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1. Introduction

Neggers and Kim [1] introduced the notion of a B-algebra, and Cho and Kim [2] discussed
B-algebras related to the quasigroup. Walendziak [3] and Kim and Kim [4] obtained another
axiomatization of a B-algebra. Kim and Kim [4] introduced the notion of a BA-algebra and showed
that the class of BA-algebras is equivalent to the class of B-algebras. Abdullah and Atshan [5]
discussed several types of ideals in B-algebras and obtained some relations between those ideals.
Belleza and Vilela [6] introduced the notion of a dual B-algebra and discussed some relationship
between a dual B-algebra and a BCK-algebra. Al-Shehrie [7] introduced the notion of left-right
derivation of B-algebras and discussed derivations of O-commutative B-algebras. Naingue and Vilela
[8] introduced the notion of a companion B-algebra and discussed a ®-subalgebra and a ©-ideal of a
companion B-algebra.

As an application of B-algebras to fuzzy set theory, Jun et al. [9] discussed the fuzzification of
(normal) B-subalgebras and characterized fuzzy B-algebras. Senapati et al. [10] introduced the notions
of a cubic ideal to B-algebras and obtained several relations among cubic subalgebras with cubic ideals
and cubic closed ideals of B-algebras. Gonzaga and Vilela [11] discussed a fuzzy order in fuzzy


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025431

9333

B-algebras, and obtained useful results on the relations between the fuzzy order and the order in B-
algebras. Recently, Borzooei et al. [12] discussed the notion of m-polar fuzzy (normal) subalgebras in
B-algebras, and they characterized the m-polar intuitionistic fuzzy (normal) subalgebra.

As a generalization of a BCK-algebra, Neggers and Kim [13] introduced the notion of a d-algebra
just deleting two complicated axioms from the BCK-algebra. They investigated some relations between
d-algebras and BCK-algebras. Neggers et al. [14] introduced notions of d-subalgebras, d-ideal, d*-
ideal, and d*-ideal in d-algebras and discussed some relations among them.

In this paper, we introduce several co-associative laws and we select two co-associative laws for the
investigation of B-algebras. We show that every B-algebra is a pre-B-algebra, but the converse does
not hold in general by giving a counter-example. We introduce the notion of a L-algebra and we prove
that every B-algebra is a L-algebra. We find some conditions for a L-algebra to be a semigroup. We
introduce the notion of a post groupoid and a pre-semigroup of a groupoid. We apply these concepts to
the set N of all nonnegative integers and obtain their several related properties. Finally, we prove that
the groupoid (N, +) cannot be a post groupoid of a B-algebra or an edge d-algebra.

We introduce some definitions and theorems which are necessary to develop the theory in Section 2.
We introduce several co-associative laws in Section 3. Among them we choose two axioms, and make
a notion of a pre-B-algebra. We discuss some relations between pre-B-algebras, B-algebras, and L-
algebras in Section 3. In Section 4, we introduce the notions of a post groupoid, a pre-semigroup, and
a primitive semigroup, and discuss their roles in the groupoid (IN, +).

2. Preliminaries

In this section, we give some definitions and theorems which are useful to investigate the theory as
follows:
A nonempty set P with a constant 0 and a binary operation “x+” is said to be a B-algebra [1] if

(D pxp=0,
I p=0=p,
(D (p*q)xr = px*(r=(0=*q))

for all p,q,rin P.
Proposition 2.1. [1] If (P, %,0) is a B-algebra, then

(i) p=0=(0=p),
(i) px(gxr)=(p*(0x*r)=q,
(ii)) pxq=0x(q*p)

forall p,q,r € P.
A nonempty set P with a constant 0 and a binary operation “ * ” is called a d-algebra [13] if

@M pxp=0,
(V) 0+ p =0,
(V) pxg=0and g+ p=0imply p =g¢q

forall p,q € P.
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A d-algebra (P, *,0) is said to be an edge [13] if p 0 = p for all p € P. A groupoid (P, ) is called
a left zero semigroup [15] if p x ¢ = p for any p,q € P, and a groupoid (P, *) is called a right zero
semigroup [15] if p x g = g for any p,q € P.

3. Co-associative laws

In this section, we suggest several generalized associative laws as below, and we select two axioms
for defining an algebra, called a pre-B-algebra. We discuss some relations between a pre-B-algebra
and a B-algebra. Moreover, we introduce the notion of a L-algebra, and find some relations with a
pre-B-algebra.

[I3E]

Given a groupoid (P, ), i.e., a nonempty set P and a binary operation “+” on P, we consider various
co-associative laws: for all p,g,r,u € P,

e middle co-associative: (p * q) *r = p * (r * ((q * q) * q)),

e final co-associative: (p *q) xr = p * (r* ((r xr) * q)),

e universal co-associative: (p * q) *r = p * (r * (u * u) * q)),
e middle co’-associative: p (g *r) = (p = ((q * q) * 1)) * g,

e final co’-associative: p x(q*r) = (p*((r+r)*r))*q,

e universal co’-associative: p x (q*r) = (p * (u * u) *r)) * q.

“,»

Proposition 3.1. Let (P, -, e) be a group. If we define a binary operation “x” on Pby p*q :=p-q~"
for all p,q € P, then (P, ) is both universal co-associative and universal co’-associative.

Proof. Let (P,-,e) be a group. If we define a binary operation “+” on P by p x ¢ := p - ¢q~' for all
p.q € P, then, for any p,q,r € P, wehave (pxq)xr=(p-q " )xr=(p-g")-r' =p-(g""-r"). We
compute p * (r * ((u * u) * q)) as follows: for all p,q,r,u € P,

pr(rx(u*u)=q)"

= p (- (@ usg™H"'
= p-(r-(gH™H!

= p-(r-g"

= p-(qg"-rh.

p o (rx ((uu) * q))

Since (P, , e) is a group, the universal co-associative law holds.
Similarly, we can prove the universal co’-associative law. O

A groupoid (P, %) is said to be a pre-B-algebra if it is both universal co-associative and universal
co’-associative. By Proposition 3.1, we can obtain many pre-B-algebras from groups. Note that we
may define other algebraic structures from the above generalized associative laws, e.g., pre-B’-algebra,
pre-B’’-algebra, etc., by choosing suitable axioms.

In this paper, we focus on the story of pre-B-algebras.

Theorem 3.2. Every B-algebra is a pre-B-algebra.
Proof. Let (P, %,0) be a B-algebra. Given p, g, r,u € P, by (I), (IlI), we obtain

pr(rx(uxu)xq)=pxr*0*xq)=(p*xq)*r.
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Hence (P, *) is universal co-associative. Moreover, by Proposition 2.1(ii), we obtain

(p*(u*u)*r)xq=(p*0=*r)*q=p=(q*r).
Hence (P, %) is universal co’-associative. O

The converse of Theorem 3.2 need not be true in general. See the following example.

Example 3.3. Let (P, %) be a left zero semigroup and |P| > 2. Then p *q = p for all p,q € P. It follows
that (pxg)*r=p = px*(r+(u*u)*q))and p*(g*r) = p = (p* ((u*u) *r)) * g, and hence (P, ¥) is
a pre-B-algebra. But it is not a B-algebra. In fact, if it is a B-algebra, then p = p* p = 0 forall p € P,
which leads to P = {0}, which is a contradiction.

Given a groupoid (P, %) and p € P, we define p* := (p * p) = p. We call p* a perp of p in (P, *).

If we take ¢ := p and r := p in various co-associative laws, then we obtain more simple forms with
the aid of a pert p* of p as follows:

Proposition 3.4. Let (P, %) be a groupoid. Then the following holds:

(i) if (P, *) is middle co-associative, then p* = p x (p * p*),
(ii) if (P, *) is final co-associative, then p~ = p * (p * p*),
(iii) if (P, ) is middle co’-associative, then p = (p = p) = (p * p*) * p,
(iv) if (P, =) is final co’-associative, then p * (p * p) = (p * p*) * p
forall p,q,r € P.
Proof. The proofs are easy, and we omit their proofs. O

Note that the results in Proposition 3.4 are analogues of the power associative law in the semigroup
theory.

Since every pre-B-algebra is both universal co-associative and universal co’-associative, by
Proposition 3.4, we obtain the following corollary.

Corollary 3.5. If (P, *) is a pre-B-algebra, then p* = p « (p % p*~) and (p = p*) = p = p * (p * p) for all
p e P.

A groupoid (P, *) is said to be power co-associative if p~ = p«(px* p*) for all p € P, and a groupoid
(P, *) is said to be power co’-associative if (p x p*)« p = p* (p = p) forall p € P.

By Corollary 3.5, pre-B-algebras are among those algebras which have both power co-associative
law and power co’-associative law.

Proposition 3.6. If (P, %,0) is a B-algebra, then

(i) 0% p* =p,
(i) (p)*r=p
forall p € P.

Proof. (1) By Proposition 2.1(i), we have p = 0 * (0 = p) for all p € P. It follows that p = 0 % (0 * p) =
Ox[(p*p)*p]=0=xp*forall peP.
(i1) By (I) and Proposition 3.6(i), we have (p*)* = (p* = pt) = p~ = 0% p* = p. m]
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Proposition 3.7. If (P, x) is a left zero semigroup, then (p*~)*- = p forall p € P.
Proof. If (P, *) is a left zero semigroup, then p* = (p* p)*p = p* p = p for all p € P. Hence
(pH)t=p-=pforall peP. ]

A groupoid (P, %) is said to be a L-algebra (or a perp-algebra) if (p*)* = p for all p € P.

Note that, by Proposition 3.6(i1), every B-algebra is a L-algebra, but the converse need not be true,
since every left zero semigroup is a L-algebra. Example 3.3 shows that a nontrivial left zero semigroup
(P, =), |P| > 2, is a L-algebra, but not a B-algebra.

We give an example of a L-algebra which is not a pre-B-algebra as follows:

Example 3.8. Let X := {0, a, b, ¢} with the following table:

*I'0 a b ¢
010 +, v, ¢
alv; b b b
b|+v, a a b
clvVs Ve V7 c©

where \/l. € P,(i=1,2,---,7). Then it is easy to see that (P, ) is a L-algebra, but not a pre-B-algebra,
since (axc)*b=aand a =+ (b*((0=x0)x*c))=b.

Note that it is not known yet that there are pre-B-algebras which are neither a B-algebra nor a
1 -algebra. We draw a diagram for these relations as Figure 1:

Example 3.8
pre-B-algebra 1 -algebra

Example 3.3
Theorem 3.2

B-algebra

Figure 1. Relations on pre-B-algebras.

Proposition 3.9. Let (P, *,0) be a B-algebra. Then
(pxq)t=qx*p (©)
forall p,q € P.
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Proof. Given p, q € P, by (1) and Proposition 2.1(iii), we obtain

[((p=q)=(p*q]=*(p=*q)
0(p=q)
= Q*p,

Pt

which proves the proposition. O

Proposition 3.10. Let (P, *,0) be a left zero semigroup. Then
(pxq)=p
forall p,q € P.
Proof. Given p,q € P,wehave p=(p*p)*p=p-=(p*q)*. O
Note that every left zero semigroup (P, *) with |P| > 2 does not satisfy the condition (C).
A groupoid (P, *) is said to be anti-commutative if, for all p,q € P, (p = ¢)* = q = p.

Theorem 3.11. If a groupoid (P, %) is commutative and anti-commutative and P « P = P, then (P, %) is
a L-algebra.

Proof. If (P, ) is commutative and anti-commutative, then (p x ¢)* = g* p = p = g for all p,q € P.
Since P * P = P, there exist u,v € P such that p = u = v for any p € P. It follows that p* = (u * v)* =
v*u =ux*v = p, which shows that (P, ) is a L-algebra. O

Theorem 3.12. Let (P, *) be an anti-commutative and middle co-associative 1-algebra. If we define a

(il

binary operation “®” on P by p e q := p = g* for all p,q € P, then (P, ®) is a semigroup.

Proof. Given p,q,r € P, we have

(peq)er = (pxq)xr
= px(rx((g"*q")*q"))
= px(tx(g))
= px((gH)t=r)*
= pe((gh)-er)
= pe(qger),

which shows that (P, e) is a semigroup. O

4. Pre-semigroups and L -algebras

In this section, we discuss some relations between pre-semigroups and _L-algebra, and we show that
a groupoid (N, +) cannot be a post groupoid of a B-algebras (N, x, 0).

A groupoid (P, e) is said to be a post groupoid of a groupoid (P, ) if pe g := p*g* forall p,q € P.
In this case, we denote it by (P, x) = (P, e).

AIMS Mathematics Volume 10, Issue 4, 9332-9341.
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Example 4.1. Let N := {0,1,2,3,---} and let “+” be the usual addition on Z. Let (N, e) be a post
groupoid of (N, +). Then p* = (p+ p) + p=3pforall p e N. It follows that pe g = p + g = p + 3¢q
for all p,q € N.

A groupoid (P, *) is said to be a pre-semigroup of a groupoid (P, ®) if (i) (P, *) = (P, ) and (i1) (P, ®)
is a semigroup. Note that (N, +) is not a pre-semigroup. If we assume that there exists a semigroup
(N, o) such that (N, +) E (N, e), then, by Example 4.1, we have p e ¢ = p + 3¢q for any p,q € N. It
follows that (1 e2)e3 =(1+3-2)e3=7+3-3=16,but 1 e(2e3)=1+3(2+ 3-3) =34, which
leads to a contradiction.

Proposition 4.2. Let (P, *) be a right zero semigroup. If (P, ®) is a groupoid with (P, *) = (P, e), then
(P, *) is a pre-semigroup.

Proof. Given p,q € P, wehave peg = px g = p=*((g*q)*q) = p*q = g, which shows that (P, e) is
a right zero semigroup, i.e., a semigroup. This proves that (P, %) is a pre-semigroup. O

Let (P, =) be a groupoid and p, g € P. We define p " g by

pxqi= p=xgq,

pxq:=  (p' @ =q,

p¥qi=  (p¥q+q,

p¥qg= (- ((px@*q)*xq)*--)*q.

n

Proposition 4.3. Let N :={0,1,2,3,---} and “+” be the usual addition on N. Let (N, ) be a groupoid
with (N, %) E (N, +). Then

(i) px0t=p=0xp-
(i) p = i[p ="' p*] wheren > 2,

forall p e N.

Proof. (i) Since (N, %) = (N, +), we have p + g = px g+ = p = [(g * q) * ¢] for all p,q € N. It follows
that p=p+0=p=*[(0=0)=0]=p=0=-. Since p =0+ p, we obtain p = 0 % p*.
(ii) Given p € N, we have 2p = p+ p = p* p*, and hence p = %[p*pl] and3p =2p+p=2pxpt =
(p* p*) * p*. It follows that p = 3[(p * p*) * p*1 = 3[p +* p*].

Similarly, we obtain 4p = 3p + p = 3p * p* = [p+* p*]* p* = p»’ p*, and hence p = 3[p * p*].
In this fashion, by induction, we obtain p = %[p «"~1 pL]forall p € N, where n > 2. |

Proposition 4.4. Let (N, %) be a L-algebra and (N, ) E (N, +). Then

i) p-=0=xp,

(i) p=0x(0=*p),

(iii) a = p = b * p implies a = b,
(iv) pxp =0,

v) px0=p

AIMS Mathematics Volume 10, Issue 4, 9332-9341.
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forall p,a,b € N.

Proof. (i) Given p, g € N, since (N, ) £ (N, +), we have p + g = p = g*. It follows that p* = 0 + p* =
0 (p*)* for all p € N. Since (N, %) is a L-algebra, we obtain p* = 0 = (p*)* = 0= p.

(ii) By (i), we have p =0+ p = 0% p~ =0 (0 = p) for all p € N.

(iii) Suppose a = p = b = p. Since (N, ) is a L-algebra, we obtain a * (p~)* = b = (p*)*, and hence
a+ p* = b+ p*, which shows that a = b.

(iv) By (i), we have (p = p) * p = p* = 0 % p for all p € N. By applying (iii), we obtain p * p = 0 for
all p e N.

VM) px0=px(0x0)=px0t=p+0=pforall peN. O

Theorem 4.5. A groupoid (N, +) cannot be a post groupoid of a B-algebra (N, %, 0).

Proof. Assume that (NN, +) is a post groupoid of a B-algebra (N, ,0), i.e., (N,*) E (N,+). By
Proposition 3.6, every B-algebra is a L-algebra. It follows that
(pxq)xr=(p*@H))*() =p+qg-+r
By Proposition 4.4(i), we obtain
prrx(0xq)=p*(rxq)=p*x(r+q)=p++q) .

Since (N, %) is a B-algebra, we obtain p + g* + r* = p+ (r + ¢)*. Hence ¢g* + r* = (r + ¢)* for all
g, r € N. It follows that 2t = (1 + I)* = -+ 1+* =21 and 3t =2+ 1)* =2+ + 1+ =2(1H) + 1+ =
3(14).

In this fashion, we obtain n* = n(1+) for all n € N. Now, we need to calculate 1+. Since (N, *) is a
L-algebra, we obtain n = (n*)* = [n(11)]* = [n(1H)]1+ = n(1+)? for all n € N. It follows that 1+ = 1,
and hence n* = n(1*+) = nfor all n € N. Hence m * n = m * n* = m + n for all m,n € N. By definition
of the L, we obtain n*t = (n*n)*n = (n+n) +n = 3n, and hence n = (n*)* = 3n)* = 3(3n) = 9n for
all n € N, which is a contradiction. O
Proposition 4.6. A groupoid (N, +) cannot be a post groupoid of an edge d-algebra (N, %, 0).

Proof. Assume that (NN, +) is a post groupoid of an edge d-algebra (N, %, 0), i.e., (N, %) = (N, +). Then
pt = (pxp)xp =0=xp=_0forall p € N, since (N, %,0) is a d-algebra. Since (N, ) is an edge d-algebra
and (N, ) E (N, +), we obtain p+g=p=+g-=p=*0=pforall p,g e N,i.e., p+ g = p, which leads
to ¢ = 0, which is a contradiction. O

A semigroup (P, e) is said to be a primitive semigroup if there is no groupoid (P, *) such that (P, *) =
(P, ). We consider the groupoid (N, +). If we assume that (N, +) is not a primitive semigroup, then
there exists a groupoid (N, x) such that (N, x) = (N, +). It follows that

p+q=pxq =px((q*q) *q) (D)
for all p,q € N. It is not sufficient to find what p x g is by using this condition only, i.e., we need
additional axioms or conditions for satisfying the condition (D). For example, if we define a binary
operation x on Nby pxg:=p—gq,thenpxg- =px(g*xq *xq)=p—-((q—q) —q) = p + g for
all p,q € N. But (NN, —) is not a groupoid, since 3 —5 = -2 ¢ N. It is an interesting topic for finding a
groupoid (N, x) satisfying the condition (D). On the basis of this reason, we may have a conjecture as
follows:

Conjecture. (N, +) is a primitive semigroup.
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5. Conclusions and future works

We introduced several co-associative laws, and we selected two co-associative laws for the
investigation of B-algebras named it a pre-B-algebra. We showed that every B-algebra is a
pre-B-algebra, but the converse does not hold in general by giving a counter-example. We introduced
the notion of a L-algebra, and we proved that every B-algebra is a L-algebra. We found some
conditions for a L-algebra to be a semigroup. We introduced the notion of a post groupoid and a
pre-semigroup of a groupoid. We applied these concepts to the set N of all nonnegative integers, and
we obtained several related properties. Finally, we proved that the groupoid (IN, +) cannot be a post
groupoid of a B-algebra or an edge d-algebra.

We shall apply the notion of a post groupoid to several algebraic structures, and we will discuss
some relations between different post groupoids. Moreover, we shall generalize several theorems and
propositions which were discussed in B-algebras to the area of pre-B-algebras with the aid of
1-algebras. Moreover, we shall apply the notion of Bin(X) [16] to post groupoids and provide a
ladder to investigate the area of hyper-pre-B-algebras. Since the set of all natural numbers is a
concrete example of a semiring, we shall apply these results to the theory of semirings and computer
science also.
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