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Abstract: The fifth-order dispersion nonlinear wave (1+1)-dimensional Caudrey—Dodd-Gibbon
equation is a classic model describing soliton phenomena in fields such as plasma magnetosonic waves
and optical fiber light pulses, and its exact solution is of great importance for revealing the laws of
nonlinear wave motion. In this paper, an integrated framework combining bilinear polynomial feature
enhancement, symbolic computation constraints, and neural network learning is proposed. Bilinear
polynomial features such as x?, 12, and xt are introduced to break through the input limitation of original
variables, broaden the boundary of the model in capturing nonlinear interactions between variables,
and reduce errors caused by insufficient feature information. Symbolic computation is applied to the
bilinear transformation derivation and conservation law analysis of the (1+1)-dimensional Caudrey—
Dodd-Gibbon Equation to provide mathematical structure constraints for the neural network, and
a collaborative mechanism of “symbolic reasoning guiding numerical learning” is constructed to
improve the interpretability of the model. This framework breaks down the barriers between traditional
numerical and pure neural network methods, realizes efficient and accurate solution of the (1+1)-
dimensional Caudrey—Dodd—Gibbon equation, and provides a new path for the study of exact solutions
of high-dimensional, variable-coefficient, and strongly nonlinear partial differential equations.
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1. Introduction

Nonlinear partial differential equations (NLPDESs) are core tools. They describe complex dynamic
phenomena in fields such as fluid mechanics, plasma physics, and nonlinear optics. Their exact
solutions are of great significance for revealing physical essence. In recent years, physics-informed
neural networks (PINNSs) have attracted much attention. This method uses the powerful approximation
ability of neural networks. It can find approximate solutions of any NLPDEs. However, for
complex NLPDEs, their accuracy is usually not satisfactory. The trial function method is a common
symbolic computation method. It is used to find exact solutions of NLPDEs. Traditional solution
methods (such as the Hirota bilinear method and the Bell polynomial method) can obtain some
analytical solutions, but their adaptability to high-dimensional, variable-coefficient, and strongly
nonlinear equations is limited. It is difficult to obtain exact analytical solutions for most. Traditional
numerical methods (the finite difference method, the finite element method, etc.) rely on the
discretization of the computational domain. In recent years, scholars have been continuously exploring
state-of-the-art analytical and computational methods for solving nonlinear wave equations, and certain
progress has been achieved [1-3]. With the integration of neural network and symbolic computation
technology, bilinear neural network methods (BNNM) have emerged. These methods construct
neural network models with bilinear operators. They integrate symbolic computation tools such as
Mathematica and Maple. Thus, efficient solution to find exact solutions for complex NLPDEs. They
show significant advantages over other methods, especially in the construction of solutions to (3+1)-
dimensional equations and variable-coefficient equations.

Zhang et al. [4] first applied BNNM to the (2+1)-dimensional Caudrey—Dodd—Gibbon—Kotera—
Sawada-like (CDGKSL) equation . They by constructing a “3-2-2” network model. Activation
functions such as @(&)) = &, Oy(&) = exp(&,), were selected. Maple was used to collect
coeflicients and solve equations. Generalized and classical lump solutions were obtained, and zero-
error was verified. This breakthrough overcame the limitation that traditional neural networks could
only solve approximate solutions. Gai et al. [5] further expanded the network structure. Five types
of multilayer models were designed for the (3+1)-dimensional generalized breaking soliton system. 4-
2-2-1 and 4-2-3-1 models were also constructed. Multimorphological rogue wave solutions were
obtained. To meet the solution needs of multivariable and variable-coefficient NLPDEs, Liu et al. [6]
proposed a multivariable bilinear neural network method. Hidden layer neurons were defined as
multivariable functions, such as Fy(£1,&) = & + &. Four types of models were constructed to solve
the (24 1)-dimensional fourth-order nonlinear wave equation. Lump solutions, periodic wave solutions,
and so forth, were obtained. Liu et al. [7] also proposed a variable-coefficient bilinear residual network
method. Weights were set as time functions to adapt to variable coefficients S;(f). A new paradigm
was provided for solving equations in inhomogeneous media. Symbolic computation is the core
support of this method system. A Maple toolbox developed by Hao et al. realized the automation
of bilinear equation coeflicient collection, equation system solution, and solution verification [8].
The research on integrability and exact solutions of the Caudrey—Dodd—Gibbon (CDG) equation is
a hot direction in the field of nonlinear science. Through Painlevé analysis and the Hirota bilinear
method, scholars first verified the integrability of the CDG equation. This laid a foundation for the
subsequent construction of exact solutions [9]. Kumar successfully constructed multisoliton solutions
of the CDG equation based on the simplified Hirota technique. Through phase shift analysis, they
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found elastic collision characteristics between solitons. After collision, the wave form and amplitude
remain unchanged [10]. The analytical method is employed to investigate approximate solutions of
the fractional nonlinear CDG equation, enabling the acquisition of approximate solutions without
linearization [11]. Deng et al. [12] investigated the 2+41-dimensional generalized CDGKS equation
in fluid mechanics. By virtue of the Pfaffian technique and specific constraints imposed on the real
constant g, they derived the nth-order Pfaffian solutions, from which the single-soliton and double-
soliton solutions were further obtained. Some breather wave solutions and lump solutions of the CDG
equation are obtained via the Hirota bilinear method with the assistance of the symbolic computation
software Mathematica [13]. Khater et al. [14] derived the solutions to the CDG equation through the
rigorous implementation of the Khater-1I(KII ) and variational iteration (VI) methodS. The research
findings reveal new characteristics of the equation’s behavior, providing deeper insights into nonlinear
wave phenomena. Yokus conducted a comparative study on the (G’/G, 1/G)-expansion method and
the (1/G")-expansion method for solving the CDG equation [15]. The modified simple equation
method is a powerful and efficient approach, suitable for investigating the traveling wave solutions of
nonlinear equations in the fields of applied mathematics, science, and engineering. Hossain et al. [16]
applied the aforementioned method to study the CDG equation and obtained its exact solutions as well
as those for traveling wave solutions. Ma et al. [17] studied the extended CDG equation. Soliton
molecules of the extended CDG equation can be generated by utilizing the N-soliton solutions and
a new velocity resonance condition. Sahinkaya obtained analytical results for the g-fractional CDG
equation, which is utilized to solve complex problems in hydrodynamics, chemical kinetics, plasma
physics, quantum field theory, crystal dislocations, and nonlinear optics via auxiliary methods [18].
Abdelhafeez proposed the Laplace residual power series method for solving the fractional CDG
equation [19].

In interdisciplinary applications, Fathima D. emphasized that this model can elaborate on the
propagation characteristics of magnetoacoustic waves, shallow water waves, and gravity-capillary
waves in plasmas, and verified the influence of the fractional order on the physical behaviors of the
solutions through simulations, thereby providing a theoretical basis for the physical applications of
the solutions to the fractional CDG equation [20]. Ding et al. [21] utilized the equivalent moving
frame method proposed by Olver, to obtain the differential invariants of the CDG equation and the
coupled Korteweg—de Vries—modified Korteweg—de Vries (KdV-mKdV) equation, and further derived
the algebra of differential invariants. Furthermore, the mathematical connection between the CDG
equation and the Sawada—Kotera (SK) equation indicates that these models can uniformly describe
nonlinear wave phenomena in plasma physics and fluid mechanics, thereby providing a theoretical
bridge for interdisciplinary research [22]. In recent years, significant progress has been made in
partial differential equation (PDE) solution methods based on neural networks. The PINNs method
proposed by Raissi et al. integrates the PDE governing equation and boundary conditions into the loss
function, to find meshless PDE solutions. It has been widely used in fields such as fluid mechanics and
quantum mechanics [23]. Subsequently, Wang et al. [24] proposed the residual adaptive PirateNets
architecture to stabilize deep PINN training, effectively resolving the poor derivative performance
and unstable loss optimization issues observed in traditional deep networks during initialization. In
terms of the integration of symbolic computation and neural networks, some studies have tried to use
symbolic computation to generate initial parameters of neural networks. The convergence speed of
the model was improved [25], but a unified framework combining feature enhancement and symbolic

AIMS Mathematics Volume 11, Issue 2, 3193-3218.



3196

computation has not yet been formed. Breakthroughs in deep learning technology have provided a new
mesh-independent path for PDE solutions. Among them, PINNs integrate PDE constraints into the
loss function. The combination of data-driven and physical laws is realized [26-28]. However, most
existing neural network methods directly use original spatial variable x and time variable ¢ as input
features, which are difficult to capture complex nonlinear interaction relationships between variables.
As a result, the learning ability of the model for PDE solution structures is limited [29-31].

In summary, existing methods for solving the CDG equation and similar higher-order NLPDEs can
be categorized into two main classes. Analytical methods [32—-34] are capable of generating exact
solutions but are strictly limited to integrable, low-dimensional, and constant-coefficient equations.
Neural network-based methods [35-37] offer greater flexibility and are applicable to a wider range
of PDEs. However, they typically use raw variables directly as inputs, which limits their ability
to capture the complex nonlinear interactions inherent in higher-order NLPDEs such as the CDG
equation, thereby restricting our understanding of many physical phenomena. Therefore, bridging
these gaps is crucial for both theoretical and applied research.

The proposed bilinear feature-enhanced symbolic computation neural network (BFESCNN) method
improves model interpretability and accuracy through a fusion framework of bilinear polynomial
feature enhancement, symbolic computation constraints. and neural network learning. By introducing
bilinear polynomial features x?, 2, xt as input enhancements, we break the limitations of original
variable inputs, effectively capture nonlinear interactions between variables, and reduce errors caused
by insufficient feature information. Simultaneously, symbolic computation is applied to processes
such as bilinear transformation derivation and conservation law analysis, providing mathematical
structural constraints for the neural network. This approach constructs a collaborative mechanism of
symbolic reasoning to guide numerical learning, fundamentally alleviating the ‘black-box’ problem
of traditional neural networks. Furthermore, a synergistic mechanism which integrates analytical
and numerical methods is established which clearly distinguishes between analytical deduction
steps (manual mathematical reasoning) and symbolic execution steps (automated computation via
Maple/Mathematica). This approach not only preserves the mathematical rigor of analytical methods
but also leverages the efficient solving capability of neural networks, achieving a balance between
solution accuracy and computational efficiency. In this study, a BFESCNN model suitable for the
fifth-order dispersive nonlinear wave (1+1)-dimensional CDG equation [38—40]

Uy + Ureex + 30Uyex + 30Uyt + 18001, = 0 (1.1)

is constructed. Through the polynomial feature enhancement strategy, the learning ability of the
neural network for nonlinear relationships between variables is improved. Efficient prediction of
the exact solution of the equation is realized, and the symbolic computation module is integrated.
Automatic analysis of the mathematical structure of the (1+1)-dimensional CDG equation and
constraint embedding are included. The interpretability and generalization ability of the model are
enhanced. A general framework is provided for solving other nonlinear PDEs. The advantages of
the BFESCNN method in solution accuracy, stability, and computational efficiency are verified through
numerical experiments. Its application potential in fields such as plasma physics and optical fiber
communication is also explored.
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2. BFESCNN framework

The BFESCNN model is shown in Figure 1. First, the bilinear form of the original equation
was obtained through bilinear transformation. Then, the expression of the bilinear function f was
constructed using the feature-enhanced symbolic computation neural network model. Next, the
expression f was substituted into the bilinear equation. A complex algebraic polynomial was obtained.
By collecting the coefficients of x, y, ..., an algebraic equation system regarding weights w and b was
obtained. Finally, the algebraic equation system was solved. The coefficient solutions were obtained
and substituted into its bilinear transformation u. The exact analytical solution of the nonlinear partial
differential equation was thus obtained.

To convert the (1+1)-dimensional CDG equation into its bilinear form via the Hirota bilinear
transformation, let

u(x,t) = 2(In f),,, 2.1

where f = f(x,1) denotes the transformation function, implying (In f),, = 5. We utilize the Hirota
bilinear operator defined as

o ~ m n [m\(n am—k an—l ak al
DiD.f -8 = ZZ(_D (k)(l)azm—k o) ok ox®

k=0 [=0

to reorganize the equation term by term. For the space-time mixed term u,, it corresponds to the bilinear
operator D,D,. When g = f, this operator expands as D,D,f - f = f.f. — f./:; for the sixth-order spatial
term iy, ryr, 1t 1s associated with the bilinear operator Dg, which expands to fif — Ofvanfc +

15fxxxxfxx - 10 xzxx‘
Consequently, the Hirota bilinear form of the fifth-order dispersive nonlinear (1+1)-
dimensional CDG equation is given by

(DD, +DS) f- £ =0,
which explicitly expands to
fiffe = fuf# Fowennf = O fexwefe + 15 fonnfir = 10f5, = 0. (2.2)
The tensor network model is shown in Figure 1.
f=uw,®,&,) & =w,, P & )+b,i=12,---,n; (2.3)

in w;j, the weight coeflicient of neurons from i to j was denoted as w. @ was the activation
function. If the last hidden layer satisfied the condition @, (£) > 0, the model could be extended

to any function. [, = {m,_; + 1,m,_y + 2,...,n} represented the nth layer space of the feature-
enhanced symbolic computation neural network in Figure 1. Iy = {x;,x2,...,x,}, [1 = {1,2,...,my},
L ={m_y+1,m_y +2,....m} (i =2,3,...,n— 1), and j was a constant. The main steps of the

feature-enhanced symbolic computation neural network model were as follows:

Step 1. The bilinear Eq (2.2) is derived by substituting the bilinear transformation Eq (2.1) into
Eq (1.1).

Step 2. Construct polynomial features based on variables and obtain Eq (2.3), then substitute Eq (2.3)
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into the bilinear Eq (2.2) to obtain a new set of equations.
Step 3. Gather the coefficients of each term in the system of equations obtained in the second step,
for instance,

Xy X X0, (= 1,2,...,0), F'(&), F"(€),..., (2.4)

set all the collected coefficients to zero, and a system of nonlinear algebraic equations is obtained.
Step 4. Solve the system of nonlinear algebraic equations obtained in the third step using Maple (or
Mathematica) software to get the coefficient solutions for “b” and “w”.

Step 5. Substitute the solution obtained in the fourth step into the following linear
transformation equation:

u= 2[11’1 wli,jq)li(fl,-)]xx, é:li = wli—lsliq)li—l(fli—l) + b,’, i = 1, 2, R (N (25)

From the above steps, the exact analytical solutions of the nonlinear partial differential Eq (1.1) can
be obtained.

Uy, Uy Uy Usy, Uy Uy - - - \ This step requires manual
derivation, and it can be
ﬂ Hirota bilinear transformation omitted for high-
—

LDE(f, £, /i f Sy S - 970 (1)

coefficient cases.
introducing bilinear polynomial features,
construct a trial function and substitute it into (1)

P(x, y, ... .t, w;;,b)
(=x, ...t 1,2,...n; j=1,2,...,n)

ﬂ coeffs(P,{x,y,... xp,pt,xt,...})

€q(w,b)
eqa(w,b)
<|i eqn'('v;/,b)

1| solve(teq,0wib),...eq, 0053

Symbolic execution
steps: Modular Design
with Feature
Enhancement and
Symbolic Constraints

[ solutions ]

ﬂ subs(solutions[n], f)

\E f*

ﬂ [ * substitute into the bilinear transformation

\ ’
N u ] /A
<

Figure 1. BFESCNN model.

The advantages of the bilinear feature-enhanced symbolic computation neural network are
as follows:

It breaks through the limitation of traditional original variable input;

it expands the model’s boundary for capturing nonlinear relationships;

it reduces solution errors caused by insufficient feature information;

it enables the construction of exact analytical solutions for nonlinear partial differential equations.

Sl

Comparison with traditional neural network methods or symbolic methods is shown in Tables 1
and 2.
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Table 1. Core differences between BFESCNN and classical related methods.

Comparison BFESCNN BNNM Hirota bilinear method Jacobi elliptic function

dimension expansion method

Core objective and Aims to obtain exact Focuses on improving Derives multitype exact Constructs

output result analytical solutions; numerical fitting solutions (solitons, periodic/quasiperiodic
outputs explicit accuracy; only outputs breathers, lumps) wave solutions; outputs
mathematical expressions discrete numerical for integrable PDEs; explicit expressions

Core idea

Advantages

Function and
position of neural

network

Data dependence

(e.g., soliton solutions)
with interpretable

physical meanings

Bilinear transformation

with  feature-enhanced
symbolic  computation
and neural network (e.g.,

X2, 2xt)

BNNM:  Breaks

original variables’ input

VS

limit, broadens capturing
nonlinear  interactions,

reduces feature info

shortage errors

Learns the mapping of
“enhanced features
toward analytical
solutions™; compact
structure, output
analytical solution
forms

Low; no need for massive

training samples, only
a small number of
parameter samples to

verify mapping validity

results without explicit

expressions

Bilinear transformation

with symbolic
computation and neural

network

Exactness of analytical

solutions, mathematical
rigor
Performs nonlinear

numerical fitting; relies
labeled

data, only output discrete

on large-scale

values

High; requires large-scale
labeled data for fitting

outputs explicit symbolic

analytical expressions

Transform PDEs into
bilinear forms via
substitution; solve

with Hirota D-operator
(DYDif-f=0)
Direct solving method,

no complex transform,

applicable  to  high-
dimensional  integrable
PDEs

No neural network;
pure analytical symbolic
derivation

None; pure analytical

method with no data
required

based on Jacobi elliptic

functions (sn, cn, dn)

Expands solutions as
elliptic function series;
determines coefficients
by nonlinear dispersion

balance

Captures periodic wave
behaviors,  applicable
to non-integrable PDEs

with periodic solutions

No

pure analytical function

neural network;

expansion

None; pure analytical
method with no data
required

AIMS Mathematics
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Table 2. Core differences between BFESCNN and PINN series methods.

Comparison PINN (Original) Y-NN Mixed-training

dimension PINNs

Core objective and Aims to reduce numerical Balances analytical Enhances

output result training errors; outputs interpretability and generalization via
approximate numerical numerical accuracy; mixed data; outputs
solutions with physical outputs semianalytical improved approximate
constraints (non- solutions (symbolic numerical solutions
analytical form) framework and with better adaptability

Core idea

Advantages

Function and
position of neural

network

Data dependence

PDE

neural network

constraints  and

Data-efficient, physically

interpretable, mesh-free

Optimizes numerical

solutions; depends on
data iteration; requires

interpolation for physical

interpretation

High; requires sufficient
data for iterative
optimization; data

volume directly affects

accuracy

numerical correction)

Symbolic basis (bilinear

terms) and  neural
network residual
correction

Retains analytical

interpretability; handles
mild non-integrability

Learns residual errors
for semianalytical
correction; neural

network as a “corrector”

Low; symbolic basis

reduces data demand

with small datasets

Supervised and
unsupervised learning,
PDE

mitigates data scarcity

regularization

Reduces reliance
on labeled data;
better sparse data
performance

Optimizes dual
loss function;
neural network as

a regularized fitter

Moderate; mixed data
(labeled and unlabeled)
reduces reliance on

labeled samples

This method, as a model, contained only one hidden layer.

To illustrate, in a single-hidden-

layer feature-enhanced network, two specific functions were given. This single-hidden-layer feature-
enhanced network could cover the test functions constructed by the bilinear method, as shown in
Figure 2. Alternatively, in a double-hidden-layer feature-enhanced network, four specific functions

were given.

constructed by the bilinear method, as shown in Figure 3.

AIMS Mathematics

This double-hidden-layer feature-enhanced network could cover the test functions

Volume 11, Issue 2, 3193-3218.



3201

Figure 3. Double-hidden-layer feature-enhanced 2-5-2-2-1 neural network model.

3. Exact solution of the (1+1)-dimensional CDG equation solved by the BFESCNN method

The BFESCNN algorithm was applied. Specifically, the single-hidden-layer feature-enhanced 2-
5-2-1 neural network model and the double-hidden-layer feature-enhanced 2-5-2-2-1 neural
network model were used. Corresponding trial functions were selected respective to each case. The
exact solutions of the (1+1)-dimensional CDG equation were obtained. 3D graphs, density graphs,
curve graphs, and contour graphs of the solutions were plotted. The characteristics of the solutions
were analyzed.

3.1. Single-hidden-layer feature-enhanced 2-5-2-1 neural network model
3.1.1. Model 2-5-2-1 Case 1

The mathematical expression corresponding to the single-hidden-layer feature-enhanced 2-5-2-1
neural network model in Figure 4 was selected as the test function.
El=Wel X+ Wt Wy - XE+ W - X+ We - * + by,
Er =W X+ W t+Wyo  Xt+ Wy - 2+ Wy £+ by, (3.1
f=wip-& +wap- & +bs.
As shown in Figure 4, the activation functions ®(&;) = f DOy (&) = f% were set. Thus, the test

functions for the solution were obtained as follows:

2

f=wiy- (wx,l X AWt Wy XE+ W2 X+ We P bl)
, , ) (3.2)

+wo - (wx,z X AWt F Wy XE+ W X+ Wep o 17+ bz) + bs;
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among them, b; (i = 1,2,3), w;; (j = 1,2), and wy s (k = x, 1, xt, x>, 1*) were real numbers.

Figure 4. 2-5-2-1 neural network model with given activation functions ®(£;) = &2,

(&) = &.

The solution test function (3.2) was substituted into the bilinear Eq (2.2). A complex algebraic
equation was obtained. The coeflicients of each term were collected and set to 0. Then, the equation
could be satisfied. At this point, a system of algebraic equations was obtained and solved, yielding the
following results:

2
3 Wi2Wa, W Wi

Wag=—"—">5 W1 =7,
sz,l Wx2,2
2

Wy We2 | Waa Wi, (3.3)

Wil = —————— > Weg = ———> >

sz’z Wx2,2

b4 = Oa Wxt2 = 09 Wxt1 = 0.
Substitute (3.3) into the test function (3.2). Then, through the bilinear transformation (2.1), the explicit
solution of the (1+1)-dimensional CDG Eq (1.1) was obtained as follows:

8Wx2’1Wx2’2
u

(22w Wy + 2xWeowe + biwe,s + bawe )

2(4xwp Wy + 2Wx2,2Wx2,1)2 3.4

-
22w Wy + 2xweowe + biwes + bawe )

To verify the accuracy of Result (3.4), the analytical solution (3.4) was substituted into the left-hand
side (LHS) of Eq (1.1). With the aid of Maple software, the simplified result demonstrated that the LHS
of Eq (1.1) equals zero. This indicates that the analytical solution (3.4) is reliable, accurate, and error-
free. It also illustrates the advantage of this method: In comparison with classical neural network
methods, which only yield approximate solutions, the bilinear feature-enhanced symbolic computation
neural network algorithm enables the acquisition of exact analytical solutions. In solution (3.4),
Way, = Lwey = 2,0 = 1,w,p = 1,b, = 1 were set. The graph of the solution could then be
plotted (Figure 5).

Figure 5(a) displays the 3D graph when ¢t € (-30,30) and x € (-30,30). The “pleat
depth” and “asymmetric morphology” of the surface embody the nonlinear interaction in the (1+1)-
dimensional CDG equation, and the amplitude of the wave is nonuniformly distributed in space. The
difference between the low-value regions (deep pleats) and high-value regions (shallow pleats) reflects
the localization of energy.

AIMS Mathematics Volume 11, Issue 2, 3193-3218.
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Figure 5(b) is the contour graph of solution (3.4). The high-value regions (red-brown) and low-value
regions (blue-purple) are distributed in stripes along the x-axis, indicating that the amplitude of the
wave is periodically stratified in space. The contour lines (blue vertical lines) are arranged in parallel
and show no obvious bending or divergence as time ¢ elapses, verifying that the wave propagates in a
fixed direction with a stable shape, which is consistent with the propagation trend in the 3D graph.

Figure 5(c) is a density graph. A continuous color gradient (color bar on the right) is used to show
the distribution of u in the x-f plane, where purple represents low-value regions (sparse energy), and
colored stripes represent high-value regions (concentrated energy). The strong contrast between high-
brightness regions (red-yellow) and low-brightness regions (purple) in the stripes reflects the energy
concentration characteristic of the solution to the (1+1)-dimensional CDG equation, and energy is
mainly distributed in the colored stripes with extremely low energy in the background field.

Figure 5(d) is a curve graph of u versus x in the domain ¢ € (—60, 60). The horizontal axis is x,
the vertical axis is u, and multiple colored curves correspond to the distribution of u(x) at different
times ¢. The peak positions of curves at different ¢ shift along the x-axis, which is consistent with the
propagation direction in the 3D graph and the contour graph. Moreover, the depth and width of the
peaks are basically stable, verifying the time invariance of the solution.

(b) Contour graph.

T T
IV05 \"\72/ ’ \/‘A—_’
1 X
——f=—60 — t=—40 — t=-20
—— =40 —— =60

(c) Density graph. (d) Curve graph.
Figure 5. 3D graph, contour graph, density graph, and curve graph of the solution to Eq (3.4).

AIMS Mathematics Volume 11, Issue 2, 3193-3218.
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3.1.2. Model 2-5-2-1 Case 2
Similar to Model 2-5-2-1 Case 1, The mathematical expression corresponding to the single-hidden-
layer feature-enhanced 2-5-2-1 neural network model in Figure 6 was selected as the test function.
El=Wel "X+ Wi E+ Wy - XE+ W2 - X+ We - £+ by,
62 =W X+ W I+ Wy XE+Wes - X2 +Wwpy - t2 + by, (35)

f =Wire SeCh(é:l) + Wir - é‘g + b3.

Figure 6. 2-5-2-1 neural network model with given activation functions ®(£;) = sech(&)),

(&) = &.

As shown in Figure 6, the activation functions ®,(&;) = sech(&;), ©,(&) = f% were set. Thus, the
test functions for the solution were obtained as follows:

f=wiy-sech (wx,l X AWt Wy XE+H W2 2+ Wy - £+ bl)
) ) ’ 3.6)
+woy - (wx,z X+ Wi T+ Wy XE+Wap X +Wwoy 17+ bz) + bs;

among them, b; (i = 1,2,3), w; ;s (j = 1,2) and wy; (k = x, 1, xt, x*, *) were real numbers.

The solution test function (3.6) was substituted into the bilinear Eq (2.2). A complex algebraic
equation was obtained. The coefficients of each term were collected and set to 0. Then the equation
could be satisfied. At this point, a system of algebraic equations was obtained and solved, yielding the
following results:

Wy = = = 0wy = 0w = O, Wy = 0, wen = 0 (3.7)
21 — 2t7 22 — 21" x,] — Y Wixr1l — Uy Wx2 — Uy, Wy21 — U, W22 — U, .

Substitute (3.7) into the test function (3.6). Then, through the bilinear transformation (2.1), the

explicit solution of the (1+1)-dimensional CDG Eq (1.1) was obtained as follows:

2
4W2’ fo2,2

u = 2
wz,f(w,,2+2xwxvz+2b2)
4

b3 + WufS@Ch(% + bl) +

2W§,f (W2 + 2xwyn + 2b2)2 Wiz 5 (3.8)

5
wzwf(w,’2+2xwx_2+2h2)2 )
4

(b3 + wl,fsech (v% + bl) +
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To verify the accuracy of Result (3.8), the analytical solution (3.8) was substituted into the LHS
of Eq (1.1). With the aid of Maple software, the simplified result demonstrated that the LHS of
Eq (1.1) equals zero. This indicates that the analytical solution (3.8) is reliable, accurate, and error-
free. It also underscores the advantage of the proposed method: In contrast to classical neural network
methods, which only yield approximate solutions, the bilinear feature-enhanced symbolic computation
neural network algorithm enables the acquisition of exact analytical solutions. In solution (3.8),
wrp = Lwy = 1,b3 = 1,by = 1,w, = I,w,, = 1,b, = 1,w; s = 1 were set. The graph of the
solution could then be plotted (Figure 7).

Figure 7(a) displays the 3D graph when ¢ € (-30,30) and x € (-=30,30). The “fold depth” of
the graph corresponds to the difference in wave amplitudes, where deep-fold regions represent high-
amplitude wave crests/troughs, and shallow-fold regions represent low-amplitude background fields,
embodying the nonlinear wave characteristics of the (1+1)-dimensional CDG equation solution with
multiscale and nonuniform distribution.

Figure 7(b) is the contour graph of solution (3.8). A color gradient (color bar on the right) is
used to reflect the magnitude of u, and contour lines (blue lines) connect points with equal u. The
contour lines are arranged in an oblique parallel manner, indicating that the wave propagates along a
fixed direction, which is consistent with the propagation trend of the 3D graph. Moreover, the spatial
morphology of the wave is stable during propagation, and the spacing and density of contour lines
verify the propagation stability of the solution.

Figure 7(c) is a density graph. A continuous color gradient (color bar on the right) is used to show
the distribution of u in the x-¢ plane, where high-value regions (red-yellow) are energy-concentrated
areas, and low-value regions (blue-purple) are energy-sparse areas. The dark “point arrays” embedded
in the color stripes are the core energy bodies of the wave, embodying the localization characteristic
of the (1+1)-dimensional CDG equation solution, where energy is concentrated in a limited space, and
the energy of the background field is extremely low.

Figure 7(d) is a curve graph of u versus x in the domain (—150, 150). The horizontal axis is x, the
vertical axis is u, and multiple colored curves correspond to the distribution of u(x) at different times .
Each curve exhibits a periodic multipeak morphology. The number and spacing of peaks correspond
to the multisoliton and multiwave interference characteristics of the (1+1)-dimensional CDG equation
solution. The peak height reflects the wave amplitude, the peak width reflects the spatial scale of the
wave, and the peak spacing reflects the interaction period of the waves.
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Figure 7. 3D graph, contour graph, density graph, and curve graph of the solution to Eq (3.8).
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3.2. Double-hidden-layer feature-enhanced 2-5-2-2-1 neural network model
3.2.1. Model 2-5-2-2-1 Case 1

The mathematical expression corresponding to the double-hidden-layer feature-enhanced 2-5-2-2-1
neural network model in Figure 8 was selected as the test function.

El=We X+ Wt Wy XE+H W - X+ Wey - £+ by,

Er= Wi X+ Wi T+ Wyo - XE+ W, X+ Wao - £ + by,

& =wiz- & +was &+ b, (3.9)
Ey=wis & + Wz & + by,

f=wap & +way- & +bs.

Figure 8. 2-5-2-2-1 neural network model with given activation functions ®@;(¢;) = &,

Dy(&) = &, D3(&3) = &, Du(én) = &,

As shown in Figure 8, the activation functions ®(£)) = &, ®o(&) = &, V3(&) = &, Cu(és) = &
were set. Thus, the test functions for the solution were obtained as follows:

f = b5 + Wi (Wl,g (tzw,z,l T IXWy g + XZsz’l +Iwe + Xwyg + b])

2
+wy3 (tzw,z,z + txXWyn + xzwxz,z + 1w+ xwen + bz) + b3)
(3.10)

+ Wy g (Wl,g (tzw,z’l + txXWy + xzwxz,l + 1w+ xweg + bl)

2
+Wo3 (IZW,{Z + IXWyp + szxz’z + Wiy + Xwyo + bz) + bg) )

among them, b; (i = 1,2,3), w; s (j = 1,2) and wy; (k = x, 1, xt, x*, *) were real numbers.

The solution test function (3.10) was substituted into the bilinear Eq (2.2). A complex algebraic
equation was obtained. The coefficients of each term were collected and set to 0. Then, the equation
could be satisfied. At this point, a system of algebraic equations was obtained and solved, yielding the
following results:

W2 3We2 WxaW23
wl,l = - B Wx,l i —
W13 W13 (.11)
WpaaWo3 Wy2oW23 ’
Wp = ———, Wp;=——"7-.
w13 W13

Substitute (3.11) into the test function (3.10). Then, through the bilinear transformation (2.1), the
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explicit solution of the (1+1)-dimensional CDG Eq (1.1) was obtained as follows:

_ 2Q2B%w3 s+2B%waf) —2(2Aws3 ¢B) 2(Aws rB)?
A2W3vf+A2W4vf+b3 (A2W3’f+(A2W4’f+b3))2 (A2W3,f+(A2W4,f+b3))2 ’
A = (xwyo +b)wasz + (xwy 1 + bi)wiz + bs, (3.12)

B =wizwy1 + wazwio.

To verify the accuracy of Result (3.12), the analytical solution (3.12) was substituted into the LHS of
Eq (1.1). With the aid of Maple software, the simplified result showed that the LHS of Eq (1.1) equaled
zero. This confirmed that the analytical solution (3.12) is reliable, accurate, and error-free. It further
highlights the advantage of the present method: In comparison with classical neural network methods,
which merely yield approximate solutions, the bilinear feature-enhanced symbolic computation neural
network algorithm enables the acquisition of exact analytical solutions. In solution (3.12), ws s =
L,bs =1,by = 1,wyo = 1,00 = Lwsy = 1,w,; =2,wi3 =1,wy3 = 1,bs = 1 were set. The graph of
the solution could then be plotted (Figure 9).

Figure 9(a) displays the 3D graph when ¢t € (—150,150) and x € (—150,150). It presents a
double “slope” structure, and the color gradient (blue-purple transition) on the left and right sides
corresponds to the amplitude distribution of u. The middle “concave” region is the low-value region
of u, whereas the two sides are high-value regions. The “asymmetric concavity” of the surface
embodies the nonlinear interaction of the (1+1)-dimensional CDG equation, and the difference between
the low-value region (concavity) and the high-value region (slope) reflects the localized concentration
of energy.

Figure 9(b) is the contour graph of solution (3.12). A color gradient (color bar on the right) is used
to map the magnitude of u (red-yellow for high values, blue-purple for low values), and the red vertical
lines are contour lines. The high-value regions (red-brown) and low-value regions (blue-purple) are
distributed in bands along the x-axis, indicating that the amplitude of the wave is periodically stratified
in space.

Figure 9(c) is a density graph. A continuous color gradient (color bar on the right) is used to show
the distribution of u in the x-¢ plane, where red represents high-value regions (energy concentration)
and colored stripes represent low-value regions (energy sparsity). Narrow colored stripes (green-blue-
purple) are embedded in the red background, corresponding to the low-value regions of u, embodying
the energy concentration characteristic of the (1+1)-dimensional CDG equation solution. Energy is
mainly distributed in the red high-value regions, and energy-sparse bands only appear in local regions.

Figure 9(d) is a curve graph of u versus x in the domain (—-150, 150). The horizontal axis is x,
the vertical axis is u, and multiple colored curves correspond to the distribution of u(x) at different
times ¢. The peak positions of curves at different ¢ shift along the x-axis, which is consistent with the
propagation directions of the 3D graph and the contour graph. Moreover, the depth and width of the
peaks are basically stable, verifying the time invariance of the solution.
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Figure 9. 3D graph, contour graph, density graph, and curve graph of the solution to

Eq (3.12).

3.2.2. Model 2-5-2-2-1 Case 2

The mathematical expression corresponding to the double-hidden-layer feature-enhanced 2-5-2-2-1

neural network model in Figure 10 was selected as the test function.

El =Wl X+ Wi+ Wy g o XE+ W2 - 2+ Wy - P+ by,
Er = Wi X+ Wit + Wy  XE+ Wy - X+ Wy £+ b,
& =wiz & +waz &+ bs,

&y =wiz &+ waz &+ by,

f=wsyp- §§ + wa s - sech(éy) + bs.

(3.13)
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Figure 10. 2-5-2-2-1 neural network model with given activation functions ®@;(&;) = &,

Da(£2) = &, D3(&3) = &3, u(éa) = sech(éy).

As shown in Figure 10, the activation function ®,(&)) = &, (&) = &, P3(&) = &, Du(&y) =
sech(&,) were set. Thus, the test functions for the solution were obtained as follows:

f=bs+ws; (w1,3 (l‘zwtz’] + 1XWy g + xzwxz,] +tw +xwyg + bl)

w3 (tzw,z,z + IXWyo + xzwxz’z + 1w+ XWyn + bz) + b3)
(3.14)
+ wy rsech (W1’3 (tzw,z,l +EXW g + W+ tw g + X, + bl)

w3 (tzw,z,z + tXWyo + xzwxz’z + 1w+ XWyo + bz) + b3) ;

among them, b; (i = 1,2,3), w; s (j = 1,2) and wy; (k = x, 1, xt, x*, *) were real numbers.

The solution test function (3.14) was substituted into the bilinear Eq (2.2). A complex algebraic
equation was obtained. The coefficients of each term were collected and set to 0. Then, the equation
could be satisfied. At this point, a system of algebraic equations was obtained and solved, yielding the

following results:
2XW1’3WXZ’1 + 2XW2’3WX2’2 + Wy 3Wy 2
Wyl = — >
w13

(3.15)

Wil = — =, wyr=0.

Substitute (3.15) into the test function (3.14). Then, through the bilinear transformation (2.1), the
explicit solution of the (1+1)-dimensional CDG Eq (1.1) was obtained as follows:

2EW3ﬁf 2F2W§_f

u= -
(Cwi3+Dwy3+b3)ws r+bs ((CW1,3+DW2,3+h3)W3y_f+b5)2 s

C = t2wt2,1 bl xzwxz’l + Z‘W,,l + b],
D = l‘zwtz’z - x2Wx272 + Z‘W,,z + b2, (3'16)

E = =2wi3wa; —2wyszwe,,

F = —2)CW1,3Wx2’1 - 2XW2,3W)C2’2.

To validate the accuracy of Result (3.16), the analytical solution (3.16) was substituted into the LHS
of Eq (1.1). With the assistance of Maple software, the simplified result demonstrated that the LHS
of Eq (1.1) equaled zero. This confirms that the analytical solution (3.16) is reliable, accurate, and
error-free. It also highlights the advantage of this method: In contrast to classical neural network
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methods, which only yield approximate solutions, the bilinear feature-enhanced symbolic computation
neural network algorithm enables the acquisition of exact analytical solutions. In solution (3.16),
W3 r = 1,[93 = l,bl = 1,b2 = 1, and Wy r = 1,W,’3 = 1,Wx,3 = l,b5 = l,Wt,l = 2, Wio = 1,Wx’1 =
Lwys =1,wa; = 1,we, = 1 were set. The graph of the solution could then be plotted (Figure 11).

Figure 11(a) displays the 3D graph when t € (—150,150) and x € (-150,150). It features
a double “ridge-like” structure, presenting an intersecting hyperboloid morphology. The color
gradient (blue-purple-red transition) corresponds to the amplitude distribution of u. The “ridge
lines” of the surface are high-value regions, and the two sides are low-value regions. The
“asymmetric inclination” and “intersecting distortion” of the surface embody the nonlinear interaction
of the (1+1)-dimensional CDG equation, and the amplitude of the wave is nonuniformly distributed in
spatiotemporal domains.

Figure 11(b) is the contour graph of solution (3.16). The contour lines are arranged in an “X”-shaped
intersection, consistent with the hyperboloid intersecting morphology of the 3D graph, indicating that
two waves propagate in opposite directions along the x and ¢ axes. The dense contour lines and
deep color (red-brown) in the intersection region correspond to the high-value regions of the wave,
embodying the energy concentration characteristic of wave interaction. Energy superposition occurs
when the two waves collide, forming a high-amplitude region.

Figure 11(c) is a density graph. A continuous color gradient (color bar on the right) is used to show
the distribution of u in the x-t plane, where purple represents low-value regions (sparse energy), and
colored intersecting stripes represent high-value regions with concentrated energy. The “X”-shaped
colored stripes (yellow-red transition) extend along the x and ¢ axes, corresponding to the hyperboloid
“ridge lines” in the 3D graph, intuitively presenting the propagation trajectories and interaction regions
of the two waves.

Figure 11(d) is a curve graph of u versus x in the domain (—150, 150). The horizontal axis is x, the
vertical axis is u, and multiple colored curves correspond to the distribution of u(x) at different times .
Each curve exhibits a periodic multipeak morphology. The number and spacing of peaks correspond to
the multiwave interference characteristic of the (1+1)-dimensional CDG equation solution. The peak
height reflects the wave amplitude, the peak width reflects the spatial scale of the wave, and the peak
spacing reflects the interaction period of the waves.
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Figure 11. 3D graph, contour graph, density graph, and curve graph of the solution to
Eq (3.16).

. Remark

This study proposes a BFESCNN method. By constructing single-hidden-layer 2-5-2-1 and double-

hidden-layer 2-5-2-2-1 models, exact solutions to the (1+1)-dimensional CDG equation are obtained.
Compared with existing research on solving the (1+1)-dimensional CDG equation, this method
demonstrates significant innovation and advantages, with detailed comparative analysis provided in
Tables 3 and 4.
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Table 3. BFESCNN and various CDG equation solution methods comparison.

Comparison BFESCNN (this Traditional PINNSs [23], etc. BNNM [4], etc.
dimension study) analytical methods
(Hirota [13], etc.)
Solution type Exact solutions Analytical solutions Approximate Analytical solutions
and accuracy  (Maple-verified (reliable accuracy); numerical solutions; (reliable accuracy);
Zero error); only breather, poor fractional generalized/classical
supports soliton- soliton, periodic derivative accuracy; lump and rogue waves
like, multiwave trigonometric/hyperboliavalid for stochastic achievable; hard to

interference solutions

solutions; one
derivation for single
solution type

Wick-type PDEs

generate hybrid wave
interaction solutions

Core logic Polynomial  feature Manual ansatz PDE residual Bilinear operator
enhancement and construction and embedded loss network and symbolic
symbolic constraints algebraic/symbolic ~ function; pure data- computation;
and neural network derivation; heavy driven meshless experience-dependent
(NN); no preset human intervention; solving; relies design; only
structure poor adaptability to on high-quality applicable to bilinear-

fractional/variable-  stochastic/fractional form CDG/CDGSK-
coefficient CDGSK dataset like equations
equations

Network Concise No network; pure Deep network with Multilayer stacking

complexity single/double- mathematical massive trainable hybrid model;
hidden-layer derivation; extremely parameters; long high parameter
architecture; “feature high labor cost training time and optimization
enhancement” instead for seventh-order easy overfitting for difficulty; slow
of “neuron stacking”; CDG-KP equation fractional PDEs convergence for
high efficiency reduction multitype wave

coupling

Interpre- Clear physical Transparent “Black-box” data Bilinear physical

tability feature meaning; mathematical learning; only constraints; unclear
traceable  symbolic derivation; infers physical featurewave solution
computation; extra physical meaning from connection; needs
visualizable interpretation numerical  results; post-analysis for
wave propagation required for no mechanism lump wave evolution
properties fractional derivative interpretability

wave characteristics

Applicable High- Low- Meshless/data-scarce  Medium-low

scenarios dimensional/variable- dimensional/constant- scenarios; low dimensional CDGSK-
coefficient/strongly coeflicient accuracy demand like equations;
nonlinear PDEs; CDG equations; for fast approximate tolerates high model
needs multitype specific traveling fractional PDE complexity for
exact solutions wave/periodic wave distribution lump/rogue wave
(e.g., plasma solutions with low generation
magnetoacoustic efficiency demand
waves)

Computational High (automated Low (time- Medium (long Low (long training

efficiency symbolic consuming training iteration, cycle, massive
computation, fast manual symmetry tedious  parameter manual  debugging
training, no massive reduction/derivation, tuning for fractional for bilinear NN
data) no batch solving for order setting and connection and wave

series CDG family data preprocessing)  solution coupling)
equations)
AIMS Mathematics
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Table 4. BFESCNN and various CDG equation solution methods comparison (continued).

Comparison
dimension

BFESCNN
study)

(this

Traditional
analytical methods
(Hirota [13], etc.)

PINNS [23], etc.

BNNM [4], etc.

Solution
precision and
stability

Analytical
universality

Ultra-high precision
(zero numerical
error); ultra-stable
waveform output
without distortion for
fractional/high-order
derivation

Excellent; unified
framework for CDG
family equations;
compatible with
fractional/stochastic/
2+1)-
dimensional/variable-

High precision for
specific cases; stable
results but limited
to nonstochastic
PDEs, no stability
for seventh-order
CDG-KP equations

Poor  universality;
method-specific for
different solution
types; inapplicable to
stochastic Wick-type
fractional PDEs

Low precision
with cumulative
error; unstable
waveform in long-
term fractional
wave evolution and
stochastic PDE

solving

Medium
universality;
meshless advantage
but  limited by
training data
for unseen CDG
equation forms

Reliable  precision;
partial stability loss
in lump-periodic
wave coupling;
sensitive to network
hyperparameters

Limited universality;
structure-bound to
bilinear PDE systems,
hard to transfer to
nonbilinear CDG-KP
equations

coefficient PDEs

4. Conclusions

The BFESCNN method adopts an integrated approach of “polynomial feature enhancement,
symbolic computation, and neural network”. It breaks through the limitations of traditional methods
for solving the (1+1)-dimensional CDG equation. The method efficiently acquires the exact solution
of the equation. Multidimensional graphs (3D graphs, density plots, contour plots, curve graphs)
are used to verify the rationality of the solution and the advantages of the algorithm. It also
provides visualization support for practical physical problems. Based on the spatial and temporal
variables of the (1+1)-dimensional CDG equation, polynomial features x?, 2, and xt are constructed.
These features accurately capture the nonlinear interaction relationships between variables. They
make up for the deficiency of traditional neural networks that rely solely on original variables.
The bilinear features provide a flexible and generalizable representation of nonlinear interactions,
making it straightforward to extend to more complex scenarios. Collectively, these solutions illustrate
diverse nonlinear dynamical behaviors. Solution (3.4) demonstrates the interaction among multiple
fundamental excitations, verifying the robustness of solitons as information carriers and providing
insights for engineering applications such as optical soliton communication, and Solution (3.8) focuses
on the adaptation and evolution of a single coherent structure under complex physical conditions,
aiding in the design of novel nonlinear wave manipulation schemes. Solution (3.12) represents a static
ordered structure arising from self-organization, serving as a paradigm for energy localization, and
Solution (3.16) depicts a dynamically coherent structure exhibiting controlled motion, which forms
the cornerstone for wavepacket manipulation. Furthermore, the method offers quantifiable and visual
analytical basis for practical physical problems. Such problems include plasma ion-acoustic waves and
optical fiber light pulses. It serves as an important bridge connecting nonlinear equation theory and
interdisciplinary applications.

Building upon the bilinear feature-enhanced symbolic computation neural network algorithm
for exact solutions of nonlinear PDEs, the methodology in [41] can refine random-term handling,
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an [42, 43] can augment the algorithm’s stability and robustness. Moreover, integrating insights
from [44,45] can further optimize the algorithm’s neural network framework. This algorithm may be
extended to multisource random perturbation systems, with the “solution-verification-simplification”
framework refined to boost cross-domain applicability, thus fostering interdisciplinary innovation in
exact solutions of stochastic nonlinear PDEs.

Author contributions

Xia Li: Conceptualization, methodology, validation, writing—original draft preparation, writing—
review and editing, supervision, project administration, funding acquisition; Jianglong Shen:
Conceptualization, methodology, validation, writing-review and editing, supervision, project
administration, funding acquisition; Jingbin Liang: writing—original draft preparation, validation;
Yu Gao: writing—original draft preparation, validation, project administration, supervision, funding
acquisition. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

This work was supported by Training Program of Yibin University (No.2022PY29),
Training Program of Yibin University (No0.2024XJPY13), Sailing Project of Yibin
University (No.2024XJQHO4), and the Open Research Fund of Computational Physics Key
Laboratory of Sichuan Province, Yibin University (No.YBUJSWL-KX-2025-04).

Contflict of interest

The authors declare that they have no conflict of interest concerning the publication of
this manuscript.

References

1. E. Hussain, A. H. Tedjani, K. Farooq, Beenish, Modeling and exploration of localized wave
phenomena in optical fibers using the generalized Kundu—Eckhaus equation for femtosecond pulse
transmission, Axioms, 14 (2025), 513. https://doi.org/10.3390/axioms 14070513

2. M. A. S. Murad, F. S. Alshammari, M. S. Salih, K. Farooq, Optical soliton structures in
the nonlinear conformable Schrodinger equation with quadratic—cubic nonlinearity, Nonlinear
Dynam., 113 (2025), 32669-32687. https://doi.org/10.1007/s11071-025-11775-z

3. K. Farooq, A. H. Tedjani, Z. Li, E. Hussain, Soliton dynamics of the nonlinear Kodama equation
with M-truncated derivative via two innovative schemes: The generalized Arnous method and the
Kudryashov method, Fractal Fract., 9 (2025), 436. https://doi.org/10.3390/fractalfract9070436

AIMS Mathematics Volume 11, Issue 2, 3193-3218.


https://dx.doi.org/https://doi.org/10.3390/axioms14070513
https://dx.doi.org/https://doi.org/10.1007/s11071-025-11775-z
https://dx.doi.org/https://doi.org/10.3390/fractalfract9070436

3216

10.

11.

12.

13.

14.

15.

16.

17.

R. F Zhang, M. C. Li, M. Albishari, F. C. Zheng, Z. Z. Lan, Generalized lump
solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-
Dodd-Gibbon-Kotera-Sawada-like equation, Appl. Math. Comput., 403 (2021), 126201.
https://doi.org/10.1016/j.amc.2021.126201

L. Gai, W. Wu, T. Ding, Y. Qian, Lump wave solutions, lump-stripe soliton inelastic collision

phenomena and rogue-type wave solutions for a generalized breaking soliton system in (3+1)-
dimensions, Wave Motion, 124 (2024) , 103243. https://doi.org/10.1016/j.wavemoti.2023.103243

Z. H. Zhang, J. G. Liu, A fourth-order nonlinear equation studied by using a
multivariate bilinear neural network method, Nonlinear Dynam., 112 (2024), 10229-10237.
https://doi.org/10.1007/s11071-024-09567-y
X. S. Wu, J. G. Liu, Solving the variable coefficient nonlinear partial differential equations
based on the bilinear residual network method, Nonlinear Dynam., 112 (2024), 8329-8340.
https://doi.org/10.1007/s11071-024-09472-4
X. Hao, Y. Liu, X. Tang, Z. Li, A Maple package for finding interaction solutions
of nonlinear evolution equations, Comput. Math. Appl., 72 (2016), 2450-2461.
https://doi.org/10.1016/j.camwa.2016.09.006

R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004.
https://doi.org/10.1017/CB0O9780511543043

V. Kumar, A. K. Pandey, D. S. Bisht, Multisoliton solutions and interaction of solitons for the
(3+1)-dimensional Calogero-Degasperis-Gibbon equation, Chinese Phys. B, 31 (2022), 100203
https://doi.org/10.1088/1674-1056/ac8cbe

J. Singh, A. Gupta, D. Baleanu, On the analysis of an analytical approach for
fractional Caudrey-Dodd-Gibbon equations, Alex. Eng. J., 61 (2022), 5073-5082.
https://doi.org/10.1016/j.2ej.2021.09.053

G. F. Deng, Y. T. Gao, J. J. Su, C. C. Ding, T. T. Jia, Solitons and periodic waves for the (2+1)-
dimensional generalized Caudrey—Dodd-Gibbon—Kotera—Sawada equation in fluid mechanics,
Nonlinear Dynam., 99 (2020), 1039-1052. https://doi.org/10.1007/s11071-019-05328-4

A. Yusuf, T. A. Sulaiman, M. Inc, M. Bayram, Breather wave, lump-periodic solutions and some
other interaction phenomena to the Caudrey-Dodd—Gibbon equation, Eur. Phys. J. Plus, 563
(2020), 135. https://doi.org/10.1140/epjp/s13360-020-00566-7

M. M. A. Khater, S. H. Alfalgi, Analytical solutions of the Caudrey—Dodd-Gibbon
equation using Khater II and variational iteration methods, Sci. Rep., 14 (2024), 27946.
https://doi.org/10.1038/s41598-024-75969-y

A. Yokus, H. Durur, K. A. Abro, Symbolic computation of Caudrey—Dodd-Gibbon equation
subject to periodic trigonometric and hyperbolic symmetries, Eur. Phys. J. Plus, 358 (2021), 136.
https://doi.org/10.1140/epjp/s13360-021-01350-x

A. K. M. K. S. Hossain, M. A. Akbar, M. 1. Hossain, Modified simple equation technique for first-
extended fifth-order nonlinear equation, medium equal width equation and Caudrey—Dodd—Gibbon
equation, J. Umm Al-Qura Univ. Appl. Sci., 11 (2025), 623—632.

H. Ma, Y. Wang, A. Deng, Soliton molecules and some novel mixed solutions for
the extended Caudrey-Dodd-Gibbon equation, J. Geom. Phys., 168 (2021), 104309.
https://doi.org/10.1016/j.geomphys.2021.104309

AIMS Mathematics Volume 11, Issue 2, 3193-3218.


https://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126201
https://dx.doi.org/https://doi.org/10.1016/j.wavemoti.2023.103243
https://dx.doi.org/https://doi.org/10.1007/s11071-024-09567-y
https://dx.doi.org/https://doi.org/10.1007/s11071-024-09472-4
https://dx.doi.org/https://doi.org/10.1016/j.camwa.2016.09.006
https://dx.doi.org/https://doi.org/10.1017/CBO9780511543043
https://dx.doi.org/https://doi.org/10.1088/1674-1056/ac8cbe
https://dx.doi.org/https://doi.org/10.1016/j.aej.2021.09.053
https://dx.doi.org/ https://doi.org/10.1007/s11071-019-05328-4
https://dx.doi.org/https://doi.org/10.1140/epjp/s13360-020-00566-7
https://dx.doi.org/https://doi.org/10.1038/s41598-024-75969-y
https://dx.doi.org/https://doi.org/10.1140/epjp/s13360-021-01350-x
https://dx.doi.org/https://doi.org/10.1016/j.geomphys.2021.104309

3217

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. F. Sahinkaya, A. Kurt, I. Yalcinkaya, Investigating the new perspectives of
Caudrey—Dodd-Gibbon equation arising in quantum field theory, Opt. Quant. Electron., 56
(2024), 813. https://doi.org/10.1007/s11082-024-06636-9

S. A. Abdelhafeez, A. A. M. Arafa, Y. H. Zahran, 1. S. I. Osman, M. Ramadan, Adapting Laplace
residual power series approach to the Caudrey Dodd Gibbon equation, Sci. Rep., 14 (2024), 9772.
https://doi.org/10.1038/s41598-024-57780-x

D. Fathima, R. A. Alahmadi, A. Khan, A. Akhter, A. H. Ganie, An efficient analytical approach
to investigate fractional Caudrey—Dodd-Gibbon equations with non-singular Kernel derivatives,
Symmetry, 15 (2023), 850. https://doi.org/10.3390/sym 15040850

Q. Ding, A. J. Hao, Differential invariants for CDG equation and coupled KDV-MKDV equations,
Acta Phys. Sin., 63 (2014), 110503. https://doi.org/10.7498/aps.63.110503

S. Sakovich, A note on lax pairs of the Sawada-Kotera equation, J. Math., 4 (2014), 906165.
https://doi.org/10.1155/2014/906165

M. Raissi, G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure fields from
flow visualization, Science, 367 (2020), 1026—1030. https://doi.org/10.1126/science.aaw4741

S. Wang, B. Li, Y. Chen, P. Perdikaris, Piratenets: Physics-informed deep learning with residual
adaptive networks, J. Mach. Learn. Res., 25 (2024), 1-51. http://jmlr.org/papers/v25/24-0313.html

J. L. Shen, R. F. Zhang, J. W. Huang, J. B. Liang, Neural network-based symbolic computation
algorithm for solving (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation, Mathematics, 13
(2025), 3006. https://doi.org/10.3390/math13183006

M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys., 378 (2019), 686-707. https://doi.org/10.1016/j.jcp.2018.10.045

L. Lu, X. Meng, Z. Mao, G. E. Karniadakis, DeepXDE: A deep learning library for solving
differential equations, SIAM Rev., 63 (2021), 208-228. https://doi.org/10.1137/19M 1274067

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. F. Wang, L. Yang, Physics-
informed machine learning, Nat. Rev. Phys., 3 (2021), 422-440. https://doi.org/10.1038/s42254-
021-00314-5

W. Hussain, J. M. Merig6, J. Gil-Lafuente, H. H. Gao, Complex nonlinear neural network
prediction with IOWA layer, Soft Comput., 27 (2023) ,4853—-4863. https://doi.org/10.1007/s00500-
023-07899-2

X. Q. Huang, W. L. Shi, X. T. Gao, X. R. Wei, J. Zhang , J. Bian, et al., LordNet: An efficient
neural network for learning to solve parametric partial differential equations without simulated
data, Neural Networks, 176 (2024), 106354. https://doi.org/10.1016/j.neunet.2024.106354

S. Chen, S. Xiong, Y. Liu, Chebyshev-Sobolev physics-informed neural networks for general
PDE solutions, Int. J. Appl. Comput. Math., 11 (2025), 169. https://doi.org/10.1007/s40819-025-
01988-6

J. L. Shen, X. Y. Wu, Periodic-soliton and periodic-type solutions of the (3+1)-dimensional
Boiti-Leon—Manna—Pempinelli equation by using BNNM, Nonlinear Dynam., 106 (2021), 831—
840. https://doi.org/10.1007/s11071-021-06848-8

AIMS Mathematics Volume 11, Issue 2, 3193-3218.


https://dx.doi.org/https://doi.org/10.1007/s11082-024-06636-9
https://dx.doi.org/https://doi.org/10.1038/s41598-024-57780-x
https://dx.doi.org/https://doi.org/10.3390/sym15040850
https://dx.doi.org/https://doi.org/10.7498/aps.63.110503
https://dx.doi.org/https://doi.org/10.1155/2014/906165
https://dx.doi.org/https://doi.org/10.1126/science.aaw4741
https://dx.doi.org/http://jmlr.org/papers/v25/24-0313.html
https://dx.doi.org/https://doi.org/10.3390/math13183006
https://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://dx.doi.org/https://doi.org/10.1137/19M1274067
https://dx.doi.org/https://doi.org/10.1038/s42254-021-00314-5
https://dx.doi.org/https://doi.org/10.1038/s42254-021-00314-5
https://dx.doi.org/https://doi.org/10.1007/s00500-023-07899-2
https://dx.doi.org/https://doi.org/10.1007/s00500-023-07899-2
https://dx.doi.org/https://doi.org/10.1016/j.neunet.2024.106354
https://dx.doi.org/https://doi.org/10.1007/s40819-025-01988-6
https://dx.doi.org/https://doi.org/10.1007/s40819-025-01988-6
https://dx.doi.org/https://doi.org/10.1007/s11071-021-06848-8

3218

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

.M. Qasim, F. Yao, M. Z. Baber, U. Younas, Investigating the higher dimensional
Kadomtsev—Petviashvili-Sawada—Kotera—Ramaniequation: Exploring the  modulation
instability, Jacobi elliptic and soliton solutions, Phys. Scripta, 100 (2025), 025215.
https://doi.org/10.1088/1402-4896/ada20c

L. Ying, M. Li, Y. Shi, New exact solutions and related dynamic behaviors of a (3+1)-dimensional
generalized Kadomtsev—Petviashvili equation, Nonlinear Dynam., 112 (2024), 11349-11372.
https://doi.org/10.1007/s11071-024-09539-2

Z. Liu, Y. Liu, X. Yan, W. Liu, H. Nie, S. Guo, et al., Automatic network structure discovery
of physics informed neural networks via knowledge distillation, Nat. Commun., 16 (2025), 9558.
https://doi.org/10.1038/s41467-025-64624-3
S. F Sun, S. FE Tian, B. Li, The data-driven rogue waves of the Hirota
equation by using Mix-training PINNs approach, Physica D, 465 (2024), 134202.
https://doi.org/10.1016/j.physd.2024.134202

J. L. Shen, M. Liu, J. B. Liang, R. F. Zhang, New solutions to the (3+1)-dimensional HB
equation using bilinear neural networks method and symbolic ansatz method using neural network
architecture, AIMS Math., 10 (2025), 30307-30330. https://doi.org/10.3934/math.20251331

P. J. Caudrey, R. K. Dodd, J. D. Gibbon, A new hierarchy of Korteweg—de Vries equations, Proc.
A., 351 (1976), 407-422. https://doi.org/10.1098/rspa.1976.0149

H. Naher, F. A. Abdullah, M. A. Akbar, The (G’/G)-expansion method for abundant traveling
wave solutions of Caudrey-Dodd-Gibbon equation, Math. Probl. Eng., 2011 (2011), 218216.
https://doi.org/10.1155/2011/218216

K. Ayub, M. Y. Khan, A. Rani, Q. M. Ul Hassan, B. Ahmed, M. Shakeel, Application of the
Exp (—¢({))-expansion method for solitary wave solutions., Arab J. Basic Appl. Sci., 26 (2019),
376-384. https://doi.org/10.1080/25765299.2019.1642079

K. E. Yao, M. Samar, Y. Shi, Approximation approach for backward stochastic Volterra integral
equations, Math. Model. Control, 4 (2024), 390-399. https://doi.org/10.3934/mmc.2024031

Y. Lu, D. Ruan, Q. Zhu, Stability of nonlinear systems with multi-delayed random impulses:
Average estimation and delay approach, Nature, 1 (2025), 2. https://doi.org/10.3934/math.2025982

J.. Y. Yan, B. Hu, Z. H. Guan, D. X. Zhang, On controllability of fractional-order
impulsive and switching systems with time delay, Appl. Math. Comput., 497 (2025), 129357.
https://doi.org/10.1016/j.amc.2025.129357

C.Lv, X. L. Lv, Z. Y. Wang, A focal quotient gradient system method for deep neural network
training, Appl. Soft Comput., 184 (2025), 113704. https://doi.org/10.1016/j.as0c.2025.113704

M. Y. Gao, S. Y. Zhou, W. Gu, MMGPT4LF: Leveraging an optimized pre-trained GPT-2
model with multi-modal cross-attention for load forecasting, Appl. Energy, 392 (2025), 125965.
https://doi.org/10.1016/j.apenergy.2025.125965

©2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

@ AIMS Press terms of the Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 2, 3193-3218.


https://dx.doi.org/https://doi.org/10.1088/1402-4896/ada20c
https://dx.doi.org/https://doi.org/10.1007/s11071-024-09539-2
https://dx.doi.org/https://doi.org/10.1038/s41467-025-64624-3
https://dx.doi.org/https://doi.org/10.1016/j.physd.2024.134202
https://dx.doi.org/https://doi.org/10.3934/math.20251331
https://dx.doi.org/https://doi.org/10.1098/rspa.1976.0149
https://dx.doi.org/https://doi.org/10.1155/2011/218216
https://dx.doi.org/https://doi.org/10.1080/25765299.2019.1642079
https://dx.doi.org/https://doi.org/10.3934/mmc.2024031
https://dx.doi.org/https://doi.org/10.3934/math.2025982
https://dx.doi.org/https://doi.org/10.1016/j.amc.2025.129357
https://dx.doi.org/https://doi.org/10.1016/j.asoc.2025.113704
https://dx.doi.org/https://doi.org/10.1016/j.apenergy.2025.125965
https://creativecommons.org/licenses/by/4.0

	Introduction
	BFESCNN framework
	Exact solution of the (1+1)-dimensional CDG equation solved by the BFESCNN method
	Single-hidden-layer feature-enhanced 2-5-2-1 neural network model
	Model 2-5-2-1 Case 1
	Model 2-5-2-1 Case 2

	Double-hidden-layer feature-enhanced 2-5-2-2-1 neural network model
	Model 2-5-2-2-1 Case 1
	Model 2-5-2-2-1 Case 2

	Remark

	Conclusions

