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1. Introduction

Let A denote the class of functions of the normalized form
f@ =2+ ad, (1.1)
k=2

which are analytic in the unit open disk

D={zeC:|7 <1}
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and all coeflicients are complex numbers. Let @ denote the set of analytic function with positive real
part on D with
$0)=1, ¢'(0)>0

and ¢(z) maps D onto a region starlike with respect to 1 and symmetric with respect to the x-axis. And,
the function ¢(z) has a series expansion of the form

62 =1+ ) A,
k=1

where all coefficients Ay(k > 1) are real number and A; > 0. Also let U denote the class of Schwartz
functions, which is analytic in D satisfying

w(0)=0 and |u(z)| < 1.

In 1970, Robertson [1] introduced the concept of quasi-subordination. For two analytic functions
f1(z) and f>(z), the function f;(z) is quasi-subordinate to f>(z) in D, denoted by

fi@ <4 2,z €D,
if there exists a Schwarz function u(z) € U and an analytic function A(z) with
lh(z)| <1

such that
f1(2) = h(z2) f2(u(2)).

Observe that when
hz) =1,

then
f1(2) = fo(u(z))

and it is said that f;(z) is subordinate to f>(z) and written
f1@) < fa(2)

in D. Also notice that if
u(z) =z,

then
fi@) = hz2)f2(2)

and it is said that fi(z) is majorized by f>(z) and written

fi@) < f(2)

in D. Hence it is obvious that quasi-subordination is a generalization of subordination as well as
majorization. For works related to early study of the quasi-subordination concept, see [2—4].
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In order to further explore the concept of quasi-subordination, some researchers have extended the
construction of function classes and obtained some geometric properties of function classes. In 2012,
Mohd and Darus generalized Ma-Minda starlike and convex classes in [5] and defined the generalized
starlike class S;(¢) and the generalized convex class C,(¢) by using quasi-subordination, as below

SK@={ﬂ@€ﬂ:?é?—1%¢@—h¢@e®xeD}
Cy(¢) = {f(z) cA: % <, 60 - 1,g(2) € @,zeD}.

And, they defined the following function class (also see [6])

'@ a(l L U@
f@) 1@

In 2015, El-Ashwah et al. [7] introduced the generalized starlike class Sj;(u; ¢) of complex order
and the generalized convex class C,(u; ¢) of complex order as follows,

o @

1 144
Colu: ¢) = {f(z) e 140 <4 $(2),$(z) € @, € C\{0},z € D}-

p f'(@)
In 2020, Ramachandran et al. [8] defined the class M;(a,B, 4; ) by using quasi-subordination. The
function f(z) € A is in the class Mi(a, B, A; §) if

'@\ [, 2@ @\ ~
(f(z)) [(1 ) e +/1(1+ o )] 1 <4 ¢(2) -1,

where ¢(z) € ® and 0 < @, , 4 < 1. Many authors have studied various function subclasses defined by
quasi-subordination. For example, Vays et al. [9], Altinkaya et al. [10], Goyal et al. [11] and Choi et
al. [12] studied bi-univalent functions using quasi-subordination. Shah et al. [13] and Aoen et al. [14]
introduced meromorphic functions using quasi-subordination. Karthikeyan et al. [15] studied
Bazilevi¢ function using quasi-subordination. Shah et al. [16] studied non-Bazilevi¢ function using
quasi-subordination. And, there are some function subclasses of linear and nonlinear operators (such
as, hohlov operator [17], difference operator [18] and derivative operator [19]) using
quasi-subordination.

Recently, some researchers have begun to generalize close-to-convex function classes by using
quasi-subordination relationship. In 2019, Gurmeet Singh et al. [20] introduced the subclass of bi-
close-to-convex function defined by quasi-subordination. In 2023, Aoen et al. [21] introduced the
class of generalized close-to-convex function with complex order written as K,(y; ¢,¢). This class
were defined as below

My(a; ¢) = {f(z)eﬂ (1 - )— 1<, ¢(z) - 1,¢(z)€d>,a20,zeD}.

1) <q $(2),$(z) € D, € C\{0},z € D},

z2f"(2)
g(2)

1
Kov:¢.4) = {f(Z) eA: ;( - 1) <g ¥(@) — 1,8(2) € Sy(¢), ¢(2), Y(2) € @,y € C\{0}, z € D}-

In order to denote a new function class, we need to introduce the following function subclasses.
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Definition 1.1. Let
a € [0,1], ue C\{0}.

Also let ¢(z) € @. A function f(z) € A given by (1.1) is said to be in the class M (a,u; ¢) if the
following condition is satisfied

1 2f'(@)  @f @)
~1la - _
A0 Yo

1 <q¢(Z)_1, ZED.

Example 1.2. Let
@ €[0,1], ueC\0), ¢(z) € .

The function
f(z):D—>C

defined by the following

1 2f' (0 (@f' @)
“la - _
A0 T

belongs to the class M,(a, u; ¢).

1| =zlé(z) — 1]

Remark 1.3. There are some suitable choices of @, 4 which would provide some classical subclasses
of analytic functions.
(1) By taking i = 1 in Definition 1.1, we have

My(a, 1;¢) = My(a; ¢)

which is introduced by Mohd et al. [5].
(2) By taking @ = 0 in Definition 1.1, we have

M0, 5 9) = S, (1 $)
which is introduced by El-Ashwah et al. [7]. Specially, for u = 1 we have
My0,15¢) = S, (¢)

which is introduced and studied by Mohd et al. [5].
(3) By taking @ = 1 in Definition 1.1, we have

M, (1,15 ¢) = Cy(u: 9)
which is introduced by El-Ashwah et al. [7]. Specially, for 4 = 1 we have
My(1,1;¢) = Cy(9)

which is introduced and studied by Mohd et al. [5].
Now we define a generalization class of close-to-convex function by using quasi-subordination
relationship.
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Definition 1.4. Let
a €[0,1],8€[0,1], ue C\{0},y € C\{0}.

Also let
U(z) € D, g(z) € My, u; ).

A function f(z) € A given by (1.1) is said to be in the class C,(a, B, u, v; ¢, ) if the following condition

is satisfied ’ .
( _’B)Zf(z) ﬁ(zf(z)) “1|<, -1, zeD.
8(2) g (2)

Example 1.5. Let

a€[0,1], Be[0,1], peC\{0}, yeC\{0}, ¢(z) € D, g(z) € My(a,p; ).

The function

f@:D->C
defined by the following
1 4 / ’
(1-p LR pETE gy -1
4 8(2) g

belongs to the class C,(a, B, u,v; ¢, ).

Remark 1.6. There are some suitable choices of a,f,u,y which would provide the following
subclasses of the class Cy(a, B, u, v; ¢, ).

(1) By taking § = 0 in Definition 1.4, the class C,(a,p, 1, y; ¢, ) reduces to the new subclass
K, (a,u,v; ¢, ) which is the class of generalized close-to-convex function satisfied by

1 (Zf ')
g(2)

- 1) < Y@ -1, g)e Mya,u;¢),d(2),¥(z) € D,z €D.

Specially, for @ = 1,u = 1 in the class K, (a, i, ¥; ¢, ¥), we have

zf"(2)
8(2)

for @ = 0,u = 1 in the class K, (a, 1, y; ¢, ), we have

H,(y; ,¢) = {f(z) €EA: ( - 1) <q¥(2) — 1,8(2) € Cy(), $(2),Y(z) € D,z € D} ;

K0, 1,y;0,¢) = K,(v: b, %)

which is introduced and studied by Aoen et al. [21]. Also, for y = 1 in the class K,(y; ¢, ), we have
the class K, (¢, ) which is introduced and studied by Aoen et al. [21].

(2) By taking § = 1 in Definition 1.4, the class C,(a,p, 1, y; ¢, ) reduces to the new subclass
Cy(a, p,y; ¢, ¢) which is the class of generalized quasi-convex function satisfied by

1 ((zf’(z))’
Y

g,(Z) - 1) <q ¢(Z) - 1, g(Z) c Mq(a,'u; ¢)’¢(Z),I/I(Z) e (D,Z eD.
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Specially, for @« = 1, u = 1 in the class CZ(a/,u, v; ¢, %), we have

zf' @)
g2
for @ = 0,u = 1 in the class K (a, u, y; ¢, ), we have

1 {Gf'@)
Ly(y;¢.9) = {f(z) eA: —(M_l
Y\ &@

Studying the theory of analytic functions has been an area of concern for many researchers. The
study of coefficients estimate is a more special and important field in complex analysis. For example,
the bound for the second coefficient a, of normalized univalent functions readily yields the growth
and distortion bounds for univalent functions. The coeflicient functional |as — /,tagl (that is, Fekete-
Szegd problem) also naturally arises in the investigation of univalency of analytic functions. There
are now many results of this type in the literature, each of them dealing with coefficient estimate for
various classes of functions. In particular, some authors start to study the coefficient estimates for
various classes using quasi-subordination. For example, Arikan et al. [22] and Marut et al. [23] studied
the Fekete-Szegod problem for some function subclasses using quasi-subordination. Aoen et al. [24]
and Ahman et al. [25] obtained the results on coefficient estimates for various subclasses using quasi-
subordination. The purpose of this paper is to study some properties of the class C,(a, B, i, v; ¢, ) and
some of its subclasses, such as the integral expression, the first two coefficient estimate problems and
Fekete-Szego problem. Our results are new in this direction and they give birth to many corollaries.

In order to derive our main results, we have to recall here the following lemmas.

Lemma 1.7. Let f(z) € C,(¢), then

f@= fz exp (f h(f)[(;ﬁ(b;(f)) — de dt, (1.2)
0 0

. 1
Cyvio.¥) = {f(Z) eA: ;( - 1) <y #(2) = 1,8(2) € Cy(9), $(2), Y(2) € D,z € D} ;

) <q 9(2) — 1,8(2) € §,(#),9(2). ¥(z) € D,z € D}.

where
h(2) <1, uz) e U, ¢(z) € .

Proof. Since
f(@) € Cy(9),

then there exist two analytic functions A(z), u(z) with
lh@l < 1, |u@)| <1, u©)=0

such that
zf"(2)
1@
By substitution, the Eq (1.3) can be reduced to a first-order differential equation. According to

the method of solving the first-order differential equations, we can obtain the general solution of the
equation. That is,

= h(@)[¢(u(z)) - 1]. (1.3)

fz HO0) =1 ) (1.4)

0

fl@)= eXP(

Integrating both sides of Eq (1.4), we get (1.2). Thus, the proof of Lemma 1.7 is complete. O
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Lemma 1.8. [21] Let f(z) € S’;(qb), then

£2) = zexp ( f T hOlpwE) — 11 , 5),
0

3

where
h(2) <1, u(z) e U, ¢(z) € .

Lemma 1.9. [26] Let
@(z) = co + Z adt
k=1
be an analytic function in D with |¢(z)| < 1, then
lcol <1, il 1 =Jeof
Lemma 1.10. [27] Let
1) = )
k=1
be an analytic function in D with [#(z)| < 1, then
11l < 1,162 = puef] < max{L, |ul},
where u € C. The result is sharp for the functions
1(z) =z or 1(z) = 2°.
2. Integral expressions

In this section, we discuss the integral expressions for the class C,(«, B, u, v; ¢, ¢) and some of its
subclasses by using methods for solving differential equations.
Theorem 2.1. Let
a€[0,1], Be[0,1], ue C\{0}, ye C\{0O},

the function f(z) € Cy(a,B,u,y; ¢, ¥) be given by (1.1). Then,
(1) If B # 0, then

1 (7 e 1
f@=ﬂﬁw%]%Lm@wk@m+W@www—M%yu 2.1)

(ii) If 8 = 0, then
f@) = f —g(tt) [1 + yh(®) W (u(®) — 1)]dt,
0

where
W) <1, uz) € U, Y(z) €@, g2) € Mya,u; ).
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Proof. Since f(z) € Cy(a, B, 1, y; ¢, ), then there exist two analytic functions A(z), u(z) with
h@l < 1, [u@)| <1, u@)=

such that , .
( 1= QD gy ) - 1.
8(2) g ()
Then, we have
- 1)g’ 1 h - D¢
ey = L=D8D oy [1 + yh@W W) - D] &' @)
Bg(2) B

Let
2f'(2) = F(2),

then we have

- 1)g’ 1 +vyh -D]g
F(2) = B-Dg'@) F)+ [L+ yh@W ) — D]g'@)
Bg(2) B
Then, the above equation is a first-order nonhomogeneous linear differential equation. According
to the method of solving first-order linear differential equations, we can obtain the general solution of

the equation. That is,

1[g(2)]"?
Z

f@ =~ f[(t)] g0 [1 + yh(t) W(u() — D] dt. (2.2)

B
Integrating both sides of Eq (2.2), we get (2.1). Thus, the proof of Theorem 2.1 is complete. O

By taking 5 = 1 in Theorem 2.1, we obtain the following result.
Corollary 2.2. Let the function f(z) € C,la,p, y; ¢, ) be given by (1.1). Then

74 1 !
f(z)=j(; ;(fo 'O + yh(&) (Y(u(©)) - 1)]d§)dt,

where
h(@) <1, uz) e U, ¥(z) € O, g(z) € My(a,u; @).
According to Lemmas 1.7 and 1.8 and Corollary 2.2, we can obtain the following two results.

Corollary 2.3. Let the function f(z) € C,(y; ¢, ) be given by (1.1). Then

1 ! h -1
£o) = fo ;( fo [+ yh(&) W) - D] exp( f; 1(4>[¢<u£(§>) ]dé)d§)dt

|h(Z)| < 1’ |h1(Z)| < l,u(Z), ul(Z) € 7/[, ¢(Z)a ‘ﬁ(Z) € (I)
Corollary 2.4. Let the function f(z) € L,(y; ¢,¥) be given by (1.1). Then

h1(§)[¢(u§1(§))— l]dg)dg)dt

where

Y4 1 f
f@) = f 7 (f [1+yh(§) Wu(&)) — DI + hi(&)(@(u1 (&) — D] exp (f
0 0 0

where
@) < 1, <1, u@),ui(z) € U, ¢(),¥(2) € .
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3. Coefficient estimates problem

In this section, we obtain the first two coefficient estimate and Fekete-Szeg6 problem for the class
Cyla,B,u,v;¢,¢) and some subclasses of this class by using algebraic operations, fundamental
inequalities of analytic functions.

In addition to special statements, suppose the Taylor series expression for the following functions,
as follows

f@)=z+ Z adt, g@)=z+ Z bz,
k=2 k=2

6@ =1+ AtA €RA >0), Y@ =1+ ) BB €R.B >0),

k=1 k=1

w(z) =co+ Z ad's h(z) = ho+ Z 2",
k=1 k=1

(o) (o)

u(z) = Z wzt, v(z) = Z ez~

k=1 k=1

In order to derive our main results, we have to discuss the first two coeflicient estimates and Fekete-
Szegd problem for the class M,(a, u; ¢).

Theorem 3.1. Let a € [0, 1], u € C\{0}, the function f(z) € M,(a, u; ¢) be given by (1.1). Then

lulA,
< ) 3.1
lazl < (3.1)
|ulAy u(1 +3a) A
<A B2, 220 32
ol < S 2 M M T v e M T A (3-2)
and for any n € C,
A A
— 2| < M—l 1 'MA _ 22 33
las — na;| < 31+ 20) max q 1, NIE (3.3)

where
M= u2n(1 + 2a) — (1 + 3a)]

(1+a)?

Proof. 1t f(z) € My(a,u; ¢), according to Definition 1.1, there exist analytic functions ¢(z) and u(z),
with

lp(z)l <1, u(0) =0 and |u(z)| <1
such that

1 f' @ @f'@)
—|(I-a) +a — 1| = e(@[pu(z)) - 1]. (3.4)
U f@) 1@
By substituting the Taylor series expression for the function f(z) to the left of the above expression,
we have )
2f'(z 2 2
=1l+axz+QRaz—ay))z+---,
f(Z) 2 ( 3 2)
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(Z}”’Z))) =1+ 2axz +2Qaz - 2a3)% + - .
Thus we get the following expression
2f'(2) + f' @) 1] _1 {(1 +a)arz + [2(1 + 2a)as — (1 + 3a)a3]z” + - - } (3.5)

a
f@ 1@
And by substituting the power series expression of the functions ¢(z), #(z), u(z) to the right of (3.4),

L (I-a)
u

we can get the following expression
PRIPWD) = 11 = (co + 1z + 0T + - ) [Alwz+ 107 + ) + Az + undy +---) + -+ |
(3.6)

= Ajcou1z + [Ajciug + ¢ (Amz + Azu%)]zz Foee
By substituting (3.5) and (3.6) into (3.4) and comparing the coefficients of the same power terms on

both sides, we can get

HA Couty
= 3.7
= l+a -7)
A Ay ) U+3a)u 5,
asz = —2(1+20’) [Clul+C0(M2+A1ul)+—(1+a/)2 1Col7 |-
Further,
HA, Ay 2n(1 + 2a) — (1 + 3a)
as — na% = m [clul + ¢o (u2 + A—luf) - T+ay2 Alcgu% . (3.8)
Applying Lemmas 1.9 and 1.10 to (3.7), we obtain
A,
< .
laz} < l+a
Since ¢(z) is analytic and bounded in D, using [28], for some
vl <1:leol <1 =(1-cpy.
Replacing the value of c; as defined above, we get
5 A, A, 2n(1 + 2a) — (1 + 3a) ) )
- = — + + —uj| - Auj + . 3.9
BTN 0 20y P C"(”2 Alul) ( 1+ a)y pA Ty e (39)
If ¢y = 0, then applying Lemmas 1.9 and 1.10 to (3.9), we obtain
A
— 2| < |ulAy .
a3 = sl < 5
If Cco # 0, let
Ay 2n(1 + 2a) — (1 + 3a@)
G(cp) = yu; + co (uz + A—lu%) - ( T+ a7 At + yuy | ¢, (3.10)

AIMS Mathematics Volume 10, Issue 5, 12149-12167.



12159

which is a polynomial in ¢y and have analytic in |c| < 1.
According to Maximum modulus principle, we get

max |G(co)| = Org)ggan(eig)l = |G(DI.

Thus
Lo WAL | (1420 - +30) A, -
a5 =02l < 5 50 1 +a) W b .11
Applying Lemma 1.10 to (3.11), we can conclude (3.3). For n = 0 in (3.3), we have (3.2).
Let
1 zf'(@) | @f' @) ]
-1 -a) +a -1{=¢() -1
[ @ T ¢
" ! fQ . GrE)
2f'(z zf' (@) )
—|(1-a) +a ]:z[ (z°) - 11.
[ @ T ’
then the results of (3.1)—(3.3) are sharp. Thus, the proof of Theorem 3.1 is complete. O

Remark 3.2. (1) For u = 1 in Theorem 3.1, we can obtain the result which is Theorem 2.10 in [5].
(2) Foruy = 1, = 0and ¢ = 1, = 1 in Theorem 3.1, we can obtain the results which are
Theorems 2.1 and 2.4 in [5], respectively.
(3) For @ = 0 and @ = 1 in Theorem 3.1, we improve the results which are Theorems 2.1 and 2.7
in [7], respectively.
Theorem 3.3. Let
a€[0,1], Be(0,1], ueC\{0}, ye C\{O},

the function f(z) € Cy(a,B,u,y; ¢, ¥) be given by (1.1). Then

A B
las| < |ulA, + ly|B; (3.12)

2l+a) 2(1+B)
las| < |'ul—lmax 1 pl + 3a) Az I 1 [¥1B, max 11, 1B
P e 2 3(1+26) B,

o A
o ol +3)
30+ )1+ )1 +28)

ABy, (3.13)

}

and forany 7 € C

laz — a3 <Mm 1, |PA _A
3 1

B B
}+ bALL max{ 'QBI 32

276(1 + 2a) Ay 3(1+2p) 1
ly[2(1 + 3B) — 37(1 + 2B)]|
6(1 + a)(1 +B)(1 + 28) A, (3.14)
where
p_ HI3T(L+2a) - 2(1 + 30)] 0- 37y(1 + 28)
- 21 + a)? TE A1 +B)?r
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Proof. If f(z) € Cy(a,B,u,y; ¢, ), then there exist analytic functions i(z) and v(z), with
le(z) <1, v(0)=0 and |v(z)] < 1

such that

( 1= L@ gETON o) - 1 (3.15)
g(2) g ()

By substituting the Taylor series expression for the functions f(z), g(z) to the left of the above
expression, we have

Zf((j) =1+ (2(22 - bz)Z + (3613 - by + b% — 2a2b2)Z2 +en

8\Z

(Zg, ((Z))) = 14 2Qa, — by)z + 2(9a; — 3bs + 4b3 — 8asby)T + - --
<

Thus we get the following expression

[(1 _p@ g @) _1]

8(2) g )
- {(1 +B)2ay — by)z + |(1 +28)Bas — by) + (1 + 38)(b3 — 2axby)| 22 + -+ . (3.16)

Similar to the proof of Theorem 3.1, by substituting the power series expression of the functions
h(z), ¥(z), v(z) to the right of (3.15), we can get the following expression

h()[Y(v(z)) — 11 = Bihoviz + [Bihyvi + ho(Bv, + Bz\’%)]Z2 +ee (3.17)

By substituting (3.16) and (3.17) into (3.15) and comparing the coefficients of the same power terms
on both sides, we can get

_ 1 {yBihyv
“=3 (W * bz) (3.18)
and .
as = 30+ 28) {(1 +2B)b3 — (1 + 3B)(b5 — 2azb,) + y[Bihivy + ho(Byvy + Bzvf)]}.
Further,
o 3 5) L v +3B) =371 + 2B)]
a3 —Ta; =3 (b3 4Tb2) 6(1+B)(1+25) Bihyv, b,
B By o) _ 3y +26)

T31+2p) [hm * o (V2 * Blvl) 41+ By Blhovl]' (3.19)

Applying Lemmas 1.9 and 1.10 to (3.18) and (3.19), we obtain

ly|B;
|z|_2(1 ny: Ibzl) (3.20)
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and
1 ly[2(1 + 3B) — 37(1 + 2B)]|
—ta3| <= |bs - = b2 By|b
a3 = Ta| <5 |bs 6(1 + B)(1 + 28) ile|
|7| 1 B, 2 3ry(1 +2pB) )
+——\hvi+h + —v7| - ———=Bhjv|. 3.21
3a+2p | T T BT Taa g O 62D
According to Theorem 3.1, it follows that
ulA
b,| < 3.22
bs| < +a (3.22)
and, for any complex number 7, we have
3 ulAy ' Ay
by — =Th3| € ——— 1,|PA, - = 3.23
b3 = 370l < 5 gy Max { Y (3-23)
where
P u3t(1 + 2a) — 2(1 + 3a)]
B 2(1 + @)?
Similar to the proof of Theorem 3.1, we can also get the following inequality
Bz 5 3‘[")/(1 + 2,8) Bz
hv + ho (V2 + B—lvl) - 4(1—+ﬁ)23 hOV] < max{l1, ‘QB] - B_l , (324)
where
_ 3ry(1+2p)
40 +p)?

By substituting (3.22) into (3.20), we get (3.12). And by substituting (3.22)—(3.24) into (3.21), we
can conclude (3.14). For 7 = 0 in (3.14), we have (3.13).
The results of (3.12) and (3.13) are sharp for 8 # 0 if

0 =3 f L0 ( f @ g @ +yW©E - 1] g)

or

1 (° I
Q)= 3 | = ’3( f (§)]‘lg’(é-’)1+7(¢(§2)—1)]d§)dt

and the results of (3.14) and (3.15) are sharp for 8 = 0 if

) :f 8O0 4y ) - 11d

or

f(Z)=f &[1+y(¢/(t) )]dt.

Thus, the proof of Theorem 3.3 is complete. O
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By taking special values of parameters «, S, i in Theorem 3.3, we can obtain coeflicient estimates
for functions belonging to some subclasses of the class Cy(a, B, u, v; ¢, ).

Corollary 3.4. Let the function f(z) € K,(a, i, y; ¢, ). Then

|,U|A1 |)’|Bl
<
ol < St T
lulA, u(l +3a) A |7|Bl |B;| |yl
_ MR Y (S W | O Lot A.B,.
sl < S 2 ™ O+a2 ' & 3 3 +a)

and for any 7 € C,

1
lasz — T612| L max {1,

u37(1 +2a) - 2(1 + 3a)]A A,

1 - —

}

Remark 3.5. Fora = = 0,u = 1 in Theorem 3.3 or @« = O, u = 1 in Corollary 3.4, we obtain the
result which is Corollary 3 in [21].

Corollary 3.6. Let the function f(z) € H,(y; ¢,¥). Then

~6(1 + 2a) 2(1+a/)2 A
ly|B, 3ty |uy(2 = 37)|

I Bre 2 A B,

73 max{ 10 B1 T et

Ay |)’|Bl B2l Iyl
< — 1,1A + 1, —?+ =ABy,
las] < 18max{ ' ! Al} 3 B | 6"

ly|B1
I,
} 3 max

+z

1
y=1, ¢ =)= -
—Z

and forany 7 € C

9t - 8A1 A
8 A

3
2Vp, -
4 Bl

A
las —m%l < 1—émax{1,

L @-301,
12

Especially, let

we can obtain the following result.

Remark 3.7. Let the function

1+z 1+z2
f(z)e?{(l e g ).
-z
Then
<2, lal< 2
02—2’ az| = 3’

and forany 7 € C

1
laz — m%l < §max{1,

97'—12' +2 {
7 3max ,

37 ' |2 — 37
— 1|+ .
2 3

The sharpness of the estimates is demonstrated by the functions
h@) =7 +logll —2)
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or |
Z
f2) = —— + =log(1 - 2%,
1-z 2

and the graph of the functions f(z) and f;(z) are shown as follows,

In Figures 1 and 2, the three-dimensional coordinate system, coupled with color, is used to represent
complex functions. Specifically, the x-axis corresponds to the real part of the variable z, the y-axis to
the imaginary part of z, the z-axis indicates the real part of the function, and the color signifies the
imaginary part of the function.

Figure 2. The image of f,(2).

Corollary 3.8. Let the function f(z) € C(a, u, y; ¢, ). Then

|lA ly|B)
<
ol < STt e
|lAy u(l +3a) Ay ly|B, |Bs| 2|uyl
< HA Y (S S | O 22 SN 4 B
sl < s 2 "\ M Trar M T A, o MNE B [Tl !
and for any 7 € C,
A [B3r(1 +20) - 2(1 +30)] . A,
- Td? <|,u|—1 1 ',u A -2
a5 =1l <g e M b 21 + ) Y
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9 B
ﬂB 2

|- =

16 B,

+ bALT max{],
9

Corollary 3.9. Let the function f(z) € C(y; ¢, ). Then

L E-90),
36(1 + )

A+ y|B
ao] <=2
A Ay ly|B1 |Bs| lyl
< =L LA + 228+ 1,224+ ZA B,
las| < 18max{ 1 Al} 9 max B, 5 4181

and for any 7 € C,

9r -8 A2
2L P -2
8 1A

A
las —m%l < Témax{l,

ly|B:
+ 1,|—
} 9 max

Corollary 3.10. Let the function f(z) € L,(y; ¢,¢). Then

8 -9t
}+|y< 90,

] < 2A, ';b’lBl’
A A B B 2
las] < glmax{l, A + A_T } + |7’|9 ! max{l,%} + %AlBl,

and for any 7 € C,

3T—2A1 A
2 Ay

Oty B,
2’ -2
16 ' B

A
las — m%l < 3 max 1,

} + 1B, max {1,
9

In this paper, we introduce the new function class C,(a, 8, i, v; ¢, ), which is a expanded close-to-
convex functions defined by quasi-subordination. We mainly study the integral expression, the first two
coeflicient estimates and Fekete-Szego problem for this class and some of its subclasses. In the future,
we can consider to study other forms of coefficient estimation, such as Milin coefficient eatimate, Zal-
cman functional estimate, high order Hankel Determinant estimate for these classes using the concepts
dealt with in the paper.
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