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1. Introduction

We consider the following Cauchy problem for the JMGT-thermoviscoelastic plate with Cattaneo-
type heat conduction:

TPUy + Pty = —k* A?u — kA*u, — mAd, (x,1) e R”" xR,
0, + kV - g — mtAu, — mAu, =0 (x,1) e R" xR*, (1.1)
Tog: +q +«kVO =0, (x,) e R”" xR,

with initial data
(l/l, Uy Uy 95 CI)(X, 0) = (uo’ U, Uy, 90’ QO)(X)’ X € Rna (12)

where 7, p, k*, k, m, Ty, k are positive constants, and the critical parameter is given by K := k — 7k*.
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The linear Jordan-Moore-Gibson-Thompson equation (JMGT) is expressed as follows:
Tu”t + 61/{” +ﬁAuz + ’)/AM = O, (1.3)

where A is a strictly positive operator in a Hilbert space, and 7, 6, 8, y are positive constants.

Equation (1.3) originally arises as a model for wave propagation in viscous, thermally relaxing
fluids (cf. [5,6]). A similar form of the equation appears in the standard linear solid model (cf. [4])
and in the formulation of a relaxation parameter within the Green—Naghdi type III theory (cf. [3, 10]),
particularly when A = —A. Furthermore, Eq (1.3) serves as a potential model for vertical displacements
in viscoelastic plates (cf. [7]) when A = A2,

In recent years, there has been growing interest in the study of problem (1.3). In [2], the authors
investigated the MGT-viscoelastic plate coupled with the Fourier law and type III heat conduction,
proving that the corresponding semigroups are analytic in the subcritical case K > 0. Subsequently, [1]
focused on the MGT-viscoelastic plate with Cattaneo heat conduction and established the following
decay result in the subcritical case K > 0:

e the subcritical case K > O:

n+2,
IV 5y < CA+ 07T NUNE gy +CA + DIV U -

where U = (u; + Tuy, Au,, A(u + tu,), 6, q)" and Uy = U(x,0).

In this work, we improve upon the results in [1] for the subcritical case K > 0 and establish the
decay result for the critical case K = 0. Additionally, we analyze the eigenvalues to demonstrate the
optimality of the decay results in both cases. The specific decay rates are as follows:

e the subcritical case K > O:

Ce™ IV Wollj

IV?WOI2 gy < CCL+ D73 PIWo| D@y

2
L2(Rn) Lent

where W = (u; + tuy, Au,, A(u + tu,), 6, )7 and Wy = W(x, 0).

e the critical case K = 0:

V7 ZOIE gy < CCL+ 0 EPUZIR, o +CCL+ 07V ZI s

where Z = (u; + tuy, Au + tu,),0,9)" and Zy = Z(x, 0).

The paper is organized as follows. In Section 2, we introduce some notations and present our main
results. Section 3 is devoted to proving the decay estimates for the JMGT-thermoviscoelastic plate with
Cattaneo heat conduction. Finally, in Section 4, we establish the optimality of the decay rates obtained.

Before closing this section, we give some notations to be used below. Let the Fourier transform of
a function f = f(x) be denoted by f = f(£), defined as

1 —ix-&
o) [R ) e "™ f(x)dx,

and let the complex conjugate of & be denoted by .

FLAIE) = f(&) =
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2. Preliminaries and main results

In this section, we state our main results.
Taking the Fourier transform of system (1.1)-(1.2), we have

TPy + Plty + k*l‘f|4ﬁ + k|§|4ﬂt - m|§|29 =0,
éz + ki q+ mT|'f|21A4tt + mlflzﬁz =0, (2.1)
T0G; + § + kiéd = 0

with initial data
(i’\h ﬁta I’/\ttty 99 q)(§7 O) = (I”\t09 ﬁla I’/\tZ’ 90’ CA]O)(f), (22)

where & € R”. By the new variables

we obtain
i, —¢=0,
& —W =0,
ol k. ko om .
W+ W+ — i+~ - — o =0, 3
T 0 ™0 0 (2.3)

9, + kié - g + mrlflzw + m|§|2¢ =0,

1 K . A
g+ —q+ —ié6 = 0.
To To
Then, we state the following pointwise estimates and decay results.

Theorem 2.1. Let
W = (i\tl + Ti/\lll’ Ai/\t[, A(i/\t + Tﬁl)’ é’ Q)T’

where (il(¢,1), 9(5, 1),q(&, 1)) is the Fourier image of the solution (u(x,t),0(x,1),q(x,t)). Assume that
K > 0. Then, W satisfies the following pointwise estimate

W, DI < Ce™ P W&, (2.4)
for anyt > 0, where p;(€) := 15;2, and where C, c > 0 are independent of t, &, and the initial data.

Furthermore, let W = (u; + Tuy, Au,, A(u + tuy), 0, q)", where (u(x, 1), 0(x, 1), g(x, 1)) is the solution
of problem (1.1), (1.2), and Wy = W(x,0) € H*(R") N L'(R"), where s is nonnegative. Then, W satisfies
the decay estimate

||VPW(t)||%2(Rr1) < C(l + t)_%_p||WO”%I(Rn)+Ce—Ct||VpWO||iZ(Rn)7 (25)

forall0 < p<s.

Remark 2.2. The decay result (2.5) does not exhibit the regularity-loss phenomenon. In consideration
of [1], the decay estimate presented here aligns with the exponential stability of the MGT-viscoelastic
plate with Cattaneo-type heat conduction in a bounded domain. At the same time, we improve the result
in unbounded domain obtained in [1]. Noting the asymptotic expansion of the eigenvalues in Section 4,
we find that the exponent in pointwise estimate (2.4) is optimal. Thus, the decay estimate (2.5) is
optimal.
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Remark 2.3. Note that the decay estimate (2.5) and the MGT-viscoelastic plate with the Gurtin-Pipkin
thermal law in [11] exhibit the same decay rate when K > 0, despite the absence of a regularity-loss
phenomenon in (2.5).

Theorem 2.4. Let

Z = (i + iy, A+ 722,),8,9),
where (il(¢,1), 9(5, 1),q(&, 1)) is the Fourier image of the solution (u(x,t),0(x,t),q(x,t)). Assume that
K = 0. Then, Z has the following pointwise estimate

1Z(£, D < Ce™ O Zy(&)P, (2.6)
for any t > 0, where py(¢) = % Furthermore, let Z = (u, + tuy, A(u + tu,),6,q)", where

(u(x, 1), 0(x,1), q(x, 1)) is the solution of problem (1.1)-(1.2), and Zy = Z(x,0) € H*(R") N L'(R"), where
s is nonnegative. Then, Z satisfies the following decay estimate
IVPZ(0) 2 gy < CCL+ D EPUZIR, o FCCL + 7 IV Z] g, 2.7)

forall0 < p+1<s.

Remark 2.5. According to [11], we find that the MGT-viscoelastic plate with Gurtin-Pipkin thermal
law has the same decay result as (2.7) under the condition K = 0, including both the decay rate and
regularity-loss phenomenon.

3. Decay estimates

In this section, we consider the decay estimates of the norm related to (1.1)-(1.2).

3.1. Decay estimates—the case K > 0

In this subsection, we define the energy functional of system (2.3) as
A . N T R kK 4 N I~ T0, .
B 1) = 1o+l + — Kl + el + 7ol* + =101 + —IgP, (3.1
p p p p

which is equivalent to [W(&, ). To derive our main result, we begin by stating and proving several
lemmas.

Lemma 3.1. Let (i, o, W, 0, q) be the solution of (2.3). Assume that K > 0. Then, E(f, t) satisfies
d 1 R 1
d—E(s‘, 1 = ——KIE"el” - —1af.
t p p
Lemma 3.2. The following inequality holds true:

d k* A
S0+ (; - 281) éa + 1@l < 1@ + Tl + CeDIE'I@F + Clenll’, (3.2)

for any &, > 0, where
Fi(?) := Re((p + ™) (@t + TP)).
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Proof. We can easily obtain

d kK o . 1 - m Az =
S0+ ;|§I4|u + 7 — |+ Tl = —/—)K|§I4Re(90(u +79)) + ;IflzRe(Q(u +79)). (3.3)

By virtue of Young’s inequality, for any £, > 0, we have

1 ArA~ ~ A A A
- ;K|§I4Re(¢(u +719)) < &1|&'|a + @I + C(en)lél' el (3.4)
m A= = . . A
;IflzRe(Q(u +719)) < elé*li + T¢I + C(en)lf). (3.5
Combining (3.3)—(3.5), we obtain the desired result (3.2). O

Lemma 3.3. The functional
Fa(1) == Re((@ + ™))

satisfies

d A, A ~ ’ ~ A A 4 o
g 2O+ m - eNIEPIP + Tl < C(e)lgl” + &)l + T@I” + elé°Igf + Clea, eIEPIOP,  (3.6)

forany &,&, > 0.

Proof. It is easy to obtain

d A N LAl R = k* R k AR m PN
50+ ml¢P1§ + T = —kRe(i€4($ + ) — ;Ifl“Re(uH) - ;Ifl“Re(so@) + ;Iflzlelz- (3.7)

Applying Young’s inequality with &, &5 > 0, we get

— kRe(i€q(P + ™)) < &l€P1p + T + C(&2)Igl, (3.8)
k* R L Gin R , n
- ;|§|4Re(u9) < &lé°la + 7@l + C(EHIELIOP, (3.9)
k R R N
- EI§I4R6(¢9) < &lé°1g* + C(e)IE16P. (3.10)
Thanks to (3.7)—(3.10), we deduce (3.6). O

Lemma 3.4. Define the functional
F5(t) :=Re (ifrocié + imTTO§3¢5]) .
Then,

d A
230 + (k= 2&3) €718 < Cle)(1 + IEP)IaP + C(e)léllgl, (3.11)

for any g3 > 0.
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Proof. Multiplying (2.3), and (2.3)s by itoég and (—irofé), respectively, adding the resulting equations,
and taking the real part, we have

d . AN ~ N AR 3 AR 3 AR
ERe(lTo-fq@) + kEPIOF — krolélgl” = Re(i£gh) — mrToRe(i&’Wg) — mroRe(id> ¢7). (3.12)

To eliminate Re(i€*q), we multiply (2.3), and (2.3)s by im770&3g and —imt70&3Q, respectively. Then,
combining the resulting equations and taking real parts, we have

d ] ] ] .
—Re (imt70¢°pq) = mrroRe(i£*Wg) + mTRe(i£°43) — kmriél'Re(69). (3.13)

Summing up (3.12) and (3.13), we arrive at

d ~ N AR L3 AR AR
EF 3(0) + KIEPIOP — kTolélP1gl® = Re(iégh) + (mt + mto)Re(i&*§@) — km|€['Re(6p). (3.14)

Young’s inequality yields, for any g5 > 0,

Re(ié40) < &3P 10F + Cle3)lgP, (3.15)
(mT + mro)Re(i£°4P) < &)°1@ + C(e3)lg1, (3.16)
— kmlé|*Re(03) < &3|€P 101 + C(e3)IEL 1Rl (3.17)
Hence, plugging (3.15)—(3.17) into (3.14), we arrive at (3.11). O

We now proceed to prove our main result.
Proof of Theorem 2.1. We define the Lyapunov functional as follows:

Ly(€,1) := N(1 + [EP)E(E, 1) + 1€ F1 (1) + N2 Fa(1) + N3 F5(2),

where N, N,, and N; are positive constants to be determined later. By utilizing the previously
established lemmas, we obtain

d k* / A A

d—Ll (fa 1)+ [(— - 281) — N282]|§|6|M + T(plz
t p

t | Nom — &) - 1]|§|2|¢> e [N3 (k = 263) — C(e1) — NaClen, e;>]|§|2|9|2

[NK
+ 7|§I4(1 +1E1) = C(eDIE — Nagalél ~ N3C(83)|§|6]I<70|2

‘N A
£ |0 ) = NaClew) = NiClea)1 + P

<0. (3.18)
At this stage, we aim to determine the constants in Eq (3.18). We begin by selecting

k* K
e <—, &E<m, &< .
2p :

2
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k¥ 2
Next, we fix N, > and choose &) < — ﬁ. Then, we select N3 such that
m— & PIN2 N,
S C(e)) + NoC(e, &)
. K—2&; '

Finally, we choose N sufficiently large to satisfy
plC(&1) + N2&r + N3C(&3)]
K

Consequently, we obtain, with a positive constant Cy,

N > max{ ,p[N>C(&5) + N3C(83)]}-

%Ll(f, H+CiM(1) <0, (3.19)

where
Mi(t) = |00 + 7@ + 1€PIg + 7w + I€P1017 + 1€1°191 + 1¢171g1°
= [EPEE, D).

From the definitions of E(f, 1) and L;(&,t), we know that there exist two positive constants C, and Cj
such that the following relation holds

Co(1 + EPEE, D) < Li€,1) < C3(1 + EP)EE, 1)
Thus, Eq (3.19) transforms into

¢
1+ g1

Finally, the estimate in (3.20) leads to the desired result (2.4), allowing us to derive the decay
estimate (2.5). The proof of (2.5) is the same as the one of Theorem 3.6 in [8], so we omit it here. O

E¢ n<0. (3.20)

d
—E
LEEn+C

3.2. Decay estimates—the case K =0
Based on Lemmas 3.1-3.3 and the condition K = 0, we have the following conclusion.

Lemma 3.5. Under the condition K = 0, the energy functional (3.1) becomes

A R R kK 4 R I~ 70 .
EE 1) = 1@+ P + —lella+ 7ol + = 10F + =1gP, (3.21)
p p p
and then E(&, 1) satisfies
d 4 1,
d—S(f, 1 =——laf (3.22)
t p
and the following inequality holds true:
d k* A . R n
d—tFl(f) + (; - 61) 1N + 7@l < | + T + Cle)ldl’, (3.23)
d A A N ’ ~ A ’ 2
—F(1) + (m — &)IEF1@ + Tl < C(e)lgl® + €lé°la + 7¢I* + C(enll6F, (3.24)

dt
forany € > 0and 6, €, > 0.
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Proof. 1t is straightforward to obtain Eqs (3.22) and (3.23). It follows from (3.7) that

d A A A, R = k* ~ AR m N
EFz(t) + mléP| + TW] = —kRe(i£q($ + TW)) — ;|§|4Re((u +79)0) + ;|§|2|9|2~

Using Young’s inequality, we get

— kRe(i£4(P + %)) < &lél1p + Tl + C(e)gl’,

k* . N . N , A
- ;|§|4Re((u +70)6) < &€l + 7l + C(ep)IEP1I,

where &, € > 0. Collecting the above estimates, we obtain (3.24). O

Lemma 3.6. The functional B
F(t) := Re (ito£ )
satisfies

d = A ’ A 12 A A
T30 + (k= &) KPP < Cles, €)1+ P + 1) 10 + IeP1 + il (3.25)
for any €, € > 0.

Proof. Taking (3.12) into account, we arrive at
d _ ~ ~ A . N AN A
il 3(1) + KIEPIOF — kTolélP1g = Re(i£g6) — mroRe(i& (@ + T)]). (3.26)

Taking advantage of Young’s inequality, we obtain (3.25). The proof is complete. O

Proof of Theorem 2.4. We define the new Lyapunov functional L, (&, f) associated to the case K = 0
as follows:

Ly(&,1) := N(1 + |76, 1) + [EPF1(6) + NaFs(t) + N3 F5(0). (3.27)
Taking the derivative of (3.27) with respect to ¢ and making use of the above lemmas, we derive

*

d k _ R R

LN+ [(— - el) - N262]|§|6|u ek
t p

i|mm—e)-1- Ns€§]|§|2|¢ oA

| k- &) - Cle) - NZC<65>]|§|2|9|2

,N _ _
+ ;(1 + [6)? = N2C(&) — N3Cles, €)(1 + 1€ + [ |11
<0. (3.28)

At this point, we choose our constants carefully like before. First, we pick

k*
ag<—, 6<m <K
o
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Next, we choose

_ 1 _ C(g) + N,C(é,
Ny, > and N; > (&) 2 (2).
m-—e K—&

Then, we fix €] satisfying

, _ K/p—e) , NMm-g)-1
6E<——, < — .
N, N;
Finally, we choose N large enough such that

N > pN,C(€)) + pN;C (&, €).

Thus, we arrive at

%LZ(f, 1)+ CsMy(1) <0, (3.29)
where
Mo(t) = |l + 7@ + 111G + T + EPIOF + 161117
= [¢€PEE. ).

From the definition of &(&, 1) and (3.27), it is obviously that L,(&, 1) ~ (1 + |€)2E(&, £). Then,

ié(g, 1) + Cié(g, 1 <0. (3.30)

dt (1 +1€P)?
Thus, we achieve the desired pointwise estimate (2.6), which leads to the conclusion (2.7). The proof
process of (2.7) is similar to the proof of Theorem 3.1 in [9], so we omit it here. O

4. Asymptotic expansion of eigenvalues

From now on, we study the asymptotic expansion of the eigenvalues for |£| — 0 and |£] — oo to
show the optimality.
Let V = (&, &, W, 0,9)" and Vy = (ito, o, Wo, B0, §o)" . Then, we can rewrite system (2.1)-(2.2) as

V, + iéAV + |€PBV + |€1*DV + LV = 0, @
V(£,0) = Vo(6), '
where
00000 0 -1 0 0O
00000 0 0 -100
A=|0 0 0 0 Of, L=|0 0 1 0 Of,
000 0 « 0 0 0 0O
000 £0 0000%
00 0 0 O 0 0000
00 0 0 O 0 0000
_ _m _| k& £
B={0 0 0 -2 0|, D=(5 £ 0 0 0]
O m mr 0 O 0 0000
00 0 0 O 0 0000
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For (4.1), the solution is given by A
V(g = e OV@),

where ¢ denotes the matrix exponential with
O(ig) = —(L+ €A + €7 B + I'D).
Setting { = i€, we get
D) =—(L+lA-B+ D).

Let 4;({) denote the eigenvalues of the matrix ci>(§). By the direct calculation, we find that the
characteristic polynomial of ®(¢) is

Tpc det(A — O())
:‘rp‘ro/l5 + (Top + Tp)/l4 + [(Tok + m2TT0){4 - TpKZ{ 24 p]/l3
+ [(tok™ + m*T + m*to + k) — piP 1A% + [(m? + k)Y = K2k — 2k E°.
4.2)

Lemma 4.1. The real parts of the eigenvalues of (2.1)-(2.2) satisfy the following asymptotic expansion:

1 .
—— 0D, =1,
=

Red i) =1 _L L oqep), j=2. (43)
To
“Re(@ P + O, j=3.4.5.

for €] — 0.

Proof. We consider 4({) the following asymptotic expansion:

4@ = A, (4.4)
h=0
for |{] — 0. Straightforward computations yield

1

PU
T
1

AV=-= j=2
To

0 _ D _ @ _ . _
/lj —/l] —O, /l] _¢]’ ]—3’475’

where ¢; are the roots of equation pX> — pk*X* + (m* + k*)X —x*k* = 0. To demonstrate that Re(¢;) > 0,
we set
f(X) := pX° — p®*X* + (m* + k)X — k. (4.5)

Since £(0)f(k*) < 0, we conclude that f has at least one real root X = ¢; in the interval (0, x*). We
express Eq (4.5) in the form
fX) = (X = ¢)(X* + di X + dy)

AIMS Mathematics Volume 10, Issue 5, 12079-12091.
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27,%
withdy = —pi® + ¢1p < O and dp =

> (. For the remaining roots ¢, and ¢3, we find that
1

d d
¢+ ¢p3 = —— >0, ¢2¢3=—0>0.
p p
This implies that if ¢, and ¢5 are real, they are both positive; if ¢, and ¢3 are complex conjugates, then

1
Re(¢,) = Re(¢s) = 5(K2 —¢1) > 0.

Thus, we have arrived at the desired result in (4.3). This completes the proof. O

When |¢| = oo, we rewrite ®(¢) as @) = F2P(¢"), where $(¢") = B—¢'A - (2L - 2D, and
consider the eigenvalues u;({ -1, for j = 1,2,3,4,5 of the matrix ‘i’({ ~1). Meanwhile, these eigenvalues
u;(¢7") are the solutions to the characteristic equation

rpc det(ul — )
=tptoi’ + (Top + TP) 2t + [p¢ ™ — TP + (Tok + mPTTo) |1’
+ [—pk* 7 + (Tok™ + mPT + mPTo + k)T + [(m? + k) = Pk - Kk

Lemma 4.2. When K > 0, the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic

expansion
Ktop

- +03e™, j=1,2,
27p(Tok + m211)) (.

Red;(if) = m*ti’k + K*k* + mPTok? (4.6)
22k(tok + m?11y)

~1+03™), j=5,

K _ .
+0(é™, j=3,4,

for |§] — co.
When K = 0, the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic expansion

CmPtp
275 (k + m*1)?
Red;(i&) = m* T’k + k*k? q ) “4.7)
- 0>, j=3.4,
2k%k(tok + m*T7y) (el
—-1+03¢™, j=5,

€72+ 036, j=1.2,

for |&] — oo,

Proof. As |{| — oo, similar calculation as before yields

k +m?t Kt
o BT g ), K
K, 0 b ’ K 21p(tok + m211)’

j=12, when K >O0;

AIMS Mathematics Volume 10, Issue 5, 12079-12091.



12090

2020
@ k+ m27i M _ O _ - T2 pK°m

M=+ M 0, u i F i
Y 2 \Tp(k + m>T)(tok + m?17y)
_ it
272 (k + m27)?’

j=1,2, when K =0;

2 " K2k o mTk + KK+ mProk’ K
Hi =00 = ok +mrtry. T T T 2k@k(tok + mPto)
J=34
=0, p=0, uP=-1, j=5.
Consequently, our conclusion holds. O

5. Conclusions

In this work, we have investigated the Cauchy problem for the JMGT-viscoelastic plate system
coupled with Cattaneo-type heat conduction, focusing on the optimal decay rates of solutions in both
the subcritical and critical cases. Our main contributions can be summarized as follows:

(1) The subcritical case: We proved that the system exhibits exponential decay without regularity
loss, improving upon previous results in the literature. This indicates that the dissipation mechanism
in this regime preserves the initial regularity of solutions.

(2) The critical case: In contrast, we observed a regularity-loss phenomenon in the decay rates,
demonstrating a fundamental difference in the long-time behavior compared to the subcritical case.
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