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periodic, or in other forms. The results collected are validated and shown in three-dimensional and
two-dimensional graphs. The utilization of fractional derivatives has yielded results that are more
contemporary than those presently found in the literature. The findings indicate that the fractional
variant of the Akbota equation enhances modeling precision for nonlinear phenomena in optical
fibers, rendering it an essential instrument for improving fiber optic networks. Consequently, the
derived answers are beneficial for subsequent investigations of this model. The utilized methodologies
yield a variety of solutions. In conclusion, the applied techniques are straightforward, effective, and
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reported for this model.
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1. Introduction

In physics and other scientific fields such as differential geometry of curves and surfaces, fractional
partial differential equations are essential. Nonlinear fractional partial differential equations (NFPDEs)
represent several realistic models of phenomena in various sectors of applications like mathematical
physics [1], science and engineering [2], biology [3], financial modeling [4], and fluid dynamics [5,6].
Investigating these NFPDEs is an extremely challenging task. That being said, there exist a subset
of NFPDEs known as the integrable equations. Different methods can be used to solve these
integrable NFPDEs and produce precise analytical answers for soliton problems. These include
the extended sinh-Gordon equation expansion technique [7,8], the generalized exponential rational
function technique [9,10], the unified technique [11], the (G′/G2)-expansion technique [12,13], the
homotopy perturbation transform method [14], bifurcation analysis [15], the explicit finite difference
method [16], the local fractional homotopy method [17], and many more [18–20]. It was discovered
that the so-called gauge equivalences provide a relationship between some integrable equations. A
system that can be integrated is the Akbota equation (AE), represented as follows [21–23]:

ιϕt + αϕxx + βϕxt + γψϕ = 0,
ψx + 2ϵ(α|ϕ|2x + β|ϕ|

2
t ) = 0, (1.1)

where ψ = ψ(x, t) is a real function, ϕ = ϕ(x, t) is a complex function, and ϵ = 1. Arbitrary constants
α, β, and γ are also present. The system’s equivalent gauge counterpart (1.1) takes the following form:

ιDρ
t ϕ + αD2ρ

xxϕ + βD2ρ
xt ϕ + γψϕ = 0,

Dρ
xψ + 2ϵ(αDρ

x|ϕ|
2 + βDρ

t |ϕ|
2) = 0, (1.2)

where Dρ
x denotes the conformable fractional derivative. The conformable fractional derivative is

introduced to capture memory and nonlocal effects in the Akbota model [24,25], offering a more
realistic framework for describing nonlinear wave propagation in optical fiber systems. Equation (1.2)
is a fractional generalization of the traditional Akbota system (1.1) and is proposed in order to
include the effects of memory and nonlocal interactions through the use of the conformable fractional
derivative. The fact that the model includes the fractional derivative allows it to provide more
sophisticated dynamical behaviors that often occur in real systems and cannot be addressed well by
integer-order models.

We see that introducing the parameter α might look artificial on the surface; however, it plays an
essential role in making the system more adaptive and closer to physical processes. In particular,
the adaptable parameter α enables the model to control the extent of memory effects, which are very
significant within the framework of complex systems like telecommunications and hydrodynamics.
When α = 0, Eq (1.2) becomes the Kuralay equation, a standard model in its own right. In addition,
letting β = 0 retrieves the familiar nonlinear Schrödinger equation, commonly used to investigate
soliton dynamics and wave propagation.

The versatility of Eq (1.2) is that it can interpolate smoothly between various physical models
based on the values of α and β, thus it is a versatile tool for modeling a variety of phenomena.
Its use of fractional derivatives provides a more powerful framework for investigating complex,
memory-dependent systems, yielding insights that are especially useful for applications in fields like
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telecommunications, nonlinear optics, and fluid dynamics. The study of the nonlinear phenomena in
magnets benefits greatly from the use of the Akbota equation, a Heisenberg ferromagnet-type equation.
Analytical solutions are important methodologies in both science research and engineering practice. In
addition to developing our understanding of the natural world, analytical solutions also serve to provide
a fundamental theoretical basis, which can result in correct control and prediction for systems. With
the fact that the Akbota equation appears in a plethora of various areas of science, analytical solutions
play a necessary part in understanding the model in all aspects, since analytical solutions permit us
to fully comprehend the underlying behavior of the system that the equations model. Their concise
and unambiguous nature of representation of the interactions between the variables and the parameters
facilitates a better comprehension of the underlying concepts controlling the system.

Researchers focused on the Akbota equation recently (2024) and attempted to talk about a few
important facets of the governing model [26,27]. Using Jacobi elliptic functions, the produced dark
and brilliant solutions were able to display stability and first-order conserved vectors. There were still,
however, a number of important and widespread forms of solitons lacking in the literature. Therefore,
this study used the generalized analytical methodologies [28–30] to carry out and establish various
kinds of solitons in order to fill this gap. These analytical methods produce multiple diverse families
of solutions and are dependent on various differential equations.

This article uses the modified extended direct algebraic method (mEDAM) and new Kudryashov
method to investigate solutions of soliton waves of the under examined model. Notably, there is not
a single investigation like this one in the body of current literature. Applying this technique produces
a wide range of solutions, including trigonometric, hyperbolic, singular, bright, singular periodic, and
dark solutions. Several models have been solved in the literature to show how effective this method is.

This study aims to elucidate the impact of the conformable fractional derivative on the space-time
fractional Akbota equation solutions obtained through the use of the mEDAM and new Kudryashov
method. The fact that the conformable fractional derivative satisfies the requirements of both fractional
order and integer derivatives gives it significance. In this research, we have used the conformable
fractional form of the Akbota equation system, which is a more realistic model for real systems with
memory effects and nonlocal behaviors, like those in telecommunications. The conformable fractional
derivative, a new generalization of the classical derivative, has several benefits over conventional
integer-order derivatives. Unlike the usual fractional derivative, which brings about considerable
complication in computation and interpretation, the conformable fractional derivative preserves more
intuitive features without sacrificing the main features of fractional dynamics. It is thus particularly
useful for modeling processes such as signal dispersion and attenuation in telecommunications, where
wave behavior over large distances entails long-range interactions not captured by integer-order
derivatives. Using the conformable fractional derivative, we can then better model these nonlocal
effects and thus gain a better understanding of wave propagation and communication system dynamics.
Using this method gives a closer representation of physical systems as they exist in the real world, with
the possibility of improving the efficiency and reliability of telecommunication networks.

We can see some basic relationships between fractional nonlinear partial differential equations
(FNPDEs) and other simple nonlinear partial differential equations by using our scheme. It has
been discovered that several types of precise wave solutions of some complex FNPDEs can be
readily produced with the aid of straightforward schemes and solvable ordinary differential equations.
Partial differential equations with nonlinearities are solved using this method. To identify the several
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categories of precise wave solutions, this approach is suggested. We obtain solutions that are extremely
near to the numerical solutions by employing the conformable fractional derivative. Since the
conformable fractional derivative and the employed technique are novel for the model in question, our
obtained solutions outperform the current ones. 2D graphs also illustrate the influence of conformable
fractional derivatives.

While several studies have investigated soliton solutions in nonlinear classical systems, there has
been limited research focusing on the fractional form of the Akbota equation with conformable
derivatives. Additionally, the majority of works that exist have not conducted an extensive study on
different soliton behaviors, such as periodic-singular and breather-type configurations. To fill this gap,
our research presents a fractional generalization of the Akbota system and applies both traditional
and newly developed analytical techniques to obtain a rich variety of exact solutions. A thorough
comparison between various orders of fractions has been made to demonstrate how the fractional
parameter affects the shape, amplitude, and propagation behavior of the soliton solutions. In addition,
the stability of some solutions has been examined to ensure their physical significance. The innovation
of our methodology is not just in the conformable fractional modeling but also in the variety and
physical meaning of the resulting soliton structures such as bright, dark, periodic-singular, and breather
solitons, which provide new information about nonlinear wave propagation and possible applications
in telecommunication systems and nonlinear optical media.

The structure of this article is as follows. The next section describes the conformable fractional
derivative. Section 3 offers a synopsis of the suggested integration techniques. Section 4 presents the
retrieved solutions of the proposed models. Section 5 presents the results and discussion. Ultimately,
Section 6 brings the work to a close.

2. Conformable fractional derivative and its properties

The conformable fractional derivative is a novel, interesting definition of the fractional derivative
that was just developed by writers Khalil et al. [31]. The Leibniz rule and chain rule are both followed
by this derivative, which is well-behaved. Here, we define the conformable fractional derivative and
list a few helpful characteristics of this brand-new derivative [32].
Definition 2.1. Given a function f : (0,∞) → R, the conformable fractional derivative of f with
order α, 0 < α ≤ 1, can be calculated as

Dα f (t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

, ∀ t > 0.

Here is a list of some beneficial attributes:
Properties 2.1.

• Linearity: Dα(a f + bg) = a(Dα f ) + b(Dαg), ∀ a, b ∈ R.
• Leibniz rule: Dα( f .g) = f Dαg + gDα f .
• Chain rule: Let f : (0,∞) → R be differentiable and α-differentiable, and g be a differentiable

function defined in the range of f .

Dα( f ◦ g)(t) = t1−αg′(t) f ′(g(t)).

Furthermore, the ensuing guidelines apply.
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• Dα(tp) = ptp−α, f or all p ∈ R.
• Dα( f

g ) = gDα f− f Dαg
g2 .

• Dα(c) = 0, where f (t) = c is a constant.
• If f is differentiable, then

Dα f (t) = t1−αd f
dt
. (2.1)

3. Methodologies

3.1. Modified extended direct algebraic method

The modified EDAM approach is described in this section. Examine the fractional partial
differential equation represented by [33–36]

E(u, ∂αt u, ∂βθ1
u, ∂γθ2

u, ...) = 0, 0 < α, β, γ ≤ 1, (3.1)

where u is a function of θ1, θ2, ..., θr and t.
The following are the steps needed to solve Eq (3.1):

Step 1. The variables u(θ1, θ2, θ3, ..., θr) are first transformed into U(ξ), where ξ might be given in a
number of ways. This transformation converts Eq (3.1) into a nonlinear ODE of the following form:

G(U,U
′

,U
′′

, ...) = 0, (3.2)

when there are derivatives of U with regard to ξ in Eq (3.2). The constant(s) of integration can be
obtained by integrating Eq (3.2) one or more times.
Step 2. Next, we will assume that the solution to Eq (3.2) is as follows:

U(ξ) =
Θ∑

j=−Θ

f jH j(ξ), (3.3)

where f j ( j = −Θ, ..., 0, 1, 2, ...,Θ) are constants and H(ξ) satisfies the ODE of the form

H
′

(ξ) = Ln(C)(κ + µH(ξ) + βH2(ξ)). (3.4)

It should be noted that while κ, µ, and β stay constant throughout the study, C assumes a value other
than 0 and 1.
Step 3. The positive integer Θ supplied in Eq (3.3) is obtained by establishing the homogeneous
balance between the highest nonlinear term and the highest-order derivative in Eq (3.2). More
specifically, the two provided formulas [37] can be used to estimate the balance number:

D(
dkU
dξk ) = Θ + k, and D(U l(

dkU
dξk ) j) = Θl + j(k + Θ),

where D stands for the degree of U(ξ) as D[U(ξ)] = Θ and j, k, and l are positive integers.
Step 4. Next, we substitute Eq (3.3) into Eq (3.2) or the resulting equation from integrating Eq (3.2),
and we set the h(ξ) terms in the same order. After setting all of the coefficients of the next polynomial
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to zero, an algebraic system of equations for f j ( j = −Θ, ..., 0, 1, 2, ...,Θ) and extra parameters are
produced.
Step 5. We utilize Mathematica to solve this set of algebraic equations.
Step 6. Next, by figuring out the unknown values and adding them to Eq (3.3) along with H(ξ)
(Eq (3.4) solution), the analytical answers to Eq (3.3) are found. The following families of solutions
can be generated by applying the general solution of Eq (3.4).
(1) If µ2 − 4κβ < 0 and β , 0, then

H1(ξ) = −
µ

2β
+

√
−(µ2 − 4κβ)

2β
tanC(

√
−(µ2 − 4κβ)

2
ξ),

H2(ξ) = −
µ

2β
−

√
−(µ2 − 4κβ)

2β
cotC(

√
−(µ2 − 4κβ)

2
ξ),

H3(ξ) = −
µ

2β
+

√
−(µ2 − 4κβ)

2β
(tanC(

√
−(µ2 − 4κβ)ξ) ±

√
pqsecC(

√
−(µ2 − 4κβ)ξ)),

H4(ξ) = −
µ

2β
−

√
−(µ2 − 4κβ)

2β
(cotC(

√
−(µ2 − 4κβ)ξ) ±

√
pqcscC(

√
−(µ2 − 4κβ)ξ)),

H5(ξ) = −
µ

2β
+

√
−(µ2 − 4κβ)

4β
(tanC(

√
−(µ2 − 4κβ)

4
ξ) − cotC

(
√
−(µ2 − 4κ)β)

4
ξ)).

(2) If µ2 − 4κβ > 0 and β , 0, then

H6(ξ) = −
µ

2β
−

√
(µ2 − 4κβ)

2β
tanhC(

√
(µ2 − 4κβ)

2
ξ),

H7(ξ) = −
µ

2β
−

√
(µ2 − 4κβ)

2β
cothC(

√
(µ2 − 4κβ)

2
ξ),

H8(ξ) = −
µ

2β
−

√
µ2 − 4κβ

2β
(tanhC(

√
µ2 − 4κβξ) ± ι

√
pqsechC(

√
µ2 − 4κβ)),

H9(ξ) = −
µ

2β
−

√
(µ2 − 4κβ)

2β
(cothC(

√
(µ2 − 4κβ)ξ) ±

√
pqcschC(

√
(µ2 − 4κβ)ξ)),

H10(ξ) = −
µ

2β
−

√
(µ2 − 4κβ)

4β
(tanhC(

√
(µ2 − 4κβ)

4
ξ) + cothC(

(
√

(µ2 − 4κβ))
4

ξ)).

(3) If κβ > 0 and µ = 0, then

H11(ξ) =
√
κ

β
tanC(

√
κβξ),

H12(ξ) = −
√
κ

β
cotC(

√
κβξ),

H13(ξ) =
√
κ

β
(tanC(2

√
κβξ) ±

√
pqsecC(2

√
κβξ)),

H14(ξ) = −
√
κ

β
(cotC(2

√
κβξ) ±

√
pqcscC(2

√
κβξ)),
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H15(ξ) =
1
2

√
κ

β
(tanC(

√
κβ

2
ξ) − cotC(

√
κβ

2
ξ)).

(4) If κβ < 0 and µ = 0, then

H16(ξ) = −
√
−
κ

β
tanhC(

√
−κβξ),

H17(ξ) = −
√
−
κ

β
cothC(

√
−κβξ),

H18(ξ) = −
√
−
κ

β
(tanhC(2

√
−κβξ) ± ι

√
pqsechC(2

√
−κβξ)),

H19(ξ) = −
√
−
κ

β
(cothC(2

√
−κβξ) ±

√
pqcschC(2

√
−κβξ)),

H20(ξ) = −
1
2

√
−
κ

β
(tanhC(

√
−κβ

2
ξ) + cothC(

√
−κβ

2
ξ)).

(5) If µ = 0 and β = κ, then

H21(ξ) = tanC(κξ),
H22(ξ) = −cotC(κξ),
H23(ξ) = tanC(2κξ) ±

√
pqsecC(2κξ),

H24(ξ) = −cotC(2κξ) ±
√

pqcscC(2κξ),

H25(ξ) =
1
2

(tanC(
κ

2
ξ) − cotC(

κ

2
ξ)).

(6) If µ = 0 and β = −κ, then

H26(ξ) = −tanhC(κξ),
H27(ξ) = −cothC(κξ),
H28(ξ) = −tanhC(2κξ) ± ι

√
pqsechC(2κξ),

H29(ξ) = −cothC(2κξ) ±
√

pqcschC(2κξ),

H30(ξ) = −
1
2

(tanhC(
κ

2
ξ) + cothC(

κ

2
ξ)).

(7) If µ2 = 4κβ, then

H31(ξ) =
−2κ(µξLnC + 2)

µ2ξLnC
.

(8) If µ = λ, κ = mλ (m , 0), and β = 0, then

H32(ξ) = Cλξ − m.

(9) If µ = β = 0, then

H33(ξ) = κξLnC.
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(10) If µ = κ = 0, then

H34(ξ) =
−1

βξLnC
.

(11) If κ = 0 and µ , 0, then

H35(ξ) = −
pµ

β(coshC(µξ) − sinhC(µξ) + p)
,

H36(ξ) = −
µ(sinhC(µξ) + coshC(µξ))

β(sinhC(µξ) + coshC(µξ) + q)
.

(12) If µ = λ, β = mλ (m , 0), and κ = 0, then

H37(ξ) =
pCλξ

q − mpCλξ
.

In the above cases (1)–(12), p, q > 0 are defined as deformation parameters. The generalized
hyperbolic and triangular functions are defined as follows:

sinhC(ξ) =
pCξ − qC−ξ

2
, coshC(ξ) =

pCξ + qC−ξ

2
,

tanhC(ξ) =
pCξ − qC−ξ

pCξ + qC−ξ
, cothC(ξ) =

pCξ + qC−ξ

pCξ − qC−ξ
,

sechC(ξ) =
2

pCξ + qC−ξ
, cschC(ξ) =

2
pCξ − qC−ξ

,

sinC(ξ) =
pCιξ − qC−ιξ

2ι
, cosC(ξ) =

pCιξ + qC−ιξ

2
,

tanC(ξ) = −ι
pCιξ − qC−ιξ

pCιξ + qC−ιξ
, cotC(ξ) = ι

pCιξ + qC−ιξ

pCιξ − qC−ιξ
,

secC(ξ) =
2

pCιξ + qC−ιξ
, cscC(ξ) =

2ι
pCιξ − qC−ιξ

.

3.2. New Kudryashov method

Typically, Kudryashov approaches utilize the logistic function to examine the analytical solutions
of NPDEs [38–40]. However, the Kudryashov approaches, which depend on the logistic function,
prove inadequate in producing optical soliton solutions due to the distinctive structure of nonlinear
partial differential equations (NPDEs) introduced by the extended Schrödinger equations. Therefore,
in this investigation, we propose a novel technique based on the Kudryashov approach. This method
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employs a distinct function intentionally designed to effectively handle the intricacies and prerequisites
associated with deriving optical soliton solutions. The novel approach relies on this function [41]:

H(ξ) =
2νB

B2eνσξ ∓ meνσξ
, (3.5)

and the hyperbolic form is

H(ξ) =
2νB

(B2 ∓ m)cosh(σξ) + (B2 ± m)sinh(σξ)
, (3.6)

where ν = ∓1, B,m are constants, and H(ξ) satisfies the following equation:

(
dH(ξ)

dξ
)2 − σ2H2(ξ)(1 ± mH2(ξ)) = 0. (3.7)

The solutions provided by the current approach represent the following series solution for the analyzed
model:

U(ξ) =
Θ∑

j=0

f jH j(ξ), fΘ , 0. (3.8)

The values f0, f1, . . . are the unknowns and Θ is the balancing value.

4. Mathematical analysis of the controlling model

Take into account the traveling wave transformations:

ϕ(x, t) = U(η)eι(−kx+ωt), ψ(x, t) = V(η), (4.1)

where η = xρ
ρ
− k2

tρ
ρ

, replacing transformation Eq (4.1) with Eq (1.2) and dividing the real and
imaginary parts:

(α − k2δ)U
′′

+ (−ω − αk2 + δkω + γV)U = 0, (4.2)
(−k2 − 2αk + δkk2 + δω)U

′

= 0, (4.3)
V
′

− 2ϵ(2αUU
′

− 2δk2UU
′

) = 0. (4.4)

From Eq (4.3), we get

ω =
k2 + 2αk − δkk2

δ
. (4.5)

Integrating Eq (4.4), we obtain

V = 2ϵ(α − δk2)U2. (4.6)

Equations (4.5) and (4.6) are substituted into Eq (4.2), yielding the following ODE:

δ(α − k2δ)U
′′

+ (−k2 + k(−2 + δk)(α − k2δ))U + 2δγϵ(α − k2δ)U3 = 0, (4.7)

where (α − k2δ) , 0. Now, from the balancing condition on Eq (4.7) between the highest-order
derivative term U

′′

with the highest-power nonlinear term U3, Θ + 2 = 3Θ =⇒ Θ = 1.
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4.1. Application of mEDAM

Put Θ = 1 in Eq (3.3) in order to use mEDAM to solve the NODE in Eq (4.8) that is produced from
the fractional Akbota equation. Consequently, we have

U(η) = c−1H−1(η) + c0 + c1H(η). (4.8)

By replacing the expression Eq (4.8) into Eq (4.7) and setting the coefficients of U(η) equal to zero,
we derive a set of algebraic equations.

(H(η))0 : (βδµLn[A]2c−1(α − δk2) + 2γδϵc3
0(α − δk2) + δµχLn[A]2c1(α − δk2)

+12γδϵc−1c0c1(α − δk2) + c0(k2 + k(−2 + kδ)(α] − δ]k2))) = 0,
(H(η))−3 : (2δχ2Ln[A]2c−1(α − δk2) + 2γδϵc3

−1(α − δk2)) = 0,
(H(η))−2 : (3δµχLn[A]2c−1(α − δ]k2) + 6γδϵ]c2

−1c0(α − δk2)) = 0,
(H(η))−1 : (δµ]2Ln[A]2c−1(α − δk2) + 2βδχLn[A]2c−1(α] − δk2) + 6γδϵc−1c2

0(α − δk2)
+6γδϵc2

−1c1(α − δk2) + c−1(−k2 + k(−2 + kδ)(α − δk2))) = 0,
(H(η))1 : (δµ2Ln[A]2c1(α − δk2) + 2βδχLn[A]2c1(α − δk2) + 6γδϵc2

0c1(α − δk2)
+6γδϵc−1c2

1(α − δk2 + c1(−k2 + k(−2 + kδ)(α − δk2))) = 0,
(H(η))2 : (3βδµLn[A]2c1(α − δk2) + 6γδϵc0c2

1(α − δk2)) = 0,
(H(η))3 : (2β2δLn[A]2c1(α − δk2) + 2γδϵc3

1(α − δk2)) = 0.

By solving this system, we obtain two distinct cases of solutions:
Case 1.

c0 = c0, c1 =
2βc0

µ
, c−1 = 0, ϵ =

µ2(Ln(C))2

4βc2
0

, α =
(2(1 − 2δk(2 − δk)) − δ2Ln(C)2M)k2

2k(δk − 2) − δLn(C)2M
. (4.9)

Case 2.

c0 = c0, c1 = 0, c−1 =
2κc0

µ
, ϵ =

µ2(Ln(C))2

4βc2
0

, α =
(2(1 − 2δk(2 − δk)) − δ2Ln(C)2M)k2

2k(δk − 2) − δLn(C)2M
, (4.10)

where M = µ2 − 4κβ.
Considering Case 1, the following families of solutions result:

Family 1. When M < 0 and β , 0, then

U1(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

tanC(

√
−M
2

η)]. (4.11)

The following solitary wave solutions for (1.2) are obtained with the help of (4.1) and (4.6):

ϕ1(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

tanC(

√
−M
2

η)])eι(−kx+ωt), (4.12)

and

ψ1(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

tanC(

√
−M
2

η)])2, (4.13)
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U2(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

cotC(

√
−M
2

η)]. (4.14)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ2(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

cotC(

√
−M
2

η)])eι(−kx+ωt), (4.15)

and

ψ2(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

cotC(

√
−M
2

η)])2, (4.16)

U3(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

(tanC(
√
−Mη) ±

√
pqsecC(

√
−Mη))]. (4.17)

The following solitary wave solutions for (1.2) are obtained with the help of (4.1) and (4.6):

ϕ3(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

(tanC(
√
−Mη) ±

√
pqsecC(

√
−Mη))])eι(−kx+ωt), (4.18)

and

ψ3(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

(tanC(
√
−Mη) ±

√
pqsecC(

√
−Mη))])2, (4.19)

U4(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

(cotC(
√
−Mη) ±

√
pqcscC(

√
−Mη))]. (4.20)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ4(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

(cotC(
√
−Mη) ±

√
pqcscC(

√
−Mη))])eι(−kx+ωt), (4.21)

and

ψ4(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
−M
2β

(cotC(
√
−Mη) ±

√
pqcscC(

√
−Mη))])2, (4.22)

U5(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
−M
4β

(tanC(

√
−M
4

η) − cotC(

√
−M
4

η))]. (4.23)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ5(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
−M
4β

(tanC(

√
−M
4

η) − cotC(

√
−M
4

η))])eι(−kx+ωt), (4.24)
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and

ψ5(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
−M
4β

(tanC(

√
−M
4

η) − cotC(

√
−M
4

η))])2. (4.25)

All the solutions of Family 1 are stable under the condition M < 0, ensuring their physical relevance
and stability.
Family 2. When M > 0 and β , 0, then

U6(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
tanhC(

√
M

2
η)]. (4.26)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ6(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
tanhC(

√
M

2
η)])eι(−kx+ωt), (4.27)

and

ψ6(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
tanhC(

√
M

2
η)])2, (4.28)

U7(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
cothC(

√
M

2
η)]. (4.29)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ7(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
cothC(

√
M

2
η)])eι(−kx+ωt), (4.30)

and

ψ7(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
cothC(

√
M

2
η)])2, (4.31)

U8(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
(tanhC(

√
Mη) ± ι

√
pqsechC(

√
Mη))]. (4.32)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ8(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
(tanhC(

√
Mη) ± ι

√
pqsechC(

√
Mη))])eι(−kx+ωt), (4.33)

and

ψ8(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
(tanhC(

√
Mη) ± ι

√
pqsechC(

√
Mη))])2, (4.34)

U9(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
(cothC(

√
Mη) ±

√
pqcschC(

√
Mη))]. (4.35)
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The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ9(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
(cothC(

√
Mη) ±

√
pqcschC(

√
−Mη))])eι(−kx+ωt), (4.36)

and

ψ9(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
M

2β
(cothC(

√
Mη) ±

√
pqcschC(

√
Mη))])2, (4.37)

U10(η) = c0 +
2βc0

µ
[−

µ

2β
+

√
M

4β
(tanhC(

√
M

4
η) − cothC(

√
M

4
η))]. (4.38)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ10(η) = (c0 +
2βc0

µ
[−

µ

2β
+

√
M

4β
(tanhC(

√
M

4
η) − cothC(

√
M

4
η))])eι(−kx+ωt), (4.39)

and

ψ10(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ

2β
+

√
−M
4β

(tanhC(

√
M

4
η) − cothC(

√
M

4
η))])2. (4.40)

All the solutions of Family 2 are stable under the condition M > 0, ensuring their physical relevance
and stability.
Family 3. When µ2 = 4κβ, then

U11(η) = c0 +
2βc0

µ
[
−2κ(µηLnC + 2)

µ2ηLnC
]. (4.41)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ11(η) = (c0 +
2βc0

µ
[
−2κ(µηLnC + 2)

µ2ηLnC
])eι(−kx+ωt), (4.42)

and

ψ11(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[
−2κ(µηLnC + 2)

µ2ηLnC
])2. (4.43)

All the solutions of Family 3 are stable under the condition µ2 = 4κβ, ensuring their physical relevance
and stability.
Family 4. When µ , 0 and κ = 0, then

U12(η) = c0 +
2βc0

µ
[−

pµ
β(coshC(µη) − sinhC(µη) + p)

]. (4.44)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ12(η) = (c0 +
2βc0

µ
[−

pµ
β(coshC(µη) − sinhC(µη) + p)

])eι(−kx+ωt), (4.45)
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and

ψ12(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

pµ
β(coshC(µη) − sinhC(µη) + p)

])2, (4.46)

U13(η) = c0 +
2βc0

µ
[−

µ(sinhC(µη) + coshC(µη))
β(sinhC(µη) + coshC(µη) + q)

]. (4.47)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ13(η) = (c0 +
2βc0

µ
[−

µ(sinhC(µη) + coshC(µη))
β(sinhC(µη) + coshC(µη) + q)

])eι(−kx+ωt), (4.48)

and

ψ13(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[−

µ(sinhC(µη) + coshC(µη))
β(sinhC(µη) + coshC(µη) + q)

])2. (4.49)

All the solutions of Family 4 are stable under the conditions µ , 0 and κ = 0, ensuring their physical
relevance and stability.
Family 5. When µ = λ, β = mλ (m , 0), and κ = 0, then

U14(η) = c0 +
2βc0

µ
[

pCλη

q − mpCλη
]. (4.50)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ14(η) = (c0 +
2βc0

µ
[

pCλη

q − mpCλη
])eι(−kx+ωt), (4.51)

and

ψ14(η) = 2ϵ(α − δk2)(c0 +
2βc0

µ
[

pCλη

q − mpCλη
])2. (4.52)

All the solutions of Family 5 are stable under the conditions µ = λ, β = mλ (m , 0), and κ = 0,
ensuring their physical relevance and stability.

We now have the following families of optical soliton solutions, assuming Case 2.
Family 6. When M < 0 and β , 0, then

U15(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

tanC(

√
−M
2

η)]−1. (4.53)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ15(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

tanC(

√
−M
2

η)]−1)eι(−kx+ωt), (4.54)

and

ψ15(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

tanC(

√
−M
2

η)]−1)2, (4.55)
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U16(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

cotC(

√
−M
2

η)]−1. (4.56)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ16(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

cotC(

√
−M
2

η)]−1)eι(−kx+ωt), (4.57)

and

ψ16(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

cotC(

√
−M
2

η)]−1)2, (4.58)

U17(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

(tanC(
√
−Mη) ±

√
pqsecC(

√
−Mη))]−1. (4.59)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ17(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

(tanC(
√
−Mη) ±

√
pqsecC(

√
−Mη))]−1)eι(−kx+ωt), (4.60)

and

ψ17(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

(tanC(
√
−Mη) ±

√
pqsecC(

√
−Mη))]−1)2, (4.61)

U18(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

(cotC(
√
−Mη) ±

√
pqcscC(

√
−Mη))]−1. (4.62)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ18(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

(cotC(
√
−Mη) ±

√
pqcscC(

√
−Mη))]−1)eι(−kx+ωt), (4.63)

and

ψ18(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
−M
2β

(cotC(
√
−Mη) ±

√
pqcscC(

√
−Mη))]−1)2, (4.64)

U19(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
−M
4β

(tanC(

√
−M
4

η) − cotC(

√
−M
4

η))]−1. (4.65)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ19(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
−M
4β

(tanC(

√
−M
4

η) − cotC(

√
−M
4

η))]−1)eι(−kx+ωt), (4.66)

and

ψ19(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
−M
4β

(tanC(

√
−M
4

η) − cotC(

√
−M
4

η))]−1)2. (4.67)

AIMS Mathematics Volume 10, Issue 5, 12254–12285.



12269

All the solutions of Family 6 are stable under the condition M < 0, ensuring their physical relevance
and stability.
Family 7. When M > 0 and β , 0, then

U20(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
tanhC(

√
M

2
η)]−1. (4.68)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ20(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
tanhC(

√
M

2
η)]−1)eι(−kx+ωt), (4.69)

and

ψ20(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
tanhC(

√
M

2
η)]−1)2, (4.70)

U21(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
cothC(

√
M

2
η)]−1. (4.71)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ21(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
cothC(

√
M

2
η)]−1)eι(−kx+ωt), (4.72)

and

ψ21(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
cothC(

√
M

2
η)]−1)2, (4.73)

U22(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
(tanhC(

√
Mη) ± ι

√
pqsechC(

√
Mη))]−1. (4.74)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ22(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
(tanhC(

√
Mη) ± ι

√
pqsechC(

√
Mη))]−1)eι(−kx+ωt), (4.75)

and

ψ22(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
(tanhC(

√
Mη) ± ι

√
pqsechC(

√
Mη))]−1)2, (4.76)

U23(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
(cothC(

√
Mη) ±

√
pqcschC(

√
Mη))]−1. (4.77)
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The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ23(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
(cothC(

√
Mη) ±

√
pqcschC(

√
−Mη))]−1)eι(−kx+ωt), (4.78)

and

ψ23(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
M

2β
(cothC(

√
Mη) ±

√
pqcschC(

√
Mη))]−1)2, (4.79)

U24(η) = c0 +
2κc0

µ
[−

µ

2β
+

√
M

4β
(tanhC(

√
M

4
η) − cothC(

√
M

4
η))]−1. (4.80)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ24(η) = (c0 +
2κc0

µ
[−

µ

2β
+

√
M

4β
(tanhC(

√
M

4
η) − cothC(

√
M

4
η))]−1)eι(−kx+ωt), (4.81)

and

ψ24(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[−

µ

2β
+

√
−M
4β

(tanhC(

√
M

4
η) − cothC(

√
M

4
η))]−1)2. (4.82)

All the solutions of Family 7 are stable under the condition M > 0, ensuring their physical relevance
and stability.
Family 8. When µ2 = 4κβ, then

U25(η) = c0 +
2κc0

µ
[
−2κ(µηLnC + 2)

µ2ηLnC
]−1. (4.83)

The following solitary wave solutions for (1.2) are obtained with the aid of (4.1) and (4.6):

ϕ25(η) = (c0 +
2κc0

µ
[
−2κ(µηLnC + 2)

µ2ηLnC
]−1)eι(−kx+ωt), (4.84)

and

ψ25(η) = 2ϵ(α − δk2)(c0 +
2κc0

µ
[
−2κ(µηLnC + 2)

µ2ηLnC
]−1)2. (4.85)

All the solutions of Family 8 are stable under the condition µ2 = 4κβ, ensuring their physical relevance
and stability.

4.2. Application of the new Kudryashov method

For Θ = 1, Eq (3.8) reduces to the form:

U(ξ) = f0 + f1H(ξ). (4.86)
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Plugging the above solution with (3.7) into (4.7) and setting the coefficients of Hi(ξ) (i = 0, 1, . . . ) to
zero, the following system is acquired:

(H(η))0 : (−2kαc0 + k2αδc0 + 2αγδϵc3
0 − c0k2 + 2kδc0k2 − k2δ2c0k2 − 2γδ2ϵc3

0k2) = 0,
(H(η))1 : (−2kαc1 + k2αδc1 + αδσ

2c1 + 6αγδϵc2
0c1 − c1k2 + 2kδc1k2 − k2δ2c1k2 − δ

2σ2c1k2

−6γδ2ϵc2
0c1k2) = 0,

(H(η))2 : (6αγδϵc0c2
1 − 6γδ2ϵc0c2

1k2) = 0,
(H(η))3 : (2mαδσ2c1 + 2αγδϵc2

1 − 2mδ2σ2c1k2 − 2γδ2ϵc3
1k2) = 0.

By solving this system of equations, we obtain the following solution:

c0 = 0, α =
(1 − 2kδ + k2δ2 + δ2σ2)k2)

(−2k + k2δ + δσ2)
, m = −

(γϵc2
1)

σ2 . (4.87)

Utilizing Eqs (4.86) and (4.87), the following solutions are required:

U1(ξ) = c1(
2νB

B2eνσξ − me−νσξ
)ei(−kx+ωt). (4.88)

The hyperbolic solution of Eq (4.88) takes the following form:

U2(ξ) = c1(
2νB

(B2 − m)cosh(σξ) + (B2 + m)sinh(σξ)
)ei(−kx+ωt). (4.89)

Plugging m = −B2 in solutions (4.89), the following solutions are constructed:

U3(ξ) =
c1ν

B
sech(σξ)ei(−kx+ωt). (4.90)

Plugging m = B2 in solutions (4.89), the following solutions are constructed:

U4(ξ) =
c1ν

B
csch(σξ)ei(−kx+ωt). (4.91)

5. Findings and analysis

The results of this study reveal much about the fractional-order Akbota equation, on the grounds
of which a lot of important system features were observed in the light of graphs and traveling
wave solutions. Solutions illustrated that the fractional Akobta equation has solitary waves and
hyperbolic solutions of the high order. The graphical results clearly demonstrate how variations in
the fractional-order ρ affect wave profiles, highlighting phenomena such as sharper peaks, oscillations,
and singularities that reflect realistic signal behaviors in telecommunications.

In order to explain the wave patterns, we employ three-dimensional (3D) and two-dimensional (2D)
graphs. It might also be noted that by varying the values assigned to the variables in the equations,
one can obtain a great number of graphs, which description contains certain specific features of
the answer. To the same answers, graphic depictions including 3D and 2D are used so that the
flow of waves may be easily understood. To investigate the behavior of the solutions, we have
represented the two-dimensional and three-dimensional plots for soliton solutions of the given Eqs
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(4.12), (4.18), (4.27), (4.54), (4.57), (4.60), (4.63), (4.66), and (4.90) with different fractional-
order values in Figures 1–9. Each figure illustrates how different solution types-singular, oscillatory,
periodic, bright, dark, and breather solitons-correspond to real-world signal behaviors in optical fibers,
such as amplification, distortion, and instability. The fractional-order ρ significantly influences these
dynamics: lower values yield smoother signals, while higher values produce sharper, more unstable
waveforms. These insights help bridge the mathematical results with practical phenomena in fiber-
optic communication systems.

Thus, this paper proves that the mEDAM and new Kudryashov method can be efficient and versatile
approaches to solving elaborate models in mathematics. The comparison of these methods with other
methods is given in Table 1.

Table 1. Comparison of the mEDAM with other soliton solution methods.

Criteria Our Method Hirota Bilinear
Method

Variational
Method

Tanh Method

Applicability
to fractional
equations

Well-suited;
easily handles
conformable
derivatives

Difficult to
apply directly to
fractional forms

Less effective
for fractional
derivatives

Can be extended, but
with limitations in
fractional context

Equation
type

Reduces PDE
to ODE for
solution

Requires bilinear
form of PDE

Requires
construction of a
trial Lagrangian

Converts ODE into
algebraic form

Solution
diversity

Generates wide
variety (bright,
dark, periodic-
singular,
breather)

Mostly soliton-
type (bright/dark)

Usually yields
approximate
solutions

Often yields single-
soliton solutions

Complexity Moderate High (due
to bilinear
transformation)

High (requires
functional setup)

Low to moderate

Stability
remarks

Allows
condition-
based stability
discussion (e.g.,
M > 0)

Less emphasis on
parameter-driven
stability

Stability linked
to variational
conditions

Limited insight into
stability

Novelty in
this study

Newly applied
to fractional
Akbota system

Not applied
to Akbota in
fractional setting

Not applied to
current system

Commonly used in
classical systems

In the existing literature, methods such as the Sardar sub-equation method, exp-function method,
and the generalized Kudryashov method have been applied to nonlinear equations. However, the
mEDAM and the new Kudryashov approach employed in this work have not been previously applied
to the fractional Akbota equation, highlighting the novelty and originality of this study.

It has been adopted to several physical systems, which make the approach quite practical for
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understanding the behavior of dispersive and nonlinear physical systems. Analysis of the results
obtained by this approach can provide us with useful information on the behavior of the fractional
Akobta system and phenomena connected with it, and hence, a profound impact on our understanding
of the fundamental laws in physics can be provided.

Figures 1 exhibits a singular and oscillatory behavior. It is not periodic but demonstrates localized
sharp variations, similar to resonance phenomena in telecommunication systems. The selection of
visualization encompasses 3D and 2D plots at different values of ρ, particularly ρ = 0.79, ρ = 0.89, and
ρ = 0.99. At ρ = 0.79 (Figure 1(a)), the function exhibits moderate oscillatory behavior, resembling a
stable system response with controlled variations. At ρ = 0.89 (Figure 1(b)), the oscillations intensify,
and peaks become sharper, indicating increased signal fluctuations. At ρ = 0.99 (Figure 1(c)), the
function experiences significant amplification, with sharp transitions and steep peaks, suggesting
increased sensitivity. A 2D graph compares the function for different values of ρ using different colors
(blue for ρ = 0.79, green for ρ = 0.89, and red for ρ = 0.99). As ρ increases, the system becomes more
sensitive to small changes, similar to high-frequency filtering effects in signal processing. Figure 1
represents resonance or high-sensitivity points in the system where signal amplitudes may change
rapidly. This behavior is useful for identifying instability thresholds, such as in nonlinear amplifiers
or dispersion compensation schemes. Engineers can design safeguards or stabilizing techniques by
analyzing where such sudden amplifications may occur.

(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79),
(ρ = 0.89), (ρ = 0.99)

Figure 1. The effect of fractional order in two- and three-dimensional models for a
solution (4.12) with µ = 1, ξ = 2, β = 1, δ = 2, k2 = 2, k = 1.5, c0 = 1, γ = 2, C = e.

AIMS Mathematics Volume 10, Issue 5, 12254–12285.



12274

Figure 2 exhibits singular and non-periodic behavior with strong peaks. The selection of
visualization encompasses 3D and 2D plots at different values of ρ, particularly ρ = 0.79, ρ = 0.89, and
ρ = 0.99. At ρ = 0.79 (Figure 2(a)), the function shows structured oscillations with a stable pattern.
At ρ = 0.89 (Figure 2(b)), the function exhibits sharper peaks, indicating increased variations. At ρ
= 0.99 (Figure 2(c)), the oscillations are significantly amplified, with extreme peaks and deep valleys.
This is analogous to signal distortion in high-frequency communication, where making ρ larger can
be viewed as a system becoming more sensitive to signal or noise variations. A 2D plot provides
comparative insight into the function for different values of ρ employing different colors: blue for
ρ = 0.79, green for ρ = 0.89, and red for ρ = 0.99. The increasing sharpness signifies that higher
ρ produces stronger fluctuations in the signal, and this affects stability. The presence of singularities
illustrates an impulse-like response, which is of utmost significance in designing error-correcting codes
and signal restoration techniques. Figure 2 mimics repeated disturbances or signal distortion patterns
in nonlinear media. Periodic singularities are analogous to jitter effects or multipath reflections in
optical fibers. Understanding these patterns helps in designing filters or coding strategies that mitigate
recurring distortions during transmission.

(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79), (ρ =
0.89), (ρ = 0.99)

Figure 2. The effect of fractional order in two- and three-dimensional models for a
solution (4.18) with µ = 1, ξ = 1, β = 1, δ = 1, k2 = 1, k = 1.5, c0 = 1, c = d =
1, γ = 1, C = e.
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Figure 3 illustrates dark soliton behavior, which is characterized by localized dips in intensity rather
than sharp peaks. This type of waveform is crucial in modeling signal dips or intensity drops in
optical fiber communication, often used to represent stable, non-singular pulse propagation. The figure
presents both 3D and 2D plots for different values of the fractional order ρ = 0.79, ρ = 0.89, and ρ =
0.99. At ρ = 0.79 (Figure 3(a)), the waveform exhibits a smooth and broad intensity dip, representing
stable and low-distortion dark soliton. This reflects relatively low nonlinearity in the system, with
minimal impact on signal shape. At ρ = 0.89 (Figure 3(b)), the depth of the soliton dip increases, and its
width narrows, indicating a sharper localized drop in intensity. This suggests stronger nonlinear effects
and more distinct pulse shaping. At ρ = 0.99 (Figure 3(c)), the dip becomes even steeper and more
pronounced, resembling the behavior of high-contrast dark solitons. This reflects enhanced dispersion
and stronger phase shifts, typical in high-order nonlinear systems. The 2D plot overlays the soliton
profiles for each ρ using different colors for comparison. As ρ increases, the soliton becomes narrower
and deeper, showcasing the effect of the fractional order on wave steepness and localization. This
behavior is particularly relevant in fiber optic systems, where dark solitons offer advantages such as
robustness against perturbations and lower sensitivity to noise, making them suitable for long-distance,
high-capacity signal transmission. Figure 3 is used in optical switching and intensity-based logic gates.
Dark solitons are dips in light intensity and are less sensitive to dispersion, making them robust for
long-distance data transmission. They are also useful in WDM (wavelength-division multiplexing)
systems due to their stability across channels.

(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79),
(ρ = 0.89), (ρ = 0.99)

Figure 3. The effect of fractional order in two- and three-dimensional models for a
solution (4.27) with µ = 0.5, ξ = −1, β = 1, δ = 2, k2 = −1, k = 1, c0 = 1, γ = 1, C = e.
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Figures 4 exhibits a singular and oscillatory behavior. It is not periodic but demonstrates localized
sharp variations, similar to resonance phenomena in telecommunication systems. The selection of
visualization encompasses 3D and 2D plots at different values of ρ, particularly ρ = 0.79, ρ = 0.89, and
ρ = 0.99. At ρ = 0.79 (Figure 4(a)), the function exhibits moderate oscillatory behavior, resembling a
stable system response with controlled variations. At ρ = 0.89 (Figure 4(b)), the oscillations intensify,
and peaks become sharper, indicating increased signal fluctuations. At ρ = 0.99 (Figure 4(c)), the
function experiences significant amplification, with sharp transitions and steep peaks, suggesting
increased sensitivity. The 2D graph compares the function for different values of ρ using different
colors (blue for ρ = 0.79, green for ρ = 0.89, and red for ρ = 0.99). As ρ increases, the system becomes
more sensitive to small changes, similar to high-frequency filtering effects in signal processing. Figure
4 illustrates energy localization at specific points. This is important in designing optical power limiters
or fault detection systems, where sudden spikes indicate a breach in normal signal flow. It can also aid
in modulator calibration under nonlinear loads.

(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79),
(ρ = 0.89), (ρ = 0.99)

Figure 4. The effect of fractional order in two- and three-dimensional models for a
solution (4.54) with µ = −0.5, ξ = −0.9, β = 1.5, δ = 0.6, k2 = −1.5, k = −1.5, c0 =

0.8, γ = 2, C = e.
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Figure 5 illustrates singular behavior with steep peaks. This indicates that it might be used to
represent resonance phenomena or impulse responses in communication channels. The fact that
there are singularities implies that, in some places, the signal is amplified suddenly, which is a
key determinant in avoiding instability in communication networks. The selection of visualization
encompasses 3D and 2D plots at different values of ρ, particularly ρ = 0.79, ρ = 0.89, and ρ = 0.99. At
ρ = 0.79 (Figure 5(a)), the function demonstrates smooth variations with a moderate peak and valley,
resembling a stable signal response. At ρ = 0.89 (Figure 5(b)), the peak increases, and the function
shows sharper variations, indicating a stronger response to changes in input. At ρ = 0.99 (Figure 5(c)),
the function has significantly steeper peaks and more pronounced changes, suggesting an amplification
effect often seen in high-gain systems. This behavior is similar to how signals react under different
attenuation and amplification conditions, where a higher fractional order ρ can represent increased
signal sharpness and potential instability in filters or modulation schemes. The 2D plot provides a
comparative view of the function for different values of ρ. Figure 5 helps simulate abrupt signal phase
changes or phase jitter scenarios. These insights are applicable in coherent communication systems,
where managing phase noise is critical for performance. Understanding such singular transitions
improves carrier synchronization and demodulation fidelity.

(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79), (ρ =
0.89), (ρ = 0.99)

Figure 5. The effect of fractional order in two- and three-dimensional models for a
solution (4.57) with µ = 1, ξ = 2, β = 1, δ = 2, k2 = 2, k = 1.5, c0 = 1, γ = 2, C = e.
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The diagrams in Figures 6 and 7 highlight the periodic solutions at different values of ρ, particularly
ρ = 0.79, ρ = 0.89, and ρ = 0.99. Periodic solitons facilitate signal timing stability and diminish the
probability of errors in high-speed data streams by delivering consistent, repetitive waveforms. The
function resembles signals that undergo modulation, where frequency components change over time.
The peaks and singularities could represent signal amplification or interference in a telecommunication
channel. The dependence on ρ suggests a fractional differential system, common in signal processing
for modeling complex behavior. The 2D plot shows the comparison for different values of ρ. The
curves show non-uniform behavior. Figure 6 models modulated signals used in dense wavelength
division multiplexing (DWDM) and phase-shift keying (PSK) systems. The periodicity ensures
consistent signal shape, helping in timing recovery circuits and clock synchronization mechanisms
in receivers. Figure 7 is useful in advanced signal modulation schemes, such as QAM (quadrature
amplitude modulation), where both amplitude and phase vary. The mixed periodic and singular traits
simulate interference patterns from crosstalk, aiding in error correction algorithm development.

(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79),
(ρ = 0.89), (ρ = 0.99)

Figure 6. The effect of fractional order in two- and three-dimensional models for a
solution (4.60) with µ = 1, ξ = 2, β = 2, δ = 2, k2 = 2, k = 1.5, c = 2 d = 3 c0 =

1, γ = 2, C = e.
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(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79), (ρ =
0.89), (ρ = 0.99)

Figure 7. The effect of fractional order in two- and three-dimensional models for a
solution (4.63) with µ = 1, ξ = 1, β = 1, δ = 1, k2 = 2, k = 1.5, c0 = 1, γ = 1, c =
d = 1, C = e.

The visualization of Figure 8 represents the breather soliton solution at independent values of ρ,
particularly ρ = 0.79, ρ = 0.89, and ρ = 0.99. Breather solitons represent optical pulses with a constant
amplitude throughout their propagation in optical fibers. The fractional-order ρ significantly affects the
function’s oscillatory nature, which may be useful in designing adaptive signal processing techniques.
The 2D plot shows the comparison at different values of ρ. The function resembles signals that
undergo modulation, where frequency components change over time. Figure 8 models pulse packets
that breathe (oscillate) during propagation, ideal for ultra-short pulse communication and adaptive
gain amplifiers. Their stable but dynamic structure helps optimize optical time-domain reflectometry
(OTDR) and nonlinear pulse shaping.
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(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79), (ρ =
0.89), (ρ = 0.99)

Figure 8. The effect of fractional order in two- and three-dimensional models for a
solution (4.66) with µ = 1, ξ = 2, β = 1, δ = 2, k2 = 2, k = 1.5, c0 = 1, γ = 2, C = e.

Figure 9 presents the effect of the fractional-order ρ on the solution derived from Eq (4.90),
showcasing a bright soliton structure. Bright solitons are characterized by localized peaks in the wave
profile and are commonly used to represent signal amplification or energy concentration in nonlinear
optical systems. The visualization includes both 3D and 2D plots for three distinct values of ρ = 0.79,
ρ = 0.89, and ρ = 0.99. At ρ = 0.79 (Figure 9(a)), the function displays a relatively broad and smooth
peak, representing a gentle and stable energy packet. This behavior suggests minimal nonlinearity and
dispersion in the system, conducive to low-distortion signal propagation. At ρ = 0.89 (Figure 9(b)),
the peak becomes narrower and more pronounced, indicating an increase in wave intensity and tighter
energy localization. This reflects moderate nonlinearity and the growing influence of fractional effects.
At ρ = 0.99 (Figure 9(c)), the peak reaches its maximum sharpness and height, showing strong
localization of energy–an essential trait in high-gain optical systems or pulse-shaping applications.
The 2D plot provides a direct comparison of these profiles. It highlights how increasing ρ leads to
sharper and taller soliton peaks, revealing how fractional-order dynamics enhance wave confinement
and intensity. This makes such solutions highly relevant in the design of ultra-short optical pulses,
where control over pulse sharpness and shape is critical for signal clarity and bandwidth efficiency.
Figure 9 demonstrates how the conformable fractional derivative allows for tunable control over soliton
characteristics. Bright solitons modeled here showcase how adjusting ρ can directly impact the wave
intensity and spread, with practical applications in optical fiber communication, laser physics, and
nonlinear wave engineering.
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(a) 3D depiction at ρ = 0.79 (b) 3D depiction at ρ = 0.89

(c) 3D depiction at ρ = 0.99 (d) 2D depiction at (ρ = 0.79), (ρ =
0.89), (ρ = 0.99)

Figure 9. The effect of fractional order in two- and three-dimensional models for a
solution (4.90) with ϵ = 1, B = 2, σ = 1, ω = 1, ν = 1, β = 1, δ = 2, k2 = 2, k =
1.5, c0 = 0, γ = 2.

6. Conclusions

The fractional Akbota equation serves as an effective instrument for simulating soliton behavior in
optical fiber telecommunications systems. By integrating memory effects and nonlocal interactions, it
provides a more precise depiction of the nonlinear dynamics that regulate pulse propagation in fiber
optics. The soliton solutions obtained from this equation may improve signal stability and transmission
efficiency, tackling the issues of long-distance, high-data-rate communication. In order to accomplish
this goal, we employ the mEDAM and new Kudryashov method. The models under consideration,
being of the Heisenberg ferromagnetic kind, hold great importance in several nonlinear phenomena.
The use of the conformable fractional derivative provides a tunable and physically meaningful
enhancement to the classical model, allowing for better representation of complex wave dynamics
in fiber-optic communication channels. Two- and three-dimensional graphs in Figures 1–9 illustrate
periodic-singular, periodic, breather soliton, and bright soliton solutions of the obtained results.
Graphs additionally display the fractional effect on solutions. These figures highlight how fractional
parameters influence system behavior, making them useful for modeling adaptive signal processing
and wave dynamics in engineering applications. The results gained have great utility in the fields of
optics, telecommunications, fiber optics, and other fields. Therefore, the solutions obtained are useful
for further research on these models. The various range of solutions is provided by the employed
techniques. Our acquired solutions will be beneficial in the ongoing analysis of the relevant model.
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This research gives a new contribution through the examination of the conformable fractional Akbota
system by using up-to-date solution methods, achieving never-before-published bright, dark, periodic-
singular, and breather solitons. The proposed methods and obtained findings assist in completing a lack
of information and give a complete perspective on the dynamics of nonlinear waves with fractionals.
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