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1. Introduction

We consider the following Cauchy problem for the JMGT-thermoviscoelastic plate with Cattaneo-
type heat conduction:

τρuttt + ρutt = −k∗∆2u − k∆2ut − m∆θ, (x, t) ∈ Rn × R+,

θt + κ∇ · q − mτ∆utt − m∆ut = 0 (x, t) ∈ Rn × R+,

τ0qt + q + κ∇θ = 0, (x, t) ∈ Rn × R+,

(1.1)

with initial data
(u, ut, utt, θ, q)(x, 0) = (u0, u1, u2, θ0, q0)(x), x ∈ Rn, (1.2)

where τ, ρ, k∗, k,m, τ0, κ are positive constants, and the critical parameter is given by K := k − τk∗.
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The linear Jordan-Moore-Gibson-Thompson equation (JMGT) is expressed as follows:

τuttt + δutt + βAut + γAu = 0, (1.3)

where A is a strictly positive operator in a Hilbert space, and τ, δ, β, γ are positive constants.
Equation (1.3) originally arises as a model for wave propagation in viscous, thermally relaxing

fluids (cf. [5, 6]). A similar form of the equation appears in the standard linear solid model (cf. [4])
and in the formulation of a relaxation parameter within the Green–Naghdi type III theory (cf. [3, 10]),
particularly when A = −∆. Furthermore, Eq (1.3) serves as a potential model for vertical displacements
in viscoelastic plates (cf. [7]) when A = ∆2.

In recent years, there has been growing interest in the study of problem (1.3). In [2], the authors
investigated the MGT-viscoelastic plate coupled with the Fourier law and type III heat conduction,
proving that the corresponding semigroups are analytic in the subcritical case K > 0. Subsequently, [1]
focused on the MGT-viscoelastic plate with Cattaneo heat conduction and established the following
decay result in the subcritical case K > 0:

• the subcritical case K > 0:

‖∇pU(t)‖2L2(Rn) ≤ C(1 + t)−
n+2p

4 ‖U0‖
2
L1(Rn)+C(1 + t)−l‖∇p+lU0‖

2
L2(Rn),

where U = (ut + τutt,∆ut,∆(u + τut), θ, q)T and U0 = U(x, 0).

In this work, we improve upon the results in [1] for the subcritical case K > 0 and establish the
decay result for the critical case K = 0. Additionally, we analyze the eigenvalues to demonstrate the
optimality of the decay results in both cases. The specific decay rates are as follows:

• the subcritical case K > 0:

‖∇pW(t)‖2L2(Rn) ≤ C(1 + t)−
n
2−p‖W0‖

2
L1(Rn)+Ce−Ct‖∇pW0‖

2
L2(Rn),

where W = (ut + τutt,∆ut,∆(u + τut), θ, q)T and W0 = W(x, 0).
• the critical case K = 0:

‖∇pZ(t)‖2L2(Rn) ≤ C(1 + t)−
n
2−p‖Z0‖

2
L1(Rn)+C(1 + t)−l‖∇p+lZ0‖

2
L2(Rn),

where Z = (ut + τutt,∆(u + τut), θ, q)T and Z0 = Z(x, 0).

The paper is organized as follows. In Section 2, we introduce some notations and present our main
results. Section 3 is devoted to proving the decay estimates for the JMGT-thermoviscoelastic plate with
Cattaneo heat conduction. Finally, in Section 4, we establish the optimality of the decay rates obtained.

Before closing this section, we give some notations to be used below. Let the Fourier transform of
a function f = f (x) be denoted by f̂ = f̂ (ξ), defined as

F [ f ](ξ) ≡ f̂ (ξ) =
1

(2π)
n
2

∫
Rn

e−ix·ξ f (x)dx,

and let the complex conjugate of û be denoted by ¯̂u.
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2. Preliminaries and main results

In this section, we state our main results.
Taking the Fourier transform of system (1.1)-(1.2), we have

τρûttt + ρûtt + k∗|ξ|4û + k|ξ|4ût − m|ξ|2θ̂ = 0,

θ̂t + κiξ · q̂ + mτ|ξ|2ûtt + m|ξ|2ût = 0,

τ0q̂t + q̂ + κiξθ̂ = 0

(2.1)

with initial data
(û, ût, ûtt, θ̂, q̂)(ξ, 0) = (û0, û1, û2, θ̂0, q̂0)(ξ), (2.2)

where ξ ∈ Rn. By the new variables
ϕ̂ = ût, ŵ = ûtt,

we obtain 

ût − ϕ̂ = 0,

ϕ̂t − ŵ = 0,

ŵt +
1
τ

ŵ +
k∗

τρ
|ξ|4û +

k
τρ
|ξ|4ϕ̂ −

m
τρ
|ξ|2θ̂ = 0,

θ̂t + κiξ · q̂ + mτ|ξ|2ŵ + m|ξ|2ϕ̂ = 0,

q̂t +
1
τ0

q̂ +
κ

τ0
iξθ̂ = 0.

(2.3)

Then, we state the following pointwise estimates and decay results.

Theorem 2.1. Let
Ŵ := (ût + τûtt,∆ût,∆(û + τût), θ̂, q̂)T ,

where (û(ξ, t), θ̂(ξ, t), q̂(ξ, t)) is the Fourier image of the solution (u(x, t), θ(x, t), q(x, t)). Assume that
K > 0. Then, Ŵ satisfies the following pointwise estimate

|Ŵ(ξ, t)|2 ≤ Ce−cρ1(ξ)t|Ŵ0(ξ)|2, (2.4)

for any t ≥ 0, where ρ1(ξ) := |ξ|2

1+|ξ|2
, and where C, c > 0 are independent of t, ξ, and the initial data.

Furthermore, let W = (ut + τutt,∆ut,∆(u + τut), θ, q)T , where (u(x, t), θ(x, t), q(x, t)) is the solution
of problem (1.1), (1.2), and W0 = W(x, 0) ∈ H s(Rn)∩L1(Rn), where s is nonnegative. Then, W satisfies
the decay estimate

‖∇pW(t)‖2L2(Rn) ≤ C(1 + t)−
n
2−p‖W0‖

2
L1(Rn)+Ce−Ct‖∇pW0‖

2
L2(Rn), (2.5)

for all 0 ≤ p ≤ s.

Remark 2.2. The decay result (2.5) does not exhibit the regularity-loss phenomenon. In consideration
of [1], the decay estimate presented here aligns with the exponential stability of the MGT-viscoelastic
plate with Cattaneo-type heat conduction in a bounded domain. At the same time, we improve the result
in unbounded domain obtained in [1]. Noting the asymptotic expansion of the eigenvalues in Section 4,
we find that the exponent in pointwise estimate (2.4) is optimal. Thus, the decay estimate (2.5) is
optimal.
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Remark 2.3. Note that the decay estimate (2.5) and the MGT-viscoelastic plate with the Gurtin-Pipkin
thermal law in [11] exhibit the same decay rate when K > 0, despite the absence of a regularity-loss
phenomenon in (2.5).

Theorem 2.4. Let
Ẑ = (ût + τûtt,∆(û + τût), θ̂, q̂)T ,

where (û(ξ, t), θ̂(ξ, t), q̂(ξ, t)) is the Fourier image of the solution (u(x, t), θ(x, t), q(x, t)). Assume that
K = 0. Then, Ẑ has the following pointwise estimate

|Ẑ(ξ, t)|2 ≤ Ce−cρ2(ξ)t|Ẑ0(ξ)|2, (2.6)

for any t ≥ 0, where ρ2(ξ) := |ξ|2

(1+|ξ|2)2 . Furthermore, let Z = (ut + τutt,∆(u + τut), θ, q)T , where
(u(x, t), θ(x, t), q(x, t)) is the solution of problem (1.1)-(1.2), and Z0 = Z(x, 0) ∈ H s(Rn)∩ L1(Rn), where
s is nonnegative. Then, Z satisfies the following decay estimate

‖∇pZ(t)‖2L2(Rn) ≤ C(1 + t)−
n
2−p‖Z0‖

2
L1(Rn)+C(1 + t)−l‖∇p+lZ0‖

2
L2(Rn), (2.7)

for all 0 ≤ p + l ≤ s.

Remark 2.5. According to [11], we find that the MGT-viscoelastic plate with Gurtin-Pipkin thermal
law has the same decay result as (2.7) under the condition K = 0, including both the decay rate and
regularity-loss phenomenon.

3. Decay estimates

In this section, we consider the decay estimates of the norm related to (1.1)-(1.2).

3.1. Decay estimates–the case K > 0

In this subsection, we define the energy functional of system (2.3) as

Ê(ξ, t) := |ϕ̂ + τŵ|2 +
τ

ρ
K|ξ|4|ϕ̂|2 +

k∗

ρ
|ξ|4|û + τϕ̂|2 +

1
ρ
|θ̂|2 +

τ0

ρ
|q̂|2, (3.1)

which is equivalent to |Ŵ(ξ, t)|2. To derive our main result, we begin by stating and proving several
lemmas.

Lemma 3.1. Let (û, ϕ̂, ŵ, θ̂, q̂) be the solution of (2.3). Assume that K > 0. Then, Ê(ξ, t) satisfies

d
dt

Ê(ξ, t) = −
1
ρ

K|ξ|4|ϕ̂|2 −
1
ρ
|q̂|2.

Lemma 3.2. The following inequality holds true:

d
dt

F1(t) +

(
k∗

ρ
− 2ε1

)
|ξ|4|û + τϕ̂|2 ≤ |ϕ̂ + τŵ|2 + C(ε1)|ξ|4|ϕ̂|2 + C(ε1)|θ̂|2, (3.2)

for any ε1 > 0, where
F1(t) := Re((ϕ̂ + τŵ)( ¯̂u + τ ¯̂ϕ)).
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Proof. We can easily obtain

d
dt

F1(t) +
k∗

ρ
|ξ|4|û + τϕ̂|2 − |ϕ̂ + τŵ|2 = −

1
ρ

K|ξ|4Re(ϕ̂( ¯̂u + τ ¯̂ϕ)) +
m
ρ
|ξ|2Re(θ̂( ¯̂u + τ ¯̂ϕ)). (3.3)

By virtue of Young’s inequality, for any ε1 > 0, we have

−
1
ρ

K|ξ|4Re(ϕ̂( ¯̂u + τ ¯̂ϕ)) ≤ ε1|ξ|
4|û + τϕ̂|2 + C(ε1)|ξ|4|ϕ̂|2, (3.4)

m
ρ
|ξ|2Re(θ̂( ¯̂u + τ ¯̂ϕ)) ≤ ε1|ξ|

4|û + τϕ̂|2 + C(ε1)|θ̂|2. (3.5)

Combining (3.3)–(3.5), we obtain the desired result (3.2). �

Lemma 3.3. The functional
F2(t) := Re(θ̂( ¯̂ϕ + τ ¯̂w))

satisfies

d
dt

F2(t) + (m − ε2)|ξ|2|ϕ̂ + τŵ|2 ≤ C(ε2)|q̂|2 + ε′2|ξ|
6|û + τϕ̂|2 + ε2|ξ|

6|ϕ̂|2 + C(ε2, ε
′
2)|ξ|2|θ̂|2, (3.6)

for any ε2, ε
′
2 > 0.

Proof. It is easy to obtain

d
dt

F2(t) + m|ξ|2|ϕ̂ + τŵ|2 = −κRe(iξq̂( ¯̂ϕ + τ ¯̂w)) −
k∗

ρ
|ξ|4Re(û ¯̂θ) −

k
ρ
|ξ|4Re(ϕ̂ ¯̂θ) +

m
ρ
|ξ|2|θ̂|2. (3.7)

Applying Young’s inequality with ε2, ε
′
2 > 0, we get

− κRe(iξq̂( ¯̂ϕ + τ ¯̂w)) ≤ ε2|ξ|
2|ϕ̂ + τŵ|2 + C(ε2)|q̂|2, (3.8)

−
k∗

ρ
|ξ|4Re(û ¯̂θ) ≤ ε′2|ξ|

6|û + τϕ̂|2 + C(ε′2)|ξ|2|θ̂|2, (3.9)

−
k
ρ
|ξ|4Re(ϕ̂ ¯̂θ) ≤ ε2|ξ|

6|ϕ̂|2 + C(ε2)|ξ|2|θ̂|2. (3.10)

Thanks to (3.7)–(3.10), we deduce (3.6). �

Lemma 3.4. Define the functional

F3(t) := Re
(
iξτ0q̂ ¯̂θ + imττ0ξ

3ϕ̂ ¯̂q
)
.

Then,
d
dt

F3(t) + (k − 2ε3) |ξ|2|θ̂|2 ≤ C(ε3)(1 + |ξ|2)|q̂|2 + C(ε3)|ξ|6|ϕ̂|2, (3.11)

for any ε3 > 0.
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Proof. Multiplying (2.3)4 and (2.3)5 by iτ0ξ ¯̂q and (−iτ0ξ
¯̂θ), respectively, adding the resulting equations,

and taking the real part, we have

d
dt

Re(iτ0ξq̂ ¯̂θ) + κ|ξ|2|θ̂|2 − κτ0|ξ|
2|q̂|2 = Re(iξq̂ ¯̂θ) − mττ0Re(iξ3ŵ ¯̂q) − mτ0Re(iξ3ϕ̂ ¯̂q). (3.12)

To eliminate Re(iξ3ŵ ¯̂q), we multiply (2.3)2 and (2.3)5 by imττ0ξ
3 ¯̂q and −imττ0ξ

3 ¯̂ϕ, respectively. Then,
combining the resulting equations and taking real parts, we have

d
dt

Re
(
imττ0ξ

3ϕ̂ ¯̂q
)

= mττ0Re(iξ3ŵ ¯̂q) + mτRe(iξ3q̂ ¯̂ϕ) − κmτ|ξ|4Re(θ̂ ¯̂ϕ). (3.13)

Summing up (3.12) and (3.13), we arrive at

d
dt

F3(t) + κ|ξ|2|θ̂|2 − κτ0|ξ|
2|q̂|2 = Re(iξq̂ ¯̂θ) + (mτ + mτ0)Re(iξ3q̂ ¯̂ϕ) − κmτ|ξ|4Re(θ̂ ¯̂ϕ). (3.14)

Young’s inequality yields, for any ε3 > 0,

Re(iξq̂ ¯̂θ) ≤ ε3|ξ|
2|θ̂|2 + C(ε3)|q̂|2, (3.15)

(mτ + mτ0)Re(iξ3q̂ ¯̂ϕ) ≤ ε3|ξ|
6|ϕ̂|2 + C(ε3)|q̂|2, (3.16)

− κmτ|ξ|4Re(θ̂ ¯̂ϕ) ≤ ε3|ξ|
2|θ̂|2 + C(ε3)|ξ|6|ϕ̂|2. (3.17)

Hence, plugging (3.15)–(3.17) into (3.14), we arrive at (3.11). �

We now proceed to prove our main result.
Proof of Theorem 2.1. We define the Lyapunov functional as follows:

L1(ξ, t) := N(1 + |ξ|2)Ê(ξ, t) + |ξ|2F1(t) + N2F2(t) + N3F3(t),

where N,N2, and N3 are positive constants to be determined later. By utilizing the previously
established lemmas, we obtain

d
dt

L1(ξ, t) +

[ (k∗

ρ
− 2ε1

)
− N2ε

′
2

]
|ξ|6|û + τϕ̂|2

+

[
N2(m − ε2) − 1

]
|ξ|2|ϕ̂ + τŵ|2 +

[
N3 (κ − 2ε3) −C(ε1) − N2C(ε2, ε

′
2)
]
|ξ|2|θ̂|2

+

[NK
ρ
|ξ|4(1 + |ξ|2) −C(ε1)|ξ|6 − N2ε2|ξ|

6 − N3C(ε3)|ξ|6
]
|ϕ̂|2

+

[N
ρ

(1 + |ξ|2) − N2C(ε2) − N3C(ε3)(1 + |ξ|2)
]
|q̂|2

≤0. (3.18)

At this stage, we aim to determine the constants in Eq (3.18). We begin by selecting

ε1 <
k∗

2ρ
, ε2 < m, ε3 <

κ

2
.
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Next, we fix N2 >
1

m − ε2
and choose ε′2 <

k∗

ρN2
−

2ε1

N2
. Then, we select N3 such that

N3 >
C(ε1) + N2C(ε2, ε

′
2)

κ − 2ε3
.

Finally, we choose N sufficiently large to satisfy

N > max
{
ρ[C(ε1) + N2ε2 + N3C(ε3)]

K
, ρ[N2C(ε2) + N3C(ε3)]

}
.

Consequently, we obtain, with a positive constant C1,

d
dt

L1(ξ, t) + C1M1(t) ≤ 0, (3.19)

where

M1(t) = |ξ|6|û + τϕ̂|2 + |ξ|2|ϕ̂ + τŵ|2 + |ξ|2|θ̂|2 + |ξ|6|ϕ̂|2 + |ξ|2|q̂|2

= |ξ|2Ê(ξ, t).

From the definitions of Ê(ξ, t) and L1(ξ, t), we know that there exist two positive constants C2 and C3

such that the following relation holds

C2(1 + |ξ|2)Ê(ξ, t) ≤ L1(ξ, t) ≤ C3(1 + |ξ|2)Ê(ξ, t).

Thus, Eq (3.19) transforms into

d
dt

Ê(ξ, t) + C
|ξ|2

1 + |ξ|2
Ê(ξ, t) ≤ 0. (3.20)

Finally, the estimate in (3.20) leads to the desired result (2.4), allowing us to derive the decay
estimate (2.5). The proof of (2.5) is the same as the one of Theorem 3.6 in [8], so we omit it here. �

3.2. Decay estimates–the case K = 0

Based on Lemmas 3.1–3.3 and the condition K = 0, we have the following conclusion.

Lemma 3.5. Under the condition K = 0, the energy functional (3.1) becomes

Ê(ξ, t) := |ϕ̂ + τŵ|2 +
k∗

ρ
|ξ|4|û + τϕ̂|2 +

1
ρ
|θ̂|2 +

τ0

ρ
|q̂|2, (3.21)

and then Ê(ξ, t) satisfies
d
dt
Ê(ξ, t) = −

1
ρ
|q̂|2 (3.22)

and the following inequality holds true:

d
dt

F1(t) +

(
k∗

ρ
− ε1

)
|ξ|4|û + τϕ̂|2 ≤ |ϕ̂ + τŵ|2 + C(ε1)|θ̂|2, (3.23)

d
dt

F2(t) + (m − ε2)|ξ|2|ϕ̂ + τŵ|2 ≤ C(ε2)|q̂|2 + ε′2|ξ|
6|û + τϕ̂|2 + C(ε′2)|ξ|2|θ̂|2, (3.24)

for any ε1 > 0 and ε2, ε
′
2 > 0.
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Proof. It is straightforward to obtain Eqs (3.22) and (3.23). It follows from (3.7) that

d
dt

F2(t) + m|ξ|2|ϕ̂ + τŵ|2 = −κRe(iξq̂( ¯̂ϕ + τ ¯̂w)) −
k∗

ρ
|ξ|4Re((û + τϕ̂) ¯̂θ) +

m
ρ
|ξ|2|θ̂|2.

Using Young’s inequality, we get

− κRe(iξq̂( ¯̂ϕ + τ ¯̂w)) ≤ ε2|ξ|
2|ϕ̂ + τŵ|2 + C(ε2)|q̂|2,

−
k∗

ρ
|ξ|4Re((û + τϕ̂) ¯̂θ) ≤ ε′2|ξ|

6|û + τϕ̂|2 + C(ε′2)|ξ|2|θ̂|2,

where ε2, ε
′
2 > 0. Collecting the above estimates, we obtain (3.24). �

Lemma 3.6. The functional
F̄3(t) := Re

(
iτ0ξq̂ ¯̂θ

)
satisfies

d
dt

F̄3(t) + (κ − ε3) |ξ|2|θ̂|2 ≤ C(ε3, ε
′
3)

(
1 + |ξ|2 + |ξ|4

)
|q̂|2 + ε′3|ξ|

2|ϕ̂ + τŵ|2, (3.25)

for any ε3, ε
′
3 > 0.

Proof. Taking (3.12) into account, we arrive at

d
dt

F̄3(t) + κ|ξ|2|θ̂|2 − κτ0|ξ|
2|q̂|2 = Re(iξq̂ ¯̂θ) − mτ0Re(iξ3(ϕ̂ + τŵ) ¯̂q). (3.26)

Taking advantage of Young’s inequality, we obtain (3.25). The proof is complete. �

Proof of Theorem 2.4. We define the new Lyapunov functional L2(ξ, t) associated to the case K = 0
as follows:

L2(ξ, t) := N̄(1 + |ξ|2)2Ê(ξ, t) + |ξ|2F1(t) + N̄2F2(t) + N̄3F̄3(t). (3.27)

Taking the derivative of (3.27) with respect to t and making use of the above lemmas, we derive

d
dt

L2(ξ, t) +

[ (k∗

ρ
− ε1

)
− N̄2ε

′
2

]
|ξ|6|û + τϕ̂|2

+

[
N̄2 (m − ε2) − 1 − N̄3ε

′
3

]
|ξ|2|ϕ̂ + τŵ|2

+

[
N̄3 (κ − ε3) −C(ε1) − N̄2C(ε′2)

]
|ξ|2|θ̂|2

+

[ N̄
ρ

(1 + |ξ|2)2 − N̄2C(ε2) − N̄3C(ε3, ε
′
3)(1 + |ξ|2 + |ξ|4)

]
|q̂|2

≤0. (3.28)

At this point, we choose our constants carefully like before. First, we pick

ε1 <
k∗

ρ
, ε2 < m, ε3 < κ.
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Next, we choose

N̄2 >
1

m − ε2
and N̄3 >

C(ε1) + N̄2C(ε′2)
κ − ε3

.

Then, we fix ε′3 satisfying

ε′2 <
(k∗/ρ − ε1)

N̄2
, ε′3 <

N̄2 (m − ε2) − 1
N̄3

.

Finally, we choose N large enough such that

N̄ > ρN̄2C(ε1) + ρN̄3C(ε3, ε
′
3).

Thus, we arrive at
d
dt

L2(ξ, t) + C4M2(t) ≤ 0, (3.29)

where

M2(t) = |ξ|6|û + τϕ̂|2 + |ξ|2|ϕ̂ + τŵ|2 + |ξ|2|θ̂|2 + |ξ|2|q̂|2

= |ξ|2Ê(ξ, t).

From the definition of Ê(ξ, t) and (3.27), it is obviously that L2(ξ, t) ∼ (1 + |ξ|2)2Ê(ξ, t). Then,

d
dt
Ê(ξ, t) + C

|ξ|2

(1 + |ξ|2)2 Ê(ξ, t) ≤ 0. (3.30)

Thus, we achieve the desired pointwise estimate (2.6), which leads to the conclusion (2.7). The proof
process of (2.7) is similar to the proof of Theorem 3.1 in [9], so we omit it here. �

4. Asymptotic expansion of eigenvalues

From now on, we study the asymptotic expansion of the eigenvalues for |ξ| → 0 and |ξ| → ∞ to
show the optimality.

Let V̂ = (û, ϕ̂, ŵ, θ̂, q̂)T and V̂0 = (û0, ϕ̂0, ŵ0, θ̂0, q̂0)T . Then, we can rewrite system (2.1)-(2.2) as V̂t + iξAV̂ + |ξ|2BV̂ + |ξ|4DV̂ + LV̂ = 0,

V̂(ξ, 0) = V̂0(ξ),
(4.1)

where

A =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 κ

0 0 0 κ
τ0

0


, L =


0 −1 0 0 0
0 0 −1 0 0
0 0 1

τ
0 0

0 0 0 0 0
0 0 0 0 1

τ0


,

B =


0 0 0 0 0
0 0 0 0 0
0 0 0 − m

τρ
0

0 m mτ 0 0
0 0 0 0 0


, D =


0 0 0 0 0
0 0 0 0 0
k∗
τρ

k
τρ

0 0 0
0 0 0 0 0
0 0 0 0 0


.
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For (4.1), the solution is given by
V̂(ξ, t) = etΦ̂(iξ)V̂0(ξ),

where etΦ̂(iξ) denotes the matrix exponential with

Φ̂(iξ) = −(L + iξA + |ξ|2B + |ξ|4D).

Setting ζ = iξ, we get
Φ̂(ζ) = −(L + ζA − ζ2B + ζ4D).

Let λ j(ζ) denote the eigenvalues of the matrix Φ̂(ζ). By the direct calculation, we find that the
characteristic polynomial of Φ̂(ζ) is

τρc det(λI − Φ̂(ζ))
=τρτ0λ

5 + (τ0ρ + τρ)λ4 + [(τ0k + m2ττ0)ζ4 − τρκ2ζ2 + ρ]λ3

+ [(τ0k∗ + m2τ + m2τ0 + k)ζ4 − ρκ2ζ2]λ2 + [(m2 + k∗)ζ4 − κ2kζ6]λ − κ2k∗ζ6.

(4.2)

Lemma 4.1. The real parts of the eigenvalues of (2.1)-(2.2) satisfy the following asymptotic expansion:

Reλ j(iξ) =


−

1
τ

+ O(|ξ|2), j = 1,

−
1
τ0

+ O(|ξ|2), j = 2,

−Re(φ j)|ξ|2 + O(|ξ|3), j = 3, 4, 5,

(4.3)

for |ξ| → 0.

Proof. We consider λ j(ζ) the following asymptotic expansion:

λ j(ζ) =

∞∑
h=0

λ(h)
j |ζ |

h, (4.4)

for |ζ | → 0. Straightforward computations yield

λ(0)
j = −

1
τ
, j = 1,

λ(0)
j = −

1
τ0
, j = 2,

λ(0)
j = λ(1)

j = 0, λ(2)
j = φ j, j = 3, 4, 5,

where φ j are the roots of equation ρX3−ρκ2X2 + (m2 +k∗)X−κ2k∗ = 0. To demonstrate that Re(φ j) > 0,
we set

f (X) := ρX3 − ρκ2X2 + (m2 + k∗)X − κ2k∗. (4.5)

Since f (0) f (κ2) < 0, we conclude that f has at least one real root X = φ1 in the interval (0, κ2). We
express Eq (4.5) in the form

f (X) = (X − φ1)(ρX2 + d1X + d0)
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with d1 = −ρκ2 + φ1ρ < 0 and d0 =
κ2k∗

φ1
> 0. For the remaining roots φ2 and φ3, we find that

φ2 + φ3 = −
d1

ρ
> 0, φ2φ3 =

d0

ρ
> 0.

This implies that if φ2 and φ3 are real, they are both positive; if φ2 and φ3 are complex conjugates, then

Re(φ2) = Re(φ3) =
1
2

(κ2 − φ1) > 0.

Thus, we have arrived at the desired result in (4.3). This completes the proof. �

When |ζ | → ∞, we rewrite Φ̂(ζ) as Φ̂(ζ) = ζ2Ψ̂(ζ−1), where Ψ̂(ζ−1) = B − ζ−1A − ζ−2L − ζ2D, and
consider the eigenvalues µ j(ζ−1), for j = 1, 2, 3, 4, 5 of the matrix Ψ̂(ζ−1). Meanwhile, these eigenvalues
µ j(ζ−1) are the solutions to the characteristic equation

τρc det(µI − Φ̂(ζ−1))
=τρτ0µ

5 + (τ0ρ + τρ)ζ−2µ4 + [ρζ−4 − τρκ2ζ−2 + (τ0k + m2ττ0)]µ3

+ [−ρκ2ζ−4 + (τ0k∗ + m2τ + m2τ0 + k)ζ−2]µ2 + [(m2 + k∗)ζ−4 − κ2kζ−2]µ − κ2k∗ζ−4.

Lemma 4.2. When K > 0, the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic
expansion

Reλ j(iξ) =



−
Kτ0ρ

2τρ(τ0k + m2ττ0)
+ O(|ξ|−1), j = 1, 2,

−
m2τκ2k + κ2k2 + m2τ0κ

2K
2κ2k(τ0k + m2ττ0)

+ O(|ξ|−1), j = 3, 4,

−1 + O(|ξ|−1), j = 5,

(4.6)

for |ξ| → ∞.
When K = 0, the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic expansion

Reλ j(iξ) =



−
κ2m2τ2ρ

2τ2
0(k + m2τ)2

|ξ|−2 + O(|ξ|−3), j = 1, 2,

−
m2τκ2k + κ2k2

2κ2k(τ0k + m2ττ0)
+ O(|ξ|−1), j = 3, 4,

−1 + O(|ξ|−1), j = 5,

(4.7)

for |ξ| → ∞.

Proof. As |ζ | → ∞, similar calculation as before yields

µ(2)
j = ±

√
k + m2τ

τρ
i, µ(1)

j = 0, Re
(
µ(0)

j

)
= −

Kτ0ρ

2τρ(τ0k + m2ττ0)
,

j = 1, 2, when K > 0;
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µ(2)
j = ±

√
k + m2τ

τρ
i, µ(1)

j = 0, µ(0)
j = ∓

τ2ρκ2m2

2
√
τρ(k + m2τ)(τ0k + m2ττ0)

i,

µ(−1)
j = 0, Re

(
µ(−2)

j

)
=

κ2m2τ2ρ

2τ2
0(k + m2τ)2

,

j = 1, 2, when K = 0;

µ(2)
j = 0, µ(1)

j = ±

√
κ2k

τ0k + m2ττ0
, µ(0)

j = −
m2τκ2k + κ2k2 + m2τ0κ

2K
2κ2k(τ0k + m2ττ0)

,

j = 3, 4,

µ(2)
j = 0, µ(1)

j = 0, µ(0)
j = −1, j = 5.

Consequently, our conclusion holds. �

5. Conclusions

In this work, we have investigated the Cauchy problem for the JMGT-viscoelastic plate system
coupled with Cattaneo-type heat conduction, focusing on the optimal decay rates of solutions in both
the subcritical and critical cases. Our main contributions can be summarized as follows:

(1) The subcritical case: We proved that the system exhibits exponential decay without regularity
loss, improving upon previous results in the literature. This indicates that the dissipation mechanism
in this regime preserves the initial regularity of solutions.

(2) The critical case: In contrast, we observed a regularity-loss phenomenon in the decay rates,
demonstrating a fundamental difference in the long-time behavior compared to the subcritical case.
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