

https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(4): 9322-9323.

DOI: 10.3934/math.2025429 Received: 02 April 2025 Revised: 21 April 2025 Accepted: 23 April 2025

Published: 23 April 2025

Correction

Correction: Relative information spectra with applications to statistical inference

Sergio Verdú*

Independent researcher, Princeton, NJ 08540, USA

* Correspondence: Email: verdu@informationtheory.org.

A correction on

Relative information spectra with applications to statistical inference by Sergio Verdú. AIMS Mathematics, 2024, 9(12), 35038–35090.

DOI: 10.3934/math.20241668

The author would like to make the following correction to the published paper [1].

In Theorem 21-(d) of [1], min in (8.29) should be max. In other words, for $v \in (0, \underline{\pi}_{1|0})$, the fundamental tradeoff function is given by

$$\alpha_{\nu}(P_1, P_0) = \max_{\gamma \in \mathbb{R}} \left\{ \mathbb{F}_{P_1 \parallel P_0}(\gamma) + \exp(\gamma) \left(1 - \nu - \overline{\mathbb{F}}_{P_1 \parallel P_0}(\gamma) \right) \right\}, \tag{8.29}$$

where the maximum is achieved by γ^* defined in (8.30) and (8.32).

Proof. With the aid of (4.24) we can express the function within $\{\}$ in (8.29) as

$$\begin{split} f_{\nu}(\gamma) &= \mathbb{F}_{P_1 \parallel P_{\emptyset}}(\gamma) + \exp(\gamma) \left(1 - \nu - \overline{\mathbb{F}}_{P_1 \parallel P_{\emptyset}}(\gamma) \right) \\ &= (1 - \nu) \exp(\gamma) - \frac{1}{\log e} \int_{-\infty}^{\gamma} \exp(t) \, \overline{\mathbb{F}}_{X \parallel Y}(t) \, \mathrm{d}t. \end{split}$$

Its right- and left-derivatives at $\gamma \in \mathbb{R}$ are

$$\dot{f}_{\nu}^{+}(\gamma) = \lim_{\epsilon \downarrow 0} \frac{f_{\nu}(\gamma + \epsilon) - f_{\nu}(\gamma)}{\epsilon} = \left(1 - \nu - \overline{\mathbb{F}}_{X||Y}(\gamma)\right) \frac{\exp(\gamma)}{\log e},$$

$$\dot{f}_{\nu}^{-}(\gamma) = \lim_{\epsilon \downarrow 0} \frac{f_{\nu}(\gamma) - f_{\nu}(\gamma - \epsilon)}{\epsilon} = \left(1 - \nu - \lim_{x \uparrow \gamma} \overline{\mathbb{F}}_{X||Y}(x)\right) \frac{\exp(\gamma)}{\log e},$$

respectively. Consequently,

- 1. $\dot{f}^+_{\nu}(\gamma) > 0$ and $\dot{f}^-_{\nu}(\gamma) > 0$ at those $\gamma \in \mathbb{R}$ such that $\overline{\mathbb{F}}_{X||Y}(\gamma) < 1 \nu$;
- 2. $\hat{f}_{\nu}^{+}(\gamma) < 0$ and $\hat{f}_{\nu}^{-}(\gamma) < 0$ at those $\gamma \in \mathbb{R}$ such that $\lim_{x \uparrow \gamma} \overline{\mathbb{F}}_{X||Y}(x) > 1 \nu$;
- 3. If $\overline{\mathbb{F}}_{P_1 \parallel P_0}^{-1}(1-\nu) \neq \emptyset$, then $\dot{f}_{\nu}^{+}(\gamma^{\star}) = \dot{f}_{\nu}^{-}(\gamma^{\star}) = 0$ at any solution of (8.30);
- 4. If $\overline{\mathbb{F}}_{P_1||P_0}^{-1}(1-\nu)=\emptyset$, then at the unique γ^* that satisfies (8.32), $\dot{f}_{\nu}^{-}(\gamma^*)>0$ and $\dot{f}_{\nu}^{+}(\gamma^*)<0$.

Therefore, we have shown that the non-concave function to be maximized satisfies $f_{\nu}(\gamma) < f_{\nu}(\gamma^{\star})$ for any γ that does not satisfy either (8.30) or (8.32). The fact that $f_{\nu}(\gamma^{\star}) = \alpha_{\nu}(P_1, P_0)$ follows from (8.30)–(8.31) if $\overline{\mathbb{F}}_{P_1||P_0}^{-1}(1-\nu) \neq \emptyset$. Otherwise, it follows from (8.33)–(8.34) taking into account that, in view of (4.25),

$$\exp(\gamma^{\star}) = \frac{\mathbb{F}_{P_1 \parallel P_0}(\gamma^{\star}) - \lim_{x \uparrow \gamma^{\star}} \mathbb{F}_{P_1 \parallel P_0}(x)}{\overline{\mathbb{F}}_{P_1 \parallel P_0}(\gamma^{\star}) - \lim_{x \uparrow \gamma^{\star}} \overline{\mathbb{F}}_{P_1 \parallel P_0}(x)}.$$

The change does not affect anything else in [1]. In particular in Appendix A, the reference to Theorem 21-(d) only uses the expressions of the fundamental tradeoff function in (8.31) and (8.33), which in turn are derived from Item 96.

The original manuscript will be updated [1]. We apologize for any inconvenience caused to our readers by this change.

Conflict of interest

The author declares there is no conflict of interest.

References

1. S. Verdú, Relative information spectra with applications to statistical inference, *AIMS Math.*, **9** (2024), 35038–35090. https://doi.org/10.3934/math.20241668

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)