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1. Introduction

Fractional calculus is an extension of classical calculus that allows for derivatives of non-integer
order. Various definitions exist, but they all share the property that, when the fractional derivative’s
order is an integer, some form of an integer-order derivative is recovered. Due to the existence
of multiple definitions, it becomes essential to consider generalized forms of fractional derivatives,
where specific choices of the generalized derivative recover well-known cases. In this work, we
adopt the concept of a fractional derivative with respect to another function, as presented in [1, 12].
These derivatives depend on a kernel ¢, and specific choices of this function yield, for example,
the classical Caputo or Caputo—Hadamard derivatives. This derivative has already proven effective
in modeling complex systems, offering advantages over integer-order derivatives and even the usual
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fractional derivatives [3, 7, 26]. Another possible generalization of classical fractional derivatives
is the tempered fractional derivative, as presented in e.g. [8, 13, 14, 21]. The tempered fractional
derivative introduces an exponential tempering parameter that moderates the long-range memory
effects typical of classical fractional operators, allowing a more realistic description of phenomena in
which heavy-tailed dynamics gradually weaken over time. This added flexibility enables more accurate
modeling of systems with long-range memory and decay, capturing behaviours that classical fractional
operators cannot fully describe, such as those observed in viscoelastic materials, anomalous diffusion,
geophysics, or systems where past influences gradually diminish over long periods. In addition, the
tempered formulation facilitates well-posedness, enhances the flexibility of boundary-value problems,
and often yields more robust discretization schemes for practical computations.

Following the same reasoning, a fractional differential equation (FDE) extends the classical
theory of differential equations by replacing integer-order with fractional-order derivatives. This
generalization allows for a more flexible and accurate modeling of various complex systems,
particularly those exhibiting memory effects. The literature provides a rich theoretical foundation for
FDEs, covering topics such as the existence and uniqueness of solutions (see, for example, [9, 19, 23]),
stability analysis ([11, 20]), and qualitative properties of solutions ([16]). Additionally, significant
progress has been made in the development of numerical methods for solving these equations,
addressing the challenges posed by the complexity of fractional operators ([15, 17, 24, 25]). A wide
range of FDEs are studied in different contexts as researchers can explore various aspects, including the
choice of fractional derivative definitions (e.g., Riemann-Liouville, Caputo, or Griinwald—Letnikov),
different orders of differentiation, and distinct initial and boundary conditions. To develop a more
unified theory and reduce redundancy across studies, we propose studying FDEs by focusing on the
generalized tempered derivative, which encompasses derivatives such as Caputo-type derivatives and
tempered derivatives.

In this paper, we investigate the existence and uniqueness of solutions for fractional boundary
value problems incorporating tempered Caputo fractional derivatives with respect to a smooth kernel,
applying fixed-point theorems. Additionally, we conduct the Ulam—Hyers and Ulam—Hyers—Rassias
stability analyses of these FDEs under certain assumptions. The stability analysis of FDEs plays a
crucial role in understanding the long-term behavior of systems with memory and hereditary effects.
By establishing conditions for asymptotic stability, one can ensure that perturbations in initial data or
parameters do not lead to unbounded responses, thereby supporting the design of robust numerical
schemes and physically consistent models in complex dynamical settings. Ulam—Hyers stability in
dynamical systems concerns whether an approximate solution to an equation remains close to an
exact solution, even when the original problem is difficult to solve precisely. It plays a key role in
mathematical modeling, ensuring that small errors in approximations do not amplify uncontrollably
but instead remain bounded near a true solution, which is essential in real-world settings where exact
solutions are rarely available.

The study in [18] examined FDEs involving a fractional derivative defined with respect to another
function. However, the work appears to contain some inaccuracies; in particular, the statements of
Proposition 3.1 and Theorem 3.2 seem to require correction, and several calculations throughout the
proofs should be carefully reconsidered. We remark that the corrections of these results can be obtained
from our results by considering 4 = 0.

The paper is organized as follows. In Section 2, we present some necessary concepts about
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fractional operators, along with key results used in our analysis. In Section 3, we introduce the problem
and rewrite it in integral equation form. Then, in Section 4, we prove the existence and uniqueness of
solutions by applying well-known fixed-point theorems. In Section 5, we analyze the stability of the
equation, considering three different types of stability. In Section 6, we provide an example to illustrate
the applicability of our main results. Finally, in Section 7, we provide some concluding remarks.

2. Preliminaries

Next, we introduce the necessary definitions of the tempered fractional integral and Caputo
derivative, depending on an arbitrary kernel, as presented in [4]. In what follows, 4 > 0 is a parameter,
n €N, and @ € (n — 1,n]. The function ¥ € C"([a, b],R) serves as the kernel, satisfying ’(¢) > 0 for
all ¢ € [a, b].

Definition 2.1. Let u : [a,b] — R be an integrable function. The tempered fractional integral of order
a with parameter A, defined with respect to the function i, is given by

15 u(r) = f ¥ (OW() — (1) e u(r) dr.

1“()

We note that when 4 = 0, the definition reduces to the fractional integral with respect to another
function (see [12])

Tt u(r) = @ )f W (@@ — (0)" u(r) dr.

Definition 2.2. Let u € C"!'([a,b],R). The Caputo tempered fractional derivative of order @ with
parameter A, defined with respect to the function ¥, is defined as

D utn) = e DY " u)),

where €D’ stands for the Caputo fractional derivative operator with respect to the kernel ¢, of order
a (see [2]).
Remark 2.1. We make the following observations: Given u € C"([a, b], R),

(1) if @ € N, then

DM u(r) = e_”( d) (e"u(?)),

1
W' (1) di
and if @ ¢ N, then

d
‘Do u(t) = f ¥ @OW(0) — ()" 1( ) (e""u(r) dr,

Y (7)dt

where n = [a] + 1;
(2) if A = 0, Definition 2.2 reduces to the Caputo fractional derivative with respect to another
function, as introduced in [2].
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According to Lemmas 1 and 2 in [1], for 8 > n — 1,

T+ 1)
1_

rG+i-a) W(n) — y(@)™,

DI (e M (Y1) — Y(@)fP) = e

and, for A € R,
DI (e EL(AW(2) — y(@)?)) = Ae ™ EL(AW (D) — (a))?),

where E, denotes the one-parameter Mittag—Leffler function

o0 o
E,(f) = ; T
The following result is very useful for proving Theorem 3.1.
Theorem 2.1. For any u € C([a, b], R), the following holds:
D L u(t) = u(o).

Moreover, for u € C"!([a, b], R), we have the identity

n—1 _ k P
T DM () = u(ny) - e Y (10 kw(a)) ( 1 d
k=0

ay o a
! w0 dt) e u)]

Proof. The formulae are a direct consequence of Theorem 1 from [2]. m|

Next, we present the fixed-point theorems that are essential to prove our main results (see, for
example, [10, 22]). We begin by presenting Krasnoselskii’s fixed-point theorem, which guarantees the
existence of a solution to our fractional boundary value problem (FBVP).

Theorem 2.2. (Krasnoselskii’s fixed-point theorem) Let M be a closed, bounded, convex, and
nonempty subset of a Banach space B, and let  and Q be operators on M satisfying the following
conditions:

(1) P(IM)+ QM) C M,
(2) P 1s a contraction mapping; and
(3) Q is continuous, and Q(M) is a relatively compact subset of B.

Then, there exists z € M such that z = Pz + Qz.

Additionally, we present the Arzela—Ascoli theorem, a fundamental result in analysis that
establishes necessary and sufficient conditions for the compactness of a family of continuous functions.

Theorem 2.3. (Arzela—Ascoli theorem) Let (X, d) be a compact metric space. Then, M C C(X) is
relatively compact if and only if M is uniformly bounded and uniformly equicontinuous.

We conclude this section with the well-known Banach fixed-point theorem.

Theorem 2.4. (Banach’s fixed point theorem) Let (X, d) be a complete metric space, andlet7 : X — X
be a contraction mapping, that is,

dTu,7v) < Ld(u,v), VYu,veX,

for some constant O < L < 1. Then,
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(1) 7 admits a unique fixed point #*; and
(2) for any u € X, the fixed point u* satisfies the following inequality:

du,u*) <

- Ld(u, T u).

3. Tempered FDEs

In this paper, we study an FDE of order between 2 and 3, incorporating the generalized tempered
fractional derivative along with initial and terminal conditions. The problem is formulated as follows:
Let a € (2,3) be the fractional order, and let ¢ € C3([a, b], R) be the kernel that satisfies /() > 0 for
all ¢ € [a, b]. Consider the functions p, g, r € C([a, b],R). The FBVP we are studying is as follows:

{ D u) + p(ty' (@) + qu(®) = r(@), 1 € [a,b], 3.1)

u(a) = u'(a) = u(b) =0,

where u € C*([a, b],R).

Remark 3.1. For A = 0, i.e., when we are dealing with the fractional Caputo derivative with respect to
another function, our results coincide with those of [18], except for minor corrections. Furthermore,
when ¥/(7) = t, meaning that the equation follows the classical Caputo fractional derivative, we recover
as special cases the results of [6].

Remark 3.2. We restrict our analysis to homogeneous boundary conditions for simplicity, but the
same techniques developed in the following sections allow the results to be extended to general non-
homogeneous boundary conditions.

The equivalence between the FBVP (3.1) and a fractional integral equation is shown by the
following result.

Theorem 3.1. A function u € C*([a, b],R) is a solution of the FBVP (3.1) if and only if u satisfies the
integral equation:

—At _ 2 b
u(p) = WO V@) f W @OW0b) - p@) " f@) dr
L@@ ®) - v@) Je
At !
-5 f Y @W0 —p@) e ) dn (3.2)
2 J,
where

f(0) = pu’ (1) + g(Ou(t) — (o).

Proof. Let u € C?([a, b],R) be a solution of (3.1). Taking the tempered fractional integral operator of

order a, with respect to i, Hgf"/’, to both sides of the FDE given in (3.1), we obtain from Theorem 2.1

_ e _ L d) WO -y@) (1 d\ .,
u(r) = e [(e u(e)|_ + W w<a>)( o0 dl)(e )|+ s a) €,

—At t
= [vewo-wore s
2 J,
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Since )
1 d
(lp,(l') Z,) (eltu(t))‘t:a = 09 k € {05 1}5
we get
) = y(@)’ oy et o1 _ir
u(t) = e'—— (w)%) G ”(”)La‘r@ f Y @OWO - w(@) e f(D)dr.

Using the condition u(b) = 0, one gets

1 d\Y
(l//,(l‘)a) (e/ltu(t))

Hence, we can conclude that

W (O)((b) — (1) eV f(1) dr.
r(a)@p(b) W(a ))f

—At
u(y = YD~ i) f W (OB — ()" e f(r) dr
(@) (W(b) — (@)

- [vowo -ser e mar

For the converse, we assume that u € C*([a, b], R) satisﬁes the fractional integral equation (3.2). From
Theorem 2.1, by applying the differential operator CD ¥ on both sides of (3.2), we obtain that

7w @) - w(@)" e f(r)dr
T(@)(W(b) - ¥(a))’

DM u(r) = (D (W@ =~ v@)) - £,

Since
D (o) - p@)) = ¢ - D WO - Y@’ =0,
one gets that
Dy u) = —f (),

proving that
DI u(r) + p(ud () + g(u(t) = (1),

as desired. O
4. Existence and uniqueness results

In this section, we establish results on the existence and uniqueness of solutions to problem (3.1). To
this end, we apply Krasnoselskii’s and Banach’s fixed-point theorems. Although Theorems 4.1 and 4.2
share the same hypotheses, the former establishes existence, while the latter guarantees existence and
uniqueness, avoiding repetition of calculations by relying on the arguments of the former.

In what follows, C?([a, b],R) is endowed with the norm defined by

llullc= = sup |u(®)] + sup |u'()| + sup |u”(2)].
t€la,b] t€la,b] t€la,b]

Equipped with this norm, C*([a, b], R) is a Banach space.
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4.1. Existence result via Krasnoselskii’s fixed-point theorem

Theorem 4.1. Let

A4:ggﬁmwuﬂm}amitv:ggﬁwvaWML

Define
e A(b—a) , w2t e X
= o U0 = @) 200+ 2+ ) - v@)
£2WQ + a)(1 + VWD) — v(@) + WP —a + 2)).
If

A-M<1,
then the FBVP (3.1) has a least one solution in C?([a, b], R).
Proof. From Theorem 3.1, we know that u € C*([a,b],R) is a solution of (3.1) if and only if u

satisfies (3.2). Let
N = max{[r(},
t€la,b]

and choose R such that
AN

1-AM’

R>

Define
Bg :={u € C*([a,b],R) : |lullc> < R}.

Clearly, Bg # 0, By is bounded, closed, and convex. We now define the operators  and Q on By as
follows:

—At 1
Pu) =~ f W@ — @) e (@) dr, @.1)
(@ J,
and . ( )2 .
e (Y(1) — Y(a) a-1
(Qu)(t) := f W (O)(W(b) — (1) eV f(1) dr, 4.2)
T(@)(y(b) — (@) Ja
where
f@) = p(Ou'(t) + g(t)u(t) — r@).
Let
A(b—a)
A= g W) - w<a))“‘2(<1 + A+ P)Wb) ~w(@)” +2aW (1 + D) - Y(@) +ala - 1>W2),
and
Ab-a) =2 2 2 5
Az 1= o W) - @) ((1 + A+ YW (b) — (@)’ +4W (1 + V(WD) — Y(a)) + 2W )

The proof will be carried out in several steps.
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Step 1: Let us prove that, for any u, v € Bg, Pu + Qv € Bg. First, we will prove that
[|Pullcz < Aj(MR + N).
Note that, for any 7 € [a, b], we have
lf@OI < 1p@I - 1’ O] + lgD)] - @] + [r()] < Mllullc2 + N < MR + N,

and
—Aa

Pool <t [ wEwo sy el
/l(%/)a)

o (MR ) f @O0 - w(@) dr
Al

(b-a)

< T+l )(MR+N)'(¢’(I9)—l//(a)) :

Observe that

de~t ! _
Puy() = ;(’ ) f OO - p(@) e fr) de

—%(a 40 f W (D) — () e f(7) dr.

A(b—a)
(MR 4 N) f VO - w(o) de
/l(b a) t

‘T )(a—l)W(MR+N) f (@) - () dr

-0 WO @)
< T )(MR+N)( —

In a similar manner, we get

Thus,
|(Puw) ()] <

+ W (b) — w(a)" ).

—/lt

Puy'(t) = - r( ) f R e e

At
(@ - D) f O - (D) 2 fo)dr

+

I(a)

—At
B (a - 1)(w"<r> f W (W0 — YD) e f(r) dr
a) ‘

+Y' () (@~ 2) f Y @)W — (@) et f(7) dT),

and so

2  A(b—a) _ @ A(b-a)

A%e (MR + N) (¥ (D) — y(a)) N 2e
['(a) @ [(a)

A(b—a) A(b—a)

a— l
o (MR + N)W(y(b) - y(a)) F(a)

(b—a)
< ¢ (az(‘“b) YO | (1 4 20 Wb) - wa)™
I'() a

+a — DWA(W(b) — y(@)" > |(MR + N).

(Pw)” (@] <

(MR + N)W(W(b) — ()"

(MR + N)(@ - YW (y(b) — p(@))*
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Then, we can conclude that

[Pullc: = sup [(Pu)®)] + sup |(Pu) ()] + sup |(Pu)”(1)]

te[a,bb] : tela,b] te[a,b]

A(b—a _ a

g 2 W0 @)
I'(a) a

+a = DW(y(b) - w(a))a_z)(MR +N)

A(b-a)
" T+
+2aW(1 + D (b) — ¥(a)) + ala - 1)W2)(MR +N),

+2W(1 + D)W (b) - y(@)""

((1+/1+

(W(b) - lﬂ(a))a_z((l + A+ ) (Y(b) - y(a))’

proving that
||?l/l||c2 < Al(MR + N)

Next, we prove that
IQullc2 < A2(MR + N).

Since

-a b
< r@ f W @Wb) - y() e If(m) dr

A(b=a)

()
A

(b—a)

(MR + N) f V@O0 - D) dr

< Fa T WO ~ @) MR + ),

(Quy ()] < (e‘”/l(lﬁ(b) — (@) + 26 W(Y(b) - lﬁ(a)))

e/lb

X
F@)(b) - (@)
(w(b) - w(a»"‘z(a(w(b) - U(@) +2W(b) - ww»)(MR +N)

b
(MR + N) f W @OWb) - y(@)" " dr

<
[a+1)

Ab-a)

" T+ 1)

(y(b) - lﬁ(a))a_l(ﬂ(l//(b) - y(a)) + 2W)(MR +N),
and

(Qu)" (D] < e‘”“(f(lﬂ(b) — (@)’ + 4AW(Y(b) - Y(@)) + 2W? + 2W(y(b) — tﬁ(a)))

W) — v )"
F(a/ +1)
A(b—a

(W(b) — (@)

(MR + N)

*T@+1)
><(ﬂz(l/'(b) —w(@) + (4AW + 2W)((b) - (@) + 2W2)(MR +N),
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we may conclude that
1Qullc2 < A2(MR + N).

Hence,

1Pu + Qullc2 < [|[Pullcz + |Qullc2 < (A + A2)(MR + N).

Since A = A + A,, we get
|Pu + Qul|c» < A(MR + N) <R,

and therefore, Pu + Qv € By.

Step 2: Now, we show that % is a contraction. Let u,v € Bg. Since
[Pu—Pvllcz = sup [(Pu)(t) — (Pv)(®)] + sup |(Pu) (t) — (Pv)' (O] + sup [(Pu)’(t) — (Pv)" ()l

t€la,b] t€la,b] t€la,b]
< MA||lu — V|2

and MA, < 1, we conclude that  is a contraction.

Step 3: In the following, we prove that Q is continuous and Q(Bg) is a relatively compact subset of
C?%([a,b),R).

Clearly, Q is continuous. To prove that Q(Bg) is relatively compact, we apply the Arzela—Ascoli
theorem. Since, for any u € By,

1Qullc: < Ay (MR + N),

we may conclude that Q(Bg) is uniformly bounded.
Let us prove that Q(Bg) is uniformly equicontinuous. Let u € Bg and t,, 1, € [a, b] such that ¢, > #,.
Observe that

[(Qu)(12) — (Qu)(11)] <

which goes to 0 as 1, — ;.
Since

e (1) — (@)’ — e (1) ~ Y(@)]
INa+1)

(W(b) — ()" e (MR + N),

(QuY (1) = @Y (1) < | = A€ (Y(t2) = (@)’ + 267 (W(12) — Y@ (1)
+Ae™ M () = (@)’ — 267 (Y1) — Y@/ (1))

) - W)
Ta+1)

(MR + N),

we conclude that (Qu)'(t,) — (Qu)'(t;) = 0 as t, — ;.
Similarly, it can be proved that

e (y(b) — Y(a)™”

Q" (1) = @ (1)) < [G(1) = Glay)| - — = —— (MR + N),

where

G(t) = e (W) — Y(@)’ — 4AP(@) — @)/ (1) + 2 (1)) + 2(Y(1) — Y@y (1)).

Clearly, when t, — 1, we get (Qu)" (t,)—(Qu)" (t;) — 0. Hence, Q(Bg) is uniformly equicontinuous.
Step 4: Applying Krasnoselskii’s fixed-point theorem, we may conclude that there exists at least
one z € By such that z = Pz + Qz, proving that the FBVP (3.1) has a least one solution. O
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4.2. Existence and uniqueness result via Banach’s fixed-point theorem

Here, we establish the existence and uniqueness of a solution to problem (3.1), by applying Banach’s
fixed-point theorem.

Theorem 4.2. Under the assumptions of Theorem 4.1, the FBVP (3.1) admits a unique solution in the
set
Bg := {u € C*([a,b],R) : |lullc2 < R}

for some constant R > 0.

Proof. Define again
N := max{|r(1)l},
refa,b]

and consider the set
Bg := {u € C*([a,b],R) : |[ullc> < R},
where
AN

R> .
1 -AM

Define the operator 7 : By — C2([a, b],R) by

-t _ 2 b
(Tuyp = S PO Y@ [ v - vy et s
(@) (y(b) — Y(a))” Ja
-u ot
R f V@O0~ @)@ dr, (43)
@) Ja
where
Jf@) = p(Ou' (1) + g(Ou(t) — r().
Note that

(Tu)(@) = Pu)®) + (Qu)(©),

where # and Q are defined in (4.1) and (4.2), respectively. We now show that 7 (Bz) € Bg. Given
u € Bg, by using the calculations from the proof of Theorem 4.1, we obtain

T ulle2 < [|Pulle> + |Qullc> < A(MR + N).

Hence,
17 ullc <R

by the definition of R. Therefore, the operator 7~ : B — By is well-defined.
Next, we prove that 7~ is a contraction.
Similarly, using the calculations from the proof of Theorem 4.1, we obtain for u,v € By

I7u =T Vlcz: < AMlu = llca.

Since AM < 1, this proves that 7 is a contraction. By Banach’s fixed-point theorem, we conclude the
proof. O
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5. Stability analysis

This section is dedicated to establishing sufficient conditions for Ulam—Hyers stability, generalized
Ulam—Hyers stability, and Ulam—Hyers—Rassias stability of the FBVP (3.1). The following definitions
are adapted from [5].

Definition 5.1. (Ulam—Hyers stability) FBVP (3.1) is said to exhibit Ulam—Hyers stability if there

exists a constant C > 0 such that for any € > 0, whenever a function v € C %([a, b], R) satisfies

{ [CD5 Y v(0) + pe)' (1) + qov(®) — r(D)| < €, 1€ [a,b],

v(a) =V'(a) =v(b) = 0, (5.1

there exists a solution u € C([a, b], R) of Eq (3.1) fulfilling the condition
llu — V|2 < Ce.

Definition 5.2. (Generalized Ulam—Hyers stability) FBVP (3.1) is generalized Ulam—Hyers stable if
there exists a continuous function ¢ : Rj — R that satisfies ¢(0) = 0, such that for any € > 0 and for

every function v € C?([a, b], R) meeting the condition (5.1), there exists a solution u € C*([a, b],R) of
Eq (3.1) for which

llu = vlle2 < ¢(e).

Definition 5.3. (Ulam-Hyers—Rassias stability) FBVP (3.1) is Ulam—Hyers—Rassias stable with
respect to a function ¢ : [a,b] — R7 if there exists a constant C, > 0 such that for every € > 0,
if a function v € C*([a, b], R) satisfies

D v(r) + pov' (1) + g(6)v(e) — r(1)| < eg(t), 1 € [a, D], 5.2)
v(a) =V'(a) = v(b) =0, )

then there exists a solution u € C?([a, b], R) of Eq (3.1) ensuring that
llu —vlic2 < Cpeg(t), 1 € [a,bl.
For what follows, we use the symbols M and A as defined in Theorem 4.2.

Theorem 5.1. If A- M < 1, then the FBVP (3.1) is Ulam-Hyers stable.

Proof. By Theorem 4.2, the problem (3.1) has a unique solution, which we denote by u. Also, observe
that v € C?([a, b],R) is a solution of (5.1) if and only if, for any € > 0, there exists & € C*([a, b],R)
satisfying |h(?)| < € for all ¢ € [a, b], such that

h(t) = D3V + pe)V' () + q(Ov(e) — (1), t € [a, b],
v(a) =V'(a) = v(b) = 0.

Recalling the operator 7 : B — Bg, defined in (4.3), and proceeding as in Theorem 3.1, we obtain
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-t _ 2 b
= Fe( )((Z((Z) ‘”w((“);)z f W (D)D) — ()" e (p(r)V (1) + g()v(x) - r(1) = h(7)) dT
(04 - a a

e—/lt

e

v(t)

f W (@) - () " (p(V (1) + (1) = (1) — h(7)) d. (5.3)

By Theorem 2.4, since 7 : B — Bg is a contraction mapping with contraction constant AM, it follows
that

ll = V|2 < 1TV = Vllca. (5.4)

1-AM

Moreover, since v satisfies Eq (5.3), we obtain

TV =vllcza = sup [(Tv)() = v(®)| + sup [(Tv) () =V (D + sup [(Tv)"(t) = v’ (D)

t€la,b] tela,b] tela,b]

At _ 2 b
WD [y oyt - wie) e i) dr
F@W(b) - W@) o

—At !
- f W @OWE — ()" e h(r) dT
(@) Ja

< su
tela,b]

r
e—/lt 2
+ su — AW(1) — ¥(a))” + 20" (O (1) — Y(a))
rela.b) | T(a) (Y (D) — w(a))Z[ ]

/le—/lt
I'(a)

b t
X f W (@ W(b) — w(1) eTh(r) dr + f W (@O — y(0) e h(r) dr

e o= Y@
[(a)

f W (@) - p() e h(r) dr

—=At

+ sup |20 - w(@)” - 44y OW(@) - Y(@) + 20 (1))

T(@)(W(b) — ¥(a))*
b
+ 20 (D(W(1) - Y(@)) f W (@O(W(b) — y(1)" (1) dr

et [ ) a1 ar
s f WD) - w(@) R dr
(@) Ja
2de Y (a — DY/ (1)
I'la)
At 7 d
_° (O‘F( DIAY) f W (D)W@) — ¥(0)* 2eVh(t) dt
@) a

_eMa = D@ =)' ®)
I'l@)

f W (@) - p(0) e h(r) dr

f W (@OW) - ()" e h(r) dr

< Age,

where we use the fact that |i(¢)| < €, for all ¢ € [a, b] and follow similar calculations as in the proof of
Theorem 4.2.
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In conclusion, we have

e =Vie2 < T— 7€

which completes the proof. O

Corollary 5.1. If A- M < 1, then the problem (3.1) is generalized Ulam—Hyers Stable.

A

Proof. This is an immediate consequence of Theorem 5.1, by choosing ¢(€) = =7

€. O

Theorem 5.2. Assume that A - M < 1. Let u be the unique solution of the problem (3.1), and let v
satisfy Eq (5.2). Suppose that the function ¢, as given in Definition 5.3, satisfies the following three
conditions:

(1) 1% ¢(b) < ¢(1), for all 7 € [a, b];
(2) 1" ¢(b) < ¢(1), for all ¢ € [a, b]; and
(3) ]I“ Y ab) < ¢(r), for all £ € [a, b].

Then, the FBVP (3.1) is Ulam—Hyers—Rassias stable with respect to the function ¢.
Proof. Since v satisfies (5.2), for any € > 0, there exists & € C*([a, b],R) such that:

(1) |h(?)| < €p(r) for all ¢ € [a, b];
(2) h(t) = C]D“Mv(t) + p()WV' (1) + g(t)v(t) — r(¢) for all ¢ € [a, b]; and
3) v(a) =Vv'(a)=v(b) =0

Thus,
AW D) — (@)’ + 2W(W(b) - ¥(a))

(W (b) - y(a))’
2 (b) — Y(@))’ + WA + 2) (W (b) — Y(a)) + 2W>

17V = Vlie2 < 2l d(b) + € 1% ¢(b)

+ eAlS M p(b) + eWIT Y p(b) + € 15 $(b)
W(b) — ¥(a))’
+ €17 d(b) + eWRA + DIZ " o(b) + eW 12> ¢(b)
(212 20+ W24 2W + 2AW + 2)(y(b) — ¥(a))* + AW + D (b) — ¥(a)) + 2W? o)

(W (b) - y(a))’

From (5.4), we conclude that
||I/l - V||C2 < C¢6¢(t)’ re [av b]9

where
c _ 22 + 20+ W2+ 2W + 2AW + 2)(Y(b) — ¥(a))* + 4W(L + D)(Y(b) — ¥(a)) + 2W?2
’ (1= AM)Y(b) - Y(@)’ '
This concludes the proof. O
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6. Example

Consider the following FBVP:

0+

M) + Dy (1) + 2Oyt = 1+ 3, t€(0,1],
u(0) =u'(1) = u(0) = 0.

The fractional order is @ = 2.5, the parameter is A = 0.1, and the kernel ¥ is the function ¢ : [0, 1] = R

given by ¥(t) = arctan(¢). For this problem, the values of M and W, as defined in Theorem 4.2, are

M = 1/5and W = 1. Consequently, the respective value of A is A ~ 4.3897, and since the condition

AM < 1 holds, the existence and uniqueness of the solution is guaranteed.

Furthermore, the conditions of Theorem 5.1 and Corollary 5.1 are satisfied, ensuring both Ulam—
Hyers stability and generalized Ulam—Hyers stability of the FBVP. Regarding Theorem 5.2, consider
the function ¢(r) = 1+ 1/(t + 1) for ¢ € [0, 1]. Since

L) ~ 02940, 17""p(1) ~0.8952, and I37"g(1) ~ 1.4385,
the remaining assumptions of the theorem are satisfied. Consequently, the FBVP is Ulam—Hyers—
Rassias stable with respect to the function ¢.

Remark 6.1. The values of the parameters a and 4, as well as the choice of the kernel ¥, may determine
whether the obtained results are applicable. For instance, in the previous example, taking 4 = 1 yields
A =~ 17.0985, and therefore the condition AM < 1 fails. As another illustration, keeping & = 2.5 and
A = 0.1 but choosing the kernel (¢) = (¢ + 1)* gives W = 4 and A ~ 132.9266. In this case as well, the
hypothesis of Theorem 4.2 is not satisfied.

7. Conclusions

In this study, we extend previous work on FBVPs by introducing a generalized form of the
derivative. We investigate an FBVP involving a tempered fractional derivative of order between 2
and 3, with respect to a smooth kernel. We analyze the existence, uniqueness, and stability of solutions
to this problem. By utilizing Krasnoselskii’s and Banach’s fixed-point theorems, we derive conditions
that guarantee the existence and uniqueness of solutions. Furthermore, we establish various forms of

stability for the FBVP, including Ulam—Hyers stability, generalized Ulam—Hyers stability, and Ulam—
Hyers—Rassias stability.
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