AIMS Mathematics  Volume x, Issue x, 1–X Page. 

automatically selected based on the business indicators on the validation set to ensure accurate 

targeting and frequency control of marketing delivery. The entire dynamic update and prediction output 

process forms a closed loop in the system-level view. Weight allocation, aggregate representation, loss 

feedback, and parameter smoothing constitute the core links of continuous adaptation, as shown in 

Figure 2. 

 

Figure 2. Dynamic update and prediction output flow chart. 

4. Experimental design and implementation 

4.1. Dataset and experimental environment 

During the experimental design phase, the raw customer interaction data needs to be rationally 

partitioned to ensure sufficient sample coverage during training, while retaining some data for testing 

the model's generalization performance. The dataset was split chronologically by time stamp into 

periods T1 to T5, with no random shuffling. A rolling-window evaluation protocol was adopted: for 

each period Ti, training used data from Ti-1 and earlier, while validation and testing used data from Ti. 

Feature computations (e.g., windowed aggregates) were strictly based on historical data up to the 

prediction time to avoid future information leakage. Results in Section 5 are reported under this 

protocol. To avoid overfitting and improve the effectiveness of parameter adjustment, the research 

divided the dataset into training, validation, and test sets based on different functions. Additionally, 

subsets of behavioral logs and transaction records were constructed to support analysis of temporal 

characteristics and consumer habits, ensuring the scientific and complete evaluation of the model under 

multi -dimensional conditions. Table 4 shows the data partitioning. 
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Table 4. Dataset division table. 

Dataset type Sample size Proportion Feature description 

Training set 48,000 60% Covers main behavior features 

Validation set 12,000 15% Used for hyperparameter tuning 

Test set 20,000 25% Evaluates generalization performance 

Behavior log subset 15,000 - Contains click, browse, add-to-cart 

Transaction subset 10,000 - For purchase and repurchase analysis 

In terms of data distribution, the training set consists of 48,000 records, accounting for 60% of 

the total data. This is primarily because the model's sequence modeling requires a large number of 

samples to support parameter learning. The validation set consists of 12,000 records, representing 15% 

of the total data. This proportion is determined to ensure model stability during hyperparameter tuning 

and to avoid bias caused by too few samples. The test set consists of 20,000 records, representing 25% 

of the total data. This large data size allows for evaluation of generalization capabilities in real-

world application scenarios and ensures more representative results. The behavioral log subset 

consists of 15,000 records. This high number stems from the fact that customer browsing and clicking 

data are much more frequently generated than transaction records. The transaction record subset 

consists of only 10,000 records because actual purchasing behavior in e-commerce scenarios is much 

more sparse than browsing behavior. This overall distribution ensures sufficient training, stable 

validation, and reliable testing. 

4.2. Parameter setting and training strategy 

In the experimental design, to ensure the stability and repeatability of the proposed model during 

training, a parameter system covering network structure configuration, training strategy, and 

regularization measures was constructed. The network structure component focuses on expressing 

sequence modeling capabilities, the training strategy component defines the optimization path and 

iteration method, and the regularization component is used to mitigate the risk of overfitting. The 

overall parameter configuration directly affects the model 's performance under high-dimensional 

behavioral data, so it is systematically organized as shown in Table 5. 

Table 5. Experimental parameter configuration table. 

Category Parameter Value Description 

Structure Hidden Size 128 GRU hidden state dimension 

Structure Time Steps 30 Max input sequence length 

Training Batch Size 64 Samples per batch 

Training Learning Rate 0.001 Initial rate for Adam 

Training Optimizer Adam Adaptive optimization 

Training Epochs 100 Max training iterations 

Regularization Dropout 0.3 Drop ratio to reduce overfitting 

Regularization L2 Penalty 1e-5 L2 regularization strength 
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This table summarizes the experimental parameters from three perspectives. The network 

structure configuration shows the hidden layer dimensions and time step length, demonstrating the 

model's ability to model the sequential dependencies between customer behaviors. The training 

strategy section displays the batch size, learning rate, optimizer type, and number of iterations; these 

factors determine the model's convergence speed and training efficiency. Regularization measures, 

including the dropout ratio and L2 regularization coefficient, are used to reduce instability caused by 

model complexity. Through the rational coordination of multiple parameter types, the experimental 

training process achieved consistency in both structure and strategy. 

All baseline models and the proposed method used identical input features, preprocessing, 

sequence length (30), and padding rules. Hyperparameter search included learning rate [0.001, 0.01], 

hidden size [64, 128], and dropout [0.2, 0.5], with 50 trials per model using Bayesian optimization. 

Early stopping was based on validation loss with a patience of 10 epochs. Results report mean and 

standard error over 5 runs with fixed random seeds. Training used a single NVIDIA Tesla V100 GPU, 

with comparable time (2–4 hours per model) across methods. 

5. Results analysis 

5.1. Analysis of customer demand forecast accuracy 

During the experiment, the research focused on customer demand forecasting. Four models were 

compared and analyzed: collaborative filtering, matrix factorization, GRU, and GRU+TAM (a 

temporal attention mechanism) to comprehensively evaluate their performance in the forecasting task. 

The experiment measured performance across multiple dimensions, examining not only static metrics 

such as accuracy, precision, recall, and F1 score, but also plotting receiver operating characteristic 

(ROC) curves to assess the classification capabilities of different models. Training convergence curves 

were used to examine the convergence speed and stability during the iterative process. The results, 

obtained after systematic data modeling and visualization, are shown in Figure 3. 

 

Figure 3. Multi-dimensional comparative analysis of customer demand forecasts. (a) 

Comparison of prediction indicators. (b) ROC curve comparison. (c) Training convergence 

curve. 

The results show that GRU+TAM achieves the highest performance across all four core metrics, 
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with accuracy of 0.924, precision of 0.917, recall of 0.910, and F1 score of 0.914. This result is closely 

related to TAM's weighting mechanism for key behavioral time steps, as this mechanism enhances the 

utilization of key features that influence prediction, while GRU, which relies solely on time series 

modeling, has limitations in weight allocation. The ROC curve further shows that GRU+TAM 

maintains a lead in AUC, achieving a TPR of 0.88 at an FPR of 0.2, compared to 0.82 for GRU. This 

difference stems from the attention mechanism, which enables the model to capture more true positive 

examples while maintaining a low false positive rate. The training convergence curve reflects the stability 

of different models during the iteration process. The loss of GRU+TAM drops to 0.25 at the 30th epoch, 

lower than the 0.30 of GRU and the 0.42 of MF. This is primarily due to the attention mechanism 

optimizing the efficiency of sequence modeling during gradient propagation. Overall, the introduction 

of TAM significantly improves the model's advantages in prediction accuracy and training efficiency. 

5.2. Analysis of recommendation click-through rate performance 

In the experimental design for recommendation click-through rate, this part of the work verified 

the model's applicability in complex interactive scenarios by comparing various modeling methods in 

terms of overall performance, user grouping, and recommendation placement. Click-through rate is 

defined as the ratio of clicked items to total recommended items in an offline evaluation, computed as 

the hit rate on held-out test data. Click-through rate lift measures the relative improvement in click-

through rate over a baseline model. These metrics are derived from the same classification task as 

accuracy and F1-score, where the label space includes user click actions on items. The prediction task 

is binary classification of click events, and all metrics are computed offline without online exposure. 

The experiment first examined the performance of different recommendation algorithms in terms of 

overall click-through rate. It also introduced user activity grouping to analyze the model's adaptability 

to different usage habits. It further compared the click-through rate distribution of each method at 

different recommendation list positions, comprehensively demonstrating the differences in 

recommendation effectiveness across multiple dimensions. The experimental results are shown in 

Figure 4. 

 

Figure 4. Comparison of recommended click-through rate performance. (a) Overall click-

through rate comparison of models. (b) Click-through rates at different user activity levels. 

(c) Click-through rates of different recommendation positions. 
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The results show that the GRU+TAM approach achieved an overall click-through rate of 87.1%, 

significantly outperforming collaborative filtering's 71.5% and matrix factorization's 74.3%. This is 

due to the introduction of the temporal attention mechanism, which allows the model to better capture 

key behaviors. In user segmentation experiments, highly active users generally achieved higher click-

through rates than less active users. For example, with GRU+TAM, the click-through rate for the 

highly active group reached 90.2%, while that for the less active group was only 78.9%. This is because 

high-frequency interactions provide the model with richer temporal features, enhancing its ability to 

discern preferences. In the recommendation position experiment, the click-through rate for the top-1 

recommendation was 54.9% with GRU+TAM, gradually increasing to 87.1% for the top-10 

recommendation. However, the collaborative filtering approach achieved a mere 38.6% click-through 

rate for the top-1 recommendation. This difference is due to the sequential modeling approach more 

accurately capturing the user's immediate needs in the top recommendations, thereby increasing the 

relevance of the top recommendations. Overall, the results demonstrate that the combination of 

temporal modeling and the attention mechanism improves the performance of recommendation 

systems across multiple dimensions. 

5.3. Model dynamic adaptability analysis 

In a dynamic e-commerce environment, customer behavior distribution exhibits phased variations 

over time. If modeling methods fail to respond to temporal evolution, predictive performance will 

gradually decline. To validate the proposed method's adaptability across different business phases, this 

study compared the performance of a static model with that of a dynamic neural network across five 

key time periods. Stability and generalizability were analyzed by combining error distribution with 

user group segmentation. These time periods were the initial launch of the system (T1), the user 

expansion phase in the third month (T2), the peak promotional activity phase in the sixth month (T3), 

the market stabilization phase in the ninth month (T4), and the end of the year in the twelfth month (T5). 

The experimental process covered three perspectives: overall accuracy, error fluctuation, and group 

differences. The results are shown in Figure 5. 

 

Figure 5. Comprehensive results of model dynamic adaptability. (a) Accuracy trends 

across different business stages. (b) Time evolution of prediction error distribution. (c) 

Prediction accuracy of user groups in different time periods. 

As shown in Figure 5(a), the static model achieved an accuracy of 91.5% at the beginning of the 
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system's launch, but by the end of the year, it had dropped to 80.1%, a decrease of 11.4 percentage 

points. This indicates that its performance degraded significantly under changing temporal 

distributions. The dynamic model maintained an accuracy range of 92.4% to 90.9% across the five 

phases, fluctuating by only 1.5 percentage points. This difference stems from the dynamic update 

mechanism continuously capturing new behavioral patterns during parameter iteration, thus preventing 

performance degradation over time. Figure 5(b) further shows that the mean MSE distribution of the 

static model at the end of the year was 0.184, a significant increase from 0.094 at the beginning of the 

system's launch, and the variance increased, indicating that the uncertainty of the prediction results 

increased with changes in the data distribution. The dynamic model achieved an MSE mean of 0.097 

at the end of the year, only increasing by 0.015 from the beginning, maintaining a relatively stable 

error range. This is due to the temporal attention mechanism effectively filtering key behavioral 

features and suppressing the noise accumulation effect. Figure 5(c) shows the results for different user 

groups. For new users, the accuracy of the static model dropped from 90.2% at the beginning of the 

launch to 75.3% at the end of the year, while the accuracy of the dynamic model remained stable 

between 91.4% and 90.2% during the same period. A similar trend was observed for the established 

user group. This indicates that static modeling methods struggle to adapt to groups with rapidly 

changing behavior patterns, while the key reason dynamic methods maintain stable output is their more 

flexible weighting mechanism for short-term behavioral features. In summary, the dynamic neural 

network combined with the temporal attention mechanism demonstrates strong adaptability and 

robustness across different business phases. 

5.4. Feature importance and attention weight analysis 

In this experiment, we modeled the dynamic characteristics of customer behavior sequences, 

focusing on the distribution of attention across different types of interactions over time. By 

constructing a temporal attention mechanism model, we first weighted the continuous interaction 

sequence to reveal the varying importance of each behavior to the prediction results over different time 

periods. We then calculated the global average attention value for each feature to measure its long-

term contribution. Finally, we aggregated the data across the stage dimension to compare feature 

importance across different time intervals. This process yielded the visualization shown in Figure 6. 

 

Figure 6. Attention weight analysis of customer behavior characteristics. (a) Time 

attention weight distribution. (b) Average attention weight of each feature. (c) Attention 

weights across different time periods. 
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The results show that the average attention value for purchase is 0.18, substantially higher than 

the 0.07 assigned to click ads. This discrepancy reflects the stronger direct relevance of purchase 

behavior to the prediction target, whereas ad clicks exhibit greater randomness, resulting in lower 

attention weighting. The attention weight for product view reaches 0.20 in the early stages but declines 

to 0.08 later, indicating that browsing behavior is highly informative at the initial stages of the 

consumer journey but is gradually overshadowed by conversion-oriented actions. The weight for add 

to cart peaks at 0.25 in the middle stages, underscoring the role of carting behavior as a key signal of 

preference conversion. Meanwhile, search receives a weight of 0.18 early on but decreases to 0.05, 

consistent with search behavior serving as an exploratory action that becomes less informative at later 

stages. These differentiated patterns demonstrate the sensitivity of the temporal attention mechanism 

in capturing evolving customer behavior dynamics. 

5.5. Stability and generalization analysis 

This section evaluates the model’s stability and generalization ability from multiple perspectives. 

By comparing datasets from different e-commerce platforms, we assess the consistency of model 

performance across scenarios. Experiments conducted over multiple time periods examine month-to-

month fluctuations in prediction accuracy. Segmenting users into new and active groups further reveals 

how different interaction patterns influence prediction performance. Finally, key metrics—accuracy, 

click-through rate improvement, recall, and F1-score—are jointly analyzed through a performance 

matrix to provide a comprehensive evaluation across dimensions. These results are summarized in 

Figure 7, Model Stability and Generalization Performance Comparison. 

The results show that the accuracy of different data sets ranged from 91.5 to 92.4, and the click-

through rate improvement ranged from 86.5 to 87.3. The main reason for the differences is the different 

user behavior characteristics and interaction frequencies of each platform, but the model structure's 

capture of sequential information reduces the instability caused by such differences. In cross-time 

period experiments, the accuracy remained between 91.8 and 92.2, and the click-through rate 

improvement ranged from 86.9 to 87.2. The slight fluctuations were caused by changes in seasonal 

user activity. In user group experiments, the accuracy of new users was concentrated at 91.0, while 

that of active users was around 93.0. This difference is due to the longer interaction sequences of active 

users, which provide more complete temporal characteristics. The comprehensive heat map shows that 

the F1-score remains stable between 91.3 and 92.0, reflecting the high reliability of the model in 

different scenarios and evaluation dimensions. 
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Figure 7. Model stability and generalization results. (a) Performance on different datasets. 

(b) Time series stability. (c) User group distribution. (d) Comprehensive performance 

across multiple indicators. 

6. Conclusions 

This study tackled dynamic modeling of e-commerce customer behavior by proposing a 

dynamics-aware neural architecture that couples a gated recurrent unit (GRU) temporal encoder with 

a temporal attention mechanism (TAM) and employs dynamic parameter updating. Multi-source, high-

dimensional interaction streams are first embedded to obtain compact representations; the GRU then 

captures long- and short-term dependencies, while TAM assigns time-step-specific weights that 

highlight behaviorally salient windows and features. Empirically, the framework achieves an accuracy 

of 0.924, a recall of 0.910, and an F1-score of 0.914 on customer-demand forecasting, outperforming 

collaborative filtering and matrix-factorization baselines. In recommendation evaluation, the overall 

click-through rate (CTR) reaches 87.1% versus ~70% for the baseline, indicating stronger relevance. 

Under dynamic adaptability tests across annual business stages, accuracy remains within 92.4%–90.9%, 

whereas a static comparator degrades by more than 11 percentage points, evidencing robustness to 

distributional shifts. Attention analyses further reveal that purchase and add-to-cart signals are dominant 

drivers of preference conversion. The proposed method improves prediction accuracy, recommendation 
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effectiveness, and temporal stability, supporting personalized marketing in evolving user environments. 

Study limitations: This study has several limitations. The dataset is from a single e-commerce 

platform, which may limit generalizability to other domains. Although we adopted a time-based 

evaluation protocol, offline CTR metrics may not fully reflect online performance. The reproducibility 

is constrained by the use of proprietary data, though aggregate statistics are provided. External factors 

such as promotions were not explicitly controlled. 

Future work: Future research will include validation across diverse domains and platforms, 

integration of causal modeling to isolate preference shifts, and development of uncertainty estimation 

methods for risk-aware decision making. Continual and meta-learning approaches will be explored for 

faster adaptation, alongside multimodal data fusion and reinforcement learning for real-time interventions. 
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